DEVELOPMENT OF SOFTWARE FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Karl Westerberg
Engineering Design Research Center

1. Introduction

This report discusses the development of a stand alone software package for solving large sparse systems of nonlinear equations. This work continues the development effort toward a solving capability for the ASCEND mathematical modeling environment (Piela, 1989), and is based on a linear equation solver that we have previously developed (Westerberg, 1989). Readability, modularity, flexibility, and portability were the issues given top priority in the solver's design. Our chosen software/hardware platform was Pascal on an Apollo workstation. Although efficiency was also a concern, modularity took precedence; it was important for the software to easily incorporate multiple solving strategies.

This manuscript is divided into two distinct parts the first of which describes in general terms the development of the software described above. The second part located in appendix II is primarily intended for software developers and contains the Pascal include files for the software. Each include file contains a set of procedure declarations; and each declaration contains the parameters associated with the procedure, and a short description of what the procedure does.

2. Description of the software structure

Figure 2-1: Module dependency tree
The module dependency tree is shown in figure 2-1. The modules which comprise the non-linear equation solver are as follows:

1. var: management of variables and variable tables.
2. expr: storage of general algebraic expressions.
3. eqn: management of equations and equation lists.
4. eqn_man: higher level manipulation of equations, expressions and variables, e.g., evaluation of expressions and their derivatives.
5. slv: solution of a system of non-linear equations. The structure supports the general optimization problem, although the current implementation ignores the objective function and treats all constraints as equalities.
6. filter: contains some commonly used equation and variable filters.

The insert files can be found in the appendix II. The modules linsol, part, gauss, and mtx are part of a linear equation solver which have been described in (Westerberg, 1989).

This solver differs from many others in that it incorporates an internal representation of an equation. Most other solvers require that the user write a routine which evaluates the equation (and possibly its derivatives), and then bind this routine with the solver which leaves the user with the problem of having to represent equations. By devising our own representation, we have relieved the user of the burden of writing complex code for performing operations on equations, such as evaluation of derivatives.

We have chosen to separate the representation and manipulation of equations into four modules: var, expr, eqn, and eqn_man. We felt that this separation constituted a set of abstractions which provided a high degree of flexibility in the design and re-use of this software. The eqn and var modules are responsible for managing collections of equations and variables, and were separated from the storage of expressions. The reason for making eqn_man (equation manipulator) a separate module was that its functionality doesn't depend on the data representation.

We consider equations and expressions to be different. An equation is a statement which can be true or false; an expression represents a real number. An equation is composed of two expressions separated by a relational operator (such as =or <).

After some discussion we decided to export the structure of the variable record to the user. A complete data abstraction would have demanded that this record be completely hidden from the user and the fields be accessible only through procedure calls. However, we envisioned the user needing to add fields to the variable record. With an exported record definition this is straightforward; however, a hidden structure would require the user to write two additional procedures (one to fetch the value and another to set the
value) in addition to adding the field to the record. Also, with a hidden structure, a reference to a variable would require a function call, which is considerably more expensive than dereferencing a pointer. The same arguments were applied to the equation record.

We anticipated that users might want to count the number, or obtain a list of variables, with a specified property (such as fixed). Rather than write a separate routine for each property, we allowed the user to pass in a function that takes a variable as an argument and returns true or false depending on whether the variable has the given property or not. We call such functions filters, and these filters can be written by the user. To assist in this task we wrote a filter module which contains some common filters (such as a filter accepting free/fixed variables). Again, the same arguments were applied to equations.

3. Implementation

There are three issues of implementation worthy of mention: storage of expressions, evaluation of expressions (and their derivatives), and the algorithm for solving systems of equations.

3.1. Evaluation

We evaluate expressions and all of the derivatives using a stack (Ponton, 1982). This involves scanning the expression in postfix for the tokens, (a token is either a constant, a variable reference, or an operator) and maintaining a function stack and possibly one or more derivative stacks. This method is numeric, and thus the derivatives need not be stored symbolically. However, the derivatives computed are exact. We extended the method to handle second derivatives, anticipating the need for them in the solution of optimization problems.

