
DEVELOPMENT OF SOFTWARE FOR
SOLVING SYSTEMS OF LINEAR EQUATIONS

Karl Westerberg

Engineering Design Research Center

It should be noted that the software described in this document has

been rewritten in C, and has been copiled and tested on a number

of UNIX hardware platforms including Apollo:Motorola, Cray, Dec:Mips, Sun:Sparc, HP:PA.

Contact ascend+ftp@cs.cmu.edu for further information.

Copyright  1992 ASCEND

1

1. Abstract

This report discusses the design and implementation of software for solving systems of sparse linear

equations. The motivation for this work came from the needs of the ASCEND (Piela, 1989) computer

environment for building and solving complex mathematical models.

The original intent was to use an existing software package such as MA28 (from the United Kingdom

Atomic Energy Authority, Harwell) (Duff, 1977); however, an initial survey convinced us that a package to

suit our requirements for an extremely flexible research tool did not exist. We were looking for software

that had been written in a modular fashion, allowing us to change all aspects of the solving process such

as matrix representation, and solving algorithm. In response to these requirements, we created our own

software package which is described in this report.

The report is divided into four sections, the first of which describes in detail the software structure and

implementation of the solver. The second section describes the methods used for testing both the

correctness and efficiency of the solver. The third section discusses the development of the solving

algorithm, and in the fourth section the solver is compared with two other packages: MA28, and a solver

developed by Amoco (Cummings, 1985).

2. Introduction

The linear equation solver is a stand alone software package, designed primarily for solving large

sparse systems of linear equations. It was designed with readability, modularity, flexibility, and portability

being the most important concerns; and speed being of lesser importance. An important requirement was

that the solver should support multiple solving strategies. The solver is written in Pascal on an Apollo

workstation. To date the code has not been ported to any other machines.

3. Description of the software structure

The module dependency tree is shown in 3-1. A brief description of the function of each module is

given below:

1. linear: user interface to the linear equation solver.

2. mio: input and output of matrices, either to standard input/output or to disk files.

3. sio: output of the solution of a system of equations to standard output.

4. linsol: solution of the system of linear equations.

5. gauss: factorization of a matrix. The factors are then applied to the righthand side (RHS) to

2

LINEAR

LINSOL

PART GAUSSMIO

SIO

MTX

Figure 3-1: Module dependency tree

obtain the solution.

6. part: production of an output assignment, which is used to partition a matrix into lower block
triangular form.

7. mtx: storage and management of matrix information including RHS, equation and variable
labels, and row/column permutation.

Each module will be described in fuller detail later. Also incorporated (but not shown in the

dependency tree) are the following utility modules:

1. str: string manipulation

2. fmt: input and output of numbers (real or integer) from or into formatted text.

3. msg: management and display of messages.

4. utl: graphics primitives.

5. list: management of "linked lists." Linked lists combine the advantages of arrays, such as
indexed addressing, with the advantages of linked lists, such as flexible size, insertion, and
deletion.

Possibly the most important aspect of developing structured software is deciding on how best to

decompose the overall task. It seemed natural to us that the task of equation solving should be

completely separated from the task of matrix storage. This would allow us to change the matrix

representation without having to rewrite the solving procedures. However, this division does not exist in

most packages where the goal of better performance has fused matrix representation and solving. As a

result, any change to the storage philosophy requires modification of the solver. Additional benefits of

separation in our task included improved debugging, readability, and the use of the matrix storage

software in other applications.

3

The solving procedure was decomposed into several modules. For example the reordering algorithm

and factorization algorithm were implemented in separate modules. This separation could have been

achieved by making them separate procedures within the same module; however, our approach allowed

any reordering technique to be paired with any factorization technique, a gain in flexibility.

Furthermore, linsol had to manage the structure associated with solving linear equations as well as the

translation of the factors and the solution. Therefore, the factorization algorithm was separated out of

linsol and occupies its own module, gauss.

The bulk of the reordering algorithm remains in linsol, because the reordering algorithm may affect the

particular use of factorization. The procedures used for output assignment and partitioning the matrix

(also a part of the reordering algorithm) are stored in their own module. This was done because output

assignment and partitioning are generic operations which are used in other applications, e.g., non-linear

equation solving depends on output assigning for the purpose of determining structural singularity.

4. Description of each module

In this section the primitive procedures will be discussed, and then the implementation method(s)

employed will be described. It should be noted that all identifiers (procedure names, constants, types and

variables) associated with a module begin with "<name>$_", where <name> is the name of the module.

This has the advantages of enabling the reader to use a particular identifier’s name to determine which

module it came from, as well as preventing potential naming clashes.

The algorithms described below are those which are currently implemented. The reader is referred to

the section on development for a discussion on the evolution of these algorithms.

4.1. Module mtx

4.1.1. Procedures

The following is a list of exported procedures:

mtx$_create_matrix Create a zero matrix of zero order
mtx$_destroy_matrix Destroy the matrix and returns the space to the system
mtx$_set_current_matrix Set the current matrix
mtx$_push_current_matrix Set the current matrix, placing the old one on a stack
mtx$_pop_current_matrix Restore previous current matrix from the stack
mtx$_set_region Set the region which restricts the scope of many calls
mtx$_get_order Return the order of the matrix
mtx$_set_order Set the order of the matrix
mtx$_clear_matrix Clear the entire matrix
mtx$_clear_coef Clear the coefficient matrix

