
ASCEND IV

Advanced System for Computations in ENgineering Design

A portable mathematical modeling environment.
Release 0.8

Sept 26, 1997
Partial revision for release 0.9

June 20, 1998

Authors:
Arthur Westerberg and research group

Department of Chemical Engineering, Carnegie Mellon University
Benjamin Allan, Vicente Rico-Ramirez, Mark Thomas, Kenneth Tyner

Other Helpful People Too Numerous To Mention Here

Sponsors 1993-1997:
Computer Aided Process Design Consortium
Institute for Complex Engineered Systems

National Science Foundation grant for the Engineering Design Research Center
US Department of Energy

We are deeply indebted to the authors and contributors at large who created Tcl/Tk. Many thanks
Dr. Osterhout!

Keywords:

ASCEND, CONOPT, EDRC, FORTRAN, GAMS, GNU license, GUI, ICES, LSODE, Leven-
berg-Marquardt, MINLP, NLP, Newton, ODE, Tcl, Tk, UNIFAC, boundary value, chemical engi-
neering, collocation, complex engineered system,, conditional modeling, copyleft, degrees of
freedom, design, design research cente,r distillation, dynamic, engineering design, free software,
freeware, initial value, initialization, interactive, large-scale, linear algebra, linear equations,
mathematical modeling, mixed integer, modeling system, nonideal thermodynamics, nonlinear
program, object oriented, optimization, ordinary differential equation, Pitzer vapor, reactive distil-
lation, scalable, scaling, simulation, solving, structural analysis, Wilson liquid.

2

6
122
44
2
64
Documentation Bird’s Eye View

ASCEND IV 1
Advanced System for Computations in ENgineering Design 1
Documentation Bird’s Eye View 2
Documentation Detail Map 4
A typical scenario for running the ASCEND system 18
Getting Started with ASCEND 22
Script 26
Library 38
Browser 50
Solver 60
The Data Probe Window 72
ASCPLOT 78
Display slave 86
ASCEND Units 90
The ASCEND Toolbox 96
The System Utilities Window 100
Font Selection Dialog 108
The Print Dialog 112
Solved simple modeling problems with ASCEND 11
A Conditional Modeling Example: Representing a Superstructure
A Simple Chemical Engineering Flowsheeting Example 1
The ASCEND predefined collection of models 16
The ASCEND IV language syntax and semantics 1
Units library 218
Brief History of ASCEND 232
INDEX 236
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpLOP.doc

3

Last modified: June 20, 1998 10:33 pm

4

8

ll
Documentation Detail Map

A typical scenario for running the ASCEND system 18
Getting Started with ASCEND 22
:: Philosophy 22
- Getting the ASCEND system and installing it 22
- Starting ASCEND 23

o ASCENDDIST 23
o ASCENDHELP 23
o ASCENDLIBRARY 23

Script 26
Figure ASCEND’s Script Window 26

:: The Script Menu Bar 27
- Script File Menu 27

o New File 27
o Read File 27
o Import File 27
o Exit ASCEND 27
o Save 27
o Save As 27
o Buffer List 27

- Script Edit Menu 27
o Record actions 27
o Select all 28
o Delete statements 28
o Cut 28
o Copy 28
o Paste 28

- Script Execute Menu 28
o Run statements selected 28
o Step through statements selected 2

- Script Options window 28
o Save all options and appearances for a

windows 28
- Script View window 29

o Font 29
o Save Script appearance 29
o Save all appearances 29

- Script Tools window 29
- Script Help menu 29

o On SCRIPT 29
o On getting started with ASCEND 29
o About ASCEND IV 30

:: The Script Language 30
- Summary 30
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

5

o <arg> 30
o <a1,a2> 30
o <a1 a2> 30
o [a1] 30
o [a,b] 30
o qlfdid 30
o qlfpid 30
o {} 30

- Quick reference: 31
o ASSIGN 31
o BROWSE 31
o CLEAR_VARS 31
o COMPILE 31
o DELETE 31
o DISPLAY* 31
o INTEGRATE 31
o MERGE 31
o PLOT 31
o PRINT 31
o PROBE 31
o READ 31
o REFINE 31
o RESTORE* 31
o RESUME 31
o RUN 31
o SAVE* 31
o SHOW 31
o SOLVE 31
o WRITE 31

- Commands 32
o ASSIGN 32
o BROWSE 32
o CLEAR_VARS 32
o COMPILE 32
o DELETE 32
o DISPLAY 32
o INTEGRATE 32
o MERGE 33
o OBJECTIVE 33
o PLOT 33
o PRINT 33
o PROBE 33
o READ 33
o REFINE 34
o RESTORE 34
o RESUME 34
Last modified: June 20, 1998 10:33 pm

6

-

o RUN 34
o SAVE 34
o SHOW 34
o SOLVE 34
o WRITE 35
o 35

:: Script Window Bindings 35
o M1 35
o M1-Drag 35
o Shift-M1[-Drag] 35
o Double-M1 35
o Double-M1-Drag 35
o Triple-M1 35
o Triple-M1-Drag 35
o M2 35
o M2-Held-Down 35
o M3 35
o Control-M1 35
o Control-k 36
o Control-w 36
o Meta-w 36
o Control-y 36
o Meta-y 36

Library 38
Figure ASCEND Library Window. 38
Figure Data structure used to store type defini

tions. 40
:: Menu Bar 40
- The file Menu 40

o Read types from file 40
o Close window 41
o Exit ASCEND 41

- The Edit Menu 41
o Create simulation 41
o Suggest methods 41
o Delete Simulation 41
o Delete all types 42
Figure The Create Simulation Dialog 42

- The Display Menu 42
o Code 42
o Ancestry 42
o Refinement hierarchy 42
o External functions 42
o Hide type 42
o UnHide type 42
o Hide/Show Fundamentals 43
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

7

7

Figure Select the fundamental type to Hide or
Unhide. 43
- The Find Menu 43

o ATOM by units 43
o Type by name 43
Figure The Library’s Find Type dialog. 44
o Type by fuzzy name 44
o Pending statements 44
o To Display 44
o To Console 44
o To File 44

- The Options Menu 44
o Generate C binary 45
o Simplify compiled equations 45
o Save options 45

- The View Menu 45
o Font 45
o Open automatically 45
o Save appearance 45

- The export Menu 45
o Simulation to Browser 46
o Simulation to Solver 46
o Simulation to Probe 46

- The help Menu 46
o On LIBRARY 46

:: Type Refinement Hierarchy Window 46
Figure The Type Refinement Window. 47
Figure The Parts window displays the parts. 4
Figure The Hierarchy Roots Window. 49

Browser 50
Figure ASCEND’s Browser window. 50

:: The Menu Bar 51
- BROWSER File menu 51

o Read values 51
o Write values 51
o Close window 51
o Exit ASCEND 51

- BROWSER Edit Menu 51
o Run method 51
o Clear Vars 52
o Set value 52
o Refine 52
o Merge 52
o Compile 53
o Resume Compilation 53
o Create Part 53
Last modified: June 20, 1998 10:33 pm

8

9

- BROWSER Display menu 53
o Attributes 53
o Relations 53
o Conditional Relations 53
o Logical Relations 53
o Conditional Logical Relations 54
o Whens 54
o Plot 54
o Statistics 54

- BROWSER Find menu 54
o By name 54
o By type 54
o Aliases 56
o Where created 56
o Clique 57
o Eligible variables 57
o Active Relations 57
o Operands 57
o Pendings 57

- BROWSER Options menu 57
o Hide Passed Parts 57
o Suppress Atoms 57
o Display Atom Values 57
o Check Dimensionality 58
o Save Options 58
o Hide Names 58
o UnHide Names 58

- BROWSER view menu 58
o Font 58
o Open automatically 58
o Save window appearance 58

- BROWSER Export menu 58
o to Solver 58
o Many to Probe 58
Figure Filtering instances sent to the Probe 5
o Item to Probe 59

- BROWSER Help menu 59
o On BROWSER 59

Solver 60
Figure Solver Window 60

:: The Solver Menu Bar 61
- Solver File Menu 61

o Close Window 61
o Exit ASCEND 61

- Solver Edit Menu 61
o Remove instance 61
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

9

o Select objective 61
- Solver Display Menu 61

o Status 61
o Unattached variables 61
o Unincluded relations 61
o Incidence matrix 61
Figure The Incidence Matrix 62

- Solver Execute Menu 62
o Solve 62
o Single step 62
o Integrate 63

- Solver Analyze menu 63
o Reanalyze 63
o Debugger 63
o Overspecified 63
o Find dependent eqns. 63
o Find unassigned eqns. 63
o Evaluate unincluded eqns. 63
o Find vars near bounds 63
o Find vars far from nominal 64

- Solver View Menu 64
o Font 64
o Open automatically 64
o Save Solver appearance 64

- Solver Export Menu 64
o to Browser 64
o to Probe 64

:: Solver Button Bar 64
o Solver Select Button 64
o Solver Options Button 65
o Halt Button 65

- General parameters page 65
Figure General Parameter Page 65

:: Available Solvers 67
- QRSlv 67
:: Debugger 69

Figure The Debugger Window 70
The Data Probe Window 72
:: Overview 72

Figure Probe window 73
:: The File menu 73

o New buffer 73
o Read file 74
o Save 74
o Save as 74
o Print 74
Last modified: June 20, 1998 10:33 pm

10
o Close window 74
o Exit ASCEND 74
o Buffer list 74

:: The Edit Menu 74
o Highlight all 74
o Remove selected names 74
o Remove all names 74
o Remove UNCERTAIN names 74
o Copy 74

:: The View Menu 75
o Font 75
o Open automatically 75
o Save window appearance 75

:: The Export Menu 75
o to Browser 75
o to Display 75

:: The Probe Filter 75
- The Help Menu 75

Figure Probe import filter 76
ASCPLOT 78
:: Plot maker 78

Figure The Ascend Plot Window 78
- The Edit Menu 79
- The Execute Menu 79

Figure The Create Data Window 80
- The Display Menu 81

Figure The Graph Generics Window 82
Figure Complete Plot 83

:: Navigation 84
Figure Phase Diagram 85

Display slave 86
:: Overview 86

Figure Display slave window 86
:: Display File Menu 87

o Print 87
o Close window 87
o Exit ASCEND 87

:: Display Edit Menu 87
o Cut 87
o Copy 87
o Paste 87

:: Display View Menu 87
o Show comments in code 87
o Save Display options 87
o Font 87
o Open automatically 88
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

11

-

o Save window appearance 88
- Font 88
- Open automatically 88
- Display Help Menu 88
:: Title line 88
ASCEND Units 90
:: The Menu Bar 90

o Units vs dimensions 90
o Typical use 90
Figure The Units of measure window 91

- Units File Menu 91
o Read file 91
o Save file 91
o Close window 91
o Exit ASCEND 92

- Units Edit Menu 92
o Set precision 92
o Set basic units 92

- Units Display Menu 92
o Show all units 92

- Units View Menu 92
o SI(MKS) set 92
o US Engineering set 92
o CGS set 92
o Font 92
o Open automatically 92
o Save window appearance 92

- Units Help Menu 93
:: An essay on units vs dimensions 93
- On UNITS 94
The ASCEND Toolbox 96

Figure The ASCEND Toolbox window. 96
:: Exit 97
:: Ascplot 97
:: Help 97
:: Utilities 97
:: Internals 97
:: Bug Report 98
The System Utilities Window 100
:: Overview 100

Figure The System Utilities window manages
ASCEND’s interaction with the operating system and with other pro
grams. 100
:: Variables 101
- WWW Root URL 101
- WWW Restart Command 102
Last modified: June 20, 1998 10:33 pm

12

4

- WWW Startup Command 102
- ASCENDLIBRARY Path* 102

- Scratch Directory 103
- Working Directory 103
- Plot Program Type 103
- Plot Program Name 103
- Text Edit Command 103
- Postscript Viewer 104
- Spreadsheet Command 10
- Text Print Command 104
- PRINTER Variable* 104

- ASCENDDIST Directory* 104

- TCL_LIBRARY Environment Variable* 105

- TK_LIBRARY Environment Variable* 105

:: Buttons 105
- OK 106
- Save 106
- Read 106
- More 106
- Help 106
Font Selection Dialog 108
:: Overview 108

Figure The font selection dialog. 108
:: Font Menu 109
:: Style Menu 109
:: Cancel Button 109
:: OK Button 109
:: Current Font Sample 110
:: Font Sampler Area 110
:: Point Size Slider 110
:: Current Font Selection 110
:: Setting the Default Font 110
The Print Dialog 112
:: Overview 112

Figure The print dialog. 112
:: Settings 112
- Destination 112
- Printer 114
- Name of file 114
- Enscript flags 114
- User print command 114
:: Buttons 115
- OK 115
- Help 115
- Cancel 115
Solved simple modeling problems with ASCEND 116
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

13

8

he
:: Roots of a polynomial 116
- Problem statement 117
- Answer 117
:: Numerical integration of tabular data 11
- Problem statement 118
- Answer 119
A Conditional Modeling Example: Representing a Superstructure
122

Figure Superstructure used in the example of t
application of the when statement122
:: The WHEN Statement 122
:: The Problem Description 124
:: The Code 124
A Simple Chemical Engineering Flowsheeting Example 144
:: The problem description 144
:: The code 145
The ASCEND predefined collection of models 162

o system.a4l 162
o atoms.a4l 162
o Typical use of library files 163
o Examples and scripts 163

The ASCEND IV language syntax and semantics 164
:: Preliminaries 165
- Punctuation 166

o keywords: 166
o (* *) 167
o () 167
o { } 167
o [] 168
o . 168
o .. 168
o : 168
o :: 168
o ; 168

- Basic Elements 168
o L 169
o M 169
o T 169
o E 169
o Q 169
o TMP 170
o LUM 170
o P 170
o S 170
o C 170

- Basic Concepts 175
Last modified: June 20, 1998 10:33 pm

14
:: Data Type Declarations 178
o UNIVERSAL 179

- Models 179
o MODEL 179
o foo 179
o bar 179
o column(n,s) 180
o flowsheet 180

- Sets 181
o :== 181
o UNION[setlist] 181
o + 181
o INTERSECTION[] 182
o * 182
o - 182
o CARD[set] 182
o CHOICE[set] 182
o IN 182
o SUCH_THAT (* 4 *) 183
o | 183

- Constants 184
o real_constant 184
o integer_constant 184
o symbol_constant 184
o boolean_constant 184
o :== 185

- Variables 185
o ATOM 185
o DEFAULT, DIMENSION, and DIMEN-

SIONLESS 185
o real 186
o integer 186
o boolean 186
o symbol 186
o := 186
o DATA (* 4+ *) 187
o 188

- Relations 188
o =, >=, <=, <, >, <> 189
o MAXIMIZE, MINIMIZE 189
o + 189
o - 189
o * 189
o / 189
o ^ 189
o - 189
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

15

4

o ordered_function() 189
o SUM[term set] 189
o PROD[term set] 190
o MAX[term set] 190
o MIN[term set] 190

- Derivatives in relations (* 4+ *) 190
- External relations 190
- Conditional relations (* 4 *) 191
- Logical relations (* 4 *) 191
- NOTES (* 4 *) 191
:: Declarative statements 194

o IS_A 195
o IS_REFINED_TO 195
o ALIASES (* 4 *) 195
o ALIASES/IS_A (*4*) 195
o WILL_BE (* 4 *) 195
o ARE_THE_SAME 195
o WILL_BE_THE_SAME (* 4 *) 196
o WILL_NOT_BE_THE_SAME (* 4 *) 196
o ARE_NOT_THE_SAME (* 4+ *) 196
o ARE_ALIKE 196
o FOR/CREATE 196
o FOR/CHECK 196
o SELECT/CASE (*4*) 196
o CONDITIONAL (*4*) 196
o WHEN/CASE (* 4 *) 196
o IS_A 197
o IS_REFINED_TO 197
o ALIASES (* 4 *) 198
o ALIASES/IS_A (*4*) 199
o WILL_BE (* 4 *) 200
o ARE_THE_SAME 200
o WILL_BE_THE_SAME (* 4 *) 202
o WILL_NOT_BE_THE_SAME (* 4 *) 202
o ARE_NOT_THE_SAME (* 4+ *) 202
o ARE_ALIKE 202
o FOR/CREATE 203
o SELECT/CASE (*4*) 204
o CONDITIONAL (*4*) 204
o WHEN/CASE (* 4 *) 204

:: Procedural statements 20
o METHODS 204
o ADD METHODS IN type_name; (*4*)

205
o REPLACE METHODS IN type_name;

(*4*) 205
Last modified: June 20, 1998 10:33 pm

16

8

0

3

o ADD METHODS IN DEFINITION
MODEL; 205

o METHOD 205
o FOR/DO statement 206
o IF 207
o SWITCH (* 4 *) 207
o CALL 207
o RUN 207

:: Parameterized models 20
- The parameter list 208
- The WHERE list 210
- The assignment list 210
- Refining parameterized types 21
:: Miscellany 211
- Variables for solvers 211

o solver_var 211
o lower_bound 211
o upper_bound 211
o nominal 211
o fixed 212
o generic_real 212
o solver_semi, solver_integer,

solver_binary 212
o ivpsystem.a4l 212

- Supported attributes 213
o (* 4+ *) 213

- Single operand real functions: 21
o exp() 213
o ln() 213
o sin() 213
o cos() 213
o tan() 213
o arcsin() 213
o arccos() 213
o arctan() 213
o erf() 213
o sinh() 213
o cosh() 213
o tanh() 214
o arcsinh() 214
o arccosh() 214
o arctanh() 214
o lnm() 214
o abs() 214

- Logical functions 215
o SATISFIED() (*4*) 215
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

17

18
s li-
- UNITS definitions 215
Units library 218
:: Units 218
:: The basic units in an extended SI MKS system 2
:: Units defined in measures.a4l, the default system unit
brary of atoms.a4l. 219
Brief History of ASCEND 232
Last modified: June 20, 1998 10:33 pm

18

d it

ing
ree
e
nd

6,
 of

se

ch
it

or
d

.
f
f
el.
CHAPTER1 A TYPICAL SCENARIO FOR RUNNING

THE ASCENDSYSTEM

The ASCEND system is a modeling environment. We have designe
to allow modelers to pose, debug and solve or optimize models
described by up to of the order of a hundred thousand nonlinear
algebraic equations on a conventional UNIX workstation or PC runn
Windows NT4 or Windows 95. The ASCEND system comprises th
major parts: the ASCEND modeling language for posing models, th
ASCEND interactive environment to allow users to compile, debug a
execute models, and a suite of solvers and optimizers.

Detailed information on modeling appears in Chapter 15, Chapter 1
Chapter 17, and the Howto-ASCEND documents. The primary aim
this book is to describe the graphic user interface of ASCEND (a
moving target if ever there was one) and to serve as a language
reference (Chapter 19). You would typically proceed as follows to u
the ASCEND GUI for modeling.

1. Using your favorite text editor (e.g., xemacs1), you will create a
model of the problem you wish to solve in the ASCEND
modeling language. ASCEND models are type definitions. Ea
model typically includes a declaration of the parts from which
is constructed, including variables, instances of previously
defined types and arrays of any of these. Each model also
includes the equations it adds to the model definition over and
above those equations that its parts will provide. Finally if you
abide by our advice on model writing, you will also write three
four methods that you will later run interactively on the compile
model instance to prepare it to be solved.

If the model is particularly complex, you will probably create
your model using types defined earlier by yourself and others
For chemical process flowsheet models, we provide a library o
types. We also provide a file that contains most of the types o
variables and constants anyone would use to construct a mod

2. Start up the interactive ASCEND user interface by typing

1. Xemacs is a very powerful text editor which is widely used on UNIX workstations. It is available for free
for both UNIX workstations and PCs through the WWW (search on xemacs).
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

19 A TYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

ch
 one

u
y,
ot
ur

ss

l
re
ou

l.

d all
del
 the

ed

ll-
hem
ted

o
on.
‘ascend’ on the Unix shell command line or double clicking on
the ASCEND icon on a PC. A number of different tool sets, ea
represented by a special window, open up on the screen. The
you will likely focus on at first is the SCRIPT window. In this
window under Tools, you will open whichever tool window you
want to work with at first, probably the LIBRARY tool set which
provides tools to load text files containing ASCEND models.
You will likely move and/or resize these windows.

3. Using a tool in the LIBRARY tool set, you will load the files
containing the previously defined types of which your model
makes use. You will open last the file containing the model yo
have just written. Unless you are incredibly skilled and/or luck
you will see several error messages indicating that you have n
correctly posed your model as the system attempts to load yo
new file. Moving back to your favorite editor you will correct
syntax errors discovered by this file loading process, attempt
again to load, make more corrections, etc.

4. Once your new model description can pass the loading proce
without errors, you will compile a simulation for it. Again there
could be errors.

5. You will export this compiled simulation to the BROWSER too
set so you can look at the model, examining all its parts. If the
were compiler errors, you may use tools in this tool set to aid y
to find exactly what you have done wrong in posing the mode

For example, if it is a particularly complex model, you will
methodically examine it to see if you have configured it as you
wanted.

6. Once you are through inspecting the model and have remove
the errors that of which you are aware, you will prepare the mo
to be solved. This you will do by asking the system to execute
methods you should have written to go with your model
description. If you abide by the style of modeling that we
strongly advocate, your model will have these methods attach
to it -- written before your first atttempt to compile it. These
methods will be for setting initial values for the variables, for
scaling the variables, and for setting the “fixed” flags for a
sufficient number of variables to make the model instance we
posed. To be well-posed means a number of things, among t
that the model has the same number of variables to be calcula
as equations available for calculating them.

7. You will next export the model to the SOLVER tool set. When
importing a model, the SOLVER tool set analyzes the model t
discover how many variables and equations are in its descripti
Last modified: June 20, 1998 10:33 pm

20

 it
n

d

will

e
r

oth

 its
l
e

ill
hat

h

o

,
will
el.
g.
of
pick

ld
ile

and
If it is not an optimization problem, the SOLVER looks to see if
is well-posed and, if not, will issue warning messages and ope
up an interactive tool provided to aid you to make it well-pose
right then and there. What you learn while using this tool you
will likely encode right away into the model description so the
next time you compile this model, it will become well-posed
without this interactive step.

8. You can interactively choose among the available solvers and
most likely choose our nonlinear equation solving solver. With
fingers crossed, you will ask the solver to start solving.

9. Whether or not it solves successfully, you will likely return to th
BROWSER to inspect the results as you can view the value fo
every variable and equation residual in the model using the
BROWSER. If the solving process fails, you can select tools b
in the BROWSER and the SOLVER to look for the likely
problem. For example, you may have posed your problem and
initial conditions such that the solution is out of bounds. A too
will tell you if the SOLVER has driven any of the variables in th
model to their bounds. Another will tell you if some of your
variables are poorly scaled. Yet another will investigate the
model to see it if is locally singular, and if it is, that tool will
report to you exactly which equations (by name) have given it
reason to believe that to be so. (In the near future, this tool w
also tell you that you should change what you are fixing and w
you are calculating to remove this singularity, if such a move
would prove useful. It will give you a list of variables from whic
to choose for each of these trades.)

10. You may wish to see the output in units different from those
currently used. Opening the UNITS tools set will allow you to
change wholesale from SI to American Engineering and/or to
change individual units such as those for pressure from bars t
atm.

11. You may have opened the SCRIPT tool set before loading the
model files. Before doing all the above steps within ASCEND
you may then have activated a tool to record all the steps you
subsequently take to load, compile, initialize and solve the mod
This tool will construct a script from the steps it sees you takin
You wlil likely then edit this script, for example to delete some
the missteps you have taken, and then save it. You may also
out any of the steps in the script and execute them at any time
rather than look for the tools in the tool set windows. You wou
use a script to aid you to repeat all the above steps quickly wh
you are debugging a model. You will also prepare a script to h
your model to someone else to execute. Indeed, your first
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

21 A TYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

e
experience with ASCEND may be to run a script that someon
else has provided so you can be sure to run your first example
successfully.
Last modified: June 20, 1998 10:33 pm

 A

ace

ry to
ave
 the

ions

ser,

n

E

with
CHAPTER2 GETTING STARTED WITH ASCEND

2.1 PHILOSOPHY

Our goal is to create a set of very powerful modeling/solving tools.
side effect is that users can often find uses for the tools we did not
anticipate. Another is that, while we have tried to build a user interf
that lets every user from beginner to expert use our tools (or theirs
combined with ours!) in a comfortable fashion, we have almost
certainly erred on the side of giving the user too much control.
Knowing that to be the case, the user should fearlessly dive in and t
use the system, at first by doing some of the simple problems we h
provided in this documentation. The first step, of course, is to start
system up, the purpose of this section.

This chapter largely out of date. See howto-ascend.pdf and instruct
on http://www.cs.cmu.edu/~ascend/ascend_download.htm instead

2.1.1 GETTING THE ASCEND SYSTEM AND INSTALLING IT

ASCEND is available through our Web page. Using your web brow
go the URL

http://www.cs.cmu.edu/~ascend/Home.html

Follow the instructions (the ftp link) there to download ASCEND.

Installing the UNIX
version

If you are downloading a version to run on a UNIX workstation, the
find someone who is a UNIX expert to help you. The process will
involve transferring the source files for ASCEND along with a MAK
file. The MAKE file will allow a UNIX specialist to compile ASCEND
and get it ready for use. There are detailed instructions that come

23 GETTING STARTED WITH ASCEND

s

of
to

nt
t or

nt

.

 not

s
m

.

this version to help in installing it. (Your expert’s expertise may be
very minimally required for installing it on most systems.)

Installing the PC
version

If you are downloading to a PC running under either NT or Window
95, you will be downloading ASCEND4.zip. Uncompress using
WinZip, double click on install.exe and follow the instructions.

2.1.2 STARTING ASCEND

2.1.2.1 FOR PC USERS ONLY

On the PC, simply double click on the ASCEND icon.

2.1.2.2 FOR UNIX USERS ONLY

The ASCEND IV interface is an open system written in TCL on top
several libraries of C code. The users are expected to customize it
suit their individual tastes.

We assume users are at least aware of the existence of environme
variables and X resources. If you are not, contact your UNIX exper
the person who installed ASCEND on your system.

Environment
Variables

Normally, if you are running onUNIX your system administrator will
have set up a shell script to let you run ASCEND simply by typing
ascend . To see if this is true, try typing
ascend -h
If this doesn’t work, you may need to define the following environme
variables in your.login (or perhaps.profile) file, or if you can
find the ASCEND binary, it will frequently run without requiring a
shell script.

ASCENDDIST points to the directory where the ASCEND code has been installed

setenv ASCENDDIST /usr1/ballan/asc4/test

ASCENDHELP points to the ASCEND help file tree on your system. The tree does
have to reside with the rest of the distribution, though it may. This
should have been configured for you when was installed.

ASCENDLIBRARY is a colon-separated list of directories where ASCEND looks for file
which are required by other files or which are read into ASCEND fro
a script without giving a complete path name. If you do not define
ASCENDLIBRARY, the system will make guesses that usually work

setenv ASCENDLIBRARY $ASCENDDIST/models/examples:$ASCENDDIST/models/libraries
Last modified: June 20, 1998 10:33 pm

PHILOSOPHY 24
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/getting_started.fm5

25 GETTING STARTED WITH ASCEND
Last modified: June 20, 1998 10:33 pm

 other
be
d to

hich
CHAPTER3 SCRIPT

The Script Utility (see Figure 3-1) allows us to record the process of solving a model, or any
user interface process. Once this process is recorded in the form of a script, the script can
repeated either fully or in part. The solution process for a given model can be communicate
another modeler by distributing a script saved to a file. Following is an outline of the various
menus and buttons on the script window along with a library of the ASCEND commands w
can be recorded.

Figure 3-1 ASCEND’s Script Window

27 SCRIPT

s

 load

 text

o

pt
he

t in
s,

 the

s

ll
 you

e

3.1 THE SCRIPT MENU BAR

3.1.1 SCRIPT FILE MENU

The script file menu provides several functions for managing script
files. The script utility may contain multiple scripts but will only
display one at any given time. Upon startup a scratch workspace i
provided

New File Request a buffer name and creates a new buffer with this name.

Read File Requests a filename through the file selection box and proceeds to
this file (which is assumed to contain ASCEND Script and/or Tcl
statements) into a new Script window buffer. No error checking is
performed on the loaded file.

Import File Requests a filename through the file selection box and appends the
contained in this file to the end of the current buffer.

Exit ASCEND Exit the ASCEND system. You will asked to confirm that you wish t
do this.

Save Saves the text in the current script buffer window to the current scri
file (indicated by the filename at the bottom of the script window). T
existing file is overwritten.

Save As Request a filename through the file selection box and saves the tex
the current script buffer window to this file. If the specified file exist
it is overwritten.

Buffer List A list of scripts used in the current ASCEND session is displayed at
bottom of the file menu. A script can be redisplayed in the script
window by selecting it from the buffer list. This window contains the
words “License-Warranty.tcl” when you first start ASCEND (which i
the initial contents of the Script buffer).

Note: if you alter the contents (for example, clear it), the system wi
restore the modified contents and not the original contents. The file
originally read remains unchanged unless you save to it.

3.1.2 SCRIPT EDIT MENU

Record actions When the record function is activated a log of interface events with
defined ASCEND Script commands is appended to the end of the
current script window buffer. Most, but not all, interface events hav
Last modified: June 20, 1998 10:32 pm

THE SCRIPTMENU BAR 28

d on
rd

 --
se

s
to

his
to

r at

ted
ch

p to

he

ites

e

corresponding script commands. The record function can be turne
and off by toggling the pull down button on the grill menu or the reco
button at the bottom of the script window.

Select all Selects (highlights) all text in the window. (A known bug exists here
if you do not place the cursor into the text buffer the first time you u
this tool, the highlighting may not occur although the text is in fact
highlighted.)

Delete
statements

Removes (cuts) theselected text. The removed text is NOT saved for
later pasting.

Cut Cut highlighted text to the computer paste buffer. You can paste thi
text into any application that supports cut, copy and paste -- e.g., in
Framemaker or Excel.

Copy Copy highlighted text to the computer paste buffer. You can paste t
text into any application that supports cut, copy and paste -- e.g., in
Framemaker or Excel.

Paste Paste the contents of the computer paste buffer into the Scipt buffe
the point of the cursor.

3.1.3 SCRIPT EXECUTE MENU

Run statements
selected

This button takes the selected text, breaks it into statements delimi
by any semicolons (;) that appear in the selection, and executes ea
statement in the Tcl global environment.

Step through
statements
selected

This button allows you to single step through the highlighted
statements. Two windows open: a small window that allows you to
proceed to the next statement (next button), change from single ste
running the rest of the script automatically (go button) or stop (stop
button) and the Display where, while single stepping, you will see t
statement being executed.

3.1.4 SCRIPT OPTIONS WINDOW

Save all
options and
appearances for
all windows

This tool saves the complete current appearance of the ASCEND
windows and all the options selected anywhere in the system. It wr
the text fileascend.ad and a number of text files ending with.a4o into
the subdirectoryascdata in your “home” directory. The ascend.ad file
is a collection of the information placed into the .a4o files at the tim
you run this instruction. Its main role is to aid in dubugging.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

29 SCRIPT

file
xist

 but
 is

can
.

ow
efault
ved

n

se
ly

u

ted
on
al
At any time, you can go into any of the windows and use the
appropriate Save “window” appearance button to write a new .a4o
for that window. You can also save new options where such tools e
throughout the system, resulting in other .a4o files. The new
information in these .a4o files will not be reflected in ascend.ad file,
it will be what is used to set window positions, etc., overriding what
in the ascend.ad file.

3.1.5 SCRIPT VIEW WINDOW

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Save Script
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

Save all
appearances

Saves a .a4o file for all the ASCEND windows. (See the above
instruction to see the purpose of these files.)

3.1.6 SCRIPT TOOLS WINDOW

Use the tools in this menu to open other windows in ASCEND whe
they are closed or iconified.

This menu lists the major ASCEND windows. Selecting one of them
will open that window on your screen. See the help manuals for the
windows to find out more about them. This menu has almost exact
the same content as the ASCEND toolbox window. See the
documentation corresponding to the toolbox for more details.

3.1.7 SCRIPT HELP MENU

On SCRIPT Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

On getting
started with
ASCEND

Brings up a text description of where to look for help on getting star
with using ASCEND -- the howto book (i.e., it points to the pdf versi
of this document on the WWW.) You may, of course, look in any loc
(but perhaps outdated) copy of the documentation.
Last modified: June 20, 1998 10:32 pm

THE SCRIPTLANGUAGE 30

w

ich

tly
y to
ill
About ASCEND IV Brings up a window telling you briefly about the GNU license and
other information about the ASCEND IV software. This same windo
opens the first time you start ASCEND on your computer.

3.2 THE SCRIPT LANGUAGE

3.2.1 SUMMARY

Script keywords are commands defined for ASCEND (in CAPS) wh
may be used on the commandline or in the Script. Keywords are
actually Tcl functions which encapsulate one or more of the C
primitives and other Tcl procedures, so that the user can convenien
emulate button presses. A working knowledge of tcl is not necessar
benefit from the Script’s functionality; however, the tcl literate user w
be able to create very powerful scripts.

Each keyword takes 0 or more arguments. The use of arguments is
given in the following syntax:

<arg> indicates the use ofarg is required.

<a1,a2> indicates that the use of eithera1 or a2 is required

<a1 a2> indicates use of botha1 anda2 required. Usually written
<a1> <a2>

[a1] indicates the use ofa1 is optional.

[a,b] indicates that eithera or b is optional, but not both.

qlfdid is short for ‘QuaLiFieD IDentifier’

qlfpid is short for ‘QuaLiFied Procedure IDentifier’

OF, WITH, TO, and other args in all CAPS are modifiers to the
keyword which make it do different things.

{} It is generally best toenclose all object names and units in {braces}
to prevent Tcl from performing string substitution.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

31 SCRIPT
3.2.2 QUICK REFERENCE :

ASSIGN Sets the value of something atomic

BROWSE Exports an object to the browser

CLEAR_VARS Sets all the fixed flags to FALSE

COMPILE Compiles a simulation of a given type

DELETE Deletes a simulation or the type library

DISPLAY* Displays something

INTEGRATE Runs an IVP integrator

MERGE Performs an ARE_THE_SAME

PLOT Creates a plot file

PRINT Prints one of the printable windows

PROBE Exports an object to the probe

READ Reads in a model, script, or values file.

REFINE Performs an IS_REFINED_TO

RESTORE* Reads a simulation from disk.

RESUME Resumes compiling a simulation

RUN Runs a procedure

SAVE* Writes a simulation to disk

SHOW Calls a unix plot program on a file from PLOT

SOLVE Runs the solver

WRITE Writes values in Tcl format to disk

 * Items not yet implemented.
Last modified: June 20, 1998 10:32 pm

THE SCRIPTLANGUAGE 32

 the

id.

et

tial
3.2.3 COMMANDS

ASSIGN ASSIGN <qlfdid> <value> [units]

Sets the value of atom ‘qlfdid’ from the script. If value is real, it is
required to give a set of units compatible with the dimensions of the
variable. If the variable has no dimensions yet, ASSIGN will fix the
dimensions.

BROWSE BROWSE <qlfdid>

Exports qlfdid to the browser, displaying it as the current instance in
browser.

CLEAR_VARS CLEAR_VARS <qlfdid>

Sets the value of the fixed flag to FALSE for all the variables on qlfd

COMPILE COMPILE <simname> [OF] <type>

Build a simulation of the type given with name simname. You can g
away with leaving out OF or spelling it wrong.

DELETE DELETE <TYPES,simname>

The modifier TYPES will cause all simulations to be deleted. If a
simulation name (simname) is specified only that simulation will be
deleted.

DISPLAY DISPLAY <kind> [OF] <qlfdid>

How qlfdid is displayed varies with kind. kinds are: VALUE
ATTRIBUTES CODE ANCESTRY

INTEGRATE INTEGRATE {qlfdid args}

Runs an integrator on qlfdid. There are several permutations on the
syntax. It is best to have solved qlfdid before hand to have good ini
values.

INTEGRATE qlfdid (assumes LSODE and entire range)

INTEGRATE qlfdid WITH (assumes entire range)

INTEGRATE qlfdid FROM n1 TO n2 (assumes lsode)

INTEGRATE qlfdid FROM n1 TO n2 WITH integrator
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

33 SCRIPT
Requires:

• n1 < n2

• qlfdid be of an integrable type (a refinement of ivp.)