3.2. Storage

We had considered two different representations for equations: a threaded tree (Knuth, 1973) and an array (tokens stored in postfix order). The tree is a good for dealing with structural rearrangement, the array is better for evaluation. Our evaluation method required that the tokens be accessed in postfix order, and a tree representation (even threaded) would not provide them as quickly as an array representation.

Although the ability to perform structural rearrangement was important, most time would be spent in evaluation and so we adopted an array representation. However, in our representation each token includes pointers back to the root(s) of the subexpression(s). This allows us to do all operations
associated with a tree representation efficiently and maintain an effective evaluation mechanism. We made these pointers relative, so that most of them would remain untouched, even if a large part of the expression was removed or replaced. Also, informal calculations suggested that the tree representation would require at least twice as much memory as the array representation (or more, since allocation of the tree would occur in small pieces, whereas the array would be allocated as one piece). Since we were designing a solver to handle large sparse systems, this difference could be on the order of a megabyte.

3.3. Solving

We implemented a variant of Newton's which searches along the Newton-gradient plane (Westerberg and Director, 1978). One can specify the maximum allowable step to be taken at a given iteration, and if the Newton step is too large, then a direction between the Newton and the gradient is efficiently selected so that the step is as close as desired to the maximum allowed. The solver adjusts the maximum step allowed after each iteration.

We found the method for adjusting the maximum step suggested in this algorithm to be unsuitable. Our experience was that whenever the solver rejected the Newton direction, the maximum step was reduced to virtually zero. However, the heuristic method for increasing the maximum step size was unable to increase it to reasonable values. In an attempt to correct this problem we replaced the complicated method with a simple one: we simply multiplied the maximum step by 1.5 if the previous step was accepted, and we divided it by 2 if the previous step was not accepted. In addition, after each successful step, we attempted to search in the Newton direction regardless of the value of the maximum step. This improved things somewhat, but with certain problems the maximum step got too small and the Newton predictions in that area were unacceptable. Furthermore, the step control was still based on arbitrary scaling factors such as 1.5 and 2 which have no theoretical basis.

We then investigated the Armijo line search (Armijo, 1966) as a method for step control. The Armijo line search begins by attempting a full Newton step. If the objective function does not decrease (by enough), the step is rejected and is reduced by a factor based on how much the objective function would have increased had the step been accepted. Otherwise, the step is accepted and the sequence starts over. We carried this idea over to the Newton-gradient method. We first tried a full Newton (by setting the maximum step to infinity). If the objective function reduced, the step was accepted and the maximum step was reset to infinity. Otherwise, the step was rejected and the maximum step was reduced using the

Armijo line search. We feel that this hybrid algorithm is better than either of the two algorithms it is based on.

In order to maintain numerical stability during computation, to provide a reasonable objective function, and to provide reasonable step length control, we needed to scale equations and variables. We scale variables using nominal values provided by the user (the nominal value is a field of the variable record), by multiplying each column in the jacobian by the nominal value of the corresponding variable. Having scaled the variables, the equations are scaled by normalizing them. The weights remain constant for a specified number of iterations and are then updated. We use the weighted sum of squares as our objective function. Step length control is based on the scaled step, so that variables with larger nominal values can take larger actual steps. It is important that the solver only use scaled values for making internal decisions, such as what step to try and whether to accept it. External decisions such as the convergence test should be decided independently of the weights. We therefore use the unweighted residuals to test convergence.

The solver offers the option of partitioning the problem into irreducible blocks and solving each irreducible block separately. This should increase the speed and reliability of solving problems which have non-trivial partitions. However, it is possible (although less likely than the reverse) that a problem cannot be solved when partitioned but can be solved as a single block. This could occur when the solution of all predecessors to a block and its initial values result in a numerically singular starting point for that block. The initial singularity could be avoided by solving the entire system. (Here is an example: try $x=0$ and $\cos (y)+x^{*} \sin (y)=0$, starting at $\left.(x, y)=(1,0).\right)$ To avoid these pathological cases the user has the option of turning partitioning off.

4. Conclusions

We have developed a structured solver which should provide a good basis for further research. The solver has been tested on a large number of examples, including a set of standard problems given in (Ferraris and Tronconi, 1986). Its performance compares favorably with the results presented in that reference, and should improve as work progresses.