4

mtx$_clear_rhs Clear the rhs
mtx$_clear_label Clear the labels
mtx$_clear_perm Reset the row/column permutations
mtx$_copy_matrix Copy the entire matrix to another
mtx$_copy_coef Copy the coefficient matrix to another
mtx$_copy_rhs Copy the rhs to another matrix
mtx$_copy_label Copy the labels to another matrix
mtx$_copy_perm Copy the row/column permutations to another matrix
mtx$_del_zr_in_row Remove numerical zeros from a row
mtx$_del_zr_in_col Remove numerical zeros from a column
mtx$_get_element Return an element from the matrix
mtx$_set_element Set the value of an element in the matrix
mtx$_get_next_col Return the next entry (by row) which is non-zero
mtx$_get_next_row Return the next entry (by col) which is non-zero
mtx$_get_row_max Return the maximum entry of a given row
mtx$_get_row_min Return the minimum non-zero entry of the given row
mtx$_get_col_max Return the maximum entry of a given column
mtx$_get_col_min Return the minimum non-zero entry of the given column
mtx$_row_count Return the number of non-zeros in the given row
mtx$_col_count Return the number of non-zeros in the given column
mtx$_get_rhs Return an element from the matrix rhs
mtx$_set_rhs Set the value of an element in the matrix rhs
mtx$_eqn_to_row Return the row corresponding to the equation
mtx$_row_to_eqn Return the equation corresponding to the row
mtx$_var_to_col Return the column corresponding to the variable
mtx$_col_to_var Return the variable corresponding to the column
mtx$_get_eqn_label Return the label of an equation
mtx$_get_var_label Return the label of a variable
mtx$_set_eqn_label Set the label of an equation
mtx$_set_var_label Set the label of a variable
mtx$_increment_diagonal Increment the diagonal of the matrix by a given amount
mtx$_transpose Transpose the matrix
mtx$_swap_row Swap the two given rows
mtx$_row_parity Return the parity of the row permutation
mtx$_swap_col Swap the two given columns
mtx$_col_parity Return the parity of the column permutation
mtx$_mult_row Multiply the given row by a given amount
mtx$_mult_col Multiply the given column by a given amount
mtx$_add_row Add a multiple of one row to another
mtx$_add_mult_row Add a linear combination of many rows to one row
mtx$_eliminate_row Perform row operations which zero the left of the diagonal
mtx$_add_col Add a multiple of one column to another
mtx$_view View current matrix in bitmap format

4.1.2. Introduction

The MTX module is responsible for the storage and maintenance of a matrix. The matrix is currently

resticted to a maximum order of 5000, (this upper limit can be changed by changing the constant

mtx$_max_order_c) and must be square (although zero rows or zero columns are permitted). The

structure of a matrix also includes a RHS vector (same length as the order of the matrix), equation and

variable labels, and row/column permutation information.

Before a matrix can be used, it must be created using mtx$_create_matrix. This procedure will create

the internal structure of a matrix and will return a handle (pointer) which is used to reference the matrix in

subsequent procedure calls. The internal structure of the matrix can be destroyed by calling

mtx$_destroy_matrix with the handle. This procedure returns a handle value of NIL to mark the fact that it

5

no longer exists.

Most of the routines described below operate on the "current matrix," rather than taking a matrix handle

as input. This can improve readability since most of the time the user wants to perform many actions on

one matrix at a time. Before operating on a particular matrix, the user must declare it to be the current

matrix using mtx$_set_current_matrix. For situations in which the user wants to work simultaneously with

several matrices, we have implemented the concept of a stack of matrices. In this case the current matrix

is set by pushing it to the top of the stack using mtx$_push_current_matrix. Lower matrices in the stack

can be made current by repeatedly calling mtx$_pop_current_matrix.

Many routines act on a limited region of a matrix. A region is any rectangular portion of a matrix

defined by a row and column range. Rather than specifying a region with every procedure call, a "current

region" is set once using mtx$_set_region. When the current matrix is changed, the current region is

reset to include the entire matrix. When the current matrix is saved by mtx$_push_current_matrix, the

current region is saved along with it.

4.1.3. Implementation

A description of the data structures in MTX is given in appendix I. Notice that the row/column headers,

RHS vector, and equation/variable labels are referenced through pointers in the main record. Initially,

these pointers are set to NIL, so space need not be allocated for these large arrays until they are actually

needed. Since most matrix applications access the permutation arrays and most operations require

access to them, these arrays are built into the main record. When these arrays are created, they are

initialized only up to the current matrix order. If the order of the matrix is increased, the size of the

permutation arrays is correspondingly increased.

The matrix is stored using a fishnet structure as diagrammed in appendix I. It should be noted that a

non-zero element is indexed by its equation/variable numbers and not its row/column numbers. Header

arrays are indexed in a similar manner. The reason for this is that the fishnet structure does not change

when two rows or two columns are swapped. A disadvantage is that the row/column numbers passed in

from the outside world must be translated into equation/variable numbers before using the permutation

arrays. However, in general, the cost of translation is negligible compared to the cost of swapping row

header pointers, and then changing the row index for all non-zero elements in the row. Since our favored

solution algorithm (called RANKI, see module gauss for details) uses many row and column swaps, the

6

equation/variable indexing is more efficient.

The RHS vector is stored as a full vector. It is also indexed by equation number instead of row

number, for the same reason as above.

The equation and variable labels are stored as arrays of strings, and indexed by equation and variable

numbers.

Because users reference the matrix by row and column numbers, the permutation arrays are heavily

used and are built into the main record to save time and enhance readability. Since all of the other data

structures are indexed by equation/variable numbers, only the permutation arrays are modified when a

row or column swap takes place, making row and column swaps very efficient. Four permutation arrays

are maintained : equation → row, variable → column, row → equation, and column → variable.

Although all of the permutation information is contained in the first two arrays, four arrays are maintained;

although the last two can be calculated from the first two, the calculation is costly. Row and column

parities are stored with the permutation arrays. The parity of a permutation is defined to be the parity

(evenness or oddness) of the number of elementary swaps required to convert the identity permutation to

the current permutation. Parity is uniquely determined by the permutation, and row and column parities

are used to calculate the sign of the determinant of the matrix.