MERGE MERGE <qlfdid1> [WITH] <qlfdid2>

ARE_THE_SAME qlfdid1 and qlfdid2 if possible.

OBJECTIVE OBJECTIVE

Semantics of OBJECTIVE that will be supported are unclear as no
OBJECTIVE other than the declarative one is yet supported. Not
implemented yet

PLOT PLOT <qlfdid> [filename]

Writes plot data from qlfdid, which must be a plottable instance, to
filename.

PRINT PRINT <PROBE,DISPLAY>

Prints out the text currently in the Probe or Display.

PROBE PROBE ONE qlfdid

Exports the item qlfdid to the Probe.

PROBE ALL qlfdid

PROBE qlfdid

Exports items found in qlfdid matching the current specifications of
Visit in the Browser. By default, all variables and relations.

Items always go to currently selected probe context.

READ READ [FILE,<VALUES,SCRIPT>] <filename>

Loads a file from disk. Searches for files in directories (Working
directory):.:$ASCENDLIBRARY unless a full path name is given for
filename.

The modifier FILE is used to indicate that the file contains ASCEND
source code (ASCEND source code files normally have a .asc
extension).
Last modified: June 20, 1998 10:32 pm

THE SCRIPTLANGUAGE 34

ble
s

 be
 .s

)

T

 the
.

The modifier VALUES is used to indicate that the file contains varia
data written by WRITE VALUES (These files normally have a .value
extension).

The modifier SCRIPT is used to indicate that the file is a script file to
loaded at the end of the Script window (Script files normally have a
extension).

If neither VALUES nor SCRIPT are found, FILE will be assumed.
Note: You will get quite a spew from the parser if you leave out the
SCRIPT or VALUES modifier by accident.

REFINE REFINE <qlfdid> [TO] <type>

Refines qlfdid to given type if they are conformable.

RESTORE RESTORE <file>

Reloads a simulation from disk

RESUME RESUME <simname>

Reinvokes compiler on simname.

RUN RUN <qlfpid>

Run the procedure qlfpid as if from the browser Initialize button.

SAVE SAVE <sim> [TO] <filename>

Filename will be assumed to be in Working directory (on utils page
unless it starts with a / or a ~. Not implemented yet.

SHOW SHOW <filename,LAST>

Invokes the plotter program on the filename given or on the file LAS
generated by PLOT.

SOLVE SOLVE <qlfdid> [WITH] [solvername]

Exports qlfdid to the solver and attempts to solve it with the default
solver (usually QRSlv) or the solver indicated by the optional
solvername argument. Solvername must be given as it appears on
menu buttons. Bugs: Should use current solver rather than default
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

35 SCRIPT

 a
S

.

the
he

a

me.

ste
lt
WRITE WRITE <kind> <qlfdid> <file> [args]

Write something (what sort of write indicated by kind) about qlfdid to
file. args may modify as determined by kind. At present only VALUE
is supported. SYSTEM (for solver dump) would be nice.

WRITE VALUES filename.

Filename must be a full path name or in the pwd, also known as ‘.’

3.3 SCRIPT WINDOW BINDINGS

In the event binding descriptions that follow, M1 is short for mouse-
button-1 (the left mousebutton), M2 is the middle button, and M3 is
right mouse button. On machines with no middle button, M3 is still t
right mouse-button and M2 is unavailable.

M1 repositions the cursor.

M1-Drag selects text.

Shift-M1[-Drag] extends the selection.

Double-M1 selects the nearest word.

Double-M1-Drag selects the nearest word and those you drag over, whole words at
time.

Triple-M1 selects the nearest line.

Triple-M1-Drag selects the nearest line and those you drag over, whole lines at a ti

M2 does nothing.

M2-Held-Down has an effect similar to the scrollbar.

M3 does nothing.

Control-M1 Starts another part of a disjoint selection.

UNIX bindings: The text widgets in ASCEND share a common stack of cut/copy/pa
text pieces. This is a CMU extension of the text bindings, not defau
Tk behavior, and it is EMACS-like, but not EMACS (EMACS uses a
Last modified: June 20, 1998 10:32 pm

SCRIPTWINDOW BINDINGS 36

is is

 onto

 the

ft
t

ring, not a stack.) When the stack is empty, Paste does nothing. Th
a design decision. The Tcl function ascPopText can be changed to
behave differently.

Control-k Cuts text to the end of the current line, putting it on the stack.

Control-w Cuts the selected text, putting it on the stack.

Meta-w (e.g. diamond-w on most Sun keyboards) Copies the selected text
the stack.

Control-y Pastes the most recent text added to the stack, and removes it from
stack.

Meta-y Not supported.

MSW bindings: The standard Control-X, Control-C, Control-V bindings of Microso
Windows clipboard apply to text widgets. The UNIX text stack is no
available.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

37 SCRIPT
Last modified: June 20, 1998 10:32 pm

two
e

re

lla
CHAPTER4 LIBRARY

The Library window (Figure 4-1) in ASCEND allows the user to readtypes into the ASCEND
system from files,compile types into instances, and delete types.

Types are the templates used to create simulations. They come in
flavors: ATOM, which has a value associated with the instance nam
when it is instantiated, and MODEL, which has no value. ATOMs a
the variables and constants in ASCEND; MODELs are the complex
structures one can build in ASCEND. ATOMs, further, come in vani

Figure 4-1 ASCEND Library Window.

39 LIBRARY

n,

,
g

eft
 file

er

.
f

and UNIVERSAL flavors. Universal atoms have a single compiled
instance which is global to all simulations created.

Both ATOMS and MODELS are defined in source files. By conventio
source files are named with the endings.a4c (ASCEND IV code)
and .a4l (ASCEND IV library). You are free to use any other ending
but you will find the ASCEND file type filters you use when browsin
for files will be ineffectual.

In the ASCEND Library window, source files appears in the upper l
box. On the other hand, the types defined in the highlighted source
appear in the upper right box. A double-button2 in either box will
compile the highlighted type definition. It doesn’t reselect. The upp
left box should perhaps have double-button2 bound to reread the
selected source module. The ASCEND fundamental type such as
integer, real, etc., are not shown in the library window, since their
definition is performed internally, not by using a specific source file
The lower box of the ASCEND Library window contains the name o
the simulations that have been compiled and can be run.

The data structure used to store type definitions is sketched in
Figure 4-2.
Last modified: June 20, 1998 10:32 pm

MENU BAR 40

 is

of a

me,
 a
4.1 MENU BAR

The menu bar on the Library window has eight entries: File, Edit,
Display, Find, Options, View, Export and Help.

4.1.1 THE FILE MENU

Read types from
file

This loads type definitions into the system. The file selection dialog
used to select a source file.

The names of types are unique within the system. A new definition
type overwrites the old definition of a type in all cases. If the new
definition and the old definition were read from files of the same na
this overwrite will be done silently. If the new definition comes from

Type Library

type desc 1

type desc 2 type desc 3

Notes: type desc3 has a refinement ptr to type desc 2
 type desc2 has a refinement ptr to type desc 1

 The problem is when type desc 2 is being redefined
 by reloading a new module.

Figure 4-2 Data structure used to store type definitions.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

41 LIBRARY

w

ry

pies
ary
e
e,
pe.

h

ime
n

 of

ted
the
d
rite

 the

he
te
e

different file, the overwrite will be done noisily.

This is incorrect, but perhaps is as it ought to be.Existing types
which refined or had parts that were of the old type definition will no
refine or have parts which are of the new type. e.g. If you reread
system.asc (and hence solver_var) everybody in the interface libra
who pointed at the old solver_var type will now point at the new
solver_var type.

Instances already compiled using the definitions that have been
overwritten will continue to point at a copy of the old definition the
system has squirreled away somewhere. These squirreled away co
will not necessarily be the same as what is in the interface type libr
if you have reread a file with a newer type definition. This may caus
refinement of the old instance to fail. In general if you redefine a typ
you will probably want to reinstantiate things that depend on that ty

Close window It closes the ASCEND’s Library window. To reopen, use the Tools
menu in the Script window or use the SCRIPT tool in the Toolbar
window.

Exit ASCEND Exit the ASCEND system. You will be asked to confirm that you wis
to do this.

4.1.2 THE EDIT MENU

Create
simulation

Create (or instantiate) a simulation based on a type definition. Anyt
that the compile button is selected, the compile dialog window show
in Figure 4-3 will ask for the name which will be used to identify the
simulation. All simulation created can be seen and in the lower box
the ASCEND Library window. This box can contain any number of
simulations.

Suggest methods Pick any type in the right window and apply this tool to write sugges
methods for that type. See the Howto book, Chapter 2, for a list of
methods we suggest one should write for models. These suggeste
methods are prototypes which you can cut and paste into your favo
text editor. You should be carefully edit them before adding them to
model type definition.

Delete
Simulation

This tool works to remove previously compiled simulations listed in t
bottom subwindow of the Library window. Select a simulation to dele
and use this tool to eliminate it from ASCEND. ASCEND will clear th
model from the Browser and Solver. Items placed into the Probe
window are not deleted.
Last modified: June 20, 1998 10:32 pm

MENU BAR 42

ffect
r

e
 the

lay

ND

be
 all

lt
”.

u.
Delete all
types

Destroys all simulations and deletes all types. This option has no e
in the fundamental definitions. Deleting all types clears the Browse
and Solver windows, but not the Probe window.

4.1.3 THE DISPLAY MENU

Most of the options in the Display Menu will be enabled only if a typ
definition has been selected; this is because the tasks performed in
menu are implicitly associated with a type definition.

Code Displays the source code of the selected type in the ASCEND Disp
Window.

Ancestry Allows the use of the Type Refinement Hierarchy Window. See
Section 4.2 on page 46 documenting this window.

Refinement
hierarchy

Displays the refinement hierarchy of the selected type in the ASCE
Display window.

External
functions

Display in the Display window any external function defined from a
loaded package library.

Hide type The Browser will not display any type definition which you select to
hidden with this tool. You may select to hide the type or the type and
its refinements. For example, doing the latter withsolver_var will
hide all variables in a compiled instance of the model.

UnHide type Reverses the action of “hiding” a type. Select the type in the right
window and select unhide if that tool is lit. The Browser will
immediately begin to display this previously hidden type. The defau
for all the type definitions (except fundamentals) is to be “unhidden

Both Hide Type and UnHide Type have two selections as a submen
The user can ask for the un/hiding of only theselected type, or for the
un/hiding of the selectedtype and its refinements.

Figure 4-3 The Create Simulation Dialog
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

43 LIBRARY

ar as
ble
e
ing

ary

ct
ou
Hide/Show
Fundamentals

This special option is given because fundamental types do not appe
definitions in the ascend libraries, but we still may want to able/ena
such types for browsing purposes. When this button is selected, th
window shown in Figure 4-4 will be used to perform the desired hid
or unhiding of any of the fundamental types.

4.1.4 THE FIND MENU

ATOM by units This extremely handy tool allows you to find all the ATOMS that are
currently loaded into the library whose dimensionality conforms to a
user specified set of units. For example, if you have loaded the libr
atoms.a4l into the Library, then you can use this tool to find all atom
definitions that could be expressed in ft^3 or in kJ/mol. To use, sele
the tool. In the window that opens type in the units and select OK. Y
do have to know the units ASCEND will recognize. Open the Units
window and under the Display menu select Show all units for a
complete list.

Type by name Finds a type by its name. The type will become the current type
highlighted in the Library right and left upper windows.

Figure 4-4 Select the fundamental type to Hide or Unhide.
Last modified: June 20, 1998 10:32 pm

MENU BAR 44

tch
me

,

ns

es

on

w

el

se.
f

be
ect.
Type by fuzzy
name

Finds all type names currently loaded in the Library window that ma
a word (provided by the user) in any fuzzy way. For instance, the na
column would list the following: demo_column, mw_demo_column,
plot_column, etc. if these were currently loaded in the Library. The
fuzzy name is defined in a dialog window similar to that used in the
Find Type by name option.

Pending
statements

There are three selections under the Pending Statements submenu
these areTo Display, To Console, andTo File. Pendings in a
simulation are relations that have not yet been fully processed by
ASCEND’s compiler. It is the modeler’s job to correct the pending
relations in order to arrive at a fully functional simulation. Correctio
may be made by either creating a model which refines the current
model or by editing ASCEND code and starting over. This option giv
the user access to information about the type and location of the
pending statements. Often pending statements arise from a comm
cause such as a incorrectly qualiified or misspelled name for a set.

To Display By selecting theTo Display option, all of the simulation pendings are
displayed in theDisplay window.

To Console By selecting theTo Console option, all of the simulation pendings are
displayed in the Console window (in UNIX, the Console is the windo
from which you started ASCEND IV).

To File By selecting theTo File option, theFile select box is opened and the
user is asked to enter the name of the file in which to save the mod
pendings.

4.1.5 THE OPTIONS MENU

The titles for most of these tools more or less describes their purpo
We will not describe them With these options, you can turn on or of
messages ASCEND will generate while compiling. Turning off
warning and error messages will, of course, mean that you will not
told about problems your model may have that we were able to det

Figure 4-5 The Library’s Find Type dialog.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

45 LIBRARY

ch
 be

n
on
 is
e
tion

s

his

can
.

ow
efault
ved
Since ASCEND will still compile in spite of warning messages (whi
generally reflect your model does not conform to what we believe to
good modeling practice), you may wish to suppress them. See the
Howto Book, Chapter 2 for a discussion of good modeling practice.

We describe only those tools that do not turn on and off compiler
messages.

Generate C
binary

If you have a C compiler installed and ASCEND knows about it, the
you may elect to have ASCEND compile C code to evaluate equati
residuals in ASCEND. The compiler finds and will, when this option
selected and possible, compile only a piece of code for each uniqu
equation type, of which there are very few in any model. The evalua
of residuals will be much faster using compiled C code.

Simplify
compiled
equations

This option is on by default. ASCEND will reduce terms in equation
such as a product of constants whose values it knows to a single
resultant constant when you select this option. Whole terms in
equations may disappear if ASCEND finds them multiplied by the
constant zero.

Save options Save the current setting for all the options selected using items in t
menu. ASCEND put the saved information into a text file
library_opt.a4o and which it then saves in theascdata subdirectory of
your “home” directory.

4.1.6 THE VIEW MENU

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Open
automatically

Toggles a switch which, if set, will cause this window to open
whenever anything is placed into it.

Save appearance Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

4.1.7 THE EXPORT MENU

There are three selections under this submenu, these areSimulation to
Browser, Simulation to Solver, andSimulation to Probe.
Last modified: June 20, 1998 10:32 pm

TYPE REFINEMENT HIERARCHY WINDOW 46

l.

om

me.
ir

u

er
t

 the

ion.
Simulation to
Browser

By selecting theSimulation to Browser option, the simulation
highlighted in the lower box of the Library window is loaded into the
Browser. From theBrowser, the model can be explored in more detai

Simulation to
Solver

By selecting theSimulation to Solver option, the simulation
highlighted in the lower box of the Library window is loaded into the
Solver. (Note that exporting to the solver causes a degrees of freed
analysis to be carried out.)

Simulation to
Probe

By selecting theSimulation to Probe option, all of the variables of the
simulation highlighted in the lower box of the Library window are
loaded into theProbe. This is not recommended as there are usually
more variables in a model than the user would wish to view at one ti
However, if the user does wish to look at all of the variables and the
current values, theSimulation to Probe option can be useful.

4.1.8 THE HELP MENU

On LIBRARY Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

4.2 TYPE REFINEMENT HIERARCHY WINDOW

The type tree is a directed acyclic graph (DAG) based on the type
hierarchy currently defined in the interface Library. Selection of the
tool Display Ancestry (mentioned above when describing tools und
the Display menu) for any selected type gives the entire refinemen
hierarchy for that type, by enabling the use of the window shown in
Figure 4-6.

The current focus in the hierarchy is indicated by a rectangle around
type name and the Current type.

The buttons on the left in the type window operate on the currently
selected type:

‘Atoms’ shows the types of ATOMic parts in the selected type
definition. It also shows the incremental code for the type. You can
select from the part types list to look at a different hierarchy.

‘Code’ shows the internally stored code of the selected type. The
expressions, both algebraic and logical, are in reverse Polish notat
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

47 LIBRARY

d

This is different from the way the code of the Library Display Code
button shows it. Comparison of the two is sometimes a useful
debugging tool.

‘Parts’ (Figure 4-7)shows the types of MODEL parts in the selected

type definition. It also shows the incremental code for the type.

The ‘<<<‘ (or backtrack) button backs up to the previously displaye
type hierarchy, if there is one.

Figure 4-6 The Type Refinement Window.

Figure 4-7
The Parts window displays the parts.
Last modified: June 20, 1998 10:32 pm

TYPE REFINEMENT HIERARCHY WINDOW 48

ing

his
r

rt

ame
 still
n
ll
‘Roots’ (Figure 4-8) shows the existing root types, that is, the exist
types which are not refinements of anything.

While ASCEND is building the graph, you may see a spew in the
window from which ASCEND was started about orphaned types. T
means there are types in the Library which are refinements of olde
types which are no longer in the Library.

While ASCEND is getting the Atom or Model parts list for a type, pa
types names which are undefined will be spewed.

When an older type is replaced in the Library by a new one of the s
name, the old one is squirreled away where types that refined it can
see it. The only way to get current types to look at the new definitio
without touching the source files for the current types is to delete a
types and reread the entire Library.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

49 LIBRARY
Figure 4-8 The Hierarchy Roots Window.
Last modified: June 20, 1998 10:32 pm

ars in
ight
stack
in this
nd it’s
 any
CHAPTER5 BROWSER

The Browser window (Figure 5-1) provides the means with which to view the parts of a
simulation. When a simulation is exported to the Browser, the name of the simulation appe
the Browser’s upper left box and the child instances of the simulation appear in the upper r
box. Selecting a child instance in the right box will move the instance to the bottom of the
in the left box and display it’s children in the right box. The instance tree can be traversed
manner until an atom (usually a variable) resides at the bottom of the stack in the left box a
attributes appear in the right box. Selecting a member of the stack in the left box will clear
lower instances on the stack and display the selected instance’s children in the right box.

Figure 5-1 ASCEND’s Browser window.

51 BROWSER

stances

e

 shown
e

 lower
nce in
utton

n in

ues
).
ly
 the
an

 are
ed

d
R

h

dit -
A subset of the instances appearing in the upper right box as well as the values of these in
appear in the Browser’s lower box. Which subset of instances appears in the lower box is
controlled by the user by clicking in some of the options given in the bar at the bottom of th
Browser window. In Figure 5-1 RV has been selected. RV stands forRealVariables. Therefore,
the child instances of fl1 which are real variables and the values of these real instances are
in the lower box. Other options in the bar at the bottom of the Browser window, which can b
simultaneously selected, are DV (Discrete Variable), RR (Real Relations), LR (Logical
Relations), RC (Real Constants) and DC (Discrete Constants). Selecting an instance in the
box with the right button of the mouse will have the same effect as selecting the same insta
the upper right box. On the other hand, selecting an instance in the lower box with the left b
of the mouse will bring up the “Set Value” Dialog box, which will give the user the option of
modifying the value of the selected instance. More about the “Set Value” option will be give
the following section of this document.

5.1 THE MENU BAR

• The menu bar on the Browser window has eight entries: File,
Edit, Display, Find, Options, View, Export, and Help.

5.1.1 BROWSER FILE MENU

Read values Reads the values from a file previously saved by Write Values. Val
files are read using full path names (including the simulation name
The simulation for which values are being read does not necessari
have to be in the Browser (but it should exist). You may specify that
values are to be read into a different simulation or simulation part th
they were originally saved from, provided the old and new locations
compatible. If the original simulation does not exist, you will be ask
for a new simulation name.

Write values Saves the values for the instance in the Browser to a file for later
rereading.

Close window Closes the Browser window. To reopen, go to the Script window an
selectInstance browser under the tools menu or select the BROWSE
on the Toolbox window.

Exit ASCEND Exit the ASCEND system entirely. You will be asked if you really wis
to complete this instruction.

5.1.2 BROWSER EDIT MENU

Run method If the instance in the left box has one or more methods available, E
>Run Method will be available for selection. Selecting Run Method
Last modified: June 20, 1998 10:32 pm

THE MENU BAR 52

a

tion

e).
 a

et
e
he
e
ned

t

 box
.
ath
ifies

may
 of
 the
nt
 type
 for
ment

ith
ou
will display the Methods Selection Window containing a list of
available methods for the current Browser instance. A method is
selected by clicking it’s name (only one method can be selected at
time). Depressing the OK button will run the selected method.
Depressing the Show button will display the code for the selected
method. Depressing the Cancel button will close the Method Selec
Window without running any method.

Clear Vars In ASCEND, the type solver_var and all its refinements constitute a
variable for solution purposes. Each variable has a boolean, named
“fixed”, as one of its children. When a variable’s fixed boolean, or
fixed flag as it is commonly called, is set to False, the variable is
considered an output variable (i.e. the solver will determine its valu
The Clear Vars method sets the fixed flag of every variable which is
child of the current Browser instance to False.

Set value When the current Browser instance is a real, symbol, integer, or
boolean Edit->Set Value will be available for selection. Selecting S
Value displays the Set Value Dialog box. The value (and units in th
case of reals) may be set by filing in the value (and units) fields of t
Set Value Dialog box and depressing the OK button. Depressing th
Cancel button closes the Set Value Dialog box. Booleans are assig
simply by double clicking the mouse button 2 on their name when i
appears in the right browser box.Write values

Selecting Edit->Write Values saves the attribute values of all atoms
which are descendents of the current instance to a file. A file select
is displayed so a new file may be created or an old file over written
The attribute values are written to the selected file along with their p
names relative to the current instance. The first line of the file spec
the path from the simulation to the current instance.

Refine Refines the current Browser instance to a given type. Edit->Refine
only be selected if the Library contains types which are refinements
the current Browser instance type. Selecting Edit->Refine displays
eligible types for the refinement of the current part in the Refineme
dialog box. Selecting a type and depressing OK refines the current
to the selected type. Depressing Show displays the ASCEND code
the selected type. Depressing the Cancel button closes the Refine
dialog box without making any refinements.

Merge ARE_THE_SAME the current part (left side of the Browser) with
another given part. Do not ARE_THE_SAME parts from 2 different
simulations. You cannot merge parts of atoms (which are atomic) w
anything. The dialog box will ask for the name of the instance that y
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

53 BROWSER

e
ed

d a
 a
ew

.
n
n
e.

r is
ch

l
 in

ion
e

the

t of

al
want to merge with the instance highlighted in the left box of the
browser.

Compile Submenu containing Resume Compilation and Create Part.

Resume
Compilation

Attempts to process any pending statements in the simulation in th
Browser. It does not matter where in the simulation you have brows
to, Resume always starts at the top.

Create Part This is a feature of the PASCAL version only. The proper way to ad
part to a simulation is to create a refinement of the original model in
new file, read in that definition, and refine the simulation up to that n
model.

5.1.3 BROWSER DISPLAY MENU

Attributes Display the attributes of a real variable. Other functionality may be
added later to this button.

Relations Display all the relations at or below the current point in the Browser
Relations get arbitrary names unless explicitly named by the user i
code. The arbitrary name, at the moment consists of ParentName_
where n is the number of the nth relation in the MODEL ParentNam
If this name is not unique, enough letters a-z get added to make it
unique. When the instance highlighted in the left box of the Browse
a real variable, this option will display all of the relation in which su
a variable is incident.

Conditional
Relations

Display all the conditional relations in or in the children or
grandchildren etc., of the current object in the Browser. Conditiona
Relations do not have to be satisfied. They are used as boundaries
conditional programming. The arbitrary name of a conditional relat
is obtained in the same way as any other relation, but in general, th
name of a conditional relation must be provided by the user, since
operator SATISFIED requires such a name.

Logical
Relations

Display all the logical relations in or in the children or grandchildren
etc., of the current object in the Browser. Logical Relations get
arbitrary names unless explicitly named by the user in code. The
arbitrary name of a Logical Relation follows the same pattern as tha
real relations. When the instance highlighted in the left box of the
Browser is a boolean variable, this option will display all of the logic
relation in which such a boolean variable is incident.
Last modified: June 20, 1998 10:32 pm

THE MENU BAR 54

ns

l
ut in
 by

 will

one
.
lays
r in

nd

e
y
les

he
tion
 can
nd
 box

tes.

rch
Conditional
Logical
Relations

Display all the logical relations in or in the children or grandchildren
etc., of the current object in the Browser. Conditional Logical Relatio
do not have to be satisfied. They are used as conditions to check in
conditional programming.The arbitrary name of a conditional logica
relation is obtained in the same way as any other logical relation, b
general, the name of a conditional logical relation must be provided
the user, since the operator SATISFIED requires such a name.

Whens This option is enabled for instances of models, relations, booleans,
symbols, and integers. For the case of a model instance, this button
display not only all the when instances defined as parts of such a
model, but also the when instances which include such a model in
of their CASEs. Distinction is made between those two possibilities
For relation, boolean, symbol and integer instances, this option disp
the when instances which include such relation, symbol, etc., eithe
one of their CASEs or in the list of conditional variables. When
instances are useful for the conditional configuration of a problem a
always get arbitrary names.

Plot Invokes a plotting program, if allowable, on the current object. The
type of plot generated is controlled by the Utilities page variables
Plot.type and Plot.program. See the relevant chapters in the Howto
manual on plotting to find the types which ASCEND will plot. Also se
the ASCEND library of models supporting plotting: plot.a4l (and an
of the other model files containing the name plot which have examp
of plotting within them).

Statistics Prints out some information about the object tree in the Browser
starting with the current object and going downward through its
children, grandchildren, etc.

5.1.4 BROWSER FIND MENU

By name Search for an instance with a given qualified name and go there. T
name of the instance to search for is defined in the dialog. This op
may be useful for jumping around in the instance tree. Since names
be quite long, you may find this tool most useful when you have fou
the name elsewhere and can cut and then paste it into the dialogue
that opens for this tool.

By type You can search for objects of any particular type with certain attribu
The default type will list all fixed solver_vars for the problem. The
allowable searches are best explained by examples as shown in
Table 5-1 (with the third being the default just mentioned). The sea
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

55 BROWSER

s,

ore
em
g
t of

e
re
se.
is loosely matched, i.e. any object that is of the type given, OR a
refinement of the type given and matches the attribute qualification
will be on the list of items found.

If there are no matches, there is no results box: just a message in a
popup error message.

The results of the Find appear in a box and you can export one or m
of the results in the box to the Browser or the Probe by selecting th
and clicking on Browser or Probe. When you have finished exportin
items to wherever you like, click on OK. Do close this box as the res
the interface will ignore you until you do.

Notes:

• Clear any of the extra fields not required for your search befor
you hit OK. We will usually find nothing that matches if there a
extra search parameters hanging around that don’t make sen

Table 5-1 Examples of the performance of the Find by type option

Type Attribute Low Value High Value Explanation

unit Find all parts that are units.
solver_var fixed Find all refinements of solver_var

with a part fixed
solver_var fixed TRUE Find all refinements of solver_var

with a part fixed where
fixed==TRUE

stream Ftot 4 Find all streams with part Ftot
where value is 4+ epsilon

stream Ftot 4 10 Find all streams with part Ftot
where 4 <= Ftot <= 10

relation VALUE 0 Find all relations with a residual
0 + epsilon

symbol VALUE ACH Find all symbols where VALUE is
‘ACH’

symbol VALUE ACH ACZ find all symbols where ‘ACH’ <=
VALUE <= ‘ACZ’

component_constant Find all parts that are
component_constants

symbol_constant VALUE UNDEFINED Find all undefined
symbol_constants. Works for all
types with a value.
Last modified: June 20, 1998 10:32 pm

THE MENU BAR 56

an

ue
is
ine

hat

ts in

ght

f
).
 by

tity.

n.
ume
e
 two
t

 the

ans
• VALUE is a special keyword for dealing with atomic types.
Variables and symbols have a value internally but not a child
named VALUE. Similarly, relations have a residual but not as
accessible part with that name.

• Symbols and integers will be matched exactly if only a low val
is given. The matching of symbols given a low and high value
done lexically according to the collating sequence of the mach
in use.

• Frequently what you really want to see is the name of a set of
things of a given type -- e.g. a case where you want to know w
components are in a flowsheet. Find will return the instances
though, not their common parent. Simply export one to the
Browser and then click up a level to see the set of componen
use.

• You can tab between fields in the Find by Type widget.

• You can select a type name in the library. Pick the type in the ri
window. Its name will appear in the lower middle window.
Highling the name and use the typical method to copy a set o
highlighted characters for your computer (e.g., Ctrl-c on a PC
Then use the typical way to paste into the type slot of the Find
Type Window (Ctrl-v on a PC).

• Epsilon is about 1e-8 in terms of the SI units for any real quan

Aliases Find all the other names that the current object has in the simulatio
For example, assume that you have named a simulation as fs. Ass
further that the output stream from the mixer, m1, is merged with th
input stream for the reactor, r1. Then, that stream is an object with
different names. Suppose you are looking at r1.feed as the curren
object. Asking for aliases will give the list

fs.r1.feed

fs.m1.output

If you pick one of the aliases, it can be exported to the BROWSER,
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements and by passing them into a
parameterized MODEL.

Where created Find the other names that the current object was CONSTRUCTED
under. If an object is shown as being created under 4 names, it me
that once there were 4 objects and that 3 were destroyed in merge
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

57 BROWSER

 is

 the

f

e is
s
l

k

he
ees
e

l or
so

ore
he

 to

ject
d by a

s of
e of
by
.

(ARE_THE_SAME) statements to reach the current unity. (Merging
expensive).

 If you pick one of the names, it can be exported to the BROWSER,
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements or by passing them into a
parameterized MODEL, but these names do not appear in the list o
creations.

Clique Find all the instances that ARE_ALIKE with the current one. The
instances shown are bound together so that if the formal type of on
changed, they are all upgraded with the first. Parameterized object
cannot be ARE_ALIKE’d because when parameters exist the forma
type requires outside information (the parameters) in order to chec
that it is being used in a valid way.

Eligible
variables

Find real variables eligible to be fixed. If the solver is occupied by t
same simulation, this query is thrown to the Solver. If not, the degr
of freedom are analyzed as if the current model were exported to th
Solver.

Active
Relations

Find all the relations of the current object. You may tag one, severa
all of the relations found and export them to the Probe. You may al
export the first tagged relation to the Browser.

Operands If the current object is a relation, list all the operands in it. One or m
of these may then be exported to the Probe. You may also export t
first tagged operand to the Browser.

Pendings List in the Console window all the statements that the compiler failed
compile for the current Browser object.

5.1.5 BROWSER OPTIONS MENU

Hide Passed
Parts

Toggles the display of parts which were passed into the Browser ob
as passed parameters. Note that these shared objects were create
parent (or grandparent, etc.) of the current Browser object and will
appear on the list of parts for that parent.

Suppress Atoms This button toggles whether or not to show atomic instances in the
upper right box of the Browser window.

Display Atom
Values

This button toggles whether to display values or to display the type
atoms in the child box (upper right side) of the Browser. For the cas
relations, the residual shown with the relation is the last computed
the solver and not the residual at the current values of the variables
Last modified: June 20, 1998 10:32 pm

THE MENU BAR 58

 In
el it

 the

or
s by
ith

can
.

en

ow
efault
ved

t

 or
Check
Dimensionality

This switch turns warnings about relation inconsistency off and on.
principle it should not be necessary, but for the quick and dirty mod
is sometimes handy.

Save Options Save the current options in this menu. When you restart ASCEND,
system will reset the options to these saved settings.

Hide Names This option has a similar functionality from that of Hide Types in the
ASCEND Library windows. That is, it will hide or unhide instances f
browsing purposes. The difference, however, is that this option hide
name, not by type. To clarify, it is quite different to hide instances w
the name fs than to hide all instances of type test_flowsheet.

UnHide Names Reverses the effect of the command Hide Names. A list of hidden
names appear from which you can select what to unhide..

5.1.6 BROWSERVIEW MENU

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Open
automatically

Toggles a switch which, if set, will cause the Browser window to op
whenever anything is placed into it by an export command.

Save window
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

5.1.7 BROWSER EXPORT MENU

to Solver Checks the model for exportability (must be of type MODEL withou
any pending compilation) and, if acceptable, sends it to the Solver.

Many to Probe Sends the child instances of the current part being browsed to the
Probe. The types of instances sent to the Probe are selected in the
filtering window shown in Figure 5-2. Every switch toggles whether
not to export each of types to the Probe.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

59 BROWSER

u

Item to Probe Exports the instance on the left box of the Browser to the Probe.

5.1.8 BROWSER HELP MENU

On BROWSER Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

Figure 5-2 Filtering instances sent to the Probe
Last modified: June 20, 1998 10:32 pm

cess
the
s for
me of

nt
CHAPTER6 SOLVER

The purpose of theSolver Utility shown in Figure 6-1 is to provide support for the numerical
solving and debugging of an imported instance. To this end the Solver allows the user to ac
numerical solvers and analysis functions and displays statistical and status information for
problem being solved. The upper section of the solver window contains a menu bar; button
selecting numerical solvers, solver options, and halting the solver; a label containing the na
the current instance (or problem being solved); and a label containing the type of the curre
instance. The remainder of the Solver window is devoted to providing statistics about the
problems relations and variables along with a description of the problem’s state.

Figure 6-1 Solver Window

61 SOLVER

nd
e

at

ed
r

m.)

e
ther

trix
6.1 THE SOLVER MENU BAR

The menu bar on the Solver window has eight entries: File, Edit,
Display, Execute, Analyze, View, Export, and Help.

6.1.1 SOLVER FILE MENU

Close Window Close the Solver window. To open it again, go to the Script window a
select the Solvers tool under the Tools menu or select Solver on th
Toolbox.

Exit ASCEND Exit the ASCEND system completely. You will be asked to verify th
you really do want to exit.

6.1.2 SOLVER EDIT MENU

Remove instance Removes the current instance from the solver.

Select
objective

Provides a list of objectives from which one may select. The select
objective will be used in any subsequent optimizations until anothe
objective is selected.

6.1.3 SOLVER DISPLAY MENU

Status Shows the internal status of the
Solver along with the largest block
scaled residual vector two-norm.

Unattached
variables

Shows variables not incident in any of the relations in the current
system being solved. (These variables are not a part of the current
problem. Changing their attributes will have no effect on the proble

Unincluded
relations

Shows relations not in the current system being solved.

Incidence
matrix

Incidence matrix shows the incidence of variables in relations (See
Figure 6-2). Clicking mouse-1 (left button) on the matrix displays th
names and numbers of the relation/variable at that coordinate, whe
that coordinate is occupied or not. A box is drawn around the
partitioned block containing the selected coordinate and the block
number is displayed. The selected block or the entire incidence ma
Last modified: June 20, 1998 10:32 pm

THE SOLVER MENU BAR 62

on
sive

 In
may be printed by selecting the PrintBlock or the Print button
respectively. The scale of the incidence matrix can be changed by
sliding the magnification bar and depressing the Redraw button.
Depressing the OK button will close the INCIDENCE window.

Drawing large dense matrices may take a while. Drawing matrices
problems bigger than about 1000x1000 may be prohibitively expen
on slow machines. The row/column ordering is that done by the
selected solver, except that fixed vars and unincluded relations are
moved to the edges.

Figure 6-2 The Incidence Matrix

6.1.4 SOLVER EXECUTE MENU

Solve Solve the current problem as an algebraic or optimization problem
depending on what solver is selected

Single step Perform a single iteration of the system with the solver in question.
some solvers (e.g. MINOS) there is no iteration mode. For these
selecting single step will result in a full solve attempt.

For QRSlv, an iteration will be a Newton like step if there are many
variables in the current block or if the current block is a blackbox
singleton. Singletons not from blackboxes are numerically inverted
when being solved.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

63 SOLVER

bles

r

grees

r

ly

milar
d to
ser

r
hy

)

 for
used
en
lue
Integrate Invoke the selected integrator (LSODE currently available) on the
problem.

6.1.5 SOLVER ANALYZE MENU

Reanalyze Reanalyzes the current problem to determine if a proper set of varia
has been fixed to make the problem well-posed (i.e., square).

Debugger Opens a tool which deals with the system as a numbered list of
variables and relations. See Section 6.4, ”Debugger,” on page 69 fo
more information about the Debugger.