I. Solving example

In this section, we illustrate the use of the solving software on the following problem proposed by
Powell (Powell, 1970).

```
10,000 v1 v2 = 1.0
exp(-v1) + exp(-v2) = 1.0001
```

Starting point: v1 = 0, v2 = 1

Firstly we create a variable table with two entries, and an equation list with two entries.

```
VAR
    v1,v2 : var$_t;
    var_table : var$_table_t;
    e1,e2 : eqn$_t;
    eqn_list : eqn$_list_t;
var$_create_table(var_table);
var$_create_var(var_table , 1 , {=>} v1);
var$_create_var(var_table , 2 , {=>} v2);
eqn$_create_list (eqn_list);
eqn$_create_eqn(eqn_list , 1 , {=>} e1);
eqn$_create_eqn(eqn_list , 2 , {=> } e2);
```

The variable and equation entries are created with default values for most of their fields. To specify the structure of the problem completely, we need only modify the value field of both variables; and the two expression fields and the relation field of both equations. Variable values (initial) are specified as follows:

```
v1^.value := 0.0;
v2^.value := 1.0;
```

At present, specifying the structure of equations is somewhat tedious; however, an equation parser (to be written) could make this process much easier. The following illustrates how equations would be parsed.

VAR
eqn_str : str\$_string_t;
eqn_str := str\$_form('10000 * \#1 * \#2 = 1.0'); parse (eqn_str , e1);
str\$_destroy (eqn_str);
eqn_str : = str\$_form('exp(-\#1) + exp(-\#2) = 1.0001');
parse (eqn_str , e2);
str\$_destroy (eqn_str);

At present, the user can build equations in one of two ways: either hierarchically, or in postfix. We shall demonstrate both ways by constructing equation 1 in postfix, and equation 2 hierarchically.

```
Construction of equation 1:
    VAR
        token : expr$_token_t;
        tag : expr$_tag_t;
        ok : boolean;
    { Equation 1 in postfix: LHS: 10000 v1 v2 v2 * * RHS: 1.0 }
    expr$_create_expr_in_postfix(tag);
    token.op := expr$_const;
    token.value := 10000;
    expr$_append_token(tag,token);
    token.op := expr$_var;
    token.v := v1;
    expr$_append_token(tag,token);
    token.op := expr$_var;
    token.v := v2;
    expr$_append_token(tag,token);
    expr$_append_token(tag,token);
    token.op := expr$_mul;
    expr$_append_token(tag,token);
    expr$_append_token(tag,token);
    expr$_return_expr(tag,e1^.LHS,ok);
    expr$_create_expr_in_postfix(tag);
    token.op := expr$_const;
    token.value := 1.0;
    expr$_append_token(tag,token);
    { If the above code is correct, then ok should certainly return true }
    expr$_return_expr(tag,e1^.RHS,ok);
Construction of equation 2:
VAR
    token : expr$_token_t;
    ex1,ex2,ex3 : expr$_t; { Temporary expressions }
token.op := expr$_var;
token.v := v1;
expr$_combine(token,ex1); { ex1 = v1 }
token.op := expr$_neg;
expr$_combine(token,ex2,ex1); { ex2 = -v1, ex1 destroyed }
token.op := expr$_exp;
expr$_combine(token,ex1,ex2); { ex1 = exp(-v1), ex2 destroyed }
```

```
token.op := expr$_var;
token.v := v2;
expr$_combine(token,ex2); { ex2 = v2 }
token.op := expr$_neg;
expr$_combine(token, ex3,ex2); { ex3 = -v2, ex2 destroyed }
token.op := expr$_exp;
expr$_combine(token,ex2,ex3); { ex2 = exp(-v2), ex3 destroyed }
token.op := expr$_add;
expr$_combine(token,e2^.LHS,ex1,ex2); { e2^.LHS = exp(-v1) + exp(-v2) }
token.op := expr$_const;
token.value := 1.0001;
expr$_combine(token,e2^.RHS); { e2^.RHS = 1.0001 }
```