The mtx$_add_row procedure has received the most attention during development, because it

consumes the most time during solving. The original implementation scanned the source row and for

every non-zero element in the row attempted to locate the corresponding element in the target row. If the

element existed its value was adjusted, otherwise, the element would have to be created and assigned a

2value. This algorithm was slow (of order z 2, where z is the number of non-zeros per row). In the second

implementation column indices were maintained (actually the variable indices) in increasing order so that

both source row and target rows could be scanned simultaneously. The drawback with maintaining

indices in increasing order was that element creation became slower because the new element had to be

correctly positioned. However, this change was still an improvement, since in many cases the fill-in was

relatively low. In our next approach, the target row was first expanded into an array of pointers, where

NIL indicates the element does not exist. Then, for each non-zero in the source row, the corresponding

non-zero element in the target row was searched for, by using the variable number as an index into the

array of pointers. If the pointer was NIL, then the target element did not exist and was created.

7

Otherwise, the element the pointer was pointing to would be updated. The problem of initializing a very

large array to NIL was taken care of by making the array static, and resetting only those pointers in the

array which corresponded to target row elements. This implementation eliminated the need to preserve

the indices in increasing order. When implemented, this ran about as fast as the second attempt;

however, we still felt that there was room for improvement.

With the RANKI algorithm a row is eliminated by adding multiples of many rows to a single target row.

Therefore, the target row is only expanded once and the array of pointers cleared once. The primitive

mtx$_mult_row was created to perform this task. Finally, the entire row elimination process was enclosed

in a matrix primitive (mtx$_eliminate_row).

4.2. Module part

4.2.1. Procedures

The following is a list of exported procedures:

part$_find_chain Find an output assignment and place it on the diagonal
part$_partition Permute the matrix into BTF
part$_destroy_block_list Destroy partition data

4.2.2. Introduction

This module is used to form an output assignment and to partition a matrix into lower block triangular

form. The algorithm used for forming the output assignment is a depth first search (Duff, 1981). Each row

is assigned in order by first scanning the row for a non-zero in an unassigned column. If this non-zero is

found, it is moved via column permutation to the diagonal. Otherwise, the algorithm checks each

assigned column incident to the given row, and attempts to reassign the corresponding row to a new

column (using the same algorithm), so that the non-zero can be moved to an unassigned column. If this

depth first search terminates without assigning the row, then the matrix is structurally singular up to that

point and the row is permuted to the bottom.

The algorithm used for partitioning a matrix into lower block triangular form is the work of Tarjan

(Tarjan, 1972), and is based on finding the strong components of the directed graph corresponding to the

non-zero structure of the matrix.

8

4.3. Module gauss

4.3.1. Procedures

The following is a list of exported procedures:

gauss$_set_pivot_calc Set the address of the pivot determining procedure
gauss$_find_inverse Find the inverse of the given region
gauss$_apply_inverse Apply the inverse to the RHS
gauss$_solve_wo_inverse Solve the region without keeping an inverse
gauss$_why_singular Determine why a system of equations is singular

4.3.2. Introduction

This module is responsible for transforming a problem matrix into a solution matrix. Each procedure

operates on a given region of a matrix, so the user could solve only part of the matrix. The procedures

generally act directly on the matrix, and destroy its original structure, that is, the resulting factors

(equivalent to finding an inverse) overwrite the coefficient matrix. Solving is completed by applying these

factors to the RHS vector whose original values are overwritten with the solution. In the case of pivoted

variables, the slot in the solution vector contains the corresponding value. In the case of unpivoted

equations the corresponding slot contains the residual of the equation. Unpivoted variables are assigned

a value of zero. On completion of solving (either with or without keeping the factors), the rank,

determinant, and smallest pivot used are stored in three global variables.

The why-singular procedure is used to analyze singular problems. Why-singular will determine the

linear combination of the independent rows, which equals each of the dependent rows. These linear

combinations are stored in the matrix itself. The why-singular analysis requires the matrix factors to be

calculated, and will destroy them on completion of the analysis.

The solving algorithm that has been implemented is RANKI (Stadtherr and Wood, 1984). RANKI

systematically eliminates spiked columns by first eliminating the left of every spike row with the rows

above it, and then performing a number of row and column swaps to remove the spike. A spiked column

is a column with non-zeros above the diagonal. A spiked row is a row whose corresponding column is a

spiked column. (A demonstration of the RANKI algorithm is given in appendix II.) We decided to use

RANKI instead of LU factorization because in problems with a relatively small numbers of spikes RANKI

creates significantly less fill-in than LU factorization, resulting in better performance. RANKI is very good

for sparse matrices (which have been reordered), but is not very good with full matrices or sparse

matrices which have not been reordered.

9

When saving the "inverse," one need only save the multipliers used for elimination of each spike row in

that same row. It turns out that when the "inverse" is saved, the original matrix is factored into UL, where

U is upper triangular (for the independent rows) and L is lower triangular (for the independent rows).

4.4. Module linsol

4.4.1. Procedures

The following is a list of procedures:

linsol$_init_matrix_system Initialize the matrix system
linsol$_destroy_matrix_system Destroy the matrix system
linsol$_get_input_matrix Return the input matrix handle
linsol$_get_coef Return a coefficient of the input matrix
linsol$_set_coef Change a coefficient of the input matrix
linsol$_get_rhs Return an RHS element
linsol$_set_rhs Change an RHS element
linsol$_coef_modified Signal the solver that the coef matrix was modified
linsol$_rhs_modified Signal the solver that the rhs matrix was modified
linsol$_sacrifice Set the sacrifice flag
linsol$_reorder Permute the input matrix based on structure
linsol$_copy_reorder Copy reordering information
linsol$_solve Solve the matrix system
linsol$_solve_wo_inverse Solve, but does not keep an inverse
linsol$_get_rank Return the rank of the matrix
linsol$_get_determinant Return the determinant of the matrix
linsol$_eqn_pivoted Return whether or not an equation was pivoted
linsol$_get_smallest_pivot Return the smallest valid pivot used
linsol$_get_var_value Return the value of a variable
linsol$_get_eqn_residual Return the residual of an equation
linsol$_eqn_to_var Return variable corresponding to the equation
linsol$_var_to_eqn Return equation corresponding to the variable
linsol$_determine_why_singular Compute why singular
linsol$_get_linear_combination Return why-singular coefficients
linsol$_forget_why_singular Release memory required to remember why

singular

4.4.2. Introduction

This module is responsible for solving systems of linear equations. It relies on module gauss to

perform elimination, and module part to output assign and partition the coefficient matrix. Having

partitioned the coefficient matrix linsol is responsible for reordering it prior to solving. The algorithm used

for reordering is SPK1 (Mark A. Stadtherr and E. Stephen Wood, 1984). SPK1 uses row and column

counting techniques to permute each irreducible block with the goal of minimizing the number of spikes,

thereby reducing the factorization time. An example of a reordered matrix is shown in figure 4-1.