Overspecified Finds and displays the variables that can be freed to reduce the de
of freedom in an overspecified system.

Find dependent
eqns.

Finds structural or numeric dependencies of a system.

Numeric Dependency.Doesn’t mean much on an unsolved system.
This command inverts one block at a time and checks the blocks fo
numeric dependency using the QRSlv solver. Any non-zero
dependency is reported, but those relations with coefficients down
around machine epsilon (1e-16) are probably not dependent. Poor
scaled problems can appear more singular than they really are.

Structural Dependency.Find the equations or variables involved in a
structural dependency. For systems that should be square, this is si
to overspecified, but for DAE’s this detects the equations which nee
be differentiated to overcome an index problem in the model. The u
interface for reporting the data returned is not complete.

Find unassigned
eqns.

Shows the equations which cannot be assigned by the structural
analysis.

Evaluate
unincluded
eqns.

Evaluates the residuals of unincluded relations and checks them fo
convergence. This may or may not be a wise idea, depending on w
the relations have been excluded.

Find vars near
bounds

This will write variable names passing the test

abs(value-bound)/nominal < epsilon (6.1

to the console. The test is performed first for lower bounds and then
upper bounds and the results are clearly marked. This tool can be
for locating variables which may yield a more tractable problem wh
moved to the bound and fixed while freeing other variables. The va
Last modified: June 20, 1998 10:32 pm

SOLVER BUTTON BAR 64

ssible

)

re

ers
the

can
.

ow
efault
ved

er.

e

n be
of Epsilon can be set on the Solvers General parameter page acce
through the Options button in the Solver window.

Find vars far
from nominal

This tool will write variable names passing test

abs(value-nominal)/nominal > bignum (6.2

to the console. This test can be used for locating variables which a
poorly scaled and for evaluating where model initialization methods
need improvement. The value of bignum can be set using the Solv
General parameter page accessible through the Options button in
Solver window.

6.1.6 SOLVER VIEW MENU

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Open
automatically

Toggles a switch which, if set, will cause this window to open
whenever anything is placed into it.

Save Solver
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

6.1.7 SOLVER EXPORT MENU

to Browser This button sends the instance currently in the Solver to the Brows

to Probe This button sends the instance currently in the Solver to the Probe
piecewise; that is, all the variables and relations get shipped, not th
instance name itself.

6.2 SOLVER BUTTON BAR

The solver button bar, which is located just below the solver menu,
contains three buttons, the solver select button, the solver options
button, and the halt button.

Solver Select
Button

This button contains the name of the currently selected solver.
Depressing this button reveals a menu of available solvers which ca
selected.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

65 SOLVER

nge
 A
y or
 list
).

er

ible.
l.

r

ies

 (or
olds
Solver Options
Button

The Options menu on the solver allows the user to view and to cha
the settings for the parameters associated with ASCEND’s solvers.
solver’s parameters may be changed even when the solver is empt
another solver is selected. Depressing the options button reveals a
of parameter pages which can be selected for viewing (and editing

Below, we discuss using the parameter pages and the general solv
parameters; solver specific parameters are discussed below in
Section 6.3, ”Available Solvers,” on page 67.

Halt Button Halts the solver and returns control to the interface as soon as poss
Not all solvers connected to ASCEND will respond to the halt signa

6.2.1 GENERAL PARAMETERS PAGE

Selecting General under Options will display the General Paramete
Page (See Figure 6-3).This is where we keep items relevant to the
interface and to the way mathematical specialty functions and utilit
are handled in ASCEND. Following, we will discuss the parameters
that appear on this page.

Figure 6-3 General Parameter Page

Iterations before
screen update

Because the interface update is sometimes rather time consuming
more accurately when the window manager is slow, the interface h
up the solver) this specifies how many iterations to stay down in the
solver algorithm before returning to the user interface to update
statistics. In the case of floating point errors or solution completion
Last modified: June 20, 1998 10:32 pm

SOLVER BUTTON BAR 66

ers

s
cts
ate
ck

.
ely

ds a
s

tive

/Find

Find

ng

er’s
before the limit is reached, the return and update will happen
immediately rather than waiting for the limit to be reached. For solv
that don’t truly iterate in an accessible fashion (e.g. MINOS) this
parameter is ignored.

CPU seconds before
screen update

For solvers which do offer access to status information between
iterations, this is the maximum number of cpu seconds before an
interface update. If, while still not done with the number of iteration
given in “iterations before screen update,” the solver algorithm dete
that the cpu seconds limit has expired, then it will return early to upd
the interface. At least one iteration will be completed before the clo
is checked.

Modified log epsilon This parameter controls the value for epsilon in the “lnm” function
Lnm can be used instead of natural log (ln) when the argument is lik
to be very small or to go negative in the solution process. This avoi
host of floating point errors in initialization and solving of many kind
of models.

The modified natural log functionf is defined as

The first derivative of this function is continuous. The second deriva
has a jump from 0 to -1/ε2 at x =ε.

Bound check epsilon This is the epsilon parameter used in the [link: to obvious location
vars near bounds] utility under the Solvers Analyze Menu.

Far from nom bignum This is the bignum parameter used in the [link: to obvious location/
vars far from nom] utility under the Solvers Analyze Menu.

Integrator state log This is the name of the file for integrator state variable output. It
defaults to y.dat in the current directory.

Integrator
observation log

This is the name of the file for user defined observation output duri
integration. It defaults to obs.dat in the current directory.

Integrator log SI units This switch causes the output to be written in SI units or in the us
selected interface units.

f x()
x() x ε>()∀ln

x
ε
-- 1– ε() x ε≤()∀ln+

 
 
 
 
 

=

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

67 SOLVER

for

d be

d a

r all
.

 “A

H

Integrator log
columns

This option selects how the state and observation logs should be
formatted. We can produce fixed or variable width formats suitable
import into nearly any other software package.

Overwrite integer logs This switch lets the user control whether integration log files shoul
appended or replaced with each run.

Check numeric rank
after solving

When selected the numeric rank will be checked at the solution an
message will be displayed if the system is rank deficient.

Show block summary When selected the cost statistics (cpu, interations, evaluations) fo
blocks of significant size will be listed to the screen after each solve

6.3 AVAILABLE SOLVERS

Here is the list of solvers that at one time or another have been
connected to ASCEND:

• Slv

• QRSlv

• LSODE

• MINOS

• LSSlv

• Opt (SQP)

• CONOPT

• Make MPS

All of these solvers may not be available in your installation of
ASCEND. A brief description of ASCEND’s primary solver, QRSlv,
follows.

6.3.1 QRSLV

QRSlv is a nonlinear algebraic equation solver based on the paper
Modified Least Squares Algorithm for Solving Sparse NxN Sets of
Nonlinear Equations” by A. Westerberg and S. Director (EDRC TEC
REPORT 06-5-79).
Last modified: June 20, 1998 10:32 pm

AVAILABLE SOLVERS 68

well.

.

.

em.

ider
fy
ize

ion

y

f

 off.

of

 X

 The

f
 from

In
t

6.3.1.1 PARAMETERS

Following is an incomplete list of control parameters for the QRSlv
algorithm. Most users will only change the time limit, iteration limit,
and maximum residual as the default parameter values work quite

Time limit The total number of seconds allowed in 1 push of the Solve button

Iteration limit Total number of iterations in for any single partition in the problem

Minimum pivot
(epsilon)

the smallest pivot value allowed in the linear solution of a subprobl

Pivot tolerance pivot selection criterion.

Maximum residual This is the maximum absolute error that QRSlv is allowed to cons
an equation as solved. Self scaling equations will more easily satis
this than those that aren’t. E.g. an energy balance (with terms the s
of 10^8) will have a far harder time meeting this convergence criter
if you do not divide them through by an appropriate constant.

Partitioning If off, entire problem will be solved as a block. Divergence is usuall
the result on nonlinear problems of any size above 25 or so.

Detailed info QRSlv spews all sorts of info if you turn this switch on. The utility o
such info is often as much for the authors of slv as for the user. The
volume of info is large. Most of the spew (that to do with singletons
(1x1 blocks) is suppressed if the switch ‘show singletons details’ is

Auto-resolve When complete, the solver is supposed to rerun itself for changes
significance made in the interface if this switch is on.

write to file
SlvLinsol.dat

If this switch is on, a whole set of files named SlvLinsol.dat.X where
is integer are produced during the solution of the problem. The X
increments for each successive linear system inversion or solution.
files contain Jacobian and rhs data in machine readable forms for
import to stand-alone solver tools. There are generally quite a lot o
them. X always starts at 0 for a given ascend session and goes up
there.

show singletons
details

When the ‘detailed solving info required’ switch is ON this switch
controls whether or not full singleton solving information is shown.
particular, if this is off all direct solve spew is cancelled, leaving tha
which usually of interest, the NxN block solution iterations, to be
displayed.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

69 SOLVER

ing
nd
s.

nal
d

t
on)
bipartial pivoting An experimental option for stabilizing the RANKI algorithm on hard
problems. It enables searching of both current row and column dur
linear factorization. It is somewhat more expensive in terms on fill a
CPU time, but can lead to solution of otherwise unsolvable problem
The modification is due to Joe Zaher. This option is likely to be
replaced by a choice of several linear routines eventually. The origi
motivation came from distillation models which become illconditione
as tray number grows.

6.4 DEBUGGER

The Debugger shown in Figure 6-4 is an aid for examining the
variables and relations in the Solver. The debugger is often used in
tandem with the incidence matrix because the debugger is queried
using the solvers’s internal relation/variable indexing (which starts a
0). When a variable (relation) number is typed in the variable (relati
entry box the variable (relation) Name and Attribute buttons may be
clicked to obtain information about the variable (relation). The
information is printed to the console window. The variable (relation)
may also be exported to either the Browser or Probe by making the
appropriate selection under the export pull down menu.
Last modified: June 20, 1998 10:32 pm

DEBUGGER 70

can

be
Figure 6-4 The Debugger Window

When a variable or relation number is entered in the debugger, the
corresponding partitioned block number appears in the ‘block’ entry
box. Statistics on the number of rows and columns in the block are
displayed just below the block entry box. Note that a block number
also be entered directly into the block entry box. The Variables
(Equations) pull down menu below the block entry box contains the
selections Values, Attributes, and Probe (and Find Dependent).
Selecting Values or Attributes will write the requested information to
the console for each variable (equation) in the block. Selecting Pro
will export the block’s variables (equations) to the probe. Selecting
Find Dependent under the Equations pull down menu will write the
name of any dependent equations within the block to the console.
Selecting the Export to Probe button will export both the block’s
variables and equations to the probe.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

71 SOLVER

em,
ort
gger.
et

te

their
nals
The debugger also responds to requests relating to the overall syst
or current solver instance. A Variables pull down menu and an Exp
to Probe button are located beneath the ‘System’ label on the debu
The Variables menu contains the selections Values, Attributes, Res
Values, and Reset Nominals. Selecting Values or Attributes will wri
the requested information to the console for each variable in the
system. Selecting Reset Values will reset the system’s variables to
nominal values. Selecting Reset Values will reset the system’s nomi
to their current variable values.
Last modified: June 20, 1998 10:32 pm

ny
 may

o

 -
CHAPTER7 THE DATA PROBEWINDOW

7.1 OVERVIEW

Thedata probe shown in Figure 7-1 is a window which manages
collections of names from the ASCEND simulation universe. Each
collection is kept in a buffer, and the user can switch among as ma
buffers as are needed for convenience. For example, the first buffer
be used as a set of bookmarks to store the names of interesting
submodels within a large simulation, a second buffer can be used t
monitor a set of key variables, and a third can be used to monitor
specifications. The browser provides a two-level view of information
the probe provides a random access view.(A new GIF is required for
this window -- the Help button is in the wrong place)

73 THE DATA PROBEWINDOW

 the
ted,
pe

and

es

e

e not
me

h
,
 the
Figure 7-1 Probe window

Names are imported to any collection buffer from the other parts of
user interface or from a previously saved file of names. Once collec
a name remains in the buffer until the user removes it, even if the ty
library and simulations are deleted. This way the set of names is
preserved when the user makes a small modification to a MODEL
rebuilds it.

Names in probe buffers are displayed with their corresponding valu
or other attributes as appropriate. When a name is not well defined
(perhaps because the simulation it came from has been deleted
temporarily) the attribute displayed is “UNCERTAIN.” As soon as th
name becomes well-defined again by having a corresponding
simulation object built, the correct attribute will appear. Names of
atomic objects (reals, integers, sets, symbols, booleans) which hav
yet been assigned a value will be shown as “UNDEFINED” until so
operation assigns them a value.

7.2 THE FILE MENU

New buffer This starts another collection of names, which is initially empty. Eac
buffer receives a standard name when it is created, NoNameX.a4p
where X is the number of the buffer. These buffer names appear at
bottom of the File menu.
Last modified: June 20, 1998 10:32 pm

THE EDIT MENU 74

r’s

es,

ve

r

ols

nt

ion
ing.
the

mes

ter
Read file This appends a file full of names into the current buffer and will
automatically attempt to associate them with the simulations in the
system. This way the name list can be reloaded from a prior work
session. The file name is not associated with the buffer.

Save This will save the names in the current buffer to a file with the buffe
menu name. If you wish to save with a more meaningful name, use
“Save as.” Values are not saved with these names. To save the valu
use the Print command.

Save as This allows you to specify the directory and file name in which to sa
the names in the current buffer.

Print This lets you print the current buffer to a printer or a file. This prints
what you see in the buffer window, including the values. The printe
setup dialog will pop up for you to set the destination.

Close window Close this window. To reopen use the Data Probe tool under the To
menu in the Script or select the PROBE button in the Toolbox.

Exit ASCEND Exit the ASCEND system. You will asked to verify that you really wa
to exit.

Buffer list You can create several different Probe buffers. A list of the buffers
appears at the bottom of the File menu.

7.3 THE EDIT MENU

Highlight all Select all items in the displayed buffer.

Remove selected
names

This options removes all highlighted lines in the window. The select
in the probe can be set in a disjointed fashion using Ctrl while select
One can select continguous items by dragging or by holding down
Shift key when selecting the first and last item to be highlighted.

Remove all
names

This options removes all names in the current buffer window.

Remove
UNCERTAIN names

This removes all names that are not well defined. These are the na
displayed as “name = UNCERTAIN.”

Copy This copies all the selected items in the current buffer to the compu
clipboard. The items may then be pasted into any application that
supports the clipboard -- for example, another ASCEND window, a
Frame document and Excel.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

75 THE DATA PROBEWINDOW

can
.

en

ow
efault
ved

er.

o the
.

. The

f the

BE
ort
 use

u

7.4 THE VIEW MENU

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Open
automatically

Toggles a switch which, if set, will cause the Browser window to op
whenever anything is placed into it by an export command.

Save window
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

7.5 THE EXPORT MENU

to Browser This option sends the first selected name in the probe to the brows

to Display This options sends some form of the selected names in the probe t
Display slave window, replacing whatever used to be in the display

7.6 THE PROBE FILTER

A class or classes of object can be imported to the probe en masse
import filter shown in Figure 7-2 lets you select which collection of
names (probe buffer) is to receive the imported names which are o
types checked. Currently the probe filter window is accessible only
from the Browser Export button.

The filtering import can also be executed from the Script using the
PROBE command. The list of ones and zeros required for the PRO
command is ordered in the same way as the list of types in the imp
filter window. The easiest way to set the list of ones and zeros is to
the Script recording feature and the Browser Export Many to probe
button.

7.6.1 THE HELP MENU

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.
Last modified: June 20, 1998 10:32 pm

THE PROBEFILTER 76
Figure 7-2 Probe import filter
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

77 THE DATA PROBEWINDOW
Last modified: June 20, 1998 10:32 pm

 of

e

CHAPTER8 ASCPLOT

8.1 PLOT MAKER

The following contains a description of the options available in each
theAscend Plot menus. TheAscend Plot window shown in Figure 8-1

Figure 8-1 The Ascend Plot Window

 is a result of clicking on the ascplot button from the Toolbox with th
left mouse button.

79 ASCPLOT

t

om
ns
.

t.
ion,
8.1.1 THE EDIT MENU

From theEdit Menu, the following options are available when a data
set has not yet been loaded:Load data set andSelect grapher. The
Save data set, Unload data set, andMerge data sets options are
available after one or more data sets have been loaded into the plo
window.

8.1.1.1 LOAD DATA SET

SelectingLoad data set opens theFile select box window. This
window is used to select the file that contains the data generated fr
the dynamic simulation. The default file is obs.dat. This file contai
the observation variables as set forth in the dynamic library models
After having selected the appropriate file, press the OK button and
return to theAscend Plot window.

8.1.1.2 SAVE DATA SET

This option is currently not functional.

8.1.1.3 UNLOAD DATA SET

By highlighting the desired data set and selectingUnload data set
from theFile menu, the user can remove the data set from theAscend
Plot window. TheDelete these data sets? window appears to verify that
the user wants to remove the indicated data sets.

8.1.1.4 MERGE DATA SETS

8.1.1.5 SELECT GRAPHER

Currently, the only supported grapher is Xgraph (or its tk flavored
version tkxgraph). Other possible graphers are XMGR and gnuplo
Since these graphers are not distributed with the ASCEND distribut
they are also not supported.

8.1.2 THE EXECUTE MENU

To plot the variables in the plotted variables section, selectView plot
file from theExecute menu.
Last modified: June 20, 1998 10:32 pm

PLOT MAKER 80

.

add
ace.

er
ct

ded
riate.
g the
8.1.2.1 VIEW PLOT FILE

This option will plot the variables displayed in the plotted variables
section of theAscend Plot window.

8.1.2.2 WRITE PLOT FILE

To save the output in its graphical representation, selectWrite plot file
from theExecute menu. Selecting this option opens theFile select
box. Enter the name of the file to be saved and press the OK button
The default extension for the graph is .xgraph.

8.1.2.3 INSERT COLUMN

Selecting theInsert column option from theExecute menu opens the
Create Data window. This window is shown in Figure 8-2.

Figure 8-2 The Create Data Window

There are several options available from theCreate Data window.

8.1.2.3.1 Insert after Column

This can be any number between 0 and the maximum number of
variables in the observation file. For example, if the user wishes to
a column after the third column, the user should enter a 3 in this sp

8.1.2.3.2 Column type

The default value for Column type is data, however by placing the
cursor over the data box and pressing the left mouse button, anoth
option is reveiled. The other option is formula. The user should sele
data if no formula can be used to describe the information to be ad
to the spreadsheet. The user should select formula if that is approp
In this case, a column was inserted after Column 0 and we are usin
formula Column type.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

81 ASCPLOT

es
er
 the
mn

tion.
e it

ts,
8.1.2.3.3 Formula

If the data option was selected in the previous section, then this do
not apply. However, if the formula option was selected, then the us
can edit the default formula. The default formula takes the value of
variable in the current row ($r) and the column before the new colu
($c-1) and adds one (+1) to it.

8.1.2.3.4 Insert at end (overrides Column)

The user can select this box to place the new column after the last
column in the spreadsheet. This will override anything in the Insert
after Column line.

8.1.2.3.5 Forget this insertion

The user can select this box to ignore the changes made to the
spreadsheet.

8.1.2.4 RECALCULATE COLUMN

This option is currently not functional.

8.1.2.5 INSERT ROW

The insert row option has the same options as the Insert Column op
Note that the formula take the value from the row immediately befor
($r-1) and the current column ($c) and adds one (+1) to it.

8.1.2.6 RECALCULATE ROW

This option is currently not functional.

8.1.3 THE DISPLAY MENU

TheDisplay menu has various features which include showing and
hiding the data in the spreadsheet, setting plot titles, loading old plo
updating existing plots, and deleting plots.

8.1.3.1 SHOW DATA / HIDE DATA

Selecting theShow data option from theDisplay menu loads the data
into the spreadsheet in the bottom section of theAscend Plot window.
This option then toggles toHide data. Selecting this option will hide
the data just loaded into the spreadsheet section of the window.
Last modified: June 20, 1998 10:32 pm

PLOT MAKER 82

ber

 set

tive.

tive.

les

 than
se,
8.1.3.2 SET PLOT TITLES

Selecting theSet plot titles option from theDisplay menu opens the
Graph Generics window. This window is shown in Figure 8-3.

Figure 8-3 The Graph Generics Window

There are several options within this window depending on the num
of variables being plotted.

8.1.3.2.1 Plot Title

The user can change the default title (AscPlot) to something that is
more descriptive and meaningful for the given data. In this case, we
the title to be Composition Profile since we are plotting the mole
fractions of the components in the system.

8.1.3.2.2 X Axis Title

The user can change the default title (X) to something more descrip
In this case, we are plotting the time on the x-axis.

8.1.3.2.3 Y Axis Title

The user can change the default title (Y) to something more descrip
In this case, we are plotting the Composition on the y-axis.

8.1.3.2.4 Column # legend

In this case, (#) is the number of the variable being plotted. If variab
2, 3, and 4 are being plotted, the will be entries in theGraph Generics
window entitled Column 2 legend, Column 4 legend, and Column 4
legend. These entries can be changed to something less descriptive
the default. Usually the default for this field is a bit much. In this ca
the legend was changed to ‘a’, ‘b’, and ‘c’.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

83 ASCPLOT

 the
(i.e.
lore.
8.1.3.3 LOAD OLD PLOT

This option is currently not functional.

8.1.3.4 UPDATE PLOT

This option is currently not functional.

8.1.3.5 DELETE PLOT

This option is currently not functional.

The plot of the completed graph is shown in Figure 8-4.

Figure 8-4 Complete Plot

8.1.3.6 THE GRILL

The grill is located directly to the right of PLOT MAKER. Clicking on
this button with the left mouse button opens theXGraph Control
window. By clicking on the More button located at the bottom of the
window, the user can scroll through numerous available options for
graphs. Some of these options include line color, fonts, graph type
log or semilog), and marker types. These are left to the user to exp
Last modified: June 20, 1998 10:32 pm

NAVIGATION 84

f

t of
.

 left
ble
 is

otted
 and

as
e

ent

in
e of
V)

on
 and
)

the
t the

e
he
8.2 NAVIGATION

Open a file using theLoad data sets option from theFile menu. You
will notice that the selected file is now displayed in the top section o
theAscend Plot window. By double-clicking on the file name with the
left mouse button, the observation variables are now placed in the
section entitled unused variables. The unused variables are the lis
variables that the user does not want to look at in the current graph

To select a variable to plot, highlight the desired variables using the
mouse button and click on the (>>) button. This will move the varia
from the unused variables list to the plotted variables list. Once this
done, you can now plot the variable.

The two buttons separating the unused variabes section and the pl
variables section are used to add (>>) and remove (<<) variables to
from the plotted variables list.

You will notice that there is a section of theAscend Plot window
entitled Independent. Here the independent variable is time. This w
set in the dynamic library file. If the user desires to look at the phas
plot of two of the compositions, the user must move one of the
compositions into the Independent variable position.

To do this, let’s assume that all of the variables are currently in the
unused variables list and we wish to plot the composition of compon
‘c’ versus the composition of component ‘b’. Thus, component ‘c’ is
now going to be our independent variable. Highlight component ‘c’
the unused variables list and press the (V) button. This button is on
two buttons located directly under the (>>) and (<<) buttons. The (
button on the left is used to move variables between the unused
variables list and the Independent variable list while the (V) button
the right is used to move variables between the plotted variables list
the Independent variable list. Therefore, we are going to use the (V
button on the left.

By doing this, we see that the composition of component ‘c’ is now
independent variable and the time is now an unused variable. Selec
composition of component ‘b’ and press the (>>) button to move th
variable from the unused variables list to the plotted variables list. T
only remaining task is to edit the plot title and axes using theSet plot
titles option from theDisplay menu. Assuming we have done this as
described above, the resulting graph is shown in Figure 8-5.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

85 ASCPLOT
The remaining section of theAscend Plot window is the HINT: section.
This section contains a brief description of the various buttons and
sections of the Ascend Plot window.

Figure 8-5 Phase Diagram
Last modified: June 20, 1998 10:32 pm

nd

g

r
do
CHAPTER9 DISPLAY SLAVE

9.1 OVERVIEW

The display slave window (Figure 9-1) functions as a dumping grou
for information which is too complex to display in other ways in the
Library, Browser or other primary windows. It has rudimentary editin
abilities so the user can manually adjust the format of displayed
information if needed, for example by rearranging a highly nonlinea
relation with more than a few variables. Changes to displayed text
not affect the rest of the system in any way.

Figure 9-1 Display slave window

87 DISPLAY SLAVE

n
 to a

s
to

his
to

r at

ode

g

ome

can
.

9.2 DISPLAY FILE MENU

Print This option brings up the default print dialog described in the sectio
Utilities. The print command can be used to save the displayed text
file.

Close window The option closes the display window.

Exit ASCEND Exit the ASCEND system. You will be asked to verify that you really
wish to exit ASCEND.

9.3 DISPLAY EDIT MENU

Cut Cut highlighted text to the computer paste buffer. You can paste thi
text into any application that supports cut, copy and paste -- e.g., in
Framemaker or Excel.

Copy Copy highlighted text to the computer paste buffer. You can paste t
text into any application that supports cut, copy and paste -- e.g., in
Framemaker or Excel.

Paste Paste the contents of the computer paste buffer into the Scipt buffe
the point of the cursor.

9.4 DISPLAY VIEW MENU

Show comments
in code

This option controls whether or not comments are displayed when c
is displayedas read from source files. This setting is not retroactive;
that is code already displayed will not be redisplayed when changin
this setting.

When code is displayed in the machine representation, i.e. with
equations and set expressions in postfix (reverse polish) notation,
comments are never displayed.

Save Display
options

Saves the current settings for this window for its options. These bec
the default settings when opening this window in the future. These
settings are saved in a .a4o text file for this window which the sytem
stores in the subdirectoryascdata in your “home” directory.

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font
Last modified: June 20, 1998 10:33 pm

TITLE LINE 88

en

ow
efault
ved

dow.

o

u

next
Open
automatically

Toggles a switch which, if set, will cause the Browser window to op
whenever anything is placed into it by an export command.

Save window
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.

9.4.1 FONT

This option brings up the standard font setting dialog so you can
change the size, style, and font of the characters in the display win

9.4.2 OPEN AUTOMATICALLY

This option controls whether or not the display slave window opens
automatically when it receives information. Sometimes it is easier t
send several items to the display and then open it at the end.

9.4.3 DISPLAY HELP MENU

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

9.5 TITLE LINE

The title line at the bottom of the window is set by the last client to
export something to the display. The user may edit the title, but the
time new information is displayed, these edits will be lost.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/display.fm5

89 DISPLAY SLAVE
Last modified: June 20, 1998 10:33 pm

to
s.

I,
use
in
ten
e,
sion.
n also

e

y

t, as
CHAPTER10 ASCEND UNITS

10.1 THE MENU BAR

The Units Tool Set provides tools to allow the user to change the
display units for variables.

Units vs
dimensions

We distinguish betweenunits anddimensions in ASCEND. The
dimensions of acceleration, for example, are L/T2, i.e., length/time
squared. Units for acceleration are: m/s2, ft/hr2 and so forth. A chapter
in the Howto book tells you how to enter dimensioned equations in
ASCEND and includes a useful discussion on units and dimension
Also see the ASCEND syntax document for a discussion.

Typical use The user will typically first pick the overall system of units such as S
American Engineering or cgs. Alternatively the user may select to
thedefault display of units for some or all variable types. Displaying
default units means ASCEND will present the units in terms of the
basic dimensions supported by ASCEND (length, time, temperatur
etc.). The user can select the units to be used for each basic dimen
Whichever of these alternatives the user selects, he or she may the
choose the units ASCEND should use to display particular variable
types. An example would be to select first SI units, then override th
display of energy to be in default units and pressure to be in atm.

Once users have created their favorite choices for display units, the
may save them to files for later restoration.

We describe here the various tools available within the Units tool se
seen in

91 ASCEND UNITS

he
n to

ow.
Figure 10-1 The Units of measure window

10.1.1 UNITS FILE MENU

Read file Reads in a file previously saved using the “Save file” command.
Restores the display units to those previously saved.

Save file Writes out (in the current working directory) a plain text version of t
user specified display units. Units which are defaulted are not writte
this file. One can restore the display units to those currently set by
reading this file back in later.

Close window Close this window. To reopen it, select Measuring units in the Tools
menu of the Script or select the UNITS button on the Toolbox wind
Last modified: June 20, 1998 10:33 pm

THE MENU BAR 92

ion
g
s a

ions
ase

nits
ay

can
.

en

ow
efault
ved
Exit ASCEND Exit the ASCEND system. You will be asked to verify that you really
wish to exit ASCEND.

10.1.2 UNITS EDIT MENU

Set precision Use the slider switch for this tool to set the number of digits of
precision for displaying variable values to between 4 and 16. Precis
is the number of digit displayed when the number is displayed usin
scientific notation. For example, 0.12345678 e04 for 1234.5678 ha
precision of 8 digits.

Set basic units Drops a cascading window in which are listed the ten basic dimens
for ASCEND. You can select in which units you wish to see each b
dimenion to be displayed using this list.

10.1.3 UNITS DISPLAY MENU

Show all units Causes the Display window to open showing the extensive set of u
conversions currently used in ASCEND. The list opens in the Displ
window.

10.1.4 UNITS VIEW MENU

SI(MKS) set Pushing this button makes the default display units SI units.

US Engineering
set

Pushing this button makes the default display units US Engineering
units.

CGS set Pushing this button makes the default display units CGS units.

Font Opens the window that lets you reset the fonts for this window. You
select the type of font, the style (bold, etc.) and the size for the font

Open
automatically

Toggles a switch which, if set, will cause the Browser window to op
whenever anything is placed into it by an export command.

Save window
appearance

Saves the current settings for this window for font settings and wind
size and placement on your computer screen. These become the d
settings for opening this window in the future. These settings are sa
in a .a4o text file for this window which the sytem stores in the
subdirectoryascdata in your “home” directory.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/units.fm5

93 ASCEND UNITS

u

l be
can

ith
nits

ical
nce
10.1.5 UNITS HELP MENU

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) Yo
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

10.2 AN ESSAY ON UNITS VS DIMENSIONS

ASCEND stores all numbers in SI (MKS) units internally. The units
associated with a dimensionality (as exemplified by some atom) wil
used when displaying variables of that dimensionality. These units
be manipulated through the Units window.

Numbers with unrecognized dimensionality (higher derivatives,
multipliers, residuals and what not) will be given units consistent w
the display units defined for the 10 base dimensions. The display u
for the 10 dimensions can be changed through the Units window
Display menu if you prefer an alternate default set such as US
engineering, and so forth.

We recognize 10 base dimensions in the compiler:

L distance meter m

M mass kilogram kg

T time second s

E e- current ampere A

Q quantity mole mole

TMP temperature Kelvin K

LUM luminous intensity candela cd

P plane angle radian rad

S solid angle steradian srad

C currency currency CR

The units conversions are defined in $ASCENDDIST/compiler/
units_input, which is not particularly restricted. Units_input is
converted to an efficient binary form (unitsfile.uni) at the time
ASCEND is installed.

It can be argued that C is not a fundamental dimension, from a phys
standpoint. There is more to life than physics: there is economy, he
engineering, hence an Advanced System for Computations in
ENgineering Design.
Last modified: June 20, 1998 10:33 pm

AN ESSAY ON UNITS VS DIMENSIONS 94

eral
ner

g a

to

nits.

ty

 all
e

 of
tal

s.

he
 of

hich

ut

er

it

ing
e

The dimensions P and S are ‘supplementary’ according to the Gen
Conference, but their use makes the coding of ASCEND much clea
and easier.

10.2.1 ON UNITS

The left box in the Units window lists a set of atom types, each havin
unique dimensionality. Selecting an atom in the left box will fill the
right box with different possible units that the system knows about
display this type of variable. Dimensionless atoms and wild
dimensioned atoms are not shown since they do not have display u
If you do not see an atom you expect here, it is because ASCEND
already found another atom of the same dimensionality, e.g. fugaci
may show up instead of pressure.

Selecting a unit in the right box sets that unit as the display unit for
variables having the same dimensionality of the selected atom in th
left box. Thus pickingatm for fugaciy will also change pressure units
to atm. Selecting ‘default’ will cause the display to be a combination
thefundamental units (a nice way to remind oneself of the fundamen
units for energy, for example).

Fundamental units are the units corresponding to single dimension
These units are chosen on the Display menu under the dimension
choices. No atoms with fundamental units are listed in the left box. T
current set of fundamental units is always shown at the very bottom
the units window. This set is used whenever a value is displayed w
does not have a user specified units set associated with its
dimensionality. The fundamental units are created via the units_inp
file mentioned above. If you do not find one you want, ask whoever
compiled your version of unitsfile.uni to add the missing unit and
rebuild the unitsfile.uni.

If converting the units for a variable makes the display of that numb
impossible (e.g., due to overflow). ASCEND will first attempt to
display it using its fundamental units. If it still cannot be displayed,
will be displayed in SI units.

You may specify a new combination of existing units (e.g. Pa*s) us
theSet units which is the line at the bottom of the window. Type in th
combination desired and press RETURN.

Unit strings may not have parentheses in them. For example, kg/
(m*s^2) is not allowed.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/units.fm5

95 ASCEND UNITS
Last modified: June 20, 1998 10:33 pm

e

ets
CHAPTER11 THE ASCEND TOOLBOX

Thetoolbox window shown in Figure 11-1 lets the users open and clos
the various windows for the tool sets available in ASCEND. The
toolbox window is a vertical window containing 12 buttons: exit,
ascplot, help, utilities, bug report, LIBRARY, BROWSER, SOLVER,
PROBE, UNITS, DISPLAY, SCRIPT.

The buttons in the toolbox with names in ALL CAPS (LIBRARY and
following) open and close the windows for the corresponding tool s

Figure 11-1 The ASCEND Toolbox window.

97 THE ASCEND TOOLBOX

 we

 to
 be
tton.

l the

nd
 is

 for

that
es
ed
ool.
in ASCEND1. As each of these toolsets has its own documentation,
shall not discuss them here. We discuss here only the first set of
buttons: Exit, Ascplot, Help, Utilities, and Bug Report.

1. The more advanced user should note that changing the iconname of a window (via
ascend.ad) does not change its toolbox name.

11.1 EXIT

This button shuts down all of ASCEND after making sure you want
quit. ASCEND does no checking to see if there is unsaved work so
certain you have saved what you want of it before selecting this bu

(For more advanced users, we note that, just before exiting, we cal
tcl function user_shutdown which may be redefined in the
.ascendrc file in your HOME directory. Under Windows, the
_ascendrc is the name of the corresponding file.)

11.2 ASCPLOT

Selecting this button opens the plotting tool for ASCEND. You can fi
any file that contains data for a plot and plot it with this tool. Ascplot
described elsewhere.

11.3 HELP

Pressing this button will provide access to the Help Documentation
ASCEND. The help system is described elsewhere.

11.4 UTILITIES

Selecting this button opens the system utilities window. The system
utilities window is described elsewhere.

11.5 INTERNALS

The internals window gives catalog access to the global Tcl arrays
maintain and control the GUI and other ASCEND options. It also giv
access to the list of ASCEND functions (C callbacks) that are defin
and their built-in documentation. Casual users should not use this t
Last modified: June 20, 1998 10:33 pm

BUG REPORT 98

we

r

d
t

e
r

ve

ug

ot

 to
11.6 BUG REPORT

The link
http://www.cs.cmu.edu/~ascend/Email.html
is connected to the web server for ASCEND at CMU. Alternatively,
send a bug report to
ascend+bugs@cs.cmu.edu
if you cannot access this link. We do not have an 800 number, but
usually get to bug reports very quickly.

When submitting a bug report, please try to

1. Duplicate the error.

2. Tell us in excruciating detail how you duplicated it.

3. Report to us the platform and operating system (OS) on which
you are running. Also please tell us the distribution number fo
the ASCEND code on which you are running. This is research
software. We are not committed to backward compatibility, an
we do not have access to all the platform/OS combinations ou
there. If the bug you report has been fixed in a newer version,
your only fix is to get the new version or fix it yourself. If you ar
on a platform to which we do not have access, we will conside
working out the bugs with you in the hope that you will then gi
us back a copy for the new platform.

4. Send along any model code you have that is involved in the b
manifestation. It may happen that, in the process of fixing the
ASCEND bug, we could fix some of your model bugs. We are n
in the business of debugging your model code unless it is also
interesting to our research. We often find new applications of
ASCEND interesting, however.