As the above example suggests, coding the equations directly into a program may require a lot of statements. However, if the user is willing to read the equations from a file (or from the keyboard), a procedure can be written which requires that the user only enter relevant structural information. For example:

```
PROCEDURE input_expr( OUT expr : expr$_t );
    VAR
    tag : expr$_tag_t;
    token : expr$_token_t;
    vnum : integer;
    ok : boolean;
    BEGIN { input_expr }
        writeln('Enter in the expression in postfix.');
        writeln('Terminate using expr$_end.');
        WHILE true DO BEGIN
        write('Op -> ');
        readln(token.op);
        IF token.op = expr$_end THEN exit;
        IF token.op = expr$_const THEN BEGIN
            write('Constant --> ');
                readln(token.value);
            END; { IF }
            IF token.Op = expr$_var THEN BEGIN
                write('Variable number --> ');
                readln(vnum);
                token.v := var$_get_var(var_table , vnum);
            END; { IF }
            expr$_append_token(tag,token);
        END; { WHILE }
        expr$_return_expr(tag,expr,ok);
    END; { input_expr }
```

In order to solve the problem we must create a "solve system" which references the variable table and
equation list that we have created.

```
VAR
    system : slv$_system_t;
slv$_create(system);
slv$_set_eqn_list(system , eqn_list);
slv$_set_var_table(system , var_table);
```

The solve system is created with a set of default values for attributes, such as maximum number of iterations, and CPU time limit. If these values are acceptable, the problem is ready to be solved. If the default values are unacceptable, they can be easily changed. The following shows how to specify the CPU time limit.

```
VAR
    status : slv$_status_t;
    { Always get the status before modifying it, especially if you only want to
    modify some of the parameters }
slv$_get_status(system , status);
status.time_limit := 30.0; { 30.0 CPU second time limit }
slv$_change_status(system , status);
```

The system is now ready to be solved. A call to the slv\$_presolve procedure prepares the system of equations for solution, and a call to slv\$_solve will attempt to solve the system.

```
slv$_presolve(system);
slv$_solve(system);
```

On completion of slv\$_solve, the "solve status" should be checked to verify that the system of equations actually converged. This is done by making a call to slv\$_change_status. Variable values at the solution can be obtained by examining $\mathrm{v} 1^{\wedge}$.value and $\mathrm{v} 2^{\wedge}$.value.

II. Insert files

```
{ BEGIN var.ins.pas ----------------------------------------------------------------
{---------------------------------------------------------------------------------------------
| Prevent this file from being included more than once.
+------------------------------------------------------------------------------------------
%IFDEF var$_already_inserted %THEN
    %EXIT
%ELSE
    %VAR var$_already_inserted
%ENDIF
%INCLUDE 'str.ins.pas';
%INCLUDE 'list.ins.pas';
```



```
TYPE
{----------------------------------------------------------------------------------
    also be added to internal routine var_create_var. In addition, EVERY module
    above this one must be recompiled, even modules which don't use the new field.
```



```
    var$_spec_t = RECORD
            number : integer; { Variable number (for reference in table) }
            vlabel : str_string_t; { Variable label (NIL: no label) }
            value : double; { Current value of the variable }
            nominal : double; { Nominal value of the variable }
            lower_bound : double; { Lower bound of value }
            upper_bound : double; { Upper bound of value }
            fixed : boolean; { Fixed status }
            solved_for : boolean; { Whether the variable has been solved for yet }
            incidence : boolean; { Whether the variable is incident }
            block : integer; { Which block the variable belongs to (solver) }
            destroyed : boolean; { Destroyed status }
    END;
    var$_t = ^var$_spec_t;
    var$_table_t = UNIV_PTR;
    var$_filter_t = ^FUNCTION ( IN v : var$_t ) : boolean;
            { Filters need not be able to handle NILs }
%EJECT; {*******************************************************************************
PROCEDURE var$_create_table( OUT table : var$_table_t
            ); EXTERN;
{------------------------------------------------------------------------------------
    empty.
    OUT
        table New variable table.
PROCEDURE var$_destroy_table( IN OUT table : var$_table_t
{--------------------------------------------------------------------------------------------
    Destroys a variable table and all variables in it.
    IN
        table Variable table to be destroyed.
```



```
FUNCTION var$_find_label( IN M
```

 Searches the variable table for the given label and returns the first match.
 If there is no match, then NIL is returned. A variable with a NIL label never
 results in a match.
 IN
 table The variable table.
 vlabel The desired variable label.
 RETURN The variable with the given label.
NOTES
All searches are case sensitive. It is the responsibility of the user to
convert all labels to one case if a case insensitive search is desired.