To isolate the data structures representing the linear system of equations, the module exports a handle

to the user. The handle is of type linsol$_matrix_system_t, which is defined inside the module, and

hidden from the user. Procedures are provided to initialize and destroy the structure of the matrix system.

10

Figure 4-1: A matrix that has been reordered using the SPK1 algorithm

11

Linsol gives the user the ability to perform input/query requests on the matrix coefficients and RHS;

however, further information can be obtained by requesting the matrix handle by calling

linsol$_get_input_matrix, and using the procedures contained in the mtx module. If the input matrix is

modified using mtx procedures, then linsol must be informed by using procedures linsol$_coef_modified,

and linsol$_rhs_modified.

Once the coefficients and RHS have been set, the matrix system can be solved, and the solution

analyzed. This module supports the solution of the why-singular problem (see module gauss for details).

Unlike gauss, when the system is solved, the coefficient matrix is preserved (unless the sacrifice flag is

set by linsol$_sacrifice). When why-singular is calculated, the inverse is preserved (unless the sacrifice

flag is set).

4.4.3. Implementation

The matrix system is stored as three matrices (the input matrix, solution matrix, and why-singular

matrix); solution parameters (rank, determinant, and smallest pivot used); flags (coefficient matrix

modified, RHS modified, and sacrifice); and reordering information (partition data, and reordering validity).

The flags are used to determine whether or not to make a backup copy of the input matrix when solving,

to make a backup copy of the solution matrix when calculating why-singular, and to determine whether

the inverse needs to be recalculated or whether the coefficient matrix actually needs to be reordered.

5. Methods of testing: validation and efficiency

In order to test each module independently, a utility program called general tester was written.

General tester allows the user to create matrices, load matrices from file, save matrices to file, input or

display a matrix in a number of formats. General tester will also allow the user to perform a number of

high and low level operations ranging from solving a system of linear equations to swapping two specified

rows. During development, this program allowed us to methodically check each procedure for errors.

Although we have not been willing to sacrifice modularity for speed, the large problems that we intend

to solve dictate that speed be an important consideration. To evaluate the efficiency of a program it is

important to be able to determine its execution time (especially CPU time). General tester has options for

displaying the elapsed time (both actual and CPU) for some procedures. These facilities enable a crude

analysis to be performed; however, in order to revise the code most efficiently, information is required at

the procedure and statement level.

12

Apollo provides a software package called DPAK (Apollo Computer Inc., 1988) which is ideal for this

sort of analysis. In particular, this package includes a program DPAT which, when run in parallel with a

given program, will interrupt the program at regular time intervals, and record the traceback information.

Afterwards, DPAT uses this information to determine how much time was spent in or under any procedure

(time spent "under the procedure" refers to time spent in procedures which were called by this

procedure), and will display this information in one of two formats: ranked or hierarchical. In ranked

format, each procedure is listed in descending order of the amount of time spent in or under that

procedure. In hierarchical format, the top-level procedures are listed, and each procedure is followed by

the procedures it calls. Times listed are the time spent in the given procedure relative to its parent

procedure, and the time spent relative to the total time. The hierarchical format is useful for

understanding how procedures relate to one another. Note that in both cases, the time spent under the

procedure is included in the time listed for that procedure. This is appropriate, since the time required for

the procedure to perform its task includes the time spent under it. We made extensive use of DPAK in the

development of our solving software.

5.1. Creation of example matrices

To test the solver adequately, we needed to generate large systems of sparse linear equations. To this

end, a random matrix generator was written which was designed to generate a matrix randomly and write

it to a specified file. The order of the matrix and the total number of non-zeros is specified by the user.

The row counts are first determined by randomly assigning each non-zero to a row. Then, within each

row, each of the non-zeros are assigned a column number at random. Finally, each non-zero in the

matrix and every RHS is assigned a value at random. Matrices created this way are generally structurally

singular; structurally non-singular matrices are created by first specifying the diagonal, and then

determining the remaining non-zeros as before. At the end, the rows are randomly permuted to break up

the diagonal. These structurally non-singular matrices turn out almost always to be numerically non-

singular as well.

Seventeen examples matrices were generated (see appendix III). Matrix 1 was created by an early

version of the random matrix generator which only produced 0 and 1 entries, and was used mainly for

testing the reordering techniques. Matrices 2-4 were created by the random singular matrix generator.

Matrices 5-17 were created by the random non-singular matrix generator. Matrices 2-6 were used mainly

during development. Matrices 8-17 were created specifically for the final comparison among the solvers.

13

We are not certain to what extent these matrices are representative, but they did provide a common basis

for comparison.

6. Development

We began by using "conventional" algorithms for matrix storage and equation solving. The matrix was

stored as an nxn array of values, and the linear equations were solved using LU factorization with partial

pivoting. No reordering algorithm appeared in version 1 of linsol.

The intention was to have a working modular structure. A front end was quickly written and we had a

working version of a linear equation solver in about 2 weeks. It was adequate for small problems.