5. Subscribe to the ASCEND user mailinglist/bboard: Send mail
ascend+subscribe@edrc.cmu.edu .
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/toolbox.fm5

99 THE ASCEND TOOLBOX
Last modified: June 20, 1998 10:33 pm

D

nt,

ites
CHAPTER12 THE SYSTEM UTILITIES WINDOW

12.1 OVERVIEW

Thesystem utilities window shown in Figure 12-1 displays and allows
modification of the variables which control the interaction of ASCEN
with the operating system and with other programs.

The values of the variables are initialized from the user’s environme
from the file.ascend-config in the user’s HOME directory, and
from settings within ASCEND.

If the user chooses to save the system utility settings, ASCEND wr
the current values of the variables into file.ascend-config in the
user’s HOME directory. ASCEND will automatically reread those
values in the next time it starts.

Figure 12-1 The System Utilities window manages ASCEND’s
interaction with the operating system and with other
programs.

101 THE SYSTEM UTILITIES WINDOW

is

s

tely

wns

W
ds

er,

lp
in a

to
When working with the system utilities window, it is important to
remember that changes to the variables propagateimmediately
throughout ASCEND, and that there is no way to undo or cancel
changes made to the variables1.

1. Some variables can be restored to the values in effect the last time the system utilities were saved, but th
only works if the user has previously saved the values, and it does not restore every variable.

12.2 VARIABLES

The system utilities window contains the following settings. Setting
marked with an asterisk* are not saved in.ascend-config .

To change a variable’s value, click in the box to the right of the
variable’s label and type the new value. This new value is immedia
available to the ASCEND system.

12.2.1 WWW ROOT URL

ASCEND distributes its help system as HTML documents, and spa
a web browser to view these documents. The variable WWW Root
URL gives the root of the ASCEND help tree, and the variables WW
Restart Command and WWW Startup Command contains comman
to connect to a running web browser and to start a new web brows
respectively.

WWW Root URL contains the first part of a URL to the ASCEND he
tree; it is not necessarily a complete URL. The variable should end
forward slash (/). TheHelp menus and buttons in ASCEND will
append text to this value and invoke WWW Restart Command or
WWW Startup Command with the complete URL.

The person who installs ASCEND at a site should set this variable
the root of the directory containing that site’s copy of the ASCEND
help files, for example:
file://localhost/usr/local/lib/ascend/help/
at CMU ICES.

The value
http://www.cs.cmu.edu/~ascend/help/
will connect you to the help pages at the ASCEND web site.
Last modified: June 20, 1998 10:33 pm

VARIABLES 102

eb

up

this

d

d is

code.

d

e

ent

he
12.2.2 WWW RESTART COMMAND

This is a command to redirect the attention of your already running w
browser to a new URL. If this command returns an error code,
ASCEND will attempt to start a new browser using the WWW Start
Command.

If your favorite browser does not support restarting, set the value of
variable tofalse . This will cause a new browser to start for every
help query from the ASCEND interface.

ASCEND will replace every occurrence of%U in this command with
the URL to be viewed. The default value of WWW Restart Comman
is
netscape -remote openURL(%U)

12.2.3 WWW STARTUP COMMAND

This is a command to start your favorite web browser. This comman
invoked if the value of WWW Restart Command isfalse or if
attempting to start a browser using that command returns an error

ASCEND will replace every occurrence of%U in this command with
the URL to be viewed. The default value of WWW Startup Comman
is
netscape %U

12.2.4 ASCENDLIBRARY PATH *

The ASCENDLIBRARY variable contains a list of directories that th
Library and Script tools search to find files containing ASCEND
models and scripts.

The format of the directory list should resemble the PATH environm
variable for your platform: a colon (:) separated list of directories
(using forward slashes) on UNIX, a semicolon (;) separated list of
directories (using backward slashes) on Windows.

The ASCENDLIBRARY variable is initialized from the user’s
environment or from the ASCEND binary; its value is not saved in t
user’s.ascend-config file.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

103 THE SYSTEM UTILITIES WINDOW

at
fore
ant
e
ast

the
n in

f

,

12.2.5 SCRATCH DIRECTORY

The scratch directory is used to write the temporary and plot files th
ASCEND creates. The temporary files are automatically deleted be
you leave ASCEND, but the plot files are not (since people often w
to save plots). You should periodically remove any plot files from th
scratch directory, else you may slow build up a large collection of p
plot files.

Any existing directory you have write access to can be used as the
scratch directory. Under UNIX,/tmp is the default value of the scratch
directory. Under Windows, the directory given in the environment
variable TEMP, TMP, or TMPDIR is used as the default value.

12.2.6 WORKING DIRECTORY

Typically, this is the directory you start ASCEND from, but it can be
any existing directory you have write access to. Our handling of the
working directory is a bit “flaky” at the moment because ASCEND’s
command line allows the user to change directories without telling
rest of the interface about it. Intermediate files are sometimes writte
the working directory.

12.2.7 PLOT PROGRAM TYPE

Currently, the only supported plot types isxgraph plot
(abbreviatedxgraph). This setting tells the plot window what type o
plot file it should generate.

12.2.8 PLOT PROGRAM NAME

This is the name of your plotting program. It should accept the plot
type listed in Plot Program Type as input.

The default isxgraph on UNIX andtkxgraph on Windows. Both
xgraph and tkxgraph are available from the ASCEND web site:
http://www.cs.cmu.edu/~ascend/

12.2.9 TEXT EDIT COMMAND

This is a command to spawn your favorite text file editor. (Currently
nothing in ASCEND invokes this command.)

The default isemacs on UNIX andrunemacs on Windows.
Last modified: June 20, 1998 10:33 pm

VARIABLES 104

rite

box.
g,

of
e

log
 if
sion.

e
s

ry
12.2.10 POSTSCRIPT VIEWER

This is a command to spawn a program for viewing Postscript files.
(Currently, nothing in ASCEND invokes this command).

The default isghostview on UNIX and on Windows.

12.2.11 SPREADSHEET COMMAND

This is a command to spawn your favorite spreadsheet program.
(Currently, nothing in ASCEND invokes this command2).

2. Nothing invokes this command because there is no ASCEND code that supports it. Someone needs to w
code that will write out the desired variables as columns of numbers suitable for importing into any
spreadsheet. If you want to be that someone, let us know and we’ll be happy to consult. We have some
pseudocode for this already; contact us atascend@cs.cmu.edu .

12.2.12 TEXT PRINT COMMAND

This entry displays the last command generated by the print dialog
Changing the value of this entry will have no effect on future printin
since the print dialog manages all aspects of printing.

This value is displayed here as a hold-over from previous versions
ASCEND; developers sometimes use it as a check to make sure th
print dialog is doing the right thing.

12.2.13 PRINTER VARIABLE *

This entry displays the last printer the user selected in the print dia
box, or the value of the PRINTER or LPDEST environment variable
the user has not used the print dialog box during this ASCEND ses

Changing the value of this entry will have no effect on future printing3,
since the print dialog manages all aspects of printing.

This value is not saved in the user’s.ascend-config file.

3. This is not entirely true. This entry will change the value of the PRINTER environment variable (but not th
LPDEST environment variable). Any command you invoke from ASCEND command prompt that depend
on the PRINTER environment variable will use the value displayed in this entry.

12.2.14 ASCENDDIST DIRECTORY *

The value of the ASCENDDIST environment variable is the directo
containing the installed ASCEND distribution. If a user can see this
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

105 THE SYSTEM UTILITIES WINDOW

ect.

on

nt

ry

on

t

on

t

ow
variable inside the system utilities window, it means its value is corr
Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only pers
who needs to be concerned with its value.

The ASCENDDIST variable is initialized from the user’s environme
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.2.15 TCL_LIBRARY ENVIRONMENT VARIABLE *

The value of the TCL_LIBRARY environment variable is the directo
containing the installed*.tcl files required by Tcl. If a user can see
this variable inside the system utilities window, it means its value is
correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only pers
who needs to be concerned with its value.

The TCL_LIBRARY variable is initialized from the user’s environmen
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.2.16 TK_LIBRARY ENVIRONMENT VARIABLE *

The value of the TK_LIBRARY environment variable is the directory
containing the installed*.tcl files required by Tk. If a user can see
this variable inside the system utilities window, it means its value is
correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only pers
who needs to be concerned with its value.

The TK_LIBRARY variable is initialized from the user’s environmen
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.3 BUTTONS

The actions associated with the buttons on the system utilities wind
are:
Last modified: June 20, 1998 10:33 pm

BUTTONS 106

.

 may
.

g

y

12.3.1 OK

This button closes the system utilities window. Closing will fail if the
scratch directory and working directory are not writable by the user

12.3.2 SAVE

This button writes the current value of most of the variables in the
system utilities window to a file called.ascend-config in your
HOME directory4. ASCEND will read this file on startup to get your
preferred values.

The variables whose names are in ALL CAPS (i.e.,
ASCENDLIBRARY, PRINTER, ASCENDDIST, TCL_LIBRARY,
TK_LIBRARY) arenot saved to.ascend-config . These are
environment variables that are set as part of the login process. You
change them interactively, but their interactive values are not saved

4. Under Windows, you can set your HOME directory by setting the HOME environment variable by openin
the Control Panel, double clicking the System icon, clicking the Environment tab, and adding the HOME
variable to the list of user environment variables.

12.3.3 READ

The button causes the system utilities window to reread the values
stored in.ascend-config in your HOME directory. This is useful
for editing.ascend-config outside of ASCEND while running
ASCEND, or for verifying that the changes you saved were properl
saved.

12.3.4 MORE

The button rotates you through the pages of options.

12.3.5 HELP

The button should direct your web browser to this document.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

107 THE SYSTEM UTILITIES WINDOW
Last modified: June 20, 1998 10:33 pm

ce

ons
CHAPTER13 FONT SELECTION DIALOG

13.1 OVERVIEW

Thefont selection dialog (Figure 13-1) is used to select the font for the
window from which it is opened. There is no way through the interfa
to change the font for every ASCEND window.

Currently, the fonts you select are not remembered across invocati
of ASCEND. This is a feature we will be adding in a future release.

Figure 13-1 The font selection dialog.

109 FONT SELECTION DIALOG

ont

is

ont
can
g

st
t to

a,

ow.

r
nt

ng

 the
To change the default fonts for ASCEND, see Setting the Default F
later in this chapter.

The font which the font selection dialog displays when it is opened
independent of the current window’s font. This is actually a feature.
When you close the font selection dialog (by pressing either the OK
Button or the Cancel Button) and reopen it, it will display the same f
as when it was closed. This way, once you find a font you like, you
change other ASCEND windows to this same font by simply openin
the font selection dialog and pressing OK. As a default, the very fir
time you open the font dialog in an ASCEND session, the font is se
Courier 12 normal .

The font selection dialog has eight parts: Font Menu, Style Menu,
Cancel Button, OK Button, Current Font Sample, Font Sampler Are
Point Size Slider, Current Font Selection.

13.2 FONT MENU

The Font menu displays the fonts available for your platform (e.g,
Helvetica, Courier). Selecting one of these fonts will update the
Current Font Sample and Current Font Selection areas of the wind

13.3 STYLE MENU

The Style menu allows you to specify attributes (e.g., Bold, Italic) fo
the selected font. As you add and remove attributes, the Current Fo
Sample and the Current Font Selection will reflect the changes.

13.4 CANCEL BUTTON

The Cancel button closes the font selection window without changi
the fonts of the window.

13.5 OK BUTTON

The OK button closes the font selection window and sets the font of
window to the font listed in the Current Font Selection area.
Last modified: June 20, 1998 10:33 pm

CURRENTFONT SAMPLE 110

nt,

l be

nts
e

yed

, but

d to

e of

y

13.6 CURRENT FONT SAMPLE

This area of the font selection window shows a sample of text in fo
style, and size you have currently selected.

If you want to see what your current selection does to particular
characters, you may type into this area. Note that your additions wil
deleted when you change any aspect of the font (style, size, font).

13.7 FONT SAMPLER AREA

This area of the font selection window shows you a sample of the fo
available for your platform. You may make one of the listed fonts th
current selection by clicking the font with the left mouse button. The
currently selected styles and sizes remain in effect.

13.8 POINT SIZE SLIDER

This slider lets you choose the point size of the font. The text displa
in the Current Font Sample updates immediately.

13.9 CURRENT FONT SELECTION

This area displays the Tcl name for the font (including the size and
style(s)) that you have currently selected. You may type in this area
doing so will have no effect on the font.

13.10 SETTING THE DEFAULT FONT

To have ASCEND use the same font each time you run it, you nee
do the following steps.

1. Use the font selection dialog to choose a font you like. Make a
note of the Tcl name for the font; this name is displayed in the
Current Font Selection area of the window.

2. Open the system utilities window and make a note of the valu
ASCENDDIST.

3. Exit ASCEND.

4. Under the ASCENDDIST directory, there should be a director
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/fontsel.fm5

111 FONT SELECTION DIALOG

st
t

e
the

t
.

calledTK, and in this directory a file calledascend.ad . Copy
this file to your HOME directory1 and name it.ascend.ad 2.

5. Add the following lines at the end of.ascend.ad , replacing
courier 11 normal with the font you noted in Step 1.

Global font courier 11 normal

Global labelfont courier 11 normal

Toolbox font courier 11 normal

Library font courier 11 normal

Display font courier 11 normal

Browser font courier 11 normal

Probe font courier 11 normal

Units font courier 11 normal

Script font courier 11 normal

Solver font courier 11 normal

Debugger font courier 11 normal

6. Save.ascend.ad , and restart ASCEND.

Note that this file also contains the default size and position for mo
ASCEND windows. To change the position or size of a window, edi
the lines containinggeometry ; the format for the geometry is
WWxHH+xx +yy
whereWW is the width of the window,HH is its height,xx is the
distance between the left edge of the screen and the left edge of th
window, andyy is the distance between the screen’s top edge and
window’s top edge.

1. To set your HOME directory under Windows, open the Control Panel, double click the System icon, selec
the Environment tab, and set the HOME environment variable to a directory you want to consider “home”

2. Under Windows, the name_ascend.ad also works.
Last modified: June 20, 1998 10:33 pm

CHAPTER14 THE PRINT DIALOG

14.1 OVERVIEW

Theprint dialog shown in Figure 14-1 allows the user to modify the
settings which control the printing of information from within
ASCEND.

14.2 SETTINGS

14.2.1 DESTINATION

This is a pop-up menu that allows you to select one of the following
options for printing: Print, Write to file, Append to file, Enscript, or
Custom.

Figure 14-1 The print dialog.

113 THE PRINT DIALOG

e

his

e

file
14.2.1.1 PRINT

On UNIX machines, this option sends the window’s contents to the
printer specified in the Printer field (PRINTER). Under SystemV
systems1, the command
lp -d PRINTER
is used as the interface to the printer; on all other UNIX systems, th
command
lpr -P PRINTER
is used.

Under Windows, the command
notepad /p
is used to send the window’s contents to the user’s default printer. T
will not print the Matrix display and other graphic displays correctly
because those generate PostScript. Text windows (Display, Probe,
Script, Library) will print correctly.

1. HP-UX, SGI IRIX, and Solaris 2.x.

14.2.1.2 WRITE TO FILE

Under UNIX, this option writes the contents of the window to the fil
listed in the Name of file field. If a file with the same name exists,
ASCEND will overwrite the file after verifying that the user wants to
overwrite the file.

This option is not available on the Windows platform.

This option is another version of Save As and will likely go away in
future releases of ASCEND.

14.2.1.3 APPEND TO FILE

Under UNIX, this option appends the contents of the window to the
listed in the Name of file field. If the file does not exist, it will be
created.

This option is not available on the Windows platform.

This option will likely go away in future releases of ASCEND.

14.2.1.4 ENSCRIPT

On UNIX, this option uses theenscript program to queue the
window’s contents to the printer specified in the Printer field
Last modified: June 20, 1998 10:33 pm

SETTINGS 114

cript

e

.

ite
(PRINTER). On SystemV systems, the command
enscript -d PRINTER enscript-flags
is used; on all other UNIX systems, the command
enscript -P PRINTER enscript-flags
is used. The value of enscript-flags is the value specified in the Ens
flags field.

This option is not available on the Windows platform.

14.2.1.5 CUSTOM

This option allows the user to specify a custom print command. Th
user should type their custom command in the User print command
field; the command should accept a file name as its final argument

This option is not available on the Windows platform.

14.2.2 PRINTER

Under UNIX, this field specifies the printer to send the document to
when the Destination is Print or Enscript.

This field has no effect under Windows.

14.2.3 NAME OF FILE

Under UNIX, this field contains the name of the file used by the Wr
to file and Append to file options.

This field has no effect under Windows.

14.2.4 ENSCRIPT FLAGS

Under UNIX, this field contains the options sent to theenscript
program when the Destination is Enscript.

This field has no effect under Windows.

14.2.5 USER PRINT COMMAND

Under UNIX, this field contains the command used to “print” the
window’s contents when the Destination is Custom. This command
should accept the name of a file (a temporary file containing the
contents of the window) as its final argument.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/print_dialog.fm5

115 THE PRINT DIALOG

e
s

s and
This field has no effect under Windows.

14.3 BUTTONS

14.3.1 OK

Pressing this button accepts the settings, sends the document to th
printer or to the specified file, and closes the print dialog. The value
displayed in the Text print command and the PRINTER fields in the
system utilities window will change to reflect the new settings.

14.3.2 HELP

Pressing this button should cause your web browser to display this
document.

14.3.3 CANCEL

This button ignores any changes you may have made to the setting
closes the print dialog. The file is not printed.
Last modified: June 20, 1998 10:33 pm

 we
 a

ND
adily

e

e
r in
D,
t
l

n,
 alter
e

or
the

heet
CHAPTER15 SOLVED SIMPLE MODELING

PROBLEMS WITHASCEND

In this chapter we present two simple modeling problems for which
then show you our ASCEND models for solving them. Modeling is
matter of style, and we will start to show you what we believe to be
good styles for modeling. We assume you have not used the ASCE
system before. These problems are very generic and should be re
followed by anyone with a modest technical background.

One purpose is to show you some of the different ways you can us
ASCEND. Specifically we want to show you that you can use
ASCEND to setup and solve the simple types of problems that you
might have solved using a spreadsheeting program. Indeed, we us
ASCEND to solve homework problems quite often. When you facto
the powerful debugging tools, you might find it faster to use ASCEN
especially as the models get more complex. And no one would wan
(we think) to solve a 20,000 simultaneous nonlinear equation mode
using a spreadsheeting program.

A major advantange of using ASCEND is that once you have writte
debugged and learned to solve such a model, you can interactively
the "fixed" flags for the variables, changing which variables are to b
fixed and which to be calculated. You can then immediately solve
optimize the new problem, using the previously solved problem as
initial guess.

15.1 ROOTS OF A POLYNOMIAL

In this problem you wish to find the roots of a polynomial. Assume
you do not wish to keep the code. You could readily use a spreads

117 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

ut

ex,

ing
o
t
re to

ce

ctly,

le,
 a

 the

 fail
 is a
es

er,
 and
program with its "root finder" routine to solve this type of problem, b
you can as readily use ASCEND.

15.1.1 PROBLEM STATEMENT

Numerically compute the roots of(x-1)(x-5)(x+7)(x2+1) =0. (Given in
this form the roots are obviously 1, 5, and -7. Two roots are compl
and ASCEND will not find them.)

15.1.2 ANSWER

You can find the roots by guessing initial points after typing in, load
and compiling the following model. You would use any text editor t
enter this model into the computer. If you use a "WYSIWYG" (wha
you see is what you get) editor such as Word or Framemaker, be su
save the file as atext only file. If possible, use a simpler text editor.

MODEL polynomial_roots; 1

x IS_A generic_real; 2

(x-1)*(x-5)*(x+7)*(x^2+1) = 0; 3

END polynomial_roots; 4

This simple model is a stand-alone model. You need no other
predefined libary models to support it. Load and compile an instan
of this model (using tools in the LIBRARY tool set), browse it (using
the BROWSER tool set) to see if it appears to have compiled corre
and then pass it to the SOLVER tool set.

This model involves a single equation in the single unknown variab
x. The ASCEND solver treats a single equation in one unknown in
special manner when asked to solve it. The solver first attempts to
rearrange the equation by simple algebraic manipulations to isolate
unknown on the left hand side of the equation in the form x =
expression not involving x. In this form, solving is simply evaluating
the expression on the right hand side once. Here the solver would
as there is no way to isolate x on the left hand side as the equation
fifth order polynomial in x. When rearrangement fails, the solver us
bisection to locate a root in the range between the lower and upper
bound on the variable. You can see the bounds, x.lower and x.upp
using the BROWSER. The default values for these bounds are plus
minus 1020 respectively, which gives a very large range in which to
Last modified: June 20, 1998 10:33 pm

NUMERICAL INTEGRATION OF TABULAR DATA 118

root

 to
eting

e

set
h

e

o a

onds.
look for the root. You should change the bounds1 to more realistic
ones. Selecting bounds to be -10 to 0 and then solving will find the
x=-7. Selecting other values will find the other roots.

This model illustrates that you can quickly set up and solve simple
problems using ASCEND. Note that you would have been required
place bounds on x had you used a goal seeking tool in a spreadshe
program if you wanted to control which root to locate.

1. To set the value for a variable interactively, select the variable when it is display in the right window or in th
lower window with the RIGHT mouse button (the other button). A window for changing its value opens.

15.2 NUMERICAL INTEGRATION OF TABULAR

DATA

This problem is similar to the previous one in that it is very easy to
up and solve. It adds in the notion of units (e.g., ft, m, hr, atm) whic
ASCEND handles in a straight-forward manner, relieving modelers
from thinking about converting among the many units they might us
when expressing the data for a problem.

Again we are talking about producing throw-away code. All we are
really concerned with here is the answer which we intend to put int
report. We are using ASCEND as a "calculator."

15.2.1 PROBLEM STATEMENT

Given the following velocity data vs. time, estimate numerically the
distance one has traveled between time equal to zero and 100 sec

Table 1: Velocity data to be integrated

data point
number

time,
s

velocity,
ft/min

1 0 100

2 10 120

3 20 130

4 30 135

5 40 140

6 50 160

7 60 180
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

119 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

d in

ic

an

re
ocity
f
nd

es
15.2.2 ANSWER

(This example will be solved using variables whose types are define
the file atoms.a4l. You must load this file first before loading the file
with the code below, else you will experience a number of diagnost
messages indicating missing type definitions. See Chapter 18 for a
discussion of libraries on ASCEND.)

The distance traveled is the integral of the velocity over time. We c
use Simpson’s rule to carry out this integration for evenly spaced
points.

d = ((v[1] + 4 v[2] + v[3]) + (v[3] + 4 v[4] + v[5]) +....
+(v[N-2] + 4 v[N-1] + v[N]))*∆t/6 (15.1)

whered is the distance covered when traveling at the velocities,V[k] ,
listed. This formula requires there to be an odd number of 3 or mo
evenly space data points, which is fine here as we have eleven vel
points evenly spaced in time. (If there had been an even number o
points, we could use Simpson’s rule for all but the last time interval a
use a simple trapezoidal rule to integrate it.)

An ASCEND model to evaluate this distance is as follows. The typ
definitions forspeed, time anddistance are in the fileatoms.a4l.

MODEL travel_distance; 1

 kmax IS_A integer_constant; 2

 v[1..2*kmax+1] IS_A speed; 3

 delta_time IS_A time; 4

 d IS_A distance; 5

6

8 70 210

9 80 240

10 90 220

11 100 200

Table 1: Velocity data to be integrated

data point
number

time,
s

velocity,
ft/min
Last modified: June 20, 1998 10:33 pm

NUMERICAL INTEGRATION OF TABULAR DATA 120

in ft/

this

g SI
 d = SUM[v[2*k-1]+4*v[2*k]+v[2*k+1] SUCH_THAT k IN

 [1..kmax]]*delta_time/6; 7

END travel_distance; 8

9

MODEL test_travel_distance REFINES travel_distance; 10

 kmax :== 5; 11

12

METHODS 13

 METHOD specify; 14

 v[1..2*kmax+1].fixed := TRUE; 15

 delta_time.fixed := TRUE; 16

 END specify; 17

18

 METHOD values; 19

v[1] := 100 {ft/min}; 20

v[2] := 120 {ft/min}; 21

v[3] := 130 {ft/min}; 22

v[4] := 135 {ft/min}; 23

v[5] := 140 {ft/min}; 24

v[6] := 160 {ft/min}; 25

v[7] := 180 {ft/min}; 26

v[8] := 210 {ft/min}; 27

v[9] := 240 {ft/min}; 28

v[10] := 220 {ft/min}; 29

v[11] := 200 {ft/min}; 30

delta_time := 10 {s}; 31

 END values; 32

END test_travel_distance; 33

If you look carefully at this model, you will note that we did NOT
account for the conversion factors required because velocities are
min while the time increment is in seconds. ASCEND understands
these units and makes all the needed conversions. When you run
model, you can ask for the distance to be displayed to you in any
supported length units you would prefer (e.g., ft, mile, m, cm,
angstroms, lightyears). The distance traveled, when reported usin
units, is 42.84 m.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

121 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND
Last modified: June 20, 1998 10:33 pm

THE WHEN STATEMENT 122

ol
l

ich

tain

nt
CHAPTER16 A CONDITIONAL MODELING

EXAMPLE: REPRESENTING A

SUPERSTRUCTURE

To give an example of the application of the conditional modeling to
in ASCEND -theWHEN statement-, we developed a simplified mode
for the superstructure given in Figure 16-1. The code listed below
exists in a file in the ASCEND models subdirectory entitled
when_demo.a4c. You could run this example by loading this file and
using it and its corresponding scriptwhen_demo.a4s.

16.1 THE WHEN STATEMENT

Before showing the example, we want to start by giving a brief
explanation about the semantics of the WHEN statement, a tool wh
allowsASCEND to represent conditional models efficiently.

In theWHEN statement, we take advantage of the fact thatASCEND is
based on object oriented concepts where model definitions can con
parts that contain parts to any level. Furthermore, inASCEND, a simple

Figure 16-1 Superstructure used in the example of the application of the when stateme

f1

f2

c1

co1 h1

r2

r1

co2 fl1

h2

h3

c2

Feed 1 (cheap)

Feed 2(exp.)

Pby

<1000
ton/day

>90 %
pure C

high conv, high cost

low conv, low cost

A + B C
s1

sp1
s2

m1
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

123 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

ed on

:

e
bles
ent

 be

we
ist

 In

 such

 the

ng:
relation is treated as an object by itself and can have a name. Bas
these ideas, the syntax for theWHEN statement is:

WHEN (list_of_variables)

CASE list_of_values_1:

USE name_of_equation_1;

USE name_of_model_1;

CASE list_of_values_2:

USE name_of_equation_2;

USE name_of_model_2;

CASE list_of_values_nminus1:

USE name_of_equation_nminu1;

USE name_of_model_nminus1;

 OTHERWISE:

USE name_of_equation_n;

USE name_of_model_n;

END;

The following are important observations about the implementation

1 TheWHEN statement does not mean conditional compilation. W
create and have available the data structures for all of the varia
and equations in each of the models. This is actually a requirem
for the solution algorithms of conditional models. All the models
and equations whose name is given in each of the cases should
declared inside the model which contains theWHEN statement.

2 The variables in the list of variables can be of any type among
boolean, integer or symbol or any combination of them. That is,
are not limited to the use of boolean variables. Obviously, The l
of values in each case must be in agreement with the list of
variables in the number of elements and type of each element.
other words, order matters in the list of variables of theWHEN

statement, and parentheses are enclosing this list to make clear
a feature.

3 Names of arrays of models or equations are also allowed inside
scope of eachCASE.

TheWHEN statement represents an important contribution to modeli
it allows the user to define the domain of validity of bothmodels and
equations inside the cases of aWHEN statement. This feature
enormously increases the scope of modeling in an equation based
modeling environment.

Mainly, there are two different ways in which theWHEN statement can
be used.:
Last modified: June 20, 1998 10:33 pm

THE PROBLEM DESCRIPTION 124

ion

a
ds

of
ue

her

re

 of
d by
e
of

s

kip

r

(*
• First, the WHEN statement can be used to select a configurat
of a problem among several alternative configurations.

• Second, in combination with logical relations, theWHEN

statement can be used for conditional programming. That is,
problem in which the system of equations to be solved depen
on the solution of the problem. A typical example of this
situation is the laminar-turbulent flow transition. The selection
the equation to calculate the friction factor depends on the val
of the Reynolds number, which is an unknown in the problem.

16.2 THE PROBLEM DESCRIPTION

In the example, there are two alternative feedstocks, two possible
choices of the reactor and two choices for each of the compression
systems. The user has to make 4 decisions (for example, using eit
the cheap feed or the expensive feed), therefore, there are 24 = 16
feasible configurations of the problem. All these 16 configurations a
encapsulated in oneASCEND model containing 4WHEN statements
which depend on the value of 4 boolean variables.

The value of the four boolean variables will determine the structure
the problem to be solved. In this example, those values are define
the modeler, but they also could be defined by some logic inferenc
algorithm which would allow the automatic change of the structure
the problem.

The following section gives the code for this model. The first model
correspond to the different types of unit operations existing in the
superstructure. Those model are very simplified. You may want to s
them and analyze only the modelflowsheet, in which the use and
syntax of the WHEN statement as well as the configuration of the
superstructure become evident.

16.3 THE CODE

As the code is in our ASCEND examples subdirectory, it has heade
information that we required of all such files included as one large
comment extending over several lines. Comments are in the form
comment *). The last item in this header information is a list of the
files one must load before loading this one, i.e.,system.a4l and
atoms.a4l.

34
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

125 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
REQUIRE "atoms.a4l"; 35

(* --> measures,system *) 36

PROVIDE "when_demo.a4c"; 37

(***\ 38

 when_demo.a4c 39

 by Vicente Rico-Ramirez 40

 Part of the Ascend Library 41

42

This file is part of the Ascend modeling library. 43

44

The Ascend modeling library is free software; you can redistribute 45

it and/or modify it under the terms of the GNU General Public License as 46

published by the Free Software Foundation; either version 2 of the 47

License, or (at your option) any later version. 48

49

The Ascend Language Interpreter is distributed in hope that it will be 50

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 51

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 52

General Public License for more details. 53

54

You should have received a copy of the GNU General Public License along with55

the program; if not, write to the Free Software Foundation, Inc., 675 56

Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 57

58

Use of this module is demonstrated by the associated script file 59

when_demo.a4s. 60

***) 61

62

(***\ 63

 $Date: 1998/05/14 21:39:44 $ 64

 $Revision: 1.5 $ 65

 $Author: rv2a $ 66

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/when_demo.a4c,v $67

***) 68

69

(* 70

This model is intended to demonstrate the degree of flexibility 71

that the use of conditional statements -when statement- provides 72

to the representation of superstructures. We hope that this 73

application will become clear by looking at the MODEL flowsheet, 74

in which the existence/nonexistence of some of the unit operations 75

is represented by when statements. A particular combination of 76

user defined boolean variables -see method values, configuration2, 77

configuration3- will a define a particular configuration of the 78

problem. 79

80
Last modified: June 20, 1998 10:33 pm

THE CODE 126
This model requires: 81

"system.a4l" 82

"atoms.a4l" 83

*) 84

85

(* *** *) 86

87

MODEL mixture; 88

89

components IS_A set OF symbol_constant; 90

Cpi[components] IS_A heat_capacity; 91

y[components] IS_A fraction; 92

P IS_A pressure; 93

T IS_A temperature; 94

Cp IS_A heat_capacity; 95

96

97

SUM[y[i] | i IN components] = 1.0; 98

Cp = SUM[Cpi[i] * y[i] | i IN components]; 99

100

 METHODS 101

102

METHOD default_self; 103

END default_self; 104

105

METHOD specify; 106

Cpi[components].fixed := TRUE; 107

P.fixed := TRUE; 108

T.fixed := TRUE; 109

y[components].fixed := TRUE; 110

y[CHOICE[components]].fixed := FALSE; 111

END specify; 112

113

END mixture; 114

115

116

(* *** *) 117

118

MODEL molar_stream; 119

state IS_A mixture; 120

Ftot,f[components] IS_A molar_rate; 121

components IS_A set OF symbol_constant; 122

P IS_A pressure; 123

T IS_A temperature; 124

Cp IS_A heat_capacity; 125

126
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

127 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
components, state.components ARE_THE_SAME; 127

P, state.P ARE_THE_SAME; 128

T, state.T ARE_THE_SAME; 129

Cp, state.Cp ARE_THE_SAME; 130

131

FOR i IN components CREATE 132

 f_def[i]: f[i] = Ftot*state.y[i]; 133

END FOR; 134

135

 METHODS 136

137

METHOD default_self; 138

END default_self; 139

140

METHOD specify; 141

RUN state.specify; 142

state.y[components].fixed := FALSE; 143

f[components].fixed := TRUE; 144

END specify; 145

146

END molar_stream; 147

148

(* *** *) 149

150

151

MODEL cheap_feed; 152

stream IS_A molar_stream; 153

cost_factor IS_A cost_per_mole; 154

cost IS_A cost_per_time; 155

156

stream.f['A'] = 0.060 {kg_mole/s}; 157

stream.f['B'] = 0.025 {kg_mole/s}; 158

stream.f['D'] = 0.015 {kg_mole/s}; 159

stream.f['C'] = 0.00 {kg_mole/s}; 160

stream.T = 300 {K}; 161

stream.P = 5 {bar}; 162

163

cost = cost_factor * stream.Ftot; 164

METHODS 165

166

METHOD default_self; 167

END default_self; 168

169

METHOD specify; 170

RUN stream.specify; 171

stream.f[stream.components].fixed := FALSE; 172
Last modified: June 20, 1998 10:33 pm

THE CODE 128
cost_factor.fixed := TRUE; 173

stream.T.fixed := FALSE; 174

stream.P.fixed := FALSE; 175

END specify; 176

177

END cheap_feed; 178

179

180

(* *** *) 181

182

MODEL expensive_feed; 183

stream IS_A molar_stream; 184

cost_factor IS_A cost_per_mole; 185

cost IS_A cost_per_time; 186

187

stream.f['A'] = 0.065 {kg_mole/s}; 188

stream.f['B'] = 0.030 {kg_mole/s}; 189

stream.f['D'] = 0.05 {kg_mole/s}; 190

stream.f['C'] = 0.00 {kg_mole/s}; 191

stream.T = 320 {K}; 192

stream.P = 6 {bar}; 193

194

cost = 3 * cost_factor * stream.Ftot; 195

196

METHODS 197

198

METHOD default_self; 199

END default_self; 200

201

METHOD specify; 202

RUN stream.specify; 203

stream.f[stream.components].fixed := FALSE; 204

cost_factor.fixed := TRUE; 205

stream.T.fixed := FALSE; 206

stream.P.fixed := FALSE; 207

 END specify; 208

209

END expensive_feed; 210

211

(* *** *) 212

213

214

MODEL heater; 215

input,output IS_A molar_stream; 216

heat_supplied IS_A energy_rate; 217

components IS_A set OF symbol_constant; 218
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