PROCEDURE var\$_number_of_vars (IN	table	: var\$_table_t	
$;$	OUT	number_vars : integer	
$;$	OUT	lowest_varn $:$ integer	
$;$	OUT	highest_varn $:$ integer	
	;		
			EXTERN;

$\begin{aligned} \text { FUNCTION var\$_get_vars (IN } & \text { table : var\$_table_t } \\ ; \text { IN } & \text { filter : var\$_filter_t } \\ & \text {; pl\$_list_t } \\ & ;\end{aligned}$
Returns a list of variables for which the filter returns true. The list will
be in increasing order of variable number.
IN
table The variable table.
filter The filter.
RETURN List of variables matching the filter.

```
{ BEGIN eqn.ins.pas --------------------------------------------------------------------
{-------------------------------------------------------------------------------------------
%IFDEF eqn$_already_inserted %THEN
    %EXIT
%ELSE
    %VAR eqn$_already_inserted
%ENDIF
%INCLUDE 'str.ins.pas';
%INCLUDE 'list.ins.pas';
%INCLUDE 'var.ins.pas';
%INCLUDE 'expr.ins.pas';
```



```
TYPE
    eqn$_relation_t = (eqn$_less , eqn$_equal , eqn$_greater);
|--------------------------------------------------------------------------------------
also be added to internal routine eqn_create_eqn. In addition, EVERY module
above this one must be recompiled, even modules which don't use the new field.
+------------------------------------------------------------------------------------------
    eqn$_spec_t = RECORD
```



```
        LHS,RHS : expr$_t; { LHS and RHS expressions }
        relation : SET OF eqn$_relation_t; { Required relation }
        residual : double; { LHS - RHS }
        satisfied : boolean; { Whether the relation is satisfied or not }
        included : boolean; { Whether equation is included }
        block : integer; { Which block the equation belongs (solver }
        destroyed : boolean; { Whether equation is destroyed }
    END;
    eqn$_t = ^eqn$_spec_t;
    eqn$_list_t = UNIV_PTR;
    eqn$_filter_t = ^FUNCTION ( IN eqn : eqn$_t ) : boolean;
        { Filters need not be able to handle NILs }
%EJECT; {************************************************************************
PROCEDURE eqn$_create_list( OUT list : eqn$_list_t
    ); EXTERN;
```



```
    empty.
    OUT
        list New equation list.
PROCEDURE eqn$_destroy_list( IN OUT list : eqn$_list_t
    Destroys an equation list and all equations in it. The expressions are all
    destroyed, but the variables within the expressions are not.
    IN
        list Equation list to be destroyed.
```

```
OUT
    list NIL.
```


Creates an equation in the equation list and returns a pointer to it. Default
values of the fields are filled in. If the number exists already, or is out
of range, then the lowest available number is used instead.
IN
list The equation list in which the new equation is to be created.
number Equation number to create.
OUT
eqn The new equation.

PROCEDURE eqn\$_destroy_eqn (IN	list : eqn\$_list_t
$;$; IN OUT	eqn $:$ eqn\$_t
	EXTERN;

$\left\lvert\, \begin{aligned} & \text { Destroys an equation and removes it from the list. The expressions are } \\ & \text { destroyed, but not the variables within the expressions. } \\ & \begin{array}{ll}\text { list } \\ \text { eqn } & \text { The equation list from which the equation to be destroyed. } \\ \text { OUT } & \end{array} \text { is to be destroyed. }\end{aligned}\right.$

FUNCTION eqn\$_get_eqn (IN	list $:$ eqn\$_list_t	
; IN	number $:$ integer	
;		eqn\$_t
;		
EXTERN;		

$\left\{\begin{array}{l}\text { Looks up the equation by number on the equation list and returns a pointer to } \\ \text { it. If the equation does not exist, then NIL is returned. } \\ \text { IN } \\ \begin{array}{ll}\text { list } & \text { The equation list. } \\ \text { number } & \text { Equation number. }\end{array} \\ \text { RETURN } \\ \text { Pointer to the equation specified. }\end{array}\right.$


```
FUNCTION eqn$_find_label( IN m
```

 Searches the equation list for the given label and returns the first match.
 If there is no match, then NIL is returned. An equation with a NIL label
never results in a match.
IN
list The equation list.
vlabel The desired equation label.
RETURN The equation with the given label.
NOTES
All searches are case sensitive. It is the responsibility of the user to
convert all labels to one case if a case insensitive search is desired.