The next step was to rewrite the matrix software. Version 2 of mtx used a sparse matrix fishnet

structure to store the matrix. The RHS and the fishnet headers were both indexed by row/column. Then

gauss and linsol were rewritten. Version 2 of gauss used RANKI instead of LU factorization, and version

2 of linsol incorporated the SPK1 reordering algorithm. The first timing tests were performed on example

matrix 1, which was already reordered. The two versions of gauss were compared. RANKI was quicker

than LU by a factor of about 2.5 when RANKI kept its inverse, and by a factor of 6 when RANKI didn’t

keep its inverse. Furthermore, RANKI created half the fill-in of LU when RANKI kept its inverse, and by

less than a tenth when it didn’t keep its inverse. From then on, we adopted RANKI as the solving

algorithm of choice, and efficiency was measured in comparison to RANKI, particularly, when RANKI did

not keep its inverse, since this had the fastest time.

Although RANKI ran faster than LU factorization, its performance was still too slow. It took 42 seconds

to solve a 400x400 matrix. DPAT was used to obtain a more detailed analysis of where the solver was

spending its time. The results showed that more than one third of the time was spent swapping rows and

columns. This was because the coefficient matrix and RHS were indexed using row/column numbers. As

a result, when two rows were exchanged, in addition to updating the permutation arrays, the RHS values

and header pointers had to be exchanged, and the row indices of all of the non-zeros in both rows had to

be changed. It became apparent that indexing by equations and variables would be more efficient,

because in that case swapping would only involve changing the permutation arrays.

The DPAT results also showed that almost one fifth of the time was spent adding a multiple of one row

to another. The then current version of mtx$_add_row scanned the target row for a non-zero

14

2corresponding to each non-zero in the source row, which required time of order z (z is the number of

non-zeros per row). In order to reduce the time order, the user could maintain the fishnet structure so that

the variable/equation numbers appeared in increasing order. Then, time required to add rows would

reduce to order z; however, the time order of creating an element would then increase from order 1 to

order z. Because RANKI creates a small amount of fill-in, the time associated with creating new elements

should be correspondingly small.

We incorporated both of the above ideas into version 3 of mtx, and decreased the solution time to 35

seconds. The time required for row and column swaps was reduced considerably. However, the cost of

translation from row/column numbers to equation/variable numbers lessened the benefits.

Mtx$_get_next_col increased from 9% to 17% and mtx$_get_element increased from 6% to 10%.

At this point, we began to investigate different compiler options. In particular, we examined the effect

of the following options: optimization level, CPU type, and the inclusion of subscript checking for arrays.

All of these options had a noticeable effect on execution time. Specification of CPU reduced solution

times by 15-30%. Specification of full optimization, rather than none, reduced solution times by 8-20%.

Elimination of subscript checking reduced solutions times by 8-15%. The reduction for an option was

dependent on the values chosen for the other two. Using the best set of options, matrix 3, a 400x400

matrix, was solved in 14.3 seconds, and Matrix 4 (a singular 1000x1000 matrix) was solved in 94.9

seconds.

When the non-singular matrix generator was written, we immediately created matrix 5, supposedly a

1000x1000 structurally non-singular matrix; however, the output assigner claimed that the matrix was

structurally singular. Furthermore, the solver (correctly) claimed that the matrix was numerically non-

singular. Apparently there was a bug in the output assigner. This bug was corrected, but another was

detected immediately afterwards in the reordering procedure, causing the program to crash only if the

output assignment was complete. The bugs together had caused the reordering algorithm to perform

poorly, and after they were corrected, solution times decreased considerably. Matrix 3 was solved in 4.8

seconds, matrix 4 was solved in 10.6 seconds, and matrix 5 was solved in 37.7 seconds. The reason for

the discrepancy between the 1000x1000 matrices has to do with the size of the largest irreducible block.

We obtained a DPAT profile of the solver and determined that about 60% of the time was spent

eliminating rows. This led us to wonder whether the cost of maintaining the linked lists in order of

15

increasing equation/variable number was too high. So we searched for alternatives to mtx$_add_row,

which did not require the lists to be ordered, and devised the following algorithm. First, the target row

would be expanded into an array indexed by variable number of pointers to the non-zero elements or NIL.

Then, for every non-zero in the source row, the corresponding element in the target row would be located

using the array. If the array element was NIL, then the corresponding non-zero in the target row did not

exist yet, and would be created. If the array element was not NIL, then it would point to the appropriate

non-zero in the target row and the non-zero would be updated. This left the problem of resetting the array

to NIL every time mtx$_add_row was called. That problem was solved by making the array static,

initializing it to NIL at the beginning of program execution, and then resetting only the array elements

corresponding to non-zeros in the target row on completion of mtx$_add_row, since all of the other

elements were already NIL. This procedure was still of order z (z is the number of non-zeros per row), but

it was no longer necessary to maintain order in the linked lists. Version 4 of mtx used the array version of

mtx$_add_row and no longer required the linked lists to be in order. At this point, the solver with version 4

of mtx ran slightly slower than with version 3 of mtx.

However, we felt that there was room for improvement. In order to eliminate a row, multiples of many

rows have to be added to one row. Therefore, the target row only needed to be expanded into the array

once when eliminating the row. Also, the array needed to be cleared only once. This resulted in the

creation of a new matrix primitive, mtx$_add_mult_row, which added multiples of many rows to one

specific row. This primitive only expanded the target row and cleared the array once, making it more

efficient than calling mtx$_add_row multiple times. With this new primitive, gauss ran slightly faster using

version 4 of mtx than it did using version 3.

The elimination of a row using the rows above it in the matrix created temporary fill to the left of the

diagonal. This row tended to get full during the elimination, and would have been more efficiently handled

if it were expanded into a full vector of reals. Expanding the row into an array also removed the problem

of eliminating the row in descending order. So gauss had to handle adding multiples of the previous rows

to the given row for all columns to the left of the pivot, and mtx$_add_row handled the remaining

columns. This required communicating with mtx using primitive scanning and fetching routines, rather

than the more powerful routines, such as mtx$_add_row. Therefore, in the interest of saving time, the

entire action of eliminating a row became a matrix primitive. The solution time the reduced by slightly

more than half. Except for minor stylistic modifications, this is the way the linear equation solver is

16

currently implemented.