129 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
cost IS_A cost_per_time; 219

cost_factor IS_A cost_per_energy; 220

221

components,input.components,output.components ARE_THE_SAME; 222

FOR i IN components CREATE 223

 input.state.Cpi[i], output.state.Cpi[i] ARE_THE_SAME; 224

END FOR; 225

226

FOR i IN components CREATE 227

 input.f[i] = output.f[i]; 228

END FOR; 229

230

input.P = output.P; 231

232

heat_supplied = input.Cp *(output.T - input.T) * input.Ftot; 233

234

cost = cost_factor * heat_supplied; 235

236

METHODS 237

238

METHOD default_self; 239

END default_self; 240

241

 METHOD specify; 242

RUN input.specify; 243

cost_factor.fixed := TRUE; 244

heat_supplied.fixed := TRUE; 245

END specify; 246

247

 METHOD seqmod; 248

cost_factor.fixed := TRUE; 249

heat_supplied.fixed := TRUE; 250

 END seqmod; 251

252

END heater; 253

254

255

(* *** *) 256

257

MODEL cooler; 258

259

input,output IS_A molar_stream; 260

heat_removed IS_A energy_rate; 261

components IS_A set OF symbol_constant; 262

cost IS_A cost_per_time; 263

cost_factor IS_A cost_per_energy; 264
Last modified: June 20, 1998 10:33 pm

THE CODE 130
265

components,input.components,output.components ARE_THE_SAME; 266

FOR i IN components CREATE 267

 input.state.Cpi[i],output.state.Cpi[i] ARE_THE_SAME; 268

END FOR; 269

270

FOR i IN components CREATE 271

 input.f[i] = output.f[i]; 272

END FOR; 273

274

input.P = output.P; 275

heat_removed = input.Cp *(input.T - output.T) * input.Ftot; 276

cost = cost_factor * heat_removed; 277

278

METHODS 279

280

METHOD default_self; 281

END default_self; 282

283

 METHOD specify; 284

RUN input.specify; 285

cost_factor.fixed := TRUE; 286

heat_removed.fixed := TRUE; 287

 END specify; 288

289

 METHOD seqmod; 290

cost_factor.fixed := TRUE; 291

heat_removed.fixed := TRUE; 292

 END seqmod; 293

294

END cooler; 295

296

(* *** *) 297

298

MODEL single_compressor; (* Adiabatic Compression *) 299

300

input,output IS_A molar_stream; 301

components IS_A set OF symbol_constant; 302

work_supplied IS_A energy_rate; 303

pressure_rate IS_A factor; 304

R IS_A gas_constant; 305

cost IS_A cost_per_time; 306

cost_factor IS_A cost_per_energy; 307

308

components,input.components,output.components ARE_THE_SAME; 309

FOR i IN components CREATE 310
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

131 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
 input.state.Cpi[i],output.state.Cpi[i] ARE_THE_SAME; 311

END FOR; 312

313

FOR i IN components CREATE 314

 input.f[i] = output.f[i]; 315

END FOR; 316

317

pressure_rate = output.P / input.P; 318

319

output.T = input.T * (pressure_rate ^(R/input.Cp)); 320

321

work_supplied = input.Ftot * input.Cp * (output.T - input.T); 322

323

cost = cost_factor * work_supplied; 324

325

METHODS 326

327

METHOD default_self; 328

END default_self; 329

330

 METHOD specify; 331

RUN input.specify; 332

cost_factor.fixed := TRUE; 333

pressure_rate.fixed := TRUE; 334

 END specify; 335

336

 METHOD seqmod; 337

cost_factor.fixed := TRUE; 338

pressure_rate.fixed := TRUE; 339

 END seqmod; 340

341

END single_compressor; 342

343

(* *** *) 344

345

MODEL staged_compressor; 346

347

input,output IS_A molar_stream; 348

components IS_A set OF symbol_constant; 349

work_supplied IS_A energy_rate; 350

heat_removed IS_A energy_rate; 351

T_middle IS_A temperature; 352

n_stages IS_A factor; 353

pressure_rate IS_A factor; 354

stage_pressure_rate IS_A factor; 355

R IS_A gas_constant; 356
Last modified: June 20, 1998 10:33 pm

THE CODE 132
cost IS_A cost_per_time; 357

cost_factor_work IS_A cost_per_energy; 358

cost_factor_heat IS_A cost_per_energy; 359

360

components,input.components,output.components ARE_THE_SAME; 361

FOR i IN components CREATE 362

 input.state.Cpi[i],output.state.Cpi[i] ARE_THE_SAME; 363

END FOR; 364

365

FOR i IN components CREATE 366

 input.f[i] = output.f[i]; 367

END FOR; 368

369

output.T = input.T; 370

371

pressure_rate = output.P / input.P; 372

373

stage_pressure_rate =(pressure_rate)^(1.0/n_stages); 374

375

T_middle = input.T * (stage_pressure_rate ^(R/input.Cp)); 376

377

work_supplied = input.Ftot * n_stages * input.Cp * 378

(T_middle - input.T); 379

380

heat_removed = input.Ftot * (n_stages - 1.0) * 381

input.Cp * (T_middle - input.T); 382

383

cost = cost_factor_work * work_supplied + 384

 cost_factor_heat * heat_removed; 385

386

METHODS 387

388

METHOD default_self; 389

END default_self; 390

391

 METHOD specify; 392

RUN input.specify; 393

n_stages.fixed := TRUE; 394

cost_factor_heat.fixed := TRUE; 395

cost_factor_work.fixed := TRUE; 396

pressure_rate.fixed := TRUE; 397

 END specify; 398

399

 METHOD seqmod; 400

n_stages.fixed := TRUE; 401

cost_factor_heat.fixed := TRUE; 402
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

133 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
cost_factor_work.fixed := TRUE; 403

pressure_rate.fixed := TRUE; 404

 END seqmod; 405

406

END staged_compressor; 407

408

(* *** *) 409

410

MODEL mixer; 411

412

components IS_A set OF symbol_constant; 413

n_inputs IS_A integer_constant; 414

feed[1..n_inputs], out IS_A molar_stream; 415

To IS_A temperature; 416

417

components,feed[1..n_inputs].components, 418

out.components ARE_THE_SAME; 419

FOR i IN components CREATE 420

 feed[1..n_inputs].state.Cpi[i],out.state.Cpi[i] ARE_THE_SAME; 421

END FOR; 422

423

FOR i IN components CREATE 424

 cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 425

END FOR; 426

427

SUM[(feed[i].Cp *feed[i].Ftot * (feed[i].T - To))|i IN [1..n_inputs]]= 428

 out.Cp *out.Ftot * (out.T - To); 429

430

SUM[(feed[i].Ftot * feed[i].T / feed[i].P)|i IN [1..n_inputs]] = 431

 out.Ftot * out.T / out.P; 432

433

 METHODS 434

435

METHOD default_self; 436

END default_self; 437

438

METHOD specify; 439

To.fixed := TRUE; 440

RUN feed[1..n_inputs].specify; 441

END specify; 442

443

METHOD seqmod; 444

To.fixed := TRUE; 445

END seqmod; 446

447

END mixer; 448
Last modified: June 20, 1998 10:33 pm

THE CODE 134
449

(* *** *) 450

451

MODEL splitter; 452

453

components IS_A set OF symbol_constant; 454

n_outputs IS_A integer_constant; 455

feed, out[1..n_outputs] IS_A molar_stream; 456

split[1..n_outputs] IS_A fraction; 457

458

components, feed.components, 459

 out[1..n_outputs].components ARE_THE_SAME; 460

feed.state, 461

out[1..n_outputs].state ARE_THE_SAME; 462

463

FOR j IN [1..n_outputs] CREATE 464

out[j].Ftot = split[j]*feed.Ftot; 465

END FOR; 466

467

SUM[split[1..n_outputs]] = 1.0; 468

469

 METHODS 470

471

METHOD default_self; 472

END default_self; 473

474

METHOD specify; 475

RUN feed.specify; 476

split[1..n_outputs-1].fixed:=TRUE; 477

END specify; 478

479

METHOD seqmod; 480

split[1..n_outputs-1].fixed:=TRUE; 481

END seqmod; 482

483

END splitter; 484

485

486

(* *** *) 487

488

MODEL cheap_reactor; 489

components IS_A set OF symbol_constant; 490

input, output IS_A molar_stream; 491

low_turnover IS_A molar_rate; 492

stoich_coef[input.components] IS_A factor; 493

cost_factor IS_A cost_per_mole; 494
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

135 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
cost IS_A cost_per_time; 495

496

components,input.components, output.components ARE_THE_SAME; 497

FOR i IN components CREATE 498

 input.state.Cpi[i], output.state.Cpi[i] ARE_THE_SAME; 499

END FOR; 500

501

FOR i IN components CREATE 502

 output.f[i] = input.f[i] + stoich_coef[i]*low_turnover; 503

END FOR; 504

505

input.T = output.T; 506

(* ideal gas constant volume *) 507

input.Ftot * input.T / input.P = output.Ftot * output.T/output.P; 508

509

cost = cost_factor * low_turnover; 510

511

 METHODS 512

513

METHOD default_self; 514

END default_self; 515

516

METHOD specify; 517

RUN input.specify; 518

low_turnover.fixed:= TRUE; 519

stoich_coef[input.components].fixed:= TRUE; 520

cost_factor.fixed := TRUE; 521

END specify; 522

523

METHOD seqmod; 524

low_turnover.fixed:= TRUE; 525

stoich_coef[input.components].fixed:= TRUE; 526

cost_factor.fixed := TRUE; 527

END seqmod; 528

529

END cheap_reactor; 530

531

532

(* *** *) 533

534

MODEL expensive_reactor; 535

536

components IS_A set OF symbol_constant; 537

input, output IS_A molar_stream; 538

high_turnover IS_A molar_rate; 539

stoich_coef[input.components] IS_A factor; 540
Last modified: June 20, 1998 10:33 pm

THE CODE 136
cost_factor IS_A cost_per_mole; 541

cost IS_A cost_per_time; 542

543

components,input.components, output.components ARE_THE_SAME; 544

FOR i IN components CREATE 545

 input.state.Cpi[i], output.state.Cpi[i] ARE_THE_SAME; 546

END FOR; 547

548

FOR i IN components CREATE 549

 output.f[i] = input.f[i] + stoich_coef[i]*high_turnover; 550

END FOR; 551

552

input.T = output.T; 553

(* ideal gas constant volume *) 554

input.Ftot * input.T / input.P = output.Ftot * output.T/output.P; 555

556

cost = cost_factor * high_turnover; 557

558

 METHODS 559

560

METHOD default_self; 561

END default_self; 562

563

METHOD specify; 564

RUN input.specify; 565

high_turnover.fixed:= TRUE; 566

stoich_coef[input.components].fixed:= TRUE; 567

cost_factor.fixed := TRUE; 568

END specify; 569

570

METHOD seqmod; 571

high_turnover.fixed:= TRUE; 572

stoich_coef[input.components].fixed:= TRUE; 573

cost_factor.fixed := TRUE; 574

END seqmod; 575

576

END expensive_reactor; 577

578

(* *** *) 579

580

MODEL flash; 581

582

components IS_A set OF symbol_constant; 583

feed,vap,liq IS_A molar_stream; 584

alpha[feed.components] IS_A factor; 585

ave_alpha IS_A factor; 586
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

137 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

f

vap_to_feed_ratio IS_A fraction; 587

588

components,feed.components, 589

vap.components, 590

liq.components ARE_THE_SAME; 591

FOR i IN components CREATE 592

 feed.state.Cpi[i], 593

 vap.state.Cpi[i], 594

 liq.state.Cpi[i] ARE_THE_SAME; 595

END FOR; 596

597

vap_to_feed_ratio*feed.Ftot = vap.Ftot; 598

599

FOR i IN components CREATE 600

cmb[i]: feed.f[i] = vap.f[i] + liq.f[i]; 601

eq[i]: vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i]; 602

END FOR; 603

604

feed.T = vap.T; 605

feed.T = liq.T; 606

feed.P = vap.P; 607

feed.P = liq.P; 608

609

 METHODS 610

611

METHOD default_self; 612

END default_self; 613

614

METHOD specify; 615

RUN feed.specify; 616

alpha[feed.components].fixed:=TRUE; 617

vap_to_feed_ratio.fixed:= TRUE; 618

END specify; 619

620

METHOD seqmod; 621

alpha[feed.components].fixed:=TRUE; 622

vap_to_feed_ratio.fixed:= TRUE; 623

END seqmod; 624

625

END flash; 626

627

(* *** *) 628

629

Next, the modelflowsheet is presented. This model represents one o
the applications of theWHEN statement. Namely, selecting among
Last modified: June 20, 1998 10:33 pm

THE CODE 138

l

d, it
oes

ed

.

alternative configurations of the problem. Note that in each of the
WHEN statements we define the conditional existence of complete
ASCEND models. A specific combination for each of the conditiona
variables -boolean_vars in the example- will define a specific
configuration of the problem. Once a configuration has been selecte
will be kept until the user decides to change it. Note that the user d
not have to recompile the model to switch among alternative
configurations. The reconfiguration of the system can be done
automatically by simply changing the values of the conditional
variables. An obvious application of this would be the synthesis of
process networks. While running the scriptwhen_demo.a4s, note the
changes in the number of active equations, active variables and fix
variables for the different configurations. For example, the
configuration defined by one of the feeds, two single-stage
compressors and one of the reactors contains 169 active equations

(* *** *) 630

631

MODEL flowsheet; 632

633

(* units *) 634

635

f1 IS_A cheap_feed; 636

f2 IS_A expensive_feed; 637

638

c1 IS_A single_compressor; 639

s1 IS_A staged_compressor; 640

641

c2 IS_A single_compressor; 642

s2 IS_A staged_compressor; 643

644

r1 IS_A cheap_reactor; 645

r2 IS_A expensive_reactor; 646

647

co1,co2 IS_A cooler; 648

h1,h2,h3 IS_A heater; 649

fl1 IS_A flash; 650

sp1 IS_A splitter; 651

m1 IS_A mixer; 652

653

(* boolean variables *) 654

655

select_feed1 IS_A boolean_var; 656

select_single1 IS_A boolean_var; 657

select_cheapr1 IS_A boolean_var; 658

select_single2 IS_A boolean_var; 659
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

139 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
660

(* define sets *) 661

662

m1.n_inputs :==2; 663

sp1.n_outputs :== 2; 664

665

(* wire up flowsheet *) 666

667

f1.stream, f2.stream, c1.input, s1.input ARE_THE_SAME; 668

c1.output, s1.output, m1.feed[2] ARE_THE_SAME; 669

m1.out,co1.input ARE_THE_SAME; 670

co1.output, h1.input ARE_THE_SAME; 671

h1.output, r1.input, r2.input ARE_THE_SAME; 672

r1.output, r2.output,co2.input ARE_THE_SAME; 673

co2.output, fl1.feed ARE_THE_SAME; 674

fl1.liq, h2.input ARE_THE_SAME; 675

fl1.vap, sp1.feed ARE_THE_SAME; 676

sp1.out[1], h3.input ARE_THE_SAME; 677

sp1.out[2],c2.input, s2.input ARE_THE_SAME; 678

c2.output, s2.output,m1.feed[1] ARE_THE_SAME; 679

680

681

(* Conditional statements *) 682

683

WHEN (select_feed1) 684

 CASE TRUE: 685

USE f1; 686

 CASE FALSE: 687

USE f2; 688

END WHEN; 689

690

WHEN (select_single1) 691

 CASE TRUE: 692

USE c1; 693

 CASE FALSE: 694

USE s1; 695

END WHEN; 696

697

WHEN (select_cheapr1) 698

 CASE TRUE: 699

USE r1; 700

 CASE FALSE: 701

USE r2; 702

END WHEN; 703

704

WHEN (select_single2) 705
Last modified: June 20, 1998 10:33 pm

THE CODE 140
 CASE TRUE: 706

USE c2; 707

 CASE FALSE: 708

USE s2; 709

END WHEN; 710

711

712

 METHODS 713

714

METHOD default_self; 715

END default_self; 716

717

METHOD seqmod; 718

RUN c1.seqmod; 719

RUN c2.seqmod; 720

RUN s1.seqmod; 721

RUN s2.seqmod; 722

RUN co1.seqmod; 723

RUN co2.seqmod; 724

RUN h1.seqmod; 725

RUN h2.seqmod; 726

RUN h3.seqmod; 727

RUN r1.seqmod; 728

RUN r2.seqmod; 729

RUN fl1.seqmod; 730

RUN sp1.seqmod; 731

RUN m1.seqmod; 732

END seqmod; 733

734

METHOD specify; 735

RUN seqmod; 736

RUN f1.specify; 737

RUN f2.specify; 738

END specify; 739

740

END flowsheet; 741

742

(* *** *) 743

744

MODEL test_flowsheet REFINES flowsheet; 745

746

f1.stream.components :== ['A','B','C','D']; 747

748

 METHODS 749

750

METHOD default_self; 751
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

141 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
END default_self; 752

753

METHOD values; 754

755

 (* Initial Configuration *) 756

select_feed1 := TRUE; 757

select_single1 := TRUE; 758

select_cheapr1 := TRUE; 759

select_single2 := TRUE; 760

761

 (* Fixed Values *) 762

763

(* Physical Properties of Components *) 764

765

f1.stream.state.Cpi['A'] := 0.04 {BTU/mole/K}; 766

f1.stream.state.Cpi['B'] := 0.05 {BTU/mole/K}; 767

f1.stream.state.Cpi['C'] := 0.06 {BTU/mole/K}; 768

f1.stream.state.Cpi['D'] := 0.055 {BTU/mole/K}; 769

770

(* Feed 1 *) 771

f1.cost_factor := 0.026 {dollar/kg_mole}; 772

773

(* Feed 2 *) 774

f2.cost_factor := 0.033 {dollar/kg_mole}; 775

776

(* Cooler 1 *) 777

co1.cost_factor := 0.7e-06 {dollar/kJ}; 778

co1.heat_removed := 100 {BTU/s}; 779

780

(* Cooler 2 *) 781

co2.heat_removed := 150 {BTU/s}; 782

co2.cost_factor := 0.7e-06 {dollar/kJ}; 783

784

(* Heater 1 *) 785

h1.heat_supplied := 200 {BTU/s}; 786

h1.cost_factor := 8e-06 {dollar/kJ}; 787

788

(* Heater 2 *) 789

h2.heat_supplied := 180 {BTU/s}; 790

h2.cost_factor := 8e-06 {dollar/kJ}; 791

792

(* Heater 3 *) 793

h3.heat_supplied := 190 {BTU/s}; 794

h3.cost_factor := 8e-06 {dollar/kJ}; 795

796

(* Flash *) 797
Last modified: June 20, 1998 10:33 pm

THE CODE 142
fl1.alpha['A'] := 12.0; 798

fl1.alpha['B'] := 10.0; 799

fl1.alpha['C'] := 1.0; 800

fl1.alpha['D'] := 6.0; 801

fl1.vap_to_feed_ratio :=0.9; 802

803

(* Splitter *) 804

sp1.split[1] :=0.05; 805

806

(* Mixer *) 807

m1.To := 298 {K}; 808

809

(* Single Compressor 1 *) 810

c1.cost_factor := 8.33333e-06 {dollar/kJ}; 811

c1.pressure_rate := 2.5; 812

813

(* Single Compressor 2 *) 814

c2.cost_factor := 8.33333e-06 {dollar/kJ}; 815

c2.pressure_rate := 1.5; 816

817

(* Staged Compressor 1 *) 818

s1.cost_factor_work := 8.33333e-06 {dollar/kJ}; 819

s1.cost_factor_heat := 0.7e-06 {dollar/kJ}; 820

s1.pressure_rate := 2.5; 821

s1.n_stages := 2.0; 822

823

(* Staged Compressor 2 *) 824

s2.cost_factor_work := 8.33333e-06 {dollar/kJ}; 825

s2.cost_factor_heat := 0.7e-06 {dollar/kJ}; 826

s2.pressure_rate := 1.5; 827

s2.n_stages := 2.0; 828

829

(* Reactor 1 *) 830

r1.stoich_coef['A']:=-1; 831

r1.stoich_coef['B']:=-1; 832

r1.stoich_coef['C']:=1; 833

r1.stoich_coef['D']:=0; 834

r1.low_turnover := 0.0069 {kg_mole/s}; 835

836

(* Reactor 2 *) 837

r2.stoich_coef['A']:=-1; 838

r2.stoich_coef['B']:=-1; 839

r2.stoich_coef['C']:=1; 840

r2.stoich_coef['D']:=0; 841

r2.high_turnover := 0.00828 {kg_mole/s}; 842

843
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

143 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A
 (* Initial Guess *) 844

845

(* Flash *) 846

fl1.ave_alpha:= 5.0; 847

848

END values; 849

850

METHOD configuration2; 851

(* alternative configuration *) 852

select_feed1 := FALSE; 853

select_single1 := FALSE; 854

select_cheapr1 := FALSE; 855

select_single2 := FALSE; 856

END configuration2; 857

858

METHOD configuration3; 859

(* alternative configuration *) 860

select_feed1 := FALSE; 861

select_single1 := TRUE; 862

select_cheapr1 := TRUE; 863

select_single2 := FALSE; 864

END configuration3; 865

866

END test_flowsheet; 867

868

(* *** *) 869

870
Last modified: June 20, 1998 10:33 pm

THE PROBLEM DESCRIPTION 144

 file

ple

g it
D.

y

e
ies

into
 is

 A.

e
e B

ed,

 A
CHAPTER17 A SIMPLE CHEMICAL ENGINEERING

FLOWSHEETINGEXAMPLE

In this example we shall examine a model for a simple chemical
engineering process flowsheet. The code listed below exists in the
in the ASCEND examples subdirectory entitledsimple_fs.asc. Except
for some formatting changes to make it more presentable here, it is
exactly as it is in the library version. Thus you could run this exam
by loading this file and using it and its corresponding scriptsimple_fs.s.

17.1 THE PROBLEM DESCRIPTION

This model is of a simple chemical engineering flowsheet. Studyin
will help to see how one constructs more complex models in ASCEN
Models for more complex objects are typically built out of previousl
defined types each of which may itself be built of previously defined
parts, etc. A flowsheet could, for example, be built of units and
streams. A distillation column could itself be built out of trays and
interconnecting streams.

Lines 40 to 56 in the code below give a diagram of the flowsheet w
would like to model. This flowsheet is to convert species B into spec
C. B undergoes the reaction.

 B-->C

The available feed contains 5 mole percent of species A, a light
contaminant that acts as an inert in the reactor. We pass this feed
the reactor where only about 7% of B converts per pass. Species C
much less volatile than B which is itself somewhat less volatile than
Relative volatilities are 12, 10 and 1 respectively for A, B and C.
Species A will build up if we do not let it escape from the system. W
propose to do this by bleeding off a small portion (say 1 to 2%) of th
we recover and recycle back to the reactor.

The flowsheet contains a mixer where we mix the recycle with the fe
a reactor, a flash unit, and a stream splitter where we split off and
remove some of the recycled species B contaminated with species
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

145 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

e of
it to

e
this

l.

(*

s

Our goal is to determine the impact of the bleed on the performanc
this flowsheet. We would also like to see if we can run the flash un
get us fairly pure C as a bottom product from it.

The first type definitions we need for our simple flowsheet are for th
variables we would like to use in our model. The ones needed for
example are all in the file atoms.a4l. Thus we will need to load
atoms.a4l before we load the file containing the code for this mode

The following is the code for this model. We shall intersperse
comments on the code within it.

17.2 THE CODE

As the code is in our ASCEND models directory, it has header
information that we require of all such files included as one large
comment extending over several lines. Comments are in the form
comment *).

To assure that appropriate library files are loaded first, ASCEND ha
the REQUIRE statement, such as appears on line 61:

REQUIRE atoms.a4l

This statement causes the system to load the fileatoms.a4l before
continuing with the loading of this file.atoms.a4l in turn has a require
statement at its beginning to causesystem.a4l to be loaded before it is.

(***\ 1

 simple_fs.asc 2

 by Arthur W. Westerberg 3

 Part of the Ascend Library 4

5

This file is part of the Ascend modeling library. 6

7

Copyright (C) 1994 8

9

The Ascend modeling library is free software; you can redistribute 10

it and/or modify it under the terms of the GNU General Public License as 11

published by the Free Software Foundation; either version 2 of the 12

License, or (at your option) any later version. 13

14

The Ascend Language Interpreter is distributed in hope that it will be 15

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 16

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17
Last modified: June 20, 1998 10:33 pm

THE CODE 146
General Public License for more details. 18

19

You should have received a copy of the GNU General Public License along 20

with the program; if not, write to the Free Software Foundation, Inc., 21

675 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 22

23

Use of this module is demonstrated by the associated script file 24

simple_fs.s. 25

***) 26

27

(***\ 28

 $Date: 97/02/20 18:54:21 $ 29

 $Revision: 1.5 $ 30

 $Author: mthomas $ 31

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/examples/

simple_fs.asc,v $ 32

***) 33

(* 34

35

The following example illustrates equation based modeling using the 36

ASCEND system. The process is a simple recycle process. 37

38

39

40

 ------- 41

 | | 42

 ----------------------| split |----> purge 43

 | | | 44

 | ------- 45

 | ^ 46

 v | 47

 ----- --------- ------- 48

 | | | | | | 49

 ----->| mix |--->| reactor |--->| flash | 50

 | | | | | | 51

 ----- --------- ------- 52

 | 53

 | 54

 -----> C 55

56

This model requires: “system.a4l” 57

“atoms.a4l” 58

*) 59

60

REQUIRE atoms.a4l 61
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

147 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

e
s

nly
es

o
and
tion

 We
ach
le

ine
The first model we shall define is for defining a stream. In the
document entitled “Equation-based Process Modeling” we argue th
need to define a stream by maximizing the use of intensive variable
and the equations interrelating them. Our problem here requires o
the molar flows for the components as the problem definition provid
us with all the physical properties as constants. Nowhere for this
simple model do we seem to need temperatures, fugacities, etc. T
maximize the use of intensive variables, we will use mole fractions
total molar flow to characterize a stream. We must include the equa
that says the mole fractions add to unity. Our first model we call
mixture.

(* *** *) 62

63

MODEL mixture; 64

65

components IS_A set OF symbol_constant; 66

y[components] IS_A fraction; 67

68

SUM[y[i] | i IN components] = 1.0; 69

70

METHODS 71

METHOD clear; 72

y[components].fixed := FALSE; 73

END clear; 74

75

METHOD specify; 76

y[components].fixed := TRUE; 77

y[CHOICE[components]].fixed := FALSE; 78

END specify; 79

80

METHOD reset; 81

RUN clear; 82

RUN specify; 83

END reset; 84

85

END mixture; 86

87

Line 66 of the model for mixture defines a set of symbol constants.
will later include in this set one symbol constant giving a name for e
of the species in the problem (A, B and C). Line 67 defines one mo
fraction variable for each element in the set of components, while l
69 says these mole fractions must add to 1.0.
Last modified: June 20, 1998 10:33 pm

THE CODE 148

hich
lem

a

o a
tion

ng

 of
E,
es

n
xed

em is
 The
ack

art
We add a methods section to our model to handle the flag setting w
we shall need when making the problem well-posed -- i.e., as a prob
having an equal number of unknowns as equations. We first have
method called clear which resets all the “fixed” flags for all the
variables in this model to FALSE. This method puts the problem int
known state (all flags are FALSE). The second method is our selec
of variables that we wish to fix if we were to solve the equations
corresponding to a mixture model. There is only one equation amo
all the mole fraction variables so we set all but one of the flags to
TRUE. The CHOICE function picks arbitrariliy one of the members
the setcomponents. For that element, we reset the fixed flag to FALS
meaning that this one variable will be computed in terms of the valu
given to the others.

The reset method is useful as it runs first the clear method to put a
instance of a mixture model into a known state with respect to its fi
flags, followed by runing the specify method to set all but one of the
fixed flags to TRUE.

These methods are not needed to create our model. To include th
a matter of modeling style, a style we consider to be good practice.
investment into writing these methods now has always been paid b
in reducing the time we have needed to debug our final models.

The next model we write is for a stream, a model that will include a p
we callstate which is an instance of the type mixture.

(* *** *) 88

89

MODEL molar_stream; 90

91

components IS_A set OF symbol_constant; 92

state IS_A mixture; 93

Ftot,f[components] IS_A molar_rate; 94

95

components, state.components ARE_THE_SAME; 96

97

FOR i IN components CREATE 98

f_def[i]: f[i] = Ftot*state.y[i]; 99

END; 100

101

METHODS 102

103

METHOD clear; 104

RUN state.clear; 105

Ftot.fixed := FALSE; 106
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

149 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

 part

, we
We

e

r
 the
e
the
 to
d up
f[components].fixed:= FALSE; 107

END clear; 108

109

METHOD seqmod; 110

RUN state.specify; 111

state.y[components].fixed:= FALSE; 112

END seqmod; 113

114

METHOD specify; 115

RUN seqmod; 116

f[components].fixed:= TRUE; 117

END specify; 118

119

METHOD reset; 120

RUN clear; 121

RUN specify; 122

END reset; 123

124

METHOD scale; 125

FOR i IN components DO 126

f[i].nominal := f[i] + 0.1{mol/s}; 127

END; 128

Ftot.nominal := Ftot + 0.1{mol/s}; 129

END scale; 130

131

END molar_stream; 132

133

We define our stream over a set of components. We next include a
which is of type mixture and call itstate as mentioned above. We also
include a variable entitledFtot which will represent the total molar
flowrate for the stream. For convenience -- as they are not needed
also include the molar flows for each of the species in the stream.
realize that the components defined within the part calledstate and the
set of components we just defined for the stream should be the sam
set. We force the two sets to be the same set with the
ARE_THE_SAME operator.

We next write the equations that define the individual molar flows fo
the components in terms of their corresponding mole fractions and
total flowrate for the stream. Note, the equations that says the mol
fractions add to unity in the definition of the state forces the total of
individual flowrates to equal the total flowrate. Thus we do not need
include an equation that says the molar flowrates for the species ad
to the total molar flowrate for the stream.
Last modified: June 20, 1998 10:33 pm

THE CODE 150

 a

od is
r our
 of
his

will
The
 of

f the
et.
ies
 the
We again write the methods we need for handling flag setting. We
leave it to the reader to establish that the specify method produces
well-posed instance involving the same number of variables to be
computed as equations available to compute them. The scale meth
there as we may occasionally wish to rescale the nominal values fo
flows to reflect the values we are computing for them. Poor scaling
variables can lead to numerical difficulties for really large models. T
method is there to reduce the chance we will have poor scaling.

Note that the nominal values for the remaining variables -- the mole
fractions -- are unity. It does not need to be recomputed as unity is
almost always a good nominal value for each of them.

Our next model is for the first of our unit operations. Each of these
be built of streams and equations that characterize their behavior.
first models a mixer. It can have any number of feed streams, each
which is a molar stream. We require the component set for each o
feed streams and the output stream from the unit to be the same s
Finally we write a component material balance for each of the spec
in the problem, where we sum the flows in each of the feeds to give
flow in the output stream,out.

(* *** *) 134

135

MODEL mixer; 136

137

n_inputs IS_A integer_constant; 138

feed[1..n_inputs], out IS_A molar_stream; 139

140

feed[1..n_inputs].components, 141

out.components ARE_THE_SAME; 142

143

FOR i IN out.components CREATE 144

cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 145

END; 146

147

METHODS 148

149

METHOD clear; 150

RUN feed[1..n_inputs].clear; 151

RUN out.clear; 152

END clear; 153

154

METHOD seqmod; 155

END seqmod; 156

157
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

151 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

to
nd
,

o
e

at,
ell-
g

se for
y

ich

he
n as
 will
es/s
one
METHOD specify; 158

RUN seqmod; 159

RUN feed[1..n_inputs].specify; 160

END specify; 161

162

METHOD reset; 163

RUN clear; 164

RUN specify; 165

END reset; 166

167

METHOD scale; 168

RUN feed[1..n_inputs].scale; 169

RUN out.scale; 170

END scale; 171

172

END mixer; 173

TheMETHOD clear sets all the fixed flags for the parts of this model
false by running each of their clear methods (i.e., for all the feeds a
for the stream out). If this model had introduced any new variables
their fixed flags would have been set to FALSE here.

We will implement the method to make the model well posed into tw
parts:seqmod (stands for “sequential modular” which is the mindset w
use to get a unit well-posed) andspecify. The first we shall use within
any unit operation to fix exactly enough fixed flags for a unit such th
if we also make the feed streams to it well-posed, the unit will be w
posed. For a mixer unit, the output stream results simply from mixin
the input streams; there are no other variables to set other than tho
the feeds. Thus theseqmod method is empty. It is here for consistenc
with the other unit operation models we write next. TheMETHOD
specify makes this model well-posed by calling theseqmod method and
then thespecify method for each of the feed streams. No other flags
need be set to make the model well-posed.

METHOD reset simply runsclear followed byspecify. Running this
sequence of method will make the problem well-posed no matter wh
of the fixed flags for it are set to TRUE before runningreset. Finally,
flowrates can take virtually any value so we can include ascale method
to scale the flows based on their current values.

The next model is for a very simple ‘degree of conversion’ reactor. T
model defines a turnover rate which is the rate at which the reactio
written proceeds (e.g., in moles/s). For example, here our reaction
be B --> C. A turnover rate of 3.7 moles/s would mean that 3.7 mol
of B would convert to 3.7 moles/s of C. The vector stoich_coef has
Last modified: June 20, 1998 10:33 pm

THE CODE 152

e

e
ts
entry per component. Here there will be three components when w
test this model so the coefficients would be 0, -1, 1 for the reaction

0 A + (-1) B + (+1) C = 0.

Reactants have a negative coefficient, products a positive one. Th
material balance to compute the flow out for each of the componen
sums the amount coming in plus that created by the reaction.

(* *** *) 174

175

MODEL reactor; 176

177

feed, out IS_A molar_stream; 178

feed.components, out.components ARE_THE_SAME; 179

180

turnover IS_A molar_rate; 181

stoich_coef[feed.components]IS_Afactor; 182

183

FOR i IN feed.components CREATE 184

out.f[i] = feed.f[i] + stoich_coef[i]*turnover; 185

END; 186

187

METHODS 188

189

METHOD clear; 190

RUN feed.clear; 191

RUN out.clear; 192

turnover.fixed := FALSE; 193

stoich_coef[feed.components].fixed := FALSE; 194

END clear; 195

196

METHOD seqmod; 197

turnover.fixed := TRUE; 198

stoich_coef[feed.components].fixed := TRUE; 199

END seqmod; 200

201

METHOD specify; 202

RUN seqmod; 203

RUN feed.specify; 204

END specify; 205

206

METHOD reset; 207

RUN clear; 208

RUN specify; 209

END reset; 210
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

153 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

ir
ed

tput
f the

need
d,

ry
211

METHOD scale; 212

RUN feed.scale; 213

RUN out.scale; 214

turnover.nominal := turnover.nominal+0.0001 {kg_mole/s}; 215

END scale; 216

217

END reactor; 218

219

TheMETHOD clear first directs all the parts of the reactor to run the
clear methods. Then it sets the fixed flags for all variables introduc
in this model to FALSE.

Assume the feed to be known. We introduced one stoichiometric
coefficient for each component and a turnover rate. To make the ou
stream well-posed, we would need to compute the flows for each o
component flows leaving. That suggests the material balances we
wrote are all needed to compute these flows. We would, therefore,
to set one fixed flag to TRUE for each of the variables we introduce
which is what we do in theMETHOD seqmod. Now when we run
seqmod and then thespecify method for the feed, we will have made
this model well-posed, which is what we do in theMETHOD specify.

The flash model that follows is a constant relative volatility model. T
reasoning why the methods attached are as they are.

(* *** *) 220

221

MODEL flash; 222

223

feed,vap,liq IS_A molar_stream; 224

225

feed.components, 226

vap.components, 227

liq.components ARE_THE_SAME; 228

229

alpha[feed.components], 230

ave_alpha IS_A factor; 231

232

vap_to_feed_ratio IS_A fraction; 233

234

vap_to_feed_ratio*feed.Ftot = vap.Ftot; 235

236

FOR i IN feed.components CREATE 237

cmb[i]: feed.f[i] = vap.f[i] + liq.f[i]; 238
Last modified: June 20, 1998 10:33 pm

THE CODE 154

ke
 This
e
l

eq[i]: vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i]; 239

END; 240

241

METHODS 242

243

METHOD clear; 244

RUN feed.clear; 245

RUN vap.clear; 246

RUN liq.clear; 247

alpha[feed.components].fixed := FALSE; 248

ave_alpha.fixed := FALSE; 249

vap_to_feed_ratio.fixed := FALSE; 250

END clear; 251

252

METHOD seqmod; 253

alpha[feed.components].fixed := TRUE; 254

vap_to_feed_ratio.fixed := TRUE; 255

END seqmod; 256

257

METHOD specify; 258

RUN seqmod; 259

RUN feed.specify; 260

END specify; 261

262

METHOD reset; 263

RUN clear; 264

RUN specify; 265

END reset; 266

267

METHOD scale; 268

RUN feed.scale; 269

RUN vap.scale; 270

RUN liq.scale; 271

END scale; 272

273

END flash; 274

275

(* *** *) 276

277

The final unit operation model is the splitter. The trick here is to ma
all the states for all the output streams the same as that of the feed.
move makes the compositions all the same and introduces only on
equation to add those mole fractions to unity. The rest of the mode
should be evident.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

155 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-
MODEL splitter; 278

279

n_outputs IS_A integer_constant; 280

feed, out[1..n_outputs] IS_A molar_stream; 281

split[1..n_outputs] IS_A fraction; 282

283

feed.components, out[1..n_outputs].components ARE_THE_SAME; 284

285

feed.state, 286

out[1..n_outputs].state ARE_THE_SAME; 287

288

FOR j IN [1..n_outputs] CREATE 289

out[j].Ftot = split[j]*feed.Ftot; 290

END; 291

292

SUM[split[1..n_outputs]] = 1.0; 293

294

METHODS 295

296

METHOD clear; 297

RUN feed.clear; 298

RUN out[1..n_outputs].clear; 299

split[1..n_outputs-1].fixed:=FALSE; 300

END clear; 301

302

METHOD seqmod; 303

split[1..n_outputs-1].fixed:=TRUE; 304

END seqmod; 305

306

METHOD specify; 307

RUN seqmod; 308

RUN feed.specify; 309

END specify; 310

311

METHOD reset; 312

RUN clear; 313

RUN specify; 314

END reset; 315

316

METHOD scale; 317

RUN feed.scale; 318

RUN out[1..n_outputs].scale; 319

END scale; 320

321

END splitter; 322

323
Last modified: June 20, 1998 10:33 pm

THE CODE 156

ash
o

ng,
 to

duce
 We

t
ell-

e
e.
(* *** *) 324

325

Now we shall see the value of writing all those methods for our unit
operations (and for the models that we used in creating them). We
construct our flowsheet by saying it includes a mixer, a reactor, a fl
unit and a splitter. The mixer will have two inputs and the splitter tw
outputs. The next few statements configure our flowsheet by maki
for example, the output stream from the mixer and the feed stream
the reactor be the same stream.