PROCEDURE eqn\$_number_of_eqns (IN			list	eqn\$_list_t
	;	OUT	number_eqns	integer
	;	OUT	lowest_eqnn	integer
	;	OUT	highest_eqnn	integer
)			EXTERN;

$\begin{aligned} & \text { FUNCTION eqn\$_get_eqns (IN } \text { list : eqn\$_list_t } \\ & ; \text { IN } \text { filter }: \text { eqn\$_filter_t } \\ & \text {) } \\ & \text {; pl\$_list_t } \\ & \\ & \text { EXTERN; }\end{aligned}$
Returns a list of equations for which the filter returns true. The list will
be in increasing order of equation number.
IN
list The equation list.
filter The filter.
RETURN List of equations matching the filter.

```
{ BEGIN slv.ins.pas --------------------------------------------------------------------
```



```
There will be (in general) more than one solver. Since all of them may be
bound in at once (to give a choice of solvers at run-time), the routines must
have different names for each solver, and consequently, different insert files
are required. The naming convention is slvn$_xxx, where n is the number of
the solver. The insert file is correspondingly slvn.ins.pas. All insert
files must have the same "structure". In particular, when a modification is
made, the contents of one insert file may be copied into another, with the
only change being the substitution of "slvm$_" for "slvn$_".
CONST
    slv$_number_of_solvers_c = 4; { # of different solvers }
TYPE
    slv$_convergence_t = ( slv$_converged , { System converged }
                slv$_diverged , { Solver gave up }
                slv$_inconsistent , { Solver found definite inconsistency }
                slv$_timeout , { Iteration or time limit exceeded }
                slv$_continue );{ Solver still trying }
    slv$_technique_t = ( slv$_newton
                                slv$_newton_gradient );
    slv$_status_t = RECORD
        ready_to_solve : boolean; { System is ready to be solved }
        everything_ok : boolean; { Everything is ok }
        over_defined : boolean; { System is over-defined }
        under_defined : boolean; { System is under-defined }
        struct_singular : boolean; { System is structurally singular }
        convergence : slv$_convergence_t; { Convergence status }
        solver : integer; { Number of the solver being used }
        technique : slv$_technique_t; { Recommendation for next iteration }
        calc_ok : boolean; { All numerical calculations ok }
        residual : double; { Current total residual }
        iteration : integer32; { Current iteration count }
        cpu_elapsed : double; { CPU time elapsed so far }
        block : RECORD
            num_of : integer; { Number of blocks }
            current : integer; { Current block number }
            size : integer; { Size of current block }
            prev : integer; { Total size of previous blocks }
            iteration : integer; { Iteration count of current block }
        END;
        verbose : boolean; { Verbose flag }
        partition : boolean; { Whether or not to solve by blocks }
        time_limit : double; { Time limit }
        iteration_limit : integer; { Iteration limit }
        tolerance : RECORD { Residual tolerance (per equation) }
```



```
PROCEDURE slv$_set_obj_function( IN system : slv$_system_t
    ; IN
    obj : expr$_t
    ); EXTERN;
```


\{!!!mod:added 6/4/90\}
PROCEDURE slv\$_destroy_obj_function(IN \quad system : slv\$_system_t
EXTERN;
); EXTERN;
$\left\{\begin{array}{l}\text { Removes the established objective function from the system. } \\ \text { IN } \\ \text { system The system handle. }\end{array}\right.$

\{!!!mod:added 6/4/90\}	
PROCEDURE slv\$_select_solver (IN	system : slv\$_system_t
; IN	solver : integer
);	EXTERN;

Selects the solver.
IN
system The system handle. solver 1 == our solver, $2==$ MINOS

```
MROCEDURE slv$_get_status( IN OUT System : slv$_system_t status : slv$_status_t
    Returns the status associated with the system.
    IN
    system The system handle.
OUT
    status The current status.
```


Modifies the system status. The only fields that can be modified are:
technique Recommended technique
partition Whether or not to solve each block separately.
verbose Verbose flag.
time_limit CPU time limit.
iteration_limit Iteration limit.
tolerance Residual tolerance, per equation.
All other fields of the status are ignored.
IN
system The system handle.
status New status.