7. Comparison with other solvers

During the course of development, we compared our solver to two others. One of them, MA28, is a

Harwell routine written in Fortran. The other one was developed at Amoco, and is written in Apollo Pascal

with a modular structure not unlike our own. Both of these solvers use LU factorization with Markowitz

threshold pivoting. Our solver uses the RANKI algorithm. Both the Amoco solver and our solver use a

linked list representation for storage of matrices, although the exact implementations differ somewhat.

MA28 uses a row pointer/column index storage technique where the non-zeros, row pointers, and column

indices are stored in three arrays. All three solvers provide the option of partitioning the matrix into lower

block triangular form. Only our solver offers further reordering using the SPK1 algorithm which is a

requirement of the RANKI algorithm.

In order to ensure a valid comparison, all programs were compiled with the same (or equivalent)

options, run on the same machines, and tested with the same matrices. The total time required for

solution was counted for each solver including the time required to partition, reorder, factor, and apply the

factors. For the final comparison all of the modules of each solver were compiled using the most efficient

options possible for each compiler, and the actual timing was carried out on one machine. All programs

were provided with enough workspace to perform without hinder. (This is particularly important for MA28,

which will use time-consuming garbage collections to deal with a reduced memory situation.) The time for

the comparison was measured in CPU time. A summary of the results is given in appendix IV.

The actual timing was carried out using DPAT. Proper setup programs were required for each of the

solvers. In particular, the program had to provide the option of choosing a file from which the matrix was

loaded, and then load that matrix and solve it.

Our first comparison with MA28 was made with version 3 of mtx. The ratio of our time to MA28’s time

was 2.3 for a matrix of order 100, 16.8 for a matrix of order 400, and 30.1 for a matrix of order 1000. It

appeared as though the execution time for our solver ran on a higher order of magnitude than MA28.

However, after the two bugs in the reordering procedure (as described above) were corrected, the

increasing ratio disappeared. The ratio ranged from 1.01 to 4.4 depending on the problem (but not the

order). As we continued through development, we periodically made comparisons to MA28. With the

current implementation the ratio ranges between 0.56 and 2.26. It should be noted that for these tests,

17

our solver did not keep its inverse, and so we are being slightly unfair to MA28. In the final comparison,

we make the comparison for both cases, and keeping the inverse just about doubles the solution time.

The results of the final comparison are shown in appendix IV, and can be summarized as follows:

MA28 and our solver (no inverse) had similar times which were the lowest. Our solver (with inverse) took

between 1.5 and 2 times as long as the lowest; and the Amoco solver took between 2 and 3 times as long

as the lowest.

Given that both our solver and the Amoco solver were structured in a similar fashion, written in the

same language for the same machine, we wondered why our software seemed to perform consistently

better on the test problems. A difference in solving algorithms seemed to be the obvious reason, but why

did RANKI outperform LU factorization with the Markowitz threshold pivot selection?

With LU factorization, the coefficient matrix is factored into LU, where L is a lower triangular matrix, and

U is an upper triangular matrix. At step k in gaussian elimination, the first k-1 rows of U and the first k-1

columns of L have been computed. A pivot is selected from the remainder of the coefficient matrix (called

the active part of the matrix) and moved to (k,k) [row,column]. The kth column below the kth row is then

zeroed by adding multiples of the kth row to the rows below it. The original values of the kth column are

preserved and are part of L. The kth row becomes the kth row of U. Processing continues until there are

no more pivots. There are many schemes for pivot selection; but some are good for numerical stability,

while others are good for reducing fill-in.

The pivoting scheme used by Amoco, and probably one of the best pivoting schemes used in

conjunction with gaussian elimination on large sparse linear equations, is the Markowitz criterion with

threshold. The Markowitz criterion selects as a pivot the element (i,j), which minimizes the product r(i)c(j),

where r(i) is the number of non-zeros in row i whose column index is greater than k, and c(j) is the

number of non-zeros in column j whose row index is greater than k. The Markowitz criterion minimizes

the potential fill-in at each step, and does a reasonable job of reducing total fill-in. The threshold

condition requires that selected pivots be a given multiple of the maximum value within its row. The

threshold condition is a guard against numerical instability which can result from choosing an extremely

small pivot. If the threshold tolerance is made too small, then serious numerical instability can occur. If

the threshold tolerance is made too large, then only a few pivot candidates would exist, so the value of

r(i)c(j) for the selected pivot would be high, resulting in large fill-in. A typical value of the threshold is 0.1.

18

With RANKI, spike columns are systematically eliminated resulting in a lower triangular matrix which

can be solved by forward substitution. Appendix II contains a demonstration of the RANKI algorithm for a

5x5 matrix. A spike (spike column) is a column with non-zeros above the diagonal. A spike row is a row

whose corresponding column is a spike column. (Row j is a spike row if and only if column j is a spike

column.) At step k of the elimination, columns 1 to k-1 are not spikes, and the diagonal elements of these

columns hold valid pivots. If column k is not a spike and element (k,k) is greater than a given multiple of

the largest non-zero in (k, k..n), processing continues to row k+1. Otherwise, elements (k,1..k-1) (i..j is

the set of integers between i and j) are eliminated by adding multiples of rows 1..k-1 to row k. Then the

largest non-zero in row k is selected as a pivot and is moved into position (k,k). Let t denote the top of

the spike in column k. Row k is then moved to row t, and all of the rows between t and k are shifted down

one (This can be accomplished by swapping rows j and j-1 for j = k down to t+1.) Column k is permuted

in the same way. The symmetric permutation will preserve the diagonal, and hence the pivots.

Furthermore, as the example demonstrates, the spike in column k disappears. Processing then continues

to row k+1. After all of the spikes are eliminated, the resulting lower triangular matrix is solved by forward

substitution.

The low fill-in and low solution times characteristic of RANKI depend on there being relatively few

spikes, since only spike rows and rows with bad pivots on the diagonal need to be processed. Therefore,

it is imperative that the matrix be reordered before applying the RANKI algorithm into a form with relatively

few spikes. We used the SPK1 reordering algorithm to perform this task and it seemed to perform

reasonably well.