The methods are as simple as they look. This model does not intro
any variables nor any equations that are not introduced by its parts.
simply ask the parts to clear their variable fixed flags.

To make the flowsheet well-posed, we ask each unit to set sufficien
fixed flags to TRUE to make itself well posed were its feed stream w
posed (now you can see why we wanted to create the methodsseqmod
for each of the unit types.) Then the only streams we need to mak
well-posed are the feeds to the flowsheet, of which there is only on
The remaining streams come out of a unit which we can think of
computing the flows for it.

MODEL flowsheet; 326

327

m1 IS_A mixer; 328

r1 IS_A reactor; 329

fl1 IS_A flash; 330

sp1 IS_A splitter; 331

332

(* define sets *) 333

334

m1.n_inputs :==2; 335

sp1.n_outputs :==2; 336

337

(* wire up flowsheet *) 338

339

m1.out, r1.feed ARE_THE_SAME; 340

r1.out, fl1.feed ARE_THE_SAME; 341

fl1.vap, sp1.feed ARE_THE_SAME; 342

sp1.out[2], m1.feed[2] ARE_THE_SAME; 343

344

 METHODS 345

346

METHOD clear; 347

RUN m1.clear; 348
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

157 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

or
.
e an
, we

.
ctor
RUN r1.clear; 349

RUN fl1.clear; 350

RUN sp1.clear; 351

END clear; 352

353

METHOD seqmod; 354

RUN m1.seqmod; 355

RUN r1.seqmod; 356

RUN fl1.seqmod; 357

RUN sp1.seqmod; 358

END seqmod; 359

360

METHOD specify; 361

RUN seqmod; 362

RUN m1.feed[1].specify; 363

END specify; 364

365

METHOD reset; 366

RUN clear; 367

RUN specify; 368

END reset; 369

370

METHOD scale; 371

RUN m1.scale; 372

RUN r1.scale; 373

RUN fl1.scale; 374

RUN sp1.scale; 375

END scale; 376

377

END flowsheet; 378

379

(* *** *) 380

381

We have created a flowsheet model above. If you look at the react
model, we require that you specify the turnover rate for the reaction
We may have no idea of a suitable turnover rate. What we may hav
idea about is the conversion of species B in the reactor; for example
may know that about 7% of the B entering the reactor may convert
How can we alter our model to allow for us to say this about the rea
and not be required to specify the turnover rate? In a sequential
modular flowsheeting system, we would use a “computational
controller.” We shall create a model here that gives us this same
functionality. Thus we call it a “controller.” There are many ways to
construct this model. We choose here to create a model that has a
flowsheet as a part of it. We introduce a variable conv which will
Last modified: June 20, 1998 10:33 pm

THE CODE 158

h

ded

 this

we
indicate the fraction conversion of any one of the components whic
we call the key_component here. For that component, we add a
material balance based on the fraction of it that will convert. We ad
one new variable and one new equation so, if the flowsheet is well-
posed, so will our controller be well-posed. However, we want to
specify the conversion rather that the turnover rate. Thespecify method
first asks the flowsheet fs to make itself well-posed. Then it makes
one trade: fixing conv and releasing the turnover rate.

MODEL controller; 382

383

fs IS_A flowsheet; 384

conv IS_A fraction; 385

key_components IS_A symbol_constant; 386

fs.r1.out.f[key_components] = (1 - conv)*fs.r1.feed.f[key_components]; 387

388

METHODS 389

390

METHOD clear; 391

RUN fs.clear; 392

conv.fixed:=FALSE; 393

END clear; 394

395

METHOD specify; 396

RUN fs.specify; 397

fs.r1.turnover.fixed:=FALSE; 398

conv.fixed:=TRUE; 399

END specify; 400

401

METHOD reset; 402

RUN clear; 403

RUN specify; 404

END reset; 405

406

METHOD scale; 407

RUN fs.scale; 408

END scale; 409

410

END controller; 411

412

(* *** *) 413

414

We now would like to test our models to see if they work. How can
write test for them? We can create test models as we do below.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

159 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

ous
e the
So

lso

ing
n

iven
and
d

bles
To test the flowsheet model, we create a test_flowsheet model that
refines our previously defined flowsheet model. “To refine the previ
model” means this model includes all the statements made to defin
flowsheet model plus those statements that we now provide here.
this model is a flowsheet but with it components specified to be ‘A’,
‘B’, and ‘C’. We add a new method calledvalues in which we specify
values for all the variables we intend to fix when we solve. We can a
provide values for other variables; these will be used as the initial
values for them when we start to solve. We see all the variables be
given values with the units specified. The units must be specified i
ASCEND. ASCEND will interpret the lack of units to mean the
variable is unitless. If it is not, then you will get a diagnostic from
ASCEND telling you that you have written a dimensionally
inconsistent relationship.

Note we specify the molar flows for the three species in the feed. G
these flows, the equations for the stream will compute the total flow
then the mole fractions for it. Thus the feed stream is fully specifie
with these flows.

We look at the seqmod method for each of the units to see the varia
to which we need to give values here.

MODEL test_flowsheet REFINES flowsheet; 415

416

m1.out.components:==[‘A’,’B’,’C’]; 417

418

 METHODS 419

420

METHOD values; 421

m1.feed[1].f[‘A’] := 0.005 {kg_mole/s}; 422

m1.feed[1].f[‘B’] := 0.095 {kg_mole/s}; 423

m1.feed[1].f[‘C’] := 0.0 {kg_mole/s}; 424

425

r1.stoich_coef[‘A’] := 0; 426

r1.stoich_coef[‘B’] := -1; 427

r1.stoich_coef[‘C’] := 1; 428

r1.turnover := 3 {kg_mole/s}; 429

430

fl1.alpha[‘A’] := 12.0; 431

fl1.alpha[‘B’] := 10.0; 432

fl1.alpha[‘C’] := 1.0; 433

fl1.vap_to_feed_ratio := 0.9; 434

fl1.ave_alpha := 5.0; 435

436

sp1.split[1] := 0.01; 437
Last modified: June 20, 1998 10:33 pm

THE CODE 160

ur
el is,

an

fs
 We
e for
438

fl1.liq.Ftot:=m1.feed[1].f[‘B’]; 439

END values; 440

441

END test_flowsheet; 442

443

(* *** *) 444

445

Finally we would like to test our controller model. Again we write o
test model as a refinement of the model to be tested. The test mod
therefore, a controller itself. We make our fs model inside our test
model into a test_flowsheet, making it a more refined type of part th
it was in the controller model. We can do this because the
test_controller model is a refinement of the flowsheet model which
was previously. A test_flowsheet is, as we said above, a flowsheet.
create a values method which first runs the values method we wrot
the test_flowsheet model and then adds a specification for the
conversion of B in the reactor.

MODEL test_controller REFINES controller; 446

447

fs IS_REFINED_TO test_flowsheet; 448

key_components :==‘B’; 449

450

METHODS 451

452

METHOD values; 453

RUN fs.values; 454

conv := 0.07; 455

END values; 456

457

END test_controller; 458

459

(* *** *) 460

461
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

161 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-
Last modified: June 20, 1998 10:33 pm

162

ion
mples

n

 all

ly to

y of

ns
CHAPTER18 THE ASCENDPREDEFINED

COLLECTION OF MODELS

The ASCEND system has a main directory of libraries and applicat
models: ascend4/models. One can examine and execute these exa
when learning how to model in ASCEND.

system.a4l The file calledsystem.a4l in the libraries must always be loaded first i
the ASCEND system. It is automatically loaded when one starts the
ASCEND system. However, thedelete all types command will delete
all type definitions including the ones in this file. If you have deleted
types, always reload this file first using theRead instruction in the
Library tool set.

atoms.a4l The simplest collection of previously defined types are those which
define the kinds of constants, parameters and variables we are like
use in constructing an engineering or scientific model. A file called
atoms.a4l located in the libraries subdirectory has over 125 types of
constants, parameters and variables. Following are three of the
definitions it contains.

CONSTANT critical_compressibility REFINES

 real_constant DIMENSIONLESS; 1

2

UNIVERSAL CONSTANT speed_of_light 3

REFINES real_constant :== 1{LIGHT_C}; 4

5

ATOM volume REFINES solver_var 6

DIMENSION L^3 7

DEFAULT 100.0{ft^3}; 8

lower_bound := 0.0{ft^3}; 9

upper_bound := 1e50{ft^3}; 10

nominal := 100.0{ft^3}; 11

END volume; 12

Note that the first and third include a statement of the dimensionalit
the item being defined. For example critical compressibility is
dimensionless while the dimensions for volume are L3 (i.e., length
cubed). The ASCEND system supports nine basic dimensions as
defined for the standards defining the SI system of units. Dimensio
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library_example_files.fm5

163 THE ASCENDPREDEFINED COLLECTION OF MODELS

 E
),
olid

ss
,

g

have

ng
can
long

st
le
er
s.
differ from units in thatlength is a dimension whilefeet is a set of units
one may use to express a length. Dimensions in ASCEND are L
(length: typical units being ft, m), M (mass: kg, lbm), T (time: s, yr),
(electric current: amp), Q (quantity: mole), TMP (temperature: K, R
LUM (luminous intensity: candela), P (plane angle: radian) and S (s
angle: steradian). We have also included the tenth dimension C
(currency: USdollar) so one can express cost. If you wish to expre
cost in a variety of different currencies (e.g., USdollars, UKpounds)
you will have to define the conversion rates.

(See the manual entitled The ASCEND IV language syntax and
semantics for more information on dimensionality and units.)

Typical use of
library files

One will typically create models in the ASCEND system by includin
one or more of the library files available. Almost certainly the file
atoms.a4l will become a part of any engineering or scientific model.

It would be useful for you to view this and a few of the other library
files using a text editor such as xemacs to see what libraries we do
available.

Examples and
scripts

The examples subdirectory in ASCEND has a number of complete
ASCEND models. Each model is in two parts: the .a4c file containi
the model definition and the .a4s file containing a script which one
use to execute the model. An example is the model simple_fs.a4c a
with its script simple_fs.a4s.

Each of the example files indicates which of the library files one mu
load and the order in which to load them before loading the examp
file. If you fail to load a library file, you will experience a large numb
of diagnostic messages indicating there are missing type definition
Last modified: June 20, 1998 10:33 pm

164

mple-
 Ep-

, Chad

hall
 of the
is
ge even
 item

 exact

s
nce,
CHAPTER 19THE ASCEND IV LANGUAGE

SYNTAX AND SEMANTICS

Benjamin Allan1

Arthur W. Westerberg1

Department of Chemical Engineering
and the Engineering Design Research Center /
Institute for Complex Engineered Systems

Carnegie Mellon University

1. The ASCEND language has evolved from the combined efforts of several generations of users and i
mentors. We wish to particularly acknowledge the contributions of ASCEND III implementors Kirk Abbott, Tom
perly, Peter Piela, Boyd Safrit, Karl Westerberg, and Joe Zaher, and of the ASCEND IV crew: Duncan Coffey
Farschman, Jennifer Perry, Vicente Rico-Ramirez, Mark Thomas and Ken Tyner.

We shall present an informal description of the ASCEND IV language. Being informal, we s
usually include examples and descriptions of the intended semantics along with the syntax
items. At times the inclusion of semantics will seem to anticipate later definitions. We do th
because we would also like this chapter to be used as a reference for the ASCEND langua
after one generally understands it. Often one will need to clarify a point about a particular
and will not wish to have to search in several places to do so.

Syntax is the form or structure for the statements in ASCEND, where one worries about the
words one uses, their ordering, the punctuation, etc.Semantics describe the meaning of a
statement.

To distinguish between syntax and semantics, consider the statement

y IS_A fraction;

Rules on the syntax for this statement tell us we need a user supplied instance name,y, followed
by the ASCEND operatorIS_A , followed by a type name (fraction). The statement terminate
with a semicolon. The statement semantics says we are declaring the existence of an insta
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

165 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 be

ently

n
 under

s

s
he
ther

) in

. It is
) is

ent

d

te is

ally

t

locally named y, of the type fraction as a part within the current model definition and it is to
constructed when an instance of the current model definition is constructed.

The syntax for a computer language is often defined by using a Bachus-Naur formal (BNF)
description. The complete YACC and FLEX description of the language described (as pres
implemented) is available by FTP2 and via the World Wide Web3. The semantics of a very high
level modeling language such as ASCEND IV are generally much more restrictive than the
syntax. For this reason we do not include a BNF description in this paper. ASCEND IV is a
experiment. The language is under constant scrutiny and improvement, so this document is
constant revision. Contact the authors for the latest version.

19.1 PRELIMINARIES

2. In the directory ftp.cs.cmu.edu:project/ascend/gnu-ascend/ see the file README.
3. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ascend/ftp/gnu-ascend/README

We will start off with some background information and some tip
that make the rest of the chapter easier to read. ASCEND is an
object-oriented (OO) language for hierarchical modeling that ha
been somewhat specialized for mathematical models. Most of t
specialization is in the implementation and the user interface ra
than the language definition.

We feel the single most distinguishing feature of mathematical
models is that solving them efficiently requires that the solving
algorithms be able to address the entire problem either
simultaneously or in a decomposition of the natural problem
structure that the algorithm determines is best for the machine(s
use. In the ASCEND language object-orientation is used to
organize natural structures and make them easier to understand
not used to hide the details of the objects. The user (or machine
free to ignore uninteresting details, and the ASCEND environm
provides tools for the runtime suppression of these.

ASCEND is well into its 4th generation. Some features we will
describe are not yet implemented (some merely speculative) an
these are clearly marked (* 4+ *). Any feature not marked (* 4+
*)has been completely implemented, and thus any mismatch
between the description given here and the software we distribu
a bug we want you to tell us about.

The syntax and semantics of ASCEND may seem at first a bit
unusual. However, do not be afraid to just try what comes natur
if what we write here is unclear. The parser and compiler of
ASCEND IV really will help you get things right. Of course if wha
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 166

 to
tem

s.

is
is an

 of

type
se,

ave
or
ents.

to

lp

d to

 in

e

we write here is unclear, please ask us about it because we aim
continuously improve both this document and the language sys
it describes.

We will describe, starting in Section 19.1.2, the higher level
concepts of ASCEND, but first some important punctuation rule

ASCEND is cAsE
sensitive!

The keywords that are shown capitalized (or in lower case) in th
chapter are that way because ASCEND is case sensitive. IS_A
ASCEND keyword; isa, Is_a, and all the other permutations you
can think of are NOT equivalent to IS_A. In declaring new types
models and variables the user is free to use any style of
capitalization he or she may prefer, however, they must remain
consistent or undefined types and instances will result.

This case restriction makes our code very readable, but hard to
without a smart editor. We have kept the case-sensitivity becau
like all mathematicians, we find ourselves running out of good
variable names if we are restricted to a 26 letter alphabet. We h
developed smart add-ins for two UNIX editors, EMACS and vi, f
handling the upper case keywords and some other syntax elem
The use of these editors is described in another chapter.

The ASCEND IV parser is very picky and pedantic. It also tries
give helpful messages and occasionally even suggestions. New
users should just dive in and make errors, letting the system he
them learn how to avoid errors.

19.1.1 PUNCTUATION

This section covers both the punctuation that must be understoo
read this document and the punctuation of ASCEND code.

keywords: ASCEND keywords and type names are given in the left column
bold format. It is generally clear from the main text which are
keywords and which are type names.

Minor items: Minor headings that are helpful in finding details are given in th
left column inunderline format.

Tips: Special notes and hints are sometimes placed on the left.

3: This indicates that what follows is specific to ASCEND IIIc and
may disappear in a future version of ASCEND IV. Generally
ASCEND IV will provide some equivalent functionality at 1/10th
of the ASCEND III price.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

167 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

II
a
ing

ay

gh z,
t it

s (.).

ers.

O

s or

}.

ce,
4 This indicates that what follows is specific to ASCEND IV
and may not be available in ASCEND IIIc. Generally ASCEND I
may provide some very klugey equivalent functionality, often at
very high price in terms of increased compilation time or debugg
difficulty.

4+ ASCEND IV functionality that is not fully implemented at the time
of this writing. The precise syntax of the final implementation m
vary slightly from what is presented here. A revision of this
document will be made at the time of implementation.

LHS: Left Hand Side. Abbreviation used frequently.

RHS: Right Hand Side. Abbreviation used frequently.

Simple Names: In ASCEND simple names are made of the characters a throu
A through Z, _, (*4+*: $). The underscore is used as a letter, bu
cannot be the first letter in a name. The “$” character is used
exclusively as the first character in the name of system defined
built-in parts. "$" is explained in more detail in Section 19.6.2.
Simple names should be no more than 80 characters long.

Compound names: Compound names are simple names strung together with dot
See the description of "." below.

Groupings:

« » In documentation optional fields are surrounded by these mark

(* *) Comment. *3* Anything inside these is a comment. Comments D
NOT nest in ASCEND IIIc. Comments may extend over many
lines. *4* Comments DO nest in ASCEND IV.

() Rounded parentheses. Used to enclose arguments for function
models where the order of the arguments matters. Also used to
group terms in complex arithmetic, logical, or set expressions
where the order of operations needs to be specified.

Efficiency tip: The compiler can simplify relation definitions in a particularly
efficient manner if constants are grouped together.

{ } Curly braces. Used to enclose units. For example, 1 {kg_mole/s
Also used to enclose the body of annotations.Note: Curly braces
are also used in TCL, the language of the ASCEND user interfa
about which we will say more in another chapter.
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 168

ject

es
y to

red

me

thod

o.)

n

nted
[] Square brackets. Used to enclose sets or elements of sets.
Examples: my_integer_set :== [1,2,3], demonstrates the use of
square brackets in the assignment of a set. My_array[1]
demonstrates the use of square brackets in naming an array ob
indexed over an integer set which includes the element 1.

. Dot. The dot is used, as in PASCAL and C, to construct the nam
of nested objects. Examples: if object a has a part b, then the wa
refer to b is as a.b. Tray[1].vle shows a dot following a square
bracket; here Tray[1] has a part named vle.

.. Dot-dot or double dot. Integer range shorthand. For example,
my_integer_set :== [1,2,3] and my_integer_set :== [1..3] are
equivalent. If .. appears in a context requiring (), such as the
ALIASES/IS_A statement, then the range is expanded and orde
as we would naturally expect.

: Colon. A separator used in various ways, principally to set the na
of an arithmetic relation apart from the definition.

:: Double colon. A separator used in the methods section for
accessing methods defined on types other than the type the me
is part of. Explained in Section 19.4.

; Semicolon. The separator of statements.

19.1.2 BASIC ELEMENTS

Boolean value TRUE or FALSE. Can’t get much simpler, eh? In the language
definition TRUE and FALSE do not map to 1 and 0 or any other
type of numeric value. (In the implementation, of course, they d

User interface tip: The ASCEND user interface programmers have found it very
convenient, however, to allow T/F, 1/0, Y/N, and other obvious
boolean conventions as interactive input when assigning boolea
values. We are lazy users.

Integer value A signed whole number up to the maximum that can be represe
by the computer on which one is running ASCEND.
MAX_INTEGER is machine dependent. Examples are:

123

-5

MAX_INTEGER, typically 2147483647.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

169 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

issa
t

uter

KS

f

.

y.
.
. A

e

Real value ASCEND represents reals almost exactly as any other
mathematically oriented programming language does. The mant
has an optional negative sign followed by a string of digits and a
most one decimal point. The exponent is the lettere or E followed
by an integer. The number must not exceed the largest the comp
is able to handle. There can be no blank characters in a real.
MAX_REAL is machine dependent. The following are legitimate
reals in ASCEND:

-1

1.2

1.3e-2

7.888888e+34

.6E21

MAX_REAL, typically about 1.79E+308.

while the following are not:

1. 2 (*contains a blank within it*)

1.3e2.0 (*exponent has a decimal in it*)

+1.3 (* illegal unary + sign. x = +1.3 not allowed*)

Reals stored in SI units We store all real values as double precision numbers in the M
system of units. This eliminates many common errors in the
modeling of physical systems. Since we also place the burden o
scaling equations on system routines and a simple modeling
methodology, the internal units are not of concern to most users

Dimensionality: Real values have dimensionality such as length/time for velocit
Dimensionality is to be distinguished from the units such as ft/s
ASCEND takes care of mapping between units and dimensions
value without units (this includes integer values) is taken to be
dimensionless. Dimensionality is built up from the following bas
dimensions:

Name definition typical units

L length meter, m

M mass kilogram, kg

T time second, s

E electric current ampere, A

Q quantity mole, mole
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 170

 of

ith

use
ed.

its
r

s,

t

s.
roup
 by

ote
nts
TMP temperature Kelvin, K

LUM luminous intensity candela, cd

P plane angle radian, rad

S solid angle steradian, srad

C currency currency, CR

The atom and constant definitions in the library illustrate the use
dimensionality.

Dimensions may be any combination of these symbols along w
rounded parentheses, (), and the operators *, ^ and /. Examples
includeM/T or M*L^2/T^2/TMP {this latter means
(M*(L^2)/(T^2))/TMP }. The second operand for the “to the
power” operator, ^, must be an integer value (e.g., -2 or 3) beca
fractional powers of dimensional numbers are physically undefin

If the dimensionality for a real value is undefined, then ASCEND
gives it a wild card dimensionality. If ASCEND can later deduce
dimensionality from its use in a model definition it will do so. Fo
example consider the real variablea, supposea has wild card
dimensionality,b has dimensionality ofL/T. Then the statement:

Example of a
dimensionally consistent
equation.

a + b = 3 {ft/s};

requires thata have the same dimensionality as the other two term
namely,L/T. ASCEND will assign this dimensionality toa. The
user will be warned of dimensionally inconsistent equations.

Unit expression A unit expression may be composed of any combination of uni
names defined by the system and any numerical constants
combined with times (*), divide(/) and “to the power” (^) operator
The RHS of ^ must be an integer. Parentheses can be used to g
subexpressions EXCEPT a divide operator may not be followed
a grouped subexpression.

So, {kg/m/s} is fine, but {kg/(m*s)} is not. Although the two
expressions are mathematically equivalent, it makes the system
programming and output formatting easier to code and faster to
execute if we disallow expressions of the latter sort.

The units understood by the system are defined in Chapter 20. N
that several “units” defined are really values of interesting consta
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

171 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.

eal
st

tent

/s}

or;

 a

D:

g

in SI, e.g. R :== 1{GAS_C} yields the correct value of the
thermodynamic gas constant. Users can define additional units

Units A unit expression must be enclosed in curly braces {}. When a r
number is used in a mathematical expression in ASCEND, it mu
have a set of units expressed with it. If it does not, ASCEND
assumes the number is dimensionless, which may not be the in
of the modeler. An example is shown in the dimensionally
consistent equation above where the number 3 has the units {ft
associated with it.

Examples:

{kg_mole/s/m} same as {(kg_mole/s)/m}

{m^3/yr}

{3/100*ft} same as {0.03*ft}

{s^-1} same as {1/s}

Illegal unit examples are

{m/(K*kg_mole)} grouped subexpression used in the denominat
should be written{m/K/kg_mole} .

{m^3.5} power of units or dimensions must be integer.

Symbol Value The format for a symbol is that of an arbitrary character string
enclosed between two single quotes. There is no way to embed
single quote in a symbol: we are not in the escape sequence
business at this time. The following are legal symbols in ASCEN

’H2O'

’r1'

’Bill said,”foo” to whom?’

while the following are not legal symbol values:

"ethanol" (double quotes not allowed)

water (no single quotes given)

’i can’t do this’ (no embedded quotes)

There is an arbitrary upper limit to the number of characters in a
symbol (something like 10,000) so that we may detect a missin
close quote in a bad input file without crashing.
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 172

all of
e

1, 2,
ust
es.
ted

1) if
.
ents

 no

 the
 and
 as

 of a

eak,
e

her
Sets values Set values are lists of elements, all of type integer_constant or
type symbol_constant, enclosed between square brackets []. Th
following are examples of sets:

['methane', 'ethane', 'propane']

[1..5, 7, 15]

[2..n_stages]

[1, 4, 2, 1, 16]

[]

We will say more about
sets in 19.2.2.

The value range 1..5 is an allowable shorthand for the integers
3, 4 and 5 while the value range 2..n_stages (where n_stages m
be of type integer_constant) means all integers from 2 to n_stag
If n_stages is less than 2, then the third set is empty. The repea
occurrence of 1 in the fourth set is ignored. The fifth set is the
empty set.

We use the termset in an almost pure mathematical sense. The
elements have no order. One can only ask two things of a set: (
an element is a member of it and (2) its cardinality (CARD(set))
Repeated elements used in defining a set are ignored. The elem
of setscannot themselves be sets in ASCEND; i.e., there can be
sets of set.

Sets are unordered. A set of integers may appear to be ordered to the modeler as
natural numbers have an order. However, it is the user imposing
using the ordering, not ASCEND. ASCEND sees these integers
elements in the set with NO ordering. Therefore, there are no
operators in ASCEND such as successor or precursor member
set.

Arrays An array is a list of instances indexed over a set, in computer-sp
an associative array of objects. The instances are all of the sam
base type (as that is the only way they can be defined). An
individual member of a list may later be more refined than the ot
members (we shall illustrate that possibility). The following are
arrays in ASCEND.

stage[1..n_stages]

y[components]

column[areas][processes]

wherecomponents, areas andprocesses are sets. For
examplecomponents could be the set of symbols
['ethylene','propylene'], areas the set of symbols
['feed_prep','prod_purification'] while
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

173 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ly

ut,
re
 that

are
tter

ets
processes could be the set['alcohol_manuf',
'poly_propropylene_manuf'] . Note that the third example
(column) is a list of lists (the way that ASCEND permits a multip
subscripted array).

The following are elements in the above arrays:

stage[1]

y['ethylene']

column['feed_prep'][alcohol_manuf']

provided that n_stages is 1 or larger.

There can be any number of subscripts for an array. We point o
however, that in virtually every application of arrays requiring mo
than two subscripts, there is usually a some underlying concept
is much better modeled as an object than as part of a deeply
subscripted array. In the following jagged array example, there
really the concepts of unit operation and stream that would be be
understood if made explicit.

Arrays can be jagged (* 4 *) Arrays can be ’sparse’ or jagged. For example:

process[1..3] IS_A set OF integer;

process[1] :== [2];

process[2] :== [7,5,3];

process[3] :== [4,6];

FOR i in [1..3] CREATE

FOR j IN process[i] CREATE

flow[i][j] IS_A mass;

END FOR;

END FOR;

process is an array of sets (not to be confused with a set of s
which ASCEND does not have) andflow is an array with six
elements spread over three rows:

flow[1][2]

flow[2][7], flow[2][3], flow[2][5]

flow[3][4], flow[3][6]

Sparse arrays of models and variables are new to ASCEND IV.

Arrays are also instances Each array is itself an object. That is, when you write
"a[1..2]IS_A real;" three objects get created:a[1] ,
a[2] , anda. a is anarray instance which has parts named [1]
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 174

 not
C,

b
nly

s are

dex

ent:

e

 the

h
ssary
 or

 is:

ment
and [2] that arereal instances. When a parameterized model
requires an array, you pass it the single itema, not the elements
a[1..2] .

Not contiguous storage Just in case you still have not caught on, ASCEND arrays are
blocks of memory such as are seen in low-level languages like
FORTRAN, and Matlab. Themodeling language does not provide
things like MatMult, Transpose, and Inverse because these are
procedural solving tools. If you are dedicated, you could write
METHODs that implement matrix algebra, but this is a really dum
idea. We aim to structure our software so that it can interact ope
with separate, dedicated tools (such as Matlab) when those tool
needed.

Index variable One can introduce a variable as an index ranging over a set. In
variables are local to the statements in which they occur. An
example of using an index variable is the following FOR statem

FOR i IN components CREATE

VLE_equil[i]: y[i] = K[i]*x[i];

END FOR;

In this examplei implicitly is of the same type as the values in th
setcomponents. If another objecti exists in the model
containing the FOR loop, it is ignored while executing the
statements in that loop. This may cause unexpected results and
compiler will generate warnings about loop index shadowed
variables.

Label: One can label statements which define arithmetic relationships
(objective functions, equalities, and inequalities) in ASCEND.
Labeling is highly recommended because it makes models muc
more readable and more easily debugged. Labels are also nece
for relations which are going to be used in conditional modeling
differentiation functions. A label is a sequence of alphanumeric
characters ending in a colon. An example of a labeled equation

mass_balance: m_in = m_out;

An example of a labeled objective function is:

obj1: MAXIMIZE revenue - cost;

If a relation is defined within a FOR statement, it must have an
array indexed label so that each instance created using the state
is distinguishable from the others. An example is:
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

175 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

y

erits

e

ion.

mes

 ().

ND
at

en the

t an
FOR i IN components CREATE

equil[i]: y[i] = K[i]*x[i];

END FOR;

The ASCEND interactive user interface identifies relationships b
their labels. If one has not provided such a label, the system
generates the label:

modelname_equationnumber

wheremodelname andequationnumber are the name of the model
and the equation number in the model. An example is

mixture_14

for the unlabeled 14th relation in the mixture definition. If there is a
conflict caused with an existing name, the generated name has
enough letters added afterequationnumber to make it a unique
name. Remember that each model in a refinement hierarchy inh
the equations of its less refined ancestors, so the first equation
appearing in the source code of a refining model may actually b
the nth relation in that model.

Lists Often in a statement one can include a list of names or express
A name list is one or more names where multiple list entries are
separated from each other by commas. Examples of a list of na
are:

T1, inlet_T, outlet_T

y[components], y_in

stage[1..n_stages]

Ordered lists: If the ordering of names in a list matters, that list is enclosed in
Order matters in: calling externally defined methods or models,
calling most real-valued functions, passing parameters to ASCE
models or methods, and declaring the controlling parameters th
SELECT, SWITCH, and WHEN statements make decisions on.

19.1.3 BASIC CONCEPTS

Instances and types This is an opportune time to emphasize the distinction betwe
termsinstance andtype. A type in ASCEND is what we define
when we declare an ASCEND model or atom. It is the formal
definition of the attributes (parts) and attribute default values tha
Last modified: June 20, 1998 10:32 pm

PRELIMINARIES 176

ich
ive a
n
d

pe

le
.

ght
n an

l
t be
object will have if it is created using the type definition. Methods
are associated with types.

In ASCEND there are two meanings (closely related) of an
instance.

• An instance is anamed partthat exists within a type
definition.

• An instance is a compiled object.

If one is in the context of the ASCEND interface, the system
compiles an instance of a model type to create an object with wh
one carries out computations. The system requires the user to g
simple name for this simulation instance. This name given is the
the first part of the qualified name for all the parts of the compile
object.

Implicit types It is possible to create an instance that does not have a
corresponding type definition in the library. The type of such an
instance is said to beimplicit. (Some people use the word
anonymous. However, no computable type is anonymous and the
implicit type of an instance is theoretically computable). The
simplest example of an implicit type is the type of an instance
compiled from the built-in definitioninteger_constant . For
example:

i, j IS_A integer_constant;

i:== 2;

j:== 3;

Instances i and j, though of the same formal type, are implicit ty
incompatible because they have been assigned distinct values.

Instances which are either formally or implicitly type incompatib
cannot be merged. This will be discussed further in Section 19.3

Parsing Most errors in the declaration of an ASCEND model can be cau
at parse time because the object type of any well-formed name i
ASCEND definition can be resolved or proved ambiguous. We
cannot prove at parse time whether a specific array element wil
exist, but we can know that should such an element exist, it mus
of the type with which the array is defined.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

177 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

:

rns

ot

se
n

ing

ign
 an

re
. The
nts,

 the
Other
Ambiguity is warned about loudly because it is caused by either
misspelling or poor modeling style. The simplest example of
ambiguity follows.

Assume a type,stream , and a refinement ofstream ,
heat_stream , which adds the new variable H. Now, if we write

MODEL mixer;

input[1..2] IS_A stream;

output IS_A heat_stream;

input[1].H + input[2].H = output.H;

END mixer;

We see the parser can find the definition ofH in the type
heat_stream , sooutput.H is well defined. The author of the
mixer model may intend to refine input[1] and input[2] to be
objects of different types, saysteam_stream and
electric_stream , where each defines anH suitable for use in
the equation. The parser cannot read the author’s mind, so it wa
that input[1].H and input[2].H are ambiguous in the mixer
definition. The mixer model is not highly reusable except by the
author, but sometimes reusability is not a high priority objective.
The mixer definition is allowed, but it may cause problems in
instantiation if the author has forgotten the assumption that is n
explicitly stated in the model and neglects to refine the input
streams appropriately.

Instantiation Creating an simulation based on a type definition is a multi-pha
process called compiling (or instantiation). When an instantiatio
cannot be completed because some structural parameter (a
symbol_constant, real_constant, boolean_constant,
integer_constant, or set) does not have a value there will be
PENDING statements. The user interface will warn that someth
is incomplete.

In phase 1 all statements that create instance structures or ass
constant values are executed. This phase theoretically requires
infinite number of passes through the structural statements of a
definition. We allow a maximum of 5 and have never needed mo
than 3. There may be pending statements at the end of phase 1
compiler or interface will issue warnings about pending stateme
starting with warnings about unassigned constants.

Phase 2 compiles as many real arithmetic relation definitions as
possible. Some relations may be impossible to compile because
constants or sets they depend on do not have values assigned.
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 178

hat

 as
 the

Other
etic

s
 to
y

e

n.

ned

ing

el
e

 as
tom
relations may be impossible because they reference variables t
do not exist. This is determined in a single pass.

Phase 3 compiles as many logical arithmetic relation definitions
possible. Some relations may be impossible to compile because
constants or sets they depend on do not have values assigned.
relations may be impossible because they reference real arithm
relations that do not exist. This is determined in a single pass.

Phase 4 compiles as many conditional programming statement
(WHENs) as possible. Some WHEN relations may be impossible
compile because the discrete variables, models, or relations the
depend on do not exist. This is determined in a single pass.

Phase 5 executes the variable defaulting statements made in th
declarative section of each model IF AND ONLY IF there are no
pending statements from phases 1-4 anywhere in the simulatio

default_self After all phases are done, the methoddefault_self is called in the
top-most model of the simulation, if this method exists.

The first occurrence of each impossible statement will be explai
during a failed compilation. Impossible statements include:

• Relations containing undefinable variables (often
misspellings).

• Assignments that are dimensionally inconsistent or contain
mismatched types.

• Structure building or modifying statements that refer to mod
parts which cannot exist or that require a type-incompatibl
argument, refinement, or merge.

19.2 DATA TYPE DECLARATIONS

In the spectrum of OO languages, ASCEND is best considered
being class-based, though it is rather more a hybrid. We have a
and model definitions, calledtypes, and the compiled objects
themselves, calledinstances. ASCEND instances have a record of
what type they were constructed from.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

179 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

of
l

e
.

n

Type qualifiers:

UNIVERSAL Universal is an optional modifier of all ATOM, CONSTANT. and
MODEL definitions. If UNIVERSAL precedes the definition, then
ALL instances of that type will actually refer to the first instance
the type that is created. This saves memory and ensures globa
consistency of data.