Returns the handle to the jacobian system. It is recommended that at least one iteration is performed before getting this system. If ms=NIL, then the matrix system is not available.

IN
system System of equations.
OUT
ms Handle to the jacobian system.

NOTES

The user should not assume that the jacobian system has been solved. If it has and the user attempts to solve it, the linear equation solver will return immediately.

Performs one iteration. slv\$_presolve must be called before calling this
routine. If status.ready_to_solve is false, this procedure returns
immediately. This routine modifies the variable values in an attempt to
satisfy all of the equations (or inequalities) in the equation list, and
minimize the objective function. In general, it must be called multiple
times.
IN
system The system handle.
The status can be obtained from slv\$_get_status and modified using
slv\$_change_status. It is used here as follows:
IN
ready_to_solve TRUE if the system is prepared to be solved.
technique Technique to be used this iteration.
iteration Number of previous iterations.
cpu_elapsed CPU time elapsed in previous iterations.
verbose Whether to display useful info on the screen.
time_limit CPU time limit.
iteration_limit Maximum number of iterations.
tolerance Residual tolerance (per equation).
OUT
ready_to_solve TRUE if a next iteration is required.
everything_ok TRUE if calc_ok, and ready_to_solve or converged.
convergence Convergence status.
technique Recomendation for next iteration.
calc_ok All numeric calculations ok.
residual Norm of the residual vector.
iteration Updated to reflect this iteration.
cpu_elapsed Updated to reflect this iteration.
In addition, the variable values and equation residuals are updated
automatically.
NOTES
Current implementation ignores the relations in the equations, treating
each equation as an equality condition. Also, the objective function is
ignored.

```
PROCEDURE slv$_solve( IN system : slv$_system_t
    );
        EXTERN;
```

```
    Repeatedly iterates the system until it is either solved, or the solver gave
up (i.e. until status.ready_to_solve is false). See slv$_iterate for further
details.
IN
    system The system to solve.
FUNCTION slv$_objexists(IN system : slv$_system_t) : boolean; EXTERN;
    true => An objective function has been specified.
    IN
    system The system to solve.
%EJECT; {*************************************************************************
```


References

L. Armijo. (1966). Minimization of Functions having Continuous Partial Derivatives. Pacific J. Math., 16, 1-3.

Guido Buzzi Ferraris and Enrico Tronconi. (1986). BUNLSI - A Fortran program for solution of systems of nonlinear algebraic equations. Computers and Chemical Engineering, 10(2), 129-141.
Richard S. Varga and Michael A. Harrison (Eds.). Donald E. Knuth. (1973). Fundamental Algorithms. : Addison-Wesley.
Peter Piela. (1989). An object-oriented computer environment for modeling and analysis. Doctoral dissertation, Dept. of Chemical Engineering Carnegie Mellon University.
J.W. Ponton. (1982). The numerical evaluation of analytical derivatives. Computers and Chemical Engineering, 6(4), 331-333.
P. Rabinowitz (Ed.). M. J. D. Powell. (1970). Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach.
Karl Westerberg. (Jan 1989). Development of software for solving systems of linear equations (Tech. Rep.). Engineering Design Research Center, Carnegie Mellon University.
A.W. Westerberg and S.W. Director. (1978). A modified least squares algorithm for solving sparse $\mathrm{n} \times \mathrm{n}$ sets of nonlinear equations. Computers and Chemical Engineering, 2, 77-81.

Table of Contents

1. Introduction 1
2. Description of the software structure 1
3. Implementation 3
3.1. Evaluation 3
3.2. Storage 3
3.3. Solving 4
4. Conclusions 5
I. Solving example 6
II. Insert files 10

List of Figures
Figure 2-1: Module dependency tree