For RANKI, fill-in can only occur at the intersection of spike rows and spike columns, whereas for LU

factorization, fill-in can occur anywhere. Even though with RANKI, virtually all potential fill-in is actually

filled in, its fill-in count is much lower than that of LU factorization. For LU factorization, fill-in occurs in the

active part of the matrix, and so the density of the active part will increase as elimination proceeds. This

causes the rate of fill-in to increase, which in turn causes the density to increase at a faster rate. The

proper pivoting scheme will attempt to reduce fill-in as much as possible and maintain the sparsity of the

active part of the matrix. However, even with the Markowitz criterion, a point will come in the elimination

where the active part of the matrix is almost completely dense. This problem does not occur with RANKI

since fill-in is restricted to certain parts of the matrix, so that the rate of fill-in never increases. This is true

even in the case where RANKI keeps its inverse. Keeping the inverse requires the storage of dense rows

19

of multipliers; however, these multipliers play no further role in elimination. (The reason our

implementation of RANKI is much slower when saving its inverse is because scanning an already

eliminated row requires traversing through the saved multipliers; this can be eliminated, but it would

require major changes in how the matrix is stored.) Since RANKI creates less fill-in, the matrix remains

sparse, and all row operations require less time. Consequently, RANKI requires less time.

Based on DPAT profiles of the Amoco solver, pivot selection required about 50% of the solution time.

Theoretically, the product r(i)c(j) must be evaluated for each non-zero (i,j) in the active region. In practice,

there are techniques which reduce the actual amount of searching and still yield the least value of r(i)c(j),

such as searching rows and columns in increasing order of count and stopping as soon as it is

determined that a better value of r(i)c(j) cannot be attained. However, evaluation of the Markowitz

criterion required a substantial amount of time. This time was further amplified by loss of sparsity as

elimination proceeded.

At first glance it appears that RANKI should be at least an order of magnitude faster than LU

factorization. However, testing showed our implementation of RANKI was only 2-3 times faster than LU

factorization. The reason was that elimination of a row was an expensive operation for RANKI. Since

none of the rows above the row to be eliminated have effectively been eliminated (some of the rows may

have been eliminated, but in those cases, the permutations which eliminate the spike effectively restore

the non-zeros in that row), each time a row is used to eliminate one non-zero, temporary fill-in occurs, and

eventually, the entire row remaining to be eliminated fills in completely. As a result, at a given step many

more row operations are required to eliminate the row than is required by LU factorization (at least in the

beginning). This can be made clear by looking at the multipliers which result from saving the inverse.

Each multiplier in the U matrix corresponds to a row operation. Therefore, beyond a certain number of

spikes, RANKI could actually run slower than LU factorization. Fortunately, the problems that our solver

is primarily designed to solve generally have very few spikes, and can therefore be solved efficiently by

RANKI.

20

8. Conclusions

Our linear equation solver appears to have achieved an adequate compromise between style and

efficiency. The solver is almost completely modular, the sole exception being the mtx procedure for

eliminating rows. Writing the solver in Pascal gave it a highly structured form which can be easily

validated. The solver is also reasonably efficient; we are able to solve a system of equations about as

fast as MA28. Therefore we believe that our solver is the best choice for our development of a non-linear

equation solver.

21

I. Representation of matrix structure

Non-zero’s are stored individually in a fishnet structure (linked list.) They are referenced by their

equation and variable number which correspond to their row and column number when the matrix is

created. In addition, there is a vector of equation headers and a vector of variable headers which point

into the matrix. Following equation pointers across a particular equation, will return all non-zeros in that

equation. The analogous is true for variables. The pointers are in one direction only (to save space).

variable headers
1 2 3

| | |
| | |
V | V

|
1 --------> X --------+-------> X

|
| | |
| | |
V V V

equation 2 --------> X ------> X ------> X
headers

|
|
V

3 --------> X

The X’s represent non-zeros. The pointers do NOT have to be in any particular order. The non-zeros

are created when they are needed. A non-zero is destroyed whenever both its equation and its variable

no longer point to it.

The RHS, the labels, and the coefficient matrix itself are all independently created. Each of the

structures is created only when it is used, and is promptly destroyed when the structure is cleared using

the clear procedures. The permutation vectors are created when the matrix handle is created.

22

II. A demonstration of the RANKI algorithm

The following is an example of elimination using the RANKI algorithm on a 5x5 system. The initial

matrix has been previously reordered.

In the matrices shown below:

X Non-zero
spc Zero
0 Zero created by elimination

1 2 3 4 5 Assuming pivots (1,1), (2,2), and (3,3) are
1 X suitable, no action is taken on rows 1-3. We start
2 X X with k=4.
3 X X X

k--> 4 X X X
5 X X X X

1 2 3 4 5 Row 4 is eliminated using rows 1-3 (actually, only
1 X rows 1 and 2 are needed). Note the fill-in at
2 X X (4,5). In fact, (4,5) is the only position that
3 X X X could have filled in this stage.

k--> 4 0 0 0 X X
5 X X X X

1 2 3 5 4 Assuming that element (4,5) is larger than (4,4)
1 X (after elimination), columns 4 and 5 are swapped in
2 X X order to place (4,5) on the diagonal. It will be
3 X X X used as a pivot in the future.

k--> 4 0 0 0 X X
5 X X X X

1 5 2 3 4 The top of the spike now in column 4 is 2. So row
1 X 4 is moved to row 2 and rows 2 and 3 are moved down
4 0 X 0 0 X 1. The columns are permuted the same way. The
2 X X fourth column is no longer a spike.
3 X X X
5 X X X X

1 2 3 4 5 Processing now continues to row 5. For clarity, the
1 X row/column indices were renumbered.
2 X X
3 X X
4 X X X

k--> 5 X X X X

1 2 3 4 5 Row 5 is now eliminated using rows 1-4. At first
1 X glance, it appears that row 1 is not needed.
2 X X However, when row 4 was used to eliminate (5,4),
3 X X (5,1) filled in. This kind of fill-in occurs often,
4 X X X but it is only temporary. (5,5) is accepted as the

k--> 5 0 0 0 0 X pivot because it is the only non-zero left in row 5.