Examples of universal type definitions are

UNIVERSAL MODEL methane REFINES

generic_component_model;

UNIVERSAL CONSTANT circle_constant REFINES

real_constant :== 1{PI};

UNIVERSAL ATOM counter_1 REFINES integer;

Tip: Don’t use
UNIVERSAL variables in
relations.

It is important to note that, because variables must store
information about which relations they occur in, it is a very bad
idea to use UNIVERSAL typed variables in relations. The
construction and maintenance of the relation list becomes very
expensive for universal variables. UNIVERSAL constants are fin
to use, though, because there are no relation links for constants

19.2.1 MODELS

MODEL An ASCEND model has a declarative part and an optional
procedural part headed by the METHODS word. Models are
essentially containers for variables and relations. We will explai
the various statements that can be made within models in
Section 19.3 and Section 19.4.

Simple models:

foo MODEL foo;

(* statements about foo go here*)

METHODS

(* METHODs for foo go here*)

END foo;

bar MODEL bar REFINES foo;

(*additional statements about foo *)

METHODS

(* additional METHODs for bar *)
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 180

d and

s,
nts
e

ld

ys,

ne

.

END bar;

Parameterized Models (* 4 *) Parameterizing models makes them easier to understan
faster for the system to compile. The syntax for a parameterized
model vaguely resembles a function call in imperative language
but it is NOT. When constructing a reusable model, all the consta
that determine the sizes of arrays and other structures should b
declared in the parameter list so that

• the user knows what is required to reuse the model.

• the compiler knows what values must be set before it shou
bother attempting to compile the model.

There is no reason that other items could not also go in the
parameter list, such as key variables which might be considered
inputs or outputs or control parameters in the mathematical
application of the model. A simple example of parameterization
would be:

column(n,s) MODEL column(

ntrays WILL_BE integer_constant;

components IS_A set of symbol_constant;

);

stage[1..ntrays] IS_A simple_tray;

END column;

flowsheet MODEL flowsheet;

tower4size IS_A integer_constant;

tower4size :== 22;

ct IS_A column(tower4size,[’c5’,’c6’]);

(* additional flowsheet statements *)

END flowsheet;

In this example, the column model takes the first argument, ntra
by reference. That is,ct.ntrays is an alias for the flowsheet
instancetower4size . tower4size must be compiled and
assigned a value before we will attempt to compile the column
model instance ct. The second argument is taken by value,
[’c5’,’c6’], and assigned tocomponents , a column part
that was declared with IS_A in the parameter list. There is only o
name for this set, ct.components . Note that in the flowsheet
model there is no part that is a set ofsymbol_constant .

The use of parameters in ASCEND modeling requires some
thought, and we will present that set of thoughts in Section 19.5
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

181 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ntil

d
ase

he

, so a

ther
made

ned

des
the
 the

h

Beginners may wish to create new models without parameters u
they are comfortable using the existing parameterized library
definitions. Parameters are intended to support model reuse an
efficient compilation which are not issues in the very earliest ph
of developing novel models.

19.2.2 SETS

Arrays in ASCEND, as already discussed in Section 19.1.2, are
defined over sets. A set is simply an instance with a set value. T
elements of sets are NOT instances or sets.

Set Declaration: A set is made of either symbol_constants or integer_constants
set object is declared in one of two ways:

my_integer_set IS_A set OF integer_constant;

or

my_symbol_set IS_A set OF symbol_constant;

:== A set is assigned a value like so:

my_integer_set :== [1,4];

The RHS of such an assignment must be either the name of ano
set instance or an expression enclosed in square brackets and
up of only set operators, other sets, and the names of
integer_constants or symbol_constants. Sets can only be assig
once.

Set Operations

UNION[setlist] A function taken over a list of sets. The result is the set that inclu
all the members of all the sets in the list. Note that the result of
UNION operation is an unordered set and the argument order to
union function does not matter. The syntax is:

+ UNION[list_of_sets]

A+B is shorthand for
UNION[A,B]

Consider the following sets for the examples to follow.

A := [1, 2, 3, 5, 9];

B := [2, 4, 6, 8];

Then UNION[A, B] is equal to the set [1, 2, 3, 4, 5, 6, 8, 9] whic
equals [1..6, 8, 9] which equals [[1..9] - [7]].
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 182

t less
ntax

he

r of

 set
et

st be

 do

 the

odel
INTERSECTION[] INTERSECTION[list of set expressions]. Finds the intersection
(and) of the sets listed.

* Equivalent to INTERSECTION[list_of_sets].

A*B is shorthand for
INTERSECTION[A,B]

For the sets A and B defined just above,INTERSECTION[A, B]
is the set [2] . The * shorthand for intersection is NOT
recommended for use except in libraries no one will look at.

Set difference: One can subtract one set from another. The result is the first se
any members in the set union of the first and second set. The sy
is

- first_set - second_set

For the sets A and B defined above, the set difference A - B is t
set [1, 3, 5, 9] while the set difference B - A is the set[4, 6, 8] .

CARD[set] Cardinality. Returns an integer constant value that is the numbe
items in the set.

CHOICE[set] Choose one. The result of running the CHOICE function over a
is an arbitrary (but consistent: for any set instance you always g
the same result) single element of that set.

RunningCHOICE[A] gives any member from the set A. The
result is a member, not a set. To make the result into a set, it mu
enclosed in square brackets. Thus[CHOICE[A]] is a set with a
single element arbitrarily chosen from the set A. Good modelers
not leave modeling decisions to the compiler; they do not use
CHOICE[]. We are stuck with it for historical reasons.

To reduce a set by one element, one can use the following

A_less_one IS_A set OF integer;

A_less_one :== A - [CHOICE[A]];

IN lhs IN rhs can only be well explained by examples. IN is used in
index expressions. If lhs is a simple and not previously defined
name, it is created as a temporary loop index which will take on
values of the rhs set definition. If lhs is something that already
exists, the result of lhs IN rhs is a boolean value; stare at the m
set_example below which demonstrates both IN and
SUCH_THAT. If you still are not satisfied, you might examine
[[westerbergksets]].
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

183 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 to
e

nts in
et of
 in

or
he
SUCH_THAT (* 4 *) Set expressions can be rather clever. We will give a detailed
example from chemistry because unordered sets are unfamiliar
most people and set arithmetic is quite powerful. In this exampl
we see arrays of sets and sparse arrays.

MODEL set_example;

(* we define a sparse matrix of reaction coefficient information

* and the species balance equations. *)

rxns IS_A set OF integer_constant;

rxns :== [1..3];

species IS_A set OF symbol_constant;

species :== ['A','B','C','D'];

reactants[rxns] IS_A set OF symbol_constant; (* species in each rxn_j *)

reactants[1] :== ['A','B','C'];

reactants[2] :== ['A','C'];

reactants[3] :== ['A','B','D'];

reactions[species] IS_A set OF integer_constant;

FOR i IN species CREATE (* rxns for each species i *)

reactions[i] :== [j IN rxns SUCH_THAT i IN reactants[j]];

END FOR;

(* Define sparse stoichiometric matrix. Values of eta_ij set later.*)

FOR j IN rxns CREATE

FOR i IN reactants[j] CREATE

(* eta_ij --> mole i/mole rxn j*)

eta[i][j] IS_A real_constant;

END FOR;

END FOR;

production[species] IS_A molar_rate;

rate[rxns] IS_A molar_rate; (* mole rxn j/time *)

FOR i IN species CREATE

gen_eqn[i]: production[i] =

SUM[eta[i][j]*rate[j] | j IN reactions[i]];

END FOR;

END set_example;

"|" is shorthand for
SUCH_THAT.

The array eta has only 8 elements, and we defined those eleme
a set for each reaction. The equation needs to know about the s
reactions for a species i, and that set is calculated automatically
the model’s first FOR/CREATE statement.

| The | symbol is the ASCEND III notation for SUCH_THAT. We
noted that "|" is often read as "for all", which is different in that "f
all" makes one think of a FOR loop where the loop index is on t
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 184

er
igned

itself
ol

 as

ed

only
not

f a

. If
s

left of an IN operator. For example, the j loop in the SUM of
gen_eqn[i] above.

19.2.3 CONSTANTS

ASCEND supports real, integer, boolean and character string
constants. Constants in ASCEND do not have any attributes oth
than their value. Constants are scalar quantities that can be ass
exactly once. Constants may only be assigned using the :==
operator and the RHS expression they are assigned from must
be constant. Constants do not have subparts. Integer and symb
constants may be used in determining the definitions of sets.

Explicit refinements of the built-in constant types may be defined
exemplified in the description of real_constant. Implicit type
refinements may be done by instantiating an incompletely defin
constant and assigning its final value.

Sets could be considered constant because they are assigned
once, however sets are described separately because they are
quite scalar quantities.

real_constant Real number with dimensionality. Note that the dimensionality o
real constant can be specified via the type definition without
immediately defining the value, as in the following pair of
definitions.

CONSTANT declaration
example:

CONSTANT molar_weight REFINES real_constant DIMENSION

M/Q;

CONSTANT hydrogen_weight REFINES molar_weight :==

1.004{g/mole};

integer_constant Integer number. Principally used in determining model structure
appearing in equations, integers are evaluated as dimensionles
reals. Typical use is inside a MODEL definition and looks like:

n_trays IS_A integer_constant;

n_trays :== 50;

tray[1..n_trays] IS_A vl_equilibrium_tray;

symbol_constant Object with a symbol value. May be used in determining model
structure.

boolean_constant Logical value. May be used in determining model structure.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

185 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

he

sed
cts

l
ase

,
efore

al.

 is

risk
e

Setting constants

:== Constant and set assignment operator.

It is suggested, but not
required, that names of all
types that refine the built-
in constant types have
names that end in
_constant.

LHS_list :== RHS;

Here it is required that the one or more items in the LHS be of t
same constant type and that RHS is a single-valued expression
made up of values, operators, and other constants. The :== is u
to make clear to both the user and the system what scalar obje
are constants.

19.2.4 VARIABLES

There are four built-in types which may be used to construct
variables: symbol, boolean, integer, and real. At this time symbo
types have special restrictions. Refinements of these variable b
types are defined with the ATOM statement. Atom types may
declare attribute fields with types real, integer, boolean, symbol
and set. These attributes are NOT independent objects and ther
cannot be refined, merged, or put in a refinement clique
(ARE_ALIKEd).

ATOM The syntax for declaring a new atom type is

ATOM atom_type_name REFINES variable_type

«DIMENSION dimension_expression»

«DEFAULT value»; (* note the ; *)

«initial attribute assignment;»

END atom_type_name;

DEFAULT,
DIMENSION, and
DIMENSIONLESS

The DIMENSION attribute is for variables whose base type is re
It is an optional field. If not defined for any atom with base type
real, the dimensions will be left as undefined. Any variable which
later declared to be one of these types will be givenwild card
dimensionality (represented in the interactive display by an aste
(*)). The system will deduce the dimensionality from its use in th
relationships in which it appears or in the declaring of default
values for it, if possible.

solver_var is a special
case of ATOM and we
will say much more
about it in Section 19.6.1.

ATOM solver_var REFINES real DEFAULT 0.5 {?};

lower_bound IS_A real;

upper_bound IS_A real;

nominal IS_A real;

fixed IS_A boolean;
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 186

ich

nit

e
 be

the

nt

gs
lly

rs

e
ent
g

later
e

fixed := FALSE;

lower_bound := -1e20 {?};

upper_bound := 1e20 {?};

nominal := 0.5 {?};

END solver_var;

The default field is also optional. If the atom has a declared
dimensionality, then this value must be expressed with units wh
are compatible with this dimensionality. In thesolver_var
example, we see a DEFAULT value of 0.5 with the unspecified u
{?} which leaves the dimensionality wild.

real Real valued variable quantity. At present, all variables that you
want to be attended to by solver tools must be refinements of th
type solver_var. This is so that modifiable parametric values can
included in equations without treating them as variables. Strictly
speaking, this is a characteristic of the solver interface and not
ASCEND language. Each tool in the total ASCEND system may
have its own semantics that go beyond the ASCEND object
definition language.

integer Integer valued variable quantity. We find these mighty convenie
for use in certain procedural computations and as attributes of
solver_var atoms.

boolean Truth valued variable quantity. These are principally used as fla
on solver_vars and relations. They can also be used procedura
and as variables in logical programming models, subject to the
logical solver tool’s semantics. (Comparesolver_boolean and
boolean_var in Section 19.6.)

symbol *4* Symbol valued variable quantity. We do not yet have operato
for building symbols out of other symbols.

Setting variables

:= Procedural equals differs from the ordinary equals (=) in that it
means the left-hand-side (LHS) variables are to be assigned th
value of the right-hand-side (RHS) expression when this statem
is processed. Processing happens in the last phase of compilin
(INSTANTIATION on page 177) or when executing a method
interactively through the ASCEND user interface. The order the
system encounters these statements matters, therefore, with a
result overwriting an earlier one if both statements have the sam
the same LHS variable.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

187 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

e of
T

ation
 at

 are

 is
nts

f a
Note that variable assignments (also known as “defaulting
statements”) written in the declarative section are executed only
after an instance has been fully created. This is a frequent sourc
confusion and errors, therefore we recommend that you DO NO
ASSIGN VARIABLES IN THE DECLARATIVE SECTION.

Note that := IS NOT =. We use an ordinary equals (=) when defining a real valued equ
to state that the LHS expression is to equal the RHS expression
the solution for the model. We use == for logical equations.

Tabular assignments (* 4+ *) Assigning values en masse to arrays of variables that
defined associatively on sets without order presents a minor
challenge. The solution proposed in ASCEND IV (but not yet
implemented as we’ve not had time or significant user demand)
to allow a tabular data statement to be used to assign the eleme
of arrays of variables or constants. The DATA statement may be
used to assign variables in the declarative or methods section o
model (though we discourage its use declaratively for variable
initialization) or to assign constant arrays of any type, including
sets, in the declarative section. Here are some examples:

DATA (* 4+ *) MODEL tabular_ex;

lset,rset,cset IS_A set OF integer_constant;

rset :== [1..3];

cset :== rset - [2];

lset :== [5,7];

a[rset][cset] IS_A real;

b[lset][cset][rset] IS_A real_constant;

(* rectangle table *)

DATA FOR a:

COLUMNS 1,3; (*order last subscript cset*)

UNITS {kg/s}, {s}; (* columnar units *)

(* give leading subscripts *)

[1] 2.8, 0.3;

[2] 2.7, 1.3;

[3] 3.3, 0.6;

END DATA;

(* 2 layer rectangle table *)

CONSTANT DATA FOR b:

COLUMNS 1..3; (* order last subscript rset *)

(* UNITS omitted, so either the user gives value in the

table or values given are DIMENSIONLESS. *)

(* ordering over [lset][cset] required *)

[5][1] 3 {m}, 2{m}, 1{m};
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 188

s

tion
n.

lity.

e of

n a

 are
ops
ts.
[5][3] 0.1, 0.2, 0.3;

[7][1] -3 {m/s}, -2{m/s}, -1{m/s};

[7][3] 4.1 {1/s}, 4.2 {1/s}, 4.3 {1/s};

END DATA;

END tabular_ex;

For sparse arrays of variables or constants, the COLUMNS and
(possibly) UNITS keywords are omitted and the array subscript
are simply enumerated along with the values to be assigned.

19.2.5 RELATIONS

Mathematical expression: The syntax for a mathematical expression is any legal combina
of variable names and arithmetic operators in the normal notatio
An expression may contain any number of matched rounded
parentheses, (), to clarify meaning. The following is a legal
arithmetic expression:

y^2+(sin(x)-tan(z))*q

Each additive term in a mathematical expression (terms are
separated by + or - operators) must have the same dimensiona

An expression may contain an index variable as a part of the
calculation if that index variable is over a set whose elements ar
type integer. (See the FOR/CREATE and FOR/DO statements
below.) An example is:

term[i] = a[i]*x^(i-1);

Numerical relations The syntax for a numeric relation is either

optional_label: LHS relational_operator RHS;

or

optional_label: objective_type LHS;

Objective_type is eitherMAXIMIZE orMINIMIZE . RHS and
LHS must be one or more variables, constants, and operators i
normal algebraic expression. The operators allowed are defined
below and in Section 19.6.3. Variable integers, booleans, and
symbols are not allowed as operands in numerical relations, nor
boolean constants. Integer indices declared in FOR/CREATE lo
are allowed in relations, and they are treated as integer constan
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

189 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.

r

d

rt

ic
Relational operators:

=, >=, <=, <, >,
<>

These are the numerical relational operators for declarative use

Ftot*y['methane'] = m['methane'];

y['ethanol'] >= 0;

Equations must be dimensionally correct.

MAXIMIZE,
MINIMIZE

Objective function indicators.

Binary Operators: +, -, *, /, ^. We follow the usual algebraic order of operations fo
binary operators.

+ Plus. Numerical addition or set union.

- Minus. Numerical subtraction or set difference.

* Times. Numerical multiplication or set intersection.

/ Divide. Numeric division. In most cases it implies real division an
not integer division.

^ Power. Numeric exponentiation. If the value of y in x^y is not
integer, then x must be greater than 0.0 and dimensionless.

Unary Operators: -,ordered_function()

- Unary minus. Numeric negation. There is no unary + operator.

ordered_function (
)

unary real valued functions. The unary real functions we suppo
are given in section Section 19.6.3.

Real functions of sets of
real terms:

SUM[term set] Add all expressions in the function’s list.

For the SUM, the base type real items can be arbitrary arithmet
expressions. The resulting items must all be dimensionally
compatible.

An examples of the use is:
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 190

 a

ple:

n

n

e
use
ng
 to

nce
SUM[y[components]] = 1;

or, equivalently, one could write:

SUM[y[i] | i IN components] = 1;

Empty SUM[] yields
wild 0.

When a SUM is compiled over a list which is empty it generates
wild dimensioned 0. This will sometimes cause our dimension
checking routines to fail. The best way to prevent this is to make
sure the SUM never actually encounters an empty list. For exam

SUM[Q[possibly_empty_set], 0{watt}];

In the above, the variablesQ[i] (if they exist) have the
dimensionality associated with an energy rate. When the set is
empty, the 0 is the only term in the SUM and establishes the
dimensionality of the result. When the set is NOT empty the
compiler will simplify away thetrailing 0 in the sum.

PROD[term set] Multiply all the expressions in the product’s list. The product of a
empty list is a dimensionless value, 1.0.

Possible future functions: (Not implemented - only under confused consideration at this
time.) The following functions only work in methods as they are
not smooth function and would destroy a Newton-based solutio
algorithm if used in defining a model equation:

MAX[term set] (* 4+ *) maximum value on list of arguments

MIN[term set] (* 4+ *) minimum value on list of arguments

19.2.6 DERIVATIVES IN RELATIONS (* 4+ *)

Simply put, we would like to have general partial and full
derivatives usable in writing equations, as there are many
mathematically interesting things that can be said about both. W
have not implemented such things yet for lack of time and beca
with several implementations (see gPROMS and OMOLA, amo
others) already out there we can’t see too many research points
be gained by more derivative work.

19.2.7 EXTERNAL RELATIONS

We cannot document these at the present time. The only refere
for them is [[abbottthesis]].
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

191 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 be
 used

f

es

1

ce

r on
19.2.8 CONDITIONAL RELATIONS (* 4 *)

The syntax is CONDITIONAL list_of_relation_statements END
CONDITIONAL;

A CONDITIONAL statement can appear anywhere in the
declarative portion of the model and it contains only relations to
used as boundaries. That is, these real arithmetic equations are
in expressing logical condition equations via the SATISFIED
operator. See LOGICAL FUNCTIONS on page 215.

19.2.9 LOGICAL RELATIONS (* 4 *)

Logical expression An expression whose value is TRUE or FALSE is a logical
expression. Such expressions may contain boolean variables. I
A,B , andlaminar areboolean , then the following is a logical
expression:

A + (B * laminar)

as is (and probably more clearly)

A OR (B AND laminar)

The plus operator acts like an OR among the terms while the tim
operator acts like an AND. Think of TRUE being equal to 1 and
FALSE being equal to 0 with the 1+1=0+1=1+0=1, 0+0=0, 1*1=
and 0*1=1*0=0*0=0. IfA = FALSE, B=TRUE andlaminar is
TRUE, this expression has the value

FALSE OR (TRUE AND TRUE) -->TRUE

or in terms of ones and zeros

0 + (1 * 1) --> 1.

Logical relations are then made by putting together logical
expressions with the boolean relational operators == and !=. Sin
we have no logical solving engine we have not pushed the
implementation of logical relations very hard yet.

19.2.10 NOTES (* 4 *)

Within a MODEL(or METHOD) definition annotations (hereafter
called notes) may be made on a part declared in the MODEL, o
Last modified: June 20, 1998 10:32 pm

DATA TYPE DECLARATIONS 192

n

e of

ed

 the

at a
its
ame
only

ks
all
the MODEL (or METHOD) itself. Short notes may be made whe
defining or refining an object by enclosing the note in "double
quotes." Longer notes may be made in a block statement.

Each note is entered in a database with the name of the file, nam
MODEL, name of METHOD if applicable, and the language (a
kind of keyword) in which the note is written. Users, user
interfaces, and other programs may query this database for
information on models and simulations. The block notes may
include code fragments in other languages that you wish to emb
in your MODEL or any other kind of text.

Short notes should be included as you write any model to clarify
roles of parts and variables. All short notes have the language
'inline.' Here are some examples of short notes:

L[1..10] "L[i] is the length of the ith rod"

IS_A distance;

thetaM "angle between horizon and moon",

thetaJ "angle between horizon and jupiter"

IS_A angle;

car.tires "using car in Minnesota, you betcha"

IS_REFINED_TO snow_tire;

In the second IS_A statement concerning two angles, we see th
short note in double quotes goes with the name immediately to
left. We also see that the note comes before the comma if the n
is part of a list of names. In the third statement, we see that not
simple names but also qualified names may be annotated.

Longer notes are made in block statements of the form below.
These blocks can appear in a METHOD or MODEL. These bloc
can also be written separately before or after a model as we sh
see.

NOTES

'language or keyword' list.of, names {

free-form block of text to store in the database

exactly as written.

}

some.other.name {

 this note has the same language or keyword as the

first since we didn't define a new keyword in single

quotes before the name list.

}

'another language' some.other.name {
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

193 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

e of

ke

d

ation

 the
 en espanol

}

'fortran' SELF {

This model should be solved with subroutine LSODE.

This note demonstrates that "SELF" can be used to

annotate the entire model instead of a named part.

}

END NOTES;

Notes made outside the scope of a model definition look like on
the following:

ADD NOTES IN name_of_model;

'language or keyword' list.of, names {

 more text

} (* more than one note may be made in this block if

desired. *)

END NOTES;

ADD NOTES IN name_of_model METHOD name_of_method;

'language or keyword' SELF {

This method proves Fermat's last theorem and makes

toast.

}

'humor' SELF {

ASCEND is not expected to make either proving FLT or

toasting possible.

}

END NOTES;

We can add notes to the database before or after defining the
annotated model. This is handy for several reasons including:

• Lengthy notes mixed with model and method code can ma
that code very hard to read.

• Separate notes describing a family of models can be loade
and browsed before loading that library family.

• Users other than the author of a model can annotate that
model without fear of introducing typographical errors into
the model.

These advantages come with a disadvantage that all document
has. If you change the model, you ought to change the
documentation at the same time. To make finding these
documentation locations in need of change easier, the name of
file containing each note is included in the loaded database.
Last modified: June 20, 1998 10:32 pm

DECLARATIVE STATEMENTS 194

ctly

and

ve
The
f an

of

ents
s in
le

s a part
S/

ts
H

,

 on

 C

e

Experience has shown that even documentation embedded dire
in models or in other computer programs gets out-dated if the
person changing the program is in a hurry and is not required to
document properly as part of the task at hand. Neither ASCEND
nor any other software system can eliminate the garbage code
documentation that results from undisciplined modeling.

19.3 DECLARATIVE STATEMENTS

We have already seen several examples that included declarati
statements. Here we will be more systematic in defining things.
statements we describe are legal within the declarative portion o
ATOM or MODEL definition. The declarative portion stops at the
keyword METHODS if it is present in the definition or at the end
the definition.

Statements Statements in ASCEND terminate with a semicolon (;). Statem
may extend over any number of lines. They may have blank line
the middle of them. There may be several statements on a sing
line.

Compound statements Some statements in ASCEND can contain other statements a
of them. The declarative compound statements are the ALIASE
IS_A, CONDITIONAL, FOR/CREATE, SELECT/CASE, and
WHEN/CASE statements. The procedural compound statemen
allowed only in methods are the FOR/DO, FOR/CHECK, SWITC
(* 4 *) and the IF statements. Compound statements end with "END
word ; ", whereword matches the beginning of the syntax block
e.g.END FOR.and they can be nested, with some exceptions
which are noted later.

CASE statements are
here, finally!

(*4*) WHEN/CASE, CONDITIONAL, and SELECT/CASE
handle modeling alternatives within a single definition. The easy
way to remember the difference is that the first picks which
equations to solve WHEN discretevariables have certain values,
while the second SELECTs which statements to compile based
discreteconstants. (* 4 *) SWITCH statements handle flow of
control in methods, in a slightly more generalized form than the
language switch statement.

Type declarations are not
compound statements.

MODEL and ATOM type definitions and METHOD definitions ar
not really compound statements because they require a name
following their END word that matches the name given at the
beginning of the definition. These definitions cannot be nested.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

195 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

nd

ach

iled

 to

is
an

he

 an
nt of

es
e
 of

en

ues

 of
ASCEND operator
synopses:

We’ll start with an extremely brief synopsis of what each does a
then give detailed descriptions. It is helpful to remember that an
instance may have many names, even in the same scope, but e
name may only be defined once.

IS_A Constructor. Calls for one or more named instances to be comp
using the type specified. (* 4 *) If the type is one that requires
parameters, the parameters must be supplied in () following the
type name.

IS_REFINED_TO Reconstructor. Causes the already compiled instance(s) named
have their type changed to a more refined type. This causes an
incremental recompilation of the instance(s). IS_REFINED_TO
not a redefinition of the named instances because refinement c
only add compatible information. The instances retain all the
structure that originally defined them. (* 4 *) If the type being
refined to requires arguments, these must be supplied, even if t
same arguments were required in the IS_A of the originally less
refined declaration of the instance.

ALIASES (* 4 *) Part alternate naming statement. Establishes another name for
instance at the same scope or in a child instance. The equivale
an ALIASES in ASCEND III is to create another part with the
desired name and merge it immediately via ARE_THE_SAME
with the part being renamed, a rather expensive and unintuitive
process.

ALIASES/IS_A
(*4*)

Creates an array of alternate names for a list of existing instanc
with some common base type and creates the set over which th
elements of the array are indexed. Useful for making collections
related objects in ways the original author of the model didn’t
anticipate. Also useful for assembling array arguments to
parameterized type definitions.

WILL_BE (* 4 *) Forward declaration statement. Promises that a part with the giv
type will be constructed by an as yet unknown IS_A statement
above the current scope. At present WILL_BE is legal only in
defining parameters. Were it legal in the body of a model,
compiling models would be very expensive.

ARE_THE_SAME Merge. Calls for two or more instances already compiled to be
merged recursively. This essentially means combining all the val
in the instances into the most refined of the instances and then
destroying all the extra, possibly less refined, instances. The
remaining instance has its original name and also all the names
the instances destroyed during the merge.
Last modified: June 20, 1998 10:32 pm

DECLARATIVE STATEMENTS 196

ion
e

ed
inct
sent
ed.

ts
et

s a

nts
.

e

ns

or
re
s
es
WILL_BE_THE_SAME
(* 4 *)

Structural condition statement restricting objects in a forward
declaration. The objects passed to a parameterized type definit
can be constrained to have arbitrary parts in common before th
parameterized object is constructed.

WILL_NOT_BE_THE_S
AME (* 4 *)

Structural condition statement restricting objects in a forward
declaration. We apologize for the length of this key word, but we
bet it is easy to remember. The objects passed to a parameteriz
type definition can be constrained to have arbitrary parts be dist
instances before the parameterized object is constructed. At pre
the constraint is only enforced when the objects are being pass

ARE_NOT_THE_SAME
(* 4+ *)

Cannot be merged. We believe it is useful to say that two objec
cannot be merged and still represent a valid model. This is not y
implemented, however, mainly for lack of time. The
implementation is simple.

ARE_ALIKE Refinement clique constructor. Causes a group of instances to
always be of the same formal type. Refining one of them cause
refinement of all the others. Does not propagateimplicit type
information, such as assignments to constants or part refineme
made from a scope other than the scope of the formal definition

FOR/CREATE Indexed execution of other declarative statements. Required for
creating arrays of relations and sparse arrays of other types.

FOR/CHECK Indexed checking of the conditions (WHERE statements) of a
parameterized model.

SELECT/CASE (*4*) Select a subset of statements to compile. Given the values of th
specifiedconstants, SELECT compiles all cases that match those
values. A name cannot be defined two different ways inside the
SELECT statement, but it may be defined outside the case
statement and thenrefined in different ways in separate cases.

CONDITIONAL (*4*) Describe bounding relations. The relations written inside a
CONDITIONAL statement must all be labelled. These relations
can be used to define regions in which alternate sets of equatio
apply using the WHEN statement.

WHEN/CASE (* 4 *) When logicalvariables have certain values, use certain relations
model parts in defining a mathematical problem. The relations a
not defined inside the WHEN statement because all the relation
must be compiled regardless of which values the logical variabl
have at any given moment.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

197 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

rds

plied
s

e
of

d
d
ou

, if

tion
e

of

 on

es
h

lled
Reminder: In the following detailed statement descriptions, we show keywo
in capital letters. These words must appear in capital letters as
shown in ASCEND statements. We show optional parts to a
statement enclosed in double angle brackets (« ») and user sup
names in lower-caseitalic letters. (Remember that ASCEND treat
the underscore (_) as a letter). The user may substitute any nam
desired for these names. We use names that describe the kind
name the user should use.

Operators in detail:

IS_A This statement has the syntax

list_of_instance_names IS_A
model_name«(arguments_if_needed)»;

The IS_A statement allows us to declareinstances of a giventype to
exist within a model definition. Iftype has not been defined (loade
in the ASCEND environment) then this statement is an error an
the MODEL it appears in is irreparably damaged (at least until y
delete the type definitions and reload a corrected file). Similarly
the arguments needed are not supplied or if provably incorrect
arguments are supplied, the statement is in error. The construc
of the instances does not occur until all the arguments satisfy th
definition oftype.

If a name is used twice in WILL_BE/IS_A/ALIASES statements
the same model, ASCEND will complain bitterly when the
definition is parsed. Duplicate naming is a serious error. Labels
relations share the same name space as other objects.

IS_REFINED_TO This statement has the syntax

list_of_instances IS_REFINED_TO

type_name «(arguments_if_needed)»;

We use this statement to change the type of each of the instanc
listed to the typetype_name. The modeler has to have defined eac
member on the list of instances. Thetype_name has to be a type
which refines the types of all the instances on the list.

An example of its use is as follows. First we define the parts ca
fl1, fl2 and fl3 which are of type flash.

fl1, fl2, fl3 IS_A flash;
Last modified: June 20, 1998 10:32 pm

DECLARATIVE STATEMENTS 198

ons
an

pe

 any

he

S
e, e.g.

ce
ES

h

 of b
ned

: if
Assume that there exists in the previously defined model definiti
the type adiabatic_flash that is a refinement of flash. Then we c
make fl1 and fl3 into more refined types by stating:

fl1, fl3 IS_REFINED_TO adiabatic_flash;

This reconstruction does not occur until the arguments to the ty
satisfy the definitiontype_name.

ALIASES (* 4 *) This statement has the syntax

list_of_instances ALIASES instance_name ;

We use this statement to point at an already existing instance of
type other thanrelation , logical_relation , orwhen. For
example, say we want a flash tank model to have a variable T, t
temperature of the vapor-liquid equilibrium mixture in the tank.

MODEL tank;

feed, liquid, vapor IS_A stream;

state IS_A VLE_mixture;

T ALIASES state.T;

liquor_temperature ALIASES T;

END tank;

We might also want a more descriptive name than T, so ALIASE
can also be used to establish a second name at the same scop
liquor_temperature .

An ALIASES statement will not be executed until the RHS instan
has been created with an IS_A. The compiler schedules ALIAS
instructions appropriately and issues warnings if recursion is
detected. An array of aliases, e.g.

b[1..n], c ALIASES a;

is permitted (though we can’t think why anyone would want suc
an array), and the sets over which the array is defined must be
completed before the statement is executed. So, in the example
and c, the array b will not be created until a exists and n is assig
a value. b and c will be created at the same time since they are
defined in the same statement. This suggests the following rule
you must use an array of aliases, do not declare it in the same
statement with a scalar alias.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

199 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ay
be

ce is

gh

and

es

e list

not

is
The ALIASES RHS can be an element or portion of a larger arr
with the following exception. The existing RHS instance cannot
a relation or array of relations (including logical relations and
whens) because of the rule in the language that a relation instan
associated with exactly one model.

ALIASES/IS_A
(*4*)

The ALIASES/IS_A statement syntax is subject to change, thou
some equivalent will always exist. We take a set of
symbol_constant or integer_constant and pair it with a
list of instances to create an array. For the moment, the syntax
semantics is as follows.

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OF
settype ;

or

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OFsettype
WITH_VALUE (value_list_matching_settype);

aset is the name of the set that will be created by the IS_A to
index the array of aliases. If
value_list_matching_set_type is not given, the
compiler will make one up out of the integers (1..number of nam
in list_of_instances) or symbols derived from the
individual names given. If the value list is given, it must have the
same number of elements as the list of instances does. The valu
elements must be unique because they form a set. The list of
instances can contain duplicates. If any of these conditions are
met properly, the statement is in error.

ALIASES/IS_A can be used inside a FOR statement. When this
occurs, the definition ofaset must be indexed and it must be the
last subscript ofalias_array_instance . The statement must
look like:

array_instance[FOR_index][aset[FORindex]]
ALIASES (list_of_instances) WHERE
aset[FORindex] IS_A set OFsettype WITH_VALUE
(value_list_matching_settype);

Here, as with the unindexed version, the WITH_VALUE portion
optional.
Last modified: June 20, 1998 10:32 pm

DECLARATIVE STATEMENTS 200

ent
,
n
at

t
lled

r

 of

e

 as

 of
t

e in
If this explanation is unclear, just try it out. The compiler error
messages for ALIASES/IS_A are particularly good because we
know it is a bit tricky to explain.

WILL_BE (* 4 *) instance WILL_BE type_name ;

The most common use of this forward declaration is as a statem
within the parameter list of a model definition. In parameter lists
list_of_instances must contain exactly one instance. Whe
a model definition includes a parameter defined by WILL_BE, th
model cannot be compiled until a compiled instance at least as
refined as the type specified bytype_name is passed to it.

(* 4+ *) The second potential use of WILL_BE is to establish tha
an array of a common base type exists and its elements will be fi
in individually by IS_A or ARE_THE_SAME or ALIASES
statements. WILL_BE allows us to avoid costly reconstruction o
merge operations by establishing a placeholder instance which
contains just enough type information to let us check the validity
other statements that require type compatibility while delaying
construction until it is called for by the filling in statements.
Instances declared with WILL_BE are never compiled if they ar
not ultimately resolved to another instance created with IS_A.
Unresolved WILL_BE instances will appear in the user interface
objects of type PENDING_INSTANCE_model_name. Because of
the many implementation and explanation difficulties this usage
WILL_BE creates, it is not allowed. The ALIASES/IS_A construc
does the same job in a much simpler way.

ARE_THE_SAME The format for this instruction is

list_of_instancesARE_THE_SAME;

All items on the list must have compatible types. For the exampl
Fig. 1, consider a model where we define the following parts:

a1 IS_A A;

b1 IS_A B;

c1 IS_A C;

d1 IS_A D;

e1 IS_A E;

Then the following ARE_THE_SAME statement is legal

a1, b1, c1 ARE_THE_SAME;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

201 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.”

e

all
type

f
o
 by
c.,
while the following are not

b1, d1 ARE_THE_SAME;

a1, c1, d1 ARE_THE_SAME;

b1, e1 ARE_THE_SAME;

When compiling a model, ASCEND will put all of the instances
mentioned as being the same into an ARE_THE_SAME “clique
ASCEND lists members of this clique when one asks via the
interface for the aliases of any object in a compiled model.