1 5 2 3 4 The top of the spike in column 5 is 2. So row 5
1 X is moved to row 2 and rows 2-4 move down one. The
5 0 X 0 0 0 columns are permuted the same way. The spike in
2 X X column 5 no longer exists. The resulting lower
3 X X triangular matrix can be solved by forward
4 X X X substitution. Note that only one fill-in occurred.

23

III. Example matrices
matrix order nonzeros rank largest block

--
1 400 1400 386 291
2 100 350 98 72
3 400 1400 380 201
4 1000 3500 931 515
5 1000 3500 1000 764
6 1000 3500 1000 568
7 5000 17500 5000 2678
8 50 175 50 40
9 50 175 50 41
10 100 350 100 80
11 100 350 100 77
12 250 875 250 190
13 250 875 250 201
14 500 1750 500 380
15 500 1750 500 385
16 1000 3500 1000 544
17 1000 3500 1000 723

IV. Final comparison
+--------+-------+----------------------------+-------------------------+---------------------------------+-----------------------------------+

| | | MA28 | Solver/ without inverse | Solver/ with inverse | Amoco solver |

| | | partition/ apply | (RANKI) | (RANKI) apply | apply |

| Matrix | Order | factor factors total | reorder solve total | reorder factor factors total | partition factor factors total |

+--------+-------+----------------------------+-------------------------+---------------------------------+-----------------------------------+

| 8 | 50 | 0.24 0.03 0.27 | 0.07 0.07 0.14 | 0.08 0.08 0.04 0.20 | 0.26 0.16 0.03 0.45 |

| 9 | | 0.15 0.00 0.15 | 0.04 0.07 0.11 | 0.09 0.09 0.04 0.22 | 0.12 0.20 0.00 0.32 |

| | | | | | |

| 10 | 100 | 0.40 0.05 0.45 | 0.19 0.23 0.42 | 0.23 0.37 0.14 0.74 | 0.13 0.57 0.04 0.74 |

| 11 | | 0.37 0.05 0.42 | 0.19 0.24 0.43 | 0.19 0.19 0.14 0.52 | 0.22 0.61 0.00 0.83 |

| | | | | | |

| 12 | 250 | 1.81 0.00 1.81 | 1.23 0.88 2.11 | 1.15 1.48 0.43 3.06 | 0.34 3.88 0.10 4.32 |

| 13 | | 2.43 0.10 2.53 | 1.09 1.04 2.13 | 1.13 1.57 0.49 3.19 | 0.24 5.37 0.10 5.71 |

| | | | | | |

| 14 | 500 | 6.39 0.20 6.59 | 3.36 3.36 6.72 | 3.17 6.77 1.44 11.38 | 0.44 16.44 0.20 17.08 |

| 15 | | 9.59 0.21 9.80 | 3.42 3.18 6.60 | 3.21 6.28 1.34 10.83 | 0.63 20.62 0.21 21.46 |

| | | | | | |

| 16 | 1000 | 16.73 0.36 17.09 | 7.98 8.13 16.11 | 7.55 19.86 3.65 31.06 | 1.17 40.23 0.46 41.86 |

| 17 | | 23.65 0.51 24.16 | 11.71 14.18 25.89 | 11.23 34.47 5.03 50.73 | 1.09 72.01 0.40 73.50 |

+--------+-------+----------------------------+-------------------------+---------------------------------+-----------------------------------+

24

References

Apollo Computer Inc. (Jun 1988). Analyzing Program Performance with Domain/PAK (Tech. Rep.)).
Apollo Computer Inc.

Daniel L. Cummings. (Mar 1985). A Sparse Matrix Abstraction (Tech. Rep.)). Amoco Production
Company, Tulsa Research Center.

I. S. Duff. (1977). MA28 - a set of Fortran subroutines for sparse unsymmetric linear equations (Tech.
Rep.)). AERE, Harwell, England.

I. S. Duff. (Sept 1981). On Algorithms for obtaining Maximum Transversal. ACM Trans. Math Software,
7(3), 315-330.

Mark A. Stadtherr and E. Stephen Wood. (1984). Sparse matrix methods for equation-based chemical
process flowsheeting-I. Computers and Chemical Engineering, 8(1), 9-18.

Peter Piela. (1989). An object-oriented computer environment for modeling and analysis. Doctoral
dissertation, Dept. of Chemical Engineering Carnegie Mellon University.

Mark A. Stadtherr and E. Stephen Wood. (1984). Sparse matrix methods for equation-based chemical
process flowsheeting-II. Computers and Chemical Engineering, 8(1), 19-33.

R.E. Tarjan. (1972). Depth-first search and linear graph algorithms. SIAM J. Computing, 1, 146-160.

i

Table of Contents
1. Abstract 1
2. Introduction 1
3. Description of the software structure 1
4. Description of each module 3

4.1. Module mtx 3
4.1.1. Procedures 3
4.1.2. Introduction 4
4.1.3. Implementation 5

4.2. Module part 7
4.2.1. Procedures 7
4.2.2. Introduction 7

4.3. Module gauss 8
4.3.1. Procedures 8
4.3.2. Introduction 8

4.4. Module linsol 9
4.4.1. Procedures 9
4.4.2. Introduction 9
4.4.3. Implementation 11

5. Methods of testing: validation and efficiency 11
5.1. Creation of example matrices 12

6. Development 13
7. Comparison with other solvers 16
8. Conclusions 20
I. Representation of matrix structure 21
II. A demonstration of the RANKI algorithm 22
III. Example matrices 23
IV. Final comparison 23

ii

List of Figures
Figure 3-1: Module dependency tree 2
Figure 4-1: A matrix that has been reordered using the SPK1 algorithm 10