Merging any other item with a member of the clique makes it th
same as all the other items in the clique, i.e., it adds the newly
mentioned items to the existing clique.

ASCEND merges all members of a clique by first checking that
members of the clique are type compatible. It then changes the
designation of all clique members to that of the most refined
member.

Figure 1. Diagram of the model type hierarchy A,B,C,D,E

It next looks inside each of the instances, all of which are now o
the same type, and puts all of the parts with the same name int
their respective ARE_THE_SAME cliques. The process repeats
processing these cliques until all parts of all parts of all parts, et

A

C

D

E

B

refines refines

refines
Last modified: June 20, 1998 10:32 pm

DECLARATIVE STATEMENTS 202

g
r a

 a
If a

ned
nts

and
in
 by

tial
ch

f

are their respective most refined type or discovered to be type
incompatible.

There are now lots of cliques associated with the instances bein
merged. The type associated with each such clique is now eithe
model, an array, or an atom (i.e., a variable, constant, or set). If
model, only one member of the clique generates its equations.
variable, it assigns all members to the same storage location.

Note that the values of constants and sets are essentiallytype
information, so merging two already assigned constants is only
possible if merging them does not force one of them to be assig
a new value. Merging arrays with mismatching ranges of eleme
is an error.

WILL_BE_THE_SAME
(* 4 *)

There is no further explanation of WILL_BE_THE_SAME.

WILL_NOT_BE_THE_S
AME (* 4 *)

There is no further explanation of WILL_NOT_BE_THE_SAME.

ARE_NOT_THE_SAME
(* 4+ *)

ARE_NOT_THE_SAME will be documented further when it is
implemented.

ARE_ALIKE The format for this statement is

list_of_instance_names ARE_ALIKE;

The compiler places all instances in the list into an ARE_ALIKE
clique. It checks that the members are formally type compatible
then it converts each into the most refined type of any instance
the clique. At that point the compiler stops. It does not continue
placing the parts into cliques nor does it merge anything.

There are important consequences of modeling with such a par
merge. The consequences we are about to describe can be mu
more reliably achieved by use of parameterized types,when the
types are well understood. When we are exploring new ways of
modeling, ARE_ALIKE still has its uses. When a model and its
initial uses are understood well enough to be put into a reusable
library, then parameterization and the explicit statement of
structural constraints by operators such as
WILL_NOT_BE_THE_SAME should be the preferred method o
ensuring correct use.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

203 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

eler
t
ice

r
 or

ams

t

t
o

n
t of
al

s
n

E in

 of
o
es

 of

ks
at
One consequence of ARE_ALIKE is to prevent extreme model
misuse when configuring models. For example, suppose a mod
creates a new pressure changing model. The modeler is not ye
concerned about the type of the streams into and out of the dev
but does care that these streams are of the same final type. Fo
example, the modeler wants both to be liquid streams if either is
both to be vapor streams if either is. By declaring both to be stre
only but declaring the two streams to be alike, the modeler
accomplishes this intent. Suppose the modeler merges the inle
stream with a liquid outlet stream from a reactor. The merge
operation makes the inlet stream into a liquid stream. The outle
stream, being in an ARE_ALIKE clique with the inlet stream, als
becomes a liquid stream. Any subsequent merge of the outlet
stream with a vapor stream will lead to an error due to type
incompatibility when ASCEND attempts to compile that merge.
Without the ARE_ALIKE statement, the compiler can detect no
such incompatibility unless parameterized models are used.

Another purpose is the propagation of types through a model.
Altering the type of the inlet stream through merging it with a
liquid stream automatically made the outlet stream into a liquid
stream.

If all the liquid streams within a distillation column are alike, the
the modeler can make them all into streams with a particular se
components in them and with the same method used for physic
property evaluation by merging only one of them with a liquid
stream of this type. This isthe primary example which has been
used to justify the existence of ARE_ALIKE. We have observed
that its use makes a column library very difficult to compile
efficiently. But since we now have parameterized types to help u
keep the column library semantically consistent, ARE_ALIKE ca
be left to its proper role: the rapid prototyping of partially
understood models. We have yet to see anyone use ARE_ALIK
a prototyping context, however.

Finally, because ARE_ALIKE does not recursively put the parts
ARE_ALIKEd instances into ARE_ALIKE cliques, it is possible t
ARE_ALIKE model instances which have compatible formal typ
but incompatibleimplicit types. This can lead to unexpected
problems later and makes the ARE_ALIKE instruction a source
non-reusability.

FOR/CREATE The FOR/CREATE statement is a compound statement that loo
like a loop. It isn’t, however, necessarily compiled as a loop. Wh
FOR really does is specify an index set value. Its format is:
Last modified: June 20, 1998 10:32 pm

PROCEDURAL STATEMENTS 204

tion
nce
 the

d in

are

r

ary

ified

m
nt
FOR index_variable IN set CREATE

list_of_statements;

END FOR;

This statement can be in the declarative part of the model defini
only. Every statement in the list should have at least one occurre
of the index variable, or the statement should be moved outside
FOR to avoid redundant execution. A correct example is

FOR i IN components CREATE

a.y[i], b[i] ARE_THE_SAME;

y[i] = K[i]*x[i];

END FOR;

FOR loops can be nested to produce sparse arrays as illustrate
ARRAYS CAN BE JAGGED on page 173. IS_A and ALIASES
statements are allowed in FOR loops, provided the statements
properly indexed, a new feature in ASCEND IV.

SELECT/CASE (*4*) Declarative. Order does not matter. All matching cases are
executed. The OTHERWISE is executed if present and no othe
CASEs match. SELECT is not allowed inside FOR. Writing FOR
statements inside SELECT is allowed.

CONDITIONAL (*4*) Both real and logical relations are allowed in CONDITIONAL
statements. CONDITIONAL is really just a shorthand for setting
the $boundary flag on a whole batch of relations, since $bound
is a write-once attribute invisible through the user interface and
methods at this time.

WHEN/CASE (* 4 *) Inside each CASE, relations or model parts to be used are spec
by writing, for example, USE mass_balance_1;. The method of
dealing with the combined logical/nonlinear model is left to the
solver. All matching CASEs are included in the problem to be
solved.

19.4 PROCEDURAL STATEMENTS

METHODS This statement separates the method definitions in ASCEND fro
the declarative statements. All statements following this stateme
are to define methods in ASCEND while all before it are for the
declarative part of ASCEND. The syntax for this statement is
simply

METHODS
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

205 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

s,

fter
ing
e
thod

e
ady
e

d.

ady
e
s

e
e of
ted
as

ely,
with no punctuation. The next code must be a METHOD or the
END of the type being defined. If there are no method definition
this statement may be omitted.

METHOD definitions for a type can also be added or replaced a
the type has been defined. This is to make creating and debugg
of methods as interactive as possible. In ASCEND III an instanc
must be destroyed and recreated each time a new or revised me
is added to the type definition. This is a very expensive process
when working with models of significant size.

The detailed semantics of method inheritance, addition, and
replacement of methods are given at the end of this section.

ADD METHODS IN
type_name; (*4*)

This statement allows new methods to be added to an already
loaded type definition. The next code must be a METHOD or th
END METHODS; statement. If a method of the same name alre
exists intype_name , the statement is in error. If other types refin
type_name then the addition follows the method inheritance
rules. Any type which inherited methods fromtype_name now
inherits the methods added totype_name . If a refinement of
type_name already defines a method ADDed totype_name ,
then the existing method in the more refined type is not disturbe

REPLACE METHODS
IN type_name;
(*4*)

This statement allows existing methods to be replaced in an alre
loaded type definition. The next code must be a METHOD or th
END METHODS; statement. If a method of the same name doe
not exist intype_name , the statement is in error. If other types
refinetype_name then the replacement follows the method
inheritance rules. Any type which inherited the old method now
inherits the replacment method instead.

ADD METHODS IN
DEFINITION MODEL;

This statement allows methods to be added globally. It should b
used very sparingly. Library basemodel.a4l contains the exampl
this statement. Methods in the global model definition are inheri
by all models. There is no actual global model definition, but it h
a method list for practical purposes.

Initialization routines:

METHOD A method in ASCEND must appear following the METHODS
statement within a model. The system executes procedural
statements of the method in the order they are written.

At present, there are no local variables or other structures in
methods except loop indices. A method may be written recursiv
Last modified: June 20, 1998 10:32 pm

PROCEDURAL STATEMENTS 206

the

text
ed,
 and
 a
he

t to

 it
but there is an arbitrary stack depth limit (currently set to 20 in
compiler/initialize.h) to prevent the system from crashing on
infinite recursions.

Specifically disallowed in ASCEND III methods are IS_A,
ALIASES, WILL_BE, IS, IS_REFINED_TO, ARE_THE_SAME
and ARE_ALIKE statements as these “declare” the structure of
model and belong only in the declarative section.

(* 4+ *) In the near future, declarations of local instances (which
are automatically destroyed when the method exits) will be
allowed. Since methods are imperative, these local structure
definitions are processed in the order they are written. Local
structures are not allowed to shadow structures in the model con
with which the method is called. When local structures are allow
it will also be possible to define methods which take parameters
return values, thereby making the imperative ASCEND methods
rapid prototyping tool every bit as powerful and easy to use as t
declarative ASCEND language.

The syntax for a method declaration is

METHOD method_name;

«procedural statement;» (*one or more*)

END method_name;

Procedural assignment The syntax is

instance_name := mathematical_expression;

or

array_name[set_name] := expression;

or

list_of_instance_names := expression.

Its meaning is that the value for the variable(s) on the LHS is se
the value of the expression on the RHS.

DATA statements (DATA (* 4+ *) on page 187) can (should,
rather) also appear in methods.

FOR/DO statement This statement is similar to the FOR/CREATE statement except
can only appear in a method definition. An example would be

FOR i IN [1..n_stages] DO

T[i] := T[1] + (i-1)*DT;

...
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

207 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

tax

,
ase
ar

t

at

 of
END FOR;

Here we actually execute using the values of iin the sequence
given.So,

FOR i IN [n_stages..1] DO ... END FOR;

is an empty loop, while

FOR i IN [n_stages..1] DECREASING DO ... END FOR;

is a backward loop.

IF The IF statement can only appear in a method definition. Its syn
is

IF logical_expression THEN

list_of_statements

ELSE

list_of_statements

END IF;

or

IF logical_expression THEN

list_of_statements

END IF;

If the logical expression has a value of TRUE, ASCEND will
execute the statements in the THEN part. If the value is FALSE
ASCEND executes the statements in the optional ELSE part. Ple
use () to make the precedence of AND, OR, NOT, ==, and != cle
to both the user and the system.

SWITCH (* 4 *) Essentially roughly equivalent to the C switch statement, excep
that ASCEND allows wildcard matches, allows any number of
controlling variables to be given in a list, and assumes BREAK
the end of each CASE.

CALL External calls are not presently well defined, pending debugging
the EXTERNAL connection prototype originally created by Kirk
Abbott.

RUN This statement can appear only in a method. Its format is:

RUN name_of_method ;
Last modified: June 20, 1998 10:32 pm

PARAMETERIZED MODELS 208

t
ned
 the

the
ed

.

l be
odel
or

RUN part_name.name_of_method ;

or

RUN model_type :: name_of_method ;

The named method can be defined in the current model (the firs
syntax), or in any of its parts (the second syntax). Methods defi
in a part will be run in the scope of that part, not at the scope of
RUN statement.

Type access to methods: Whenmodel_type:: appears, the type named must be a type that
current model is refined from. In this way, methods may be defin
incrementally. For example:

MODEL foo;

x IS_A generic_real;

METHODS

METHOD specify;

x.fixed:= TRUE;

END specify;

END foo;

MODEL bar REFINES foo;

y IS_A generic_real;

METHODS

METHOD specify;

RUN foo::specify;

y.fixed := TRUE;

END specify;

END bar;

19.5 PARAMETERIZED MODELS

Parameterized model definitions have the following general form

MODEL new_type(parameter_list;)

«WHERE (where_list;)»

«REFINES existing_type «(assignment_list;)»»;

19.5.1 THE PARAMETER LIST

A parameter list is a list of statements about the objects that wil
passed into the model being defined when an instance of that m
is created by IS_A or IS_REFINED_TO. The parameter list is
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

209 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 put
eeks

es

,
s

e

e

ave

eate

k
py

nts

f

nt,
mal
designed to allow a complete statement of the necessary and
sufficient conditions to construct the parameterized model. The
mechanism implemented is general, however, so it is possible to
less than the necessary information in the parameter list if one s
to confuse the model’s reusers. To make parameters easy to
understand for users with experience in other computer languag
(and to make the implementation much simpler), we define the
parameter list as ordered. All the statements in a parameter list
including the last one, must end with a ";". A parameter list look
like:

MODEL test (

x WILL_BE real;

n IS_A integer_constant;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE widget;

);

Each WILL_BE statement corresponds to a single object that th
user must create and pass into the definition oftest . We will
establish the local namex for the first object passed to the
definition oftest . n is handled similarly, and it must preceed th
definition ofp[1..n] , because it defines the set for the arrayp.
Constant types can also be defined with WILL_BE, though we h
used IS_A for the exampletest .

Each IS_A statement corresponds to a single constant-valued
instance or an array of constant-valued instances that we will cr
as part of the model we are defining. Thus, the user oftest must
supply an array of constants as the third argument. We will chec
that the instance supplied is subscripted on the set [1..n] and co
the corresponding values to the array p we create local to the
instance oftest .

WILL_BE statements can be used to pass complex objects
(models) or arrays of objects. Both WILL_BE and IS_A stateme
can be passed arguments that aremore refined than the type listed.
If an object that isless refined than the type listed, the instance o
parameterized modeltest will not be compiled. When a
parameterized model type is specified with a WILL_BE stateme
NO arguments should be given. We are only interested in the for
type of the argument, not how it was constructed.
Last modified: June 20, 1998 10:32 pm

PARAMETERIZED MODELS 210

nts
 a
ts
 a

ized

is

e

ter
e
n

ng
ft

ent
any
ype
s,

 of
 a
fore

ese
19.5.2 THE WHERE LIST

We can write structural and equation constraints on the argume
in the WHERE list. Each statement is a WILL_BE_THE_SAME,
WILL_NOT_BE_THE_SAME, an equation written in terms of se
or discrete constants, or a FOR/CHECK statement surrounding
group of such statements. Until all the conditions in the WHERE
list are satisfied, an object cannot be constructed using the
parameterized definition. If the arguments given to a parameter
type in an IS_A or IS_REFINED_TO statement cannot possibly
satisfy the conditions, the IS_A or IS_REFINED_TO statement
abandoned by the compiler.

We have not created a WILL_BE_ALIKE statement because
formal type compatibility in ASCEND is not really a meaningful
guarantee of object compatibility. Object compatibility is much
more reliably guaranteed by checking conditions on the structur
determining constants of a model instance.

19.5.3 THE ASSIGNMENT LIST

When we declare constant parameters with IS_A, we can in a la
refinement of the parameterized model assign their values in th
assignment list, thus removing them from the parameter list. If a
array of constants is declared with IS_A, then we must assign
values to ALL the array elements at the same time if we are goi
to remove them from the parameter list. If an array element is le
out, the type which assigns some of the elements and any
subsequent refinements of that type will not be compilable.

19.5.4 REFINING PARAMETERIZED TYPES

Because we wish to make the parameterized model lists repres
all the parameters and conditions necessary to use a model of
type, we must repeat the parameters declared in the ancestral t
when we make a refinement. If we did not repeat the parameter
the user would be forced to hunt up the (possibly long) chain of
types that yield an interesting definition in order to know the list
parameters and conditions that must be satisfied in order to use
model. We repeat all the parameters of the type being refined be
we add new ones. The only exception to this is that parameters
defined with IS_A and then assigned in theassignment_list
are not repeated because the user no longer needs to supply th
values. A refinement of the modeltest given in Section 19.5.1
follows.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

211 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

s
at all

o

at

ng
MODEL expanded_test (

x WILL_BE real;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE better_widget;

r[0..q[0].k] WILL_BE gizmo;

ms WILL_BE set OF symbol_constant;

) WHERE (

q[0].k >= 2;

r[0..q[0].k].giz_part WILL_BE_THE_SAME;

) REFINES test(

n :== 4;

);

In expanded_test , we see that the type of the arrayq is more
refined than it was intest . We see that constants and sets from
inside passed objects, such asq[0].k , can be used to set the size
of subseqent array arguments. We see a structural constraint th
thegizmo s in the arrayr must have been constructed with the
samegiz_part . This condition probably indicates that the gizm
definition takesgiz_part as a WILL_BE defined parameter.

19.6 MISCELLANY

19.6.1 VARIABLES FOR SOLVERS

solver_var Solver_var is the base-type for allcomputable variables in the
current ASCEND system. Any instances of an atom definition th
refines solver_var are considered potential variables when
constructing a problem for one of the solvers.

Solver_var has wild card dimensionality. (Wild card means that
until ASCEND can decide what its dimensionality is, it has none
assigned. ASCEND can decide on dimensionality while compili
or executing.) In system.a4l we define the following parts with
associated initial values for each:

Attributes: type default

lower_bound real 0.0

upper_bound real 0.0

nominal real 0.0
Last modified: June 20, 1998 10:32 pm

MISCELLANY 212

e
e

ble
as
d
t

ich

emi-
er
les.

 that

s

4l

er

ses

ad
fixed boolean FALSE

lower_boundandupper_bound are bounds for a variable which ar
monitored and maintained during solving. The nominal value th
value used to scale a variable when solving. The flagfixed indicates
if the variable is to be held fixed during solving. All atoms which
are refinements of solver_var will have these parts. The refining
definitions may reassign the default values of the attributes.

The latest full definition of solver_var is always in the file
system.a4l.

generic_real One should not declare a variable to be of type solver_var. The
nominal value and bound values will get you into trouble when
solving. If you are programming and do not wish to declare varia
types, then declare them to be of type generic_real. This type h
nominal value of 0.5 and lower and upper bounds of -1.0e50 an
1.0e50 respectively. It is dimensionless. Generic_real is the firs
refinement of solver_var and is also defined in system.a4l.

Kluges for MILPs Also defined in system.a4l are the types for integer, binary, and
semi-continuous variables.

solver_semi,
solver_integer,
solver_binary

We define basic refinements of solver_var to support solvers wh
are more than simply algebraic. Various mixed integer-linear
program solvers can be fed solver_semi based atoms defining s
continuous variables, solver_integer based atoms defining integ
variables, and solver_binary based atoms defining binary variab

Integers are relaxable. All these types have associated boolean flags which indicate
either the variable is to be treated according to its restricted
meaning or it is to be relaxed and treated as a normal continuou
algebraic variable.

Kluges for ODEs We have an alternate version of system.a4l called ivpsystem.a
which adds extra flags to the definition of solver_var in order to
support initial value problem (IVP) solvers (integrators).
Integration in the ASCEND IV environment is explained in anoth
chapter.

ivpsystem.a4l Having ivpsystem.a4l is a temporary, but highly effective, way to
keep people who want to use ASCEND only for algebraic purpo
from having to pay for the IVP overhead. Algebraic users load
system.a4l. Users who want both algebraic and IVP capability lo
ivpsystem.a4l instead of system.a4l. This method is temporary
because part of the extended definition of ASCEND IV is that
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

213 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

a
tes
ing

ute
 the

ired
ent
differential calculus constructs will be explicitly supported by the
compiler. The calculus is not yet implemented, however.

19.6.2 SUPPORTED ATTRIBUTES

(* 4+ *) The solver_var, and in fact most objects in ASCEND IV, should
have built-in support for (and thereby efficient storage of) quite
few more attributes than are defined above. These built-in attribu
are not instances of any sort, merely values. The syntax for nam
one of these supported attributes is:
object_name.$ supported_attribute_name.

Supported attributes may have symbol, real, integer, or boolean
values. Note that the$ syntax is essentially the same as the
derivative syntax for relations; derivatives are a supported attrib
of relations. The supported attributes must be defined at the time
ASCEND compiler is built. The storage requirement for a
supported boolean attribute is 1 bit rather than the 24 bytes requ
to store a run-time defined boolean flag. Similarly, the requirem
for a supported real attribute is 4 or 8 bytes instead of 24 bytes.

19.6.3 SINGLE OPERAND REAL FUNCTIONS :

exp() exponential (i.e., exp(x) = ex)

ln() log to the base e

sin() sine. argument must be an angle.

cos() cosine. argument must be an angle.

tan() tangent. argument must be an angle.

arcsin() inverse sine. return value is an angle.

arccos() inverse cosine. return value is an angle.

arctan() inverse tangent. return value is an angle.

erf() error function (not available from Microsoft Windoze)

sinh() hyperbolic sine

cosh() hyperbolic cosine
Last modified: June 20, 1998 10:32 pm

MISCELLANY 214

 as

lue
me

, P.

ed

n
est
tanh() hyperbolic tangent

arcsinh() inverse hyperbolic sine

arccosh() inverse hyperbolic cosine

arctanh() inverse hyperbolic tangent

lnm() modified ln function. This lnm function is parameterized by a
constant a, which is typically set to about 1.e-8. lnm(x) is defined
follows:

ln(x) for x > a

(x-a)/a + ln(a) for x <= a.

Below the value a (default setting is 1.0e-8), lnm takes on the va
given by the straight line passing through ln(a) and having the sa
slope as ln(a) has at a. This function and its first derivative are
continuous. The second derivative contains a jump at a.

The lnm function can tolerate a negative argument while the ln
function cannot. At present the value of a is controllable via the
user interface of the ASCEND solvers.

Operand dimensionality
must be correct.

The operands for an ASCEND function must be dimensionally
consistent with the function in question. Most transcendental
functions require dimensionless arguments. The trigonometric
functions require arguments with dimensionality of plane angles
ASCEND functions return dimensionally correct results.

The operands for ASCEND functions are enclosed within round
parentheses, (). An example of use is:

y = A*exp(-B/T);

Discontinuous functions: Discontinuous functions may destroy a Newton-based solutio
algorithm if used in defining a model equation. We strongly sugg
considering alternative formulations of your equations.

abs() absolute value of argument. Any dimensionality is allowed in an
abs() function.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

215 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

n
iven.
ot
r

asic

 20

ITS
ntil

r

or

ust

rate
ses
19.6.4 LOGICAL FUNCTIONS

SATISFIED() (*4*) SATISFIED(relation_name,tolerance) returns TRUE if the relatio
named has a residual value less than the real value, tolerance, g
If the relation named is a logical relation, the tolerance should n
be specified, since logical relations evaluate directly to TRUE o
FALSE.

19.6.5 UNITSDEFINITIONS

As noted in 19.1.2, ASCEND will recognize conversion factors
when it sees them as {units). These units are built up from the b
units, and new units can be defined by the user. Note that the
assignment x:= 0.5 {100}; yields x == 50, and that there are no
'offset conversions,' e.g. F=9/5C+32. Please keep unit names to
characters or less as this makes life pretty for other users

One or more unit conversion factors can be defined with the UN
keyword. A unit of measure, once defined, stays in the system u
the system is shut down. A measuring unit cannot be defined
differently without first shutting down the system, but duplicate o
equivalent definitions are quietly ignored.

A UNITS declaration can occur in a file by itself, inside a model
inside an atom. UNITS definitions are parsed immediately, they
will be processed even if a surrounding MODEL or ATOM
definition is rejected. Because units and dimensionality are
designed into the deepest levels of the system, a unit definition m
be parsed before any atoms or relations use that definition. It is
good design practice to keep customized unit definitions in sepa
files and REQUIRE those files at the beginning of any file that u
them. Unit definitions are made in the form, for example:

UNITS (* several unit definitions could be here. *)

ohm = {kilogram*meter^2/second^3/ampere^2};

END UNITS;

The standard units library, measures.a4l, is documented in
Chapter 20.
Last modified: June 20, 1998 10:32 pm

MISCELLANY 216
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

217 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS
Last modified: June 20, 1998 10:32 pm

t
ve.

D

. We
ve

ll

ion
CHAPTER20 UNITS LIBRARY

20.1 UNITS

This chapter defines the dimensions and units and all the attendan
conversion factors. Note that all conversions are simply multiplicati
This information is from the file models/measures.a4l in the ASCEN
source code.

Note that units can be easily defined to suit the needs of local users
are always on the lookout for new and interesting units, so if you ha
some send them in. From measures.a4l we have:

20.2 THE BASIC UNITS IN AN EXTENDED SI MKS
SYSTEM

These units (kilogram, mole, et c.) are associated with the
dimensionality listed here (M, Q, et c.) by the ASCEND IV C code. A
other units are derived from these by multiplication factors. Use of
units other than these requires loading unit definitions, either from
measures.a4l or from another ASCEND file containing a UNITS
declaration. The system rejects loudly any model or variable definit
using undefined units.

define kilogram M; (* internal mass unit SI *)

define mole Q; (* internal quantity unit SI *)

define second T; (* internal time unit SI *)

define meter L; (* internal length unit SI *)

define Kelvin TMP; (* internal temperature unit SI *)

define currency C; (* internal currency unit *)

define ampere E; (* internal electric current unit SI suggested *)

219 UNITS LIBRARY
define candela LUM; (* internal luminous intensity unit SI *)

define radian P; (* internal plane angle unit SI suggested *)

define steradian S; (* internal solid angle unit SI suggested *)

20.3 UNITS DEFINED IN MEASURES .A4L, THE

DEFAULT SYSTEM UNITS LIBRARY OF

ATOMS.A4L.

distance pc = 3.08374e+16*meter;

parsec = pc;

kpc = 1000*pc;

Mpc = 1e6*pc;

km = meter*1000;

m = meter;

dm = meter/10;

cm = meter/100;

mm = meter/1000;

um = meter/1000000;

nm = 1.e-9*meter;

kilometer = km;

centimeter = cm;

millimeter = mm;

micron=um;

nanometer = nm;

angstrom = m/1e10;

fermi = m/1e15;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 220
mi = 1609.344*meter;

yd = 0.914412*meter;

ft = 0.304804*meter;

inch = 0.0254*meter;

mile = mi;

yard = yd;

feet = ft;

foot = ft;

in = inch;

mass metton = kilogram *1000;

mton = kilogram *1000;

kg = kilogram;

g = kilogram/1000;

gram = g;

mg = g/1000;

milligram = mg;

ug= kilogram*1e-9;

microgram = ug;

ng=kilogram*1e-12;

nanogram=ng;

pg=kilogram*1e-15;

picogram=pg;

amu = 1.661e-27*kilogram;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

221 UNITS LIBRARY
lbm = 4.535924e-1*kilogram;

ton = lbm*2000;

oz = 0.028349525*kilogram;

slug = 14.5939*kilogram;

time yr = 31557600*second;

wk = 604800*second;

dy = 86400*second;

hr = 3600*second;

min = 60*second;

sec = second;

s = second;

ms = second/1000;

us = second/1e6;

ns = second/1e9;

ps = second/1e12;

year = yr;

week = wk;

day = dy;

hour = hr;

minute = min;

millisecond = ms;

microsecond = us;

nanosecond = ns;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 222
picosecond = ps;

molecular quantities kg_mole=1000*mole;

g_mole = mole;

gm_mole = mole;

kmol = 1000*mole;

mol = mole;

mmol = mole/1000;

millimole=mmol;

umol = mole/1e6;

micromole=umol;

lb_mole = 4.535924e+2*mole;

temperature K = Kelvin;

R = 5*Kelvin/9;

Rankine = R;

money dollar = currency;

US = currency;

USdollar=currency;

CR = currency;

credits=currency;

reciprocal time
(frequency)

rev = 1.0;

cycle = rev;

rpm = rev/minute;

rps = rev/second;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

223 UNITS LIBRARY
hertz = cycle/second;

Hz = hertz;

area ha = meter^2*10000;

hectare=ha;

acre= meter^2*4046.856;

volume l = meter^3/1000;

liter = l;

ml = liter/1000;

ul = liter/1e6;

milliliter = ml;

microliter = ul;

hogshead=2.384809e-1*meter^3;

cuft = 0.02831698*meter^3;

impgal = 4.52837e-3*meter^3;

gal = 3.785412e-3*meter^3;

barrel = 42.0*gal;

gallon = gal;

quart = gal/4;

pint = gal/8;

cup = gal/16;

floz = gal/128;

force N = kilogram*meter/second^2;

newton = N;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 224
dyne = N*1.0e-5;

pn=N*1e-9;

picoNewton=pn;

lbf = N*4.448221;

pressure Pa = kilogram/meter/second^2;

MPa = 1.0e+6*Pa;

bar =1.0e+5*Pa;

kPa = 1000*Pa;

pascal = Pa;

atm = Pa*101325.0;

mmHg = 133.322*Pa;

torr = 133.322*Pa;

psia = 6894.733*Pa;

psi = psia;

ftH2O = 2989*Pa;

energy J = kilogram*meter^2/second^2;

joule = J;

MJ = J * 1000000;

kJ = J * 1000;

mJ=J*1.0e-3;

uJ=J*1.0e-6;

nJ=J*1.0e-9;

milliJoule=mJ;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

225 UNITS LIBRARY
microJoule=uJ;

nanoJoule=nJ;

erg = J*1.0e-7;

BTU = 1055.056*J;

pCu = BTU * 1.8;

cal = J*4.18393;

calorie = cal;

kcal=1000*calorie;

Cal=1000*calorie;

power W = J/second;

EW = 1.0e+18*W;

PW = 1.0e+15*W;

TW = 1.0e+12*W;

GW = 1.0e+9*W;

MW = 1.0e+6*W;

kW = 1000*W;

mW = W/1000;

uW = W/1000000;

nW = W/1e9;

pW = W/1e12;

fW = W/1e15;

aW = W/1e18;

terawatt = TW;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 226
gigawatt = GW;

megawatt = MW;

kilowatt = kW;

watt = W;

milliwatt = mW;

microwatt = uW;

nanowatt = nW;

picowatt = pW;

femtowatt = fW;

attowatt = aW;

hp= 7.456998e+2*W;

absolute viscosity poise = Pa*s;

cP = poise/100;

electric charge coulomb=ampere*second;

C = coulomb;

coul = coulomb;

mC = 0.001*C;

uC = 1e-6*C;

nC = 1e-9*C;

pC = 1e-12*C;

miscellaneous electro-
magnetic fun

V = kilogram*meter^2/second^3/ampere;

F = ampere^2*second^4/kilogram/meter^2;

ohm = kilogram*meter^2/second^3/ampere^2;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

227 UNITS LIBRARY
mho = ampere^2*second^3/kilogram/meter^2;

S = mho;

siemens = S;

A=ampere;

amp = ampere;

volt = V;

farad= F;

mA= A/1000;

uA= A/1000000;

kV= 1000*V;

MV= 1e6*V;

mV= V/1000;

mF = 0.001*F;

uF = 1e-6*F;

nF = 1e-9*F;

pF = 1e-12*F;

kohm = 1000*ohm;

Mohm = 1e6*ohm;

kS = 1000*S;

mS = 0.001*S;

uS = 1e-6*S;

Wb = V*second;

weber = Wb;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 228

ns):

le
C in
tesla = Wb/m^2;

gauss = 1e-4*tesla;

H = Wb/A;

henry = H;

mH = 0.001*H;

uH = 1e-6*H;

numeric constants of
some interest

To set a variable or constant to these, the code is (in the declaratio

ATOM unspecified_unitwise REFINES real;

END unspecified_unitwise;

MODEL gizmo;

x IS_A unspecified_unitwise;

(* if some other atom type is more appropriate, by all

* means, use it.

*)

x := 1 {PI};

...

END gizmo;

Note that you generally should NOT declare an ATOM and a variab
in order to use a constant in an equation. For example, to use GAS_
a simple gas law equation, write:

P*v = n*1{GAS_C}*T;

(* GAS_C is the thermochemical gas constant “R”*)

molecule = 1.0;

PI=3.141592653589793; # Circumference/Diameter ratio

EULER_C = 0.57721566490153286; # euler gamma

GOLDEN_C = 1.618033988749894; # golden ratio

HBAR = 1.055e-34*J*second; # Reduced Planck’s constant

PLANCK_C = 2*PI*HBAR; # Planck's constant

LIGHT_C = 2.99793e8 * meter/second; # Speed of light in vacuum

MU0 = 4e-7*PI*kg*m/(C*C); # Permeability of free space

EPSILON0 = 1/LIGHT_C/LIGHT_C/MU0; # Permittivity of free space

BOLTZMAN_C = 1.3805e-23 * J/K; # Boltzman's constant

AVOGADRO_C = 6.023e23 *molecule/mole; # Avogadro's number of molecules

GRAVITY_C = 6.673e-11 * N*m*m/(kg*kg); # Newtons gravitational constant

GAS_C = BOLTZMAN_C*AVOGADRO_C; # Gas constant

INFINITY=1.0e38; # darn big number;

eCHARGE = 1.602e-19*C; # Charge of an electron
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

229 UNITS LIBRARY
EARTH_G = 9.80665 * m/(s*s); # Earth's gravitational field, somewhere

eMASS = 9.1095e-31*kilogram; # Electron rest mass, I suppose

pMASS = 1.67265e-27*kilogram; # Proton mass

constant based
conversions

eV = eCHARGE * V;

keV = 1000*eV;

MeV = 1e6*eV;

GeV = 1e9*eV;

TeV = 1e12*eV;

PeV = 1e15*eV;

EeV = 1e18*eV;

lyr = LIGHT_C * yr; # Light-year

oersted = gauss/MU0;

subtly dimensionless
measures

rad = radian;

srad = steradian;

deg = radian*1.74532925199433e-2;

degrees = deg;

grad = 0.9*deg;

arcmin = degrees/60.0;

arcsec = arcmin/60.0;

light quantities cd = candela;

lm = candela*steradian;

lumen = lm;

lx = lm/meter^2;

lux= lx;
Last modified: June 20, 1998 10:33 pm

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 230
miscellaneous rates gpm = gallon/minute;

time variant
conversions

MINIMUMWAGE = 4.75*US/hr;

SPEEDLIMIT = 65*mi/hr;

Conversions we'd like to see, but probably won't:

milliHelen = beauty/ship;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

231 UNITS LIBRARY
Last modified: June 20, 1998 10:33 pm

232

ts at

82
nior

 of
orm
d the
rical
that

s
t

ms.

for

l

bug
CHAPTER21 BRIEF HISTORY OFASCEND

ASCEND is an acronym which stands forAdvanced System for
Computations in ENgineering Design1. The name ASCEND first
appeared in print in 1978. The ASCEND programs are a series of
modeling systems that Arthur Westerberg and his graduate studen
Carnegie Mellon University have developed since that time.

1. ASCEND originally stood for “Advanced System for Chemical ENgineering Design” but the second
generation system and following are not discipline specific, thus the name change.

ASCEND I Dean Benjamin developed the first ASCEND system. It was an
interactive system in Fortran. Chemical engineering students at
Carnegie Mellon University used this system from about 1978 to 19
to carry out multicomponent flash calculations. It supported the se
design project.

ASCEND II Almost in parallel, Michael Locke developed the ASCEND II
simulation system for his PhD thesis [1981]. ASCEND II allowed
users to create models by configuring them using predefined types
parts. System maintainers defined the library of types, each in the f
of seven handcrafted Fortran subroutines. These routines compute
space needed for the data when instancing a part, generated nume
values for the partial derivatives and the residuals of the equations
the part instance provided to the overall model, generated proper
variable and equation scaling and the like. Michael Locke used thi
system to create models involving a few thousand equations to tes
variants of the Sequential Quadratic Programming algorithm. Tom
Berna and he developed for optimizing structured engineering syste
Selahattin Kuru also used ASCEND II to generate and test solution
algorithms for dynamic simulation that he subsequently developed
his PhD. Two companies used the software architectural design of
ASCEND II to create their own internal equation-based modeling
systems.

Experience at this time demonstrated that models involving severa
thousands of equations were solvable and could even be efficiently
optimized. The question of interest moved from how to solve large
equation-based models to how to aid an engineer to pose them, de
them and get them to solve.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

233 BRIEF HISTORY OFASCEND

ne

 a

l. It

d
.

ons

ys.

age
rite

ess
ad

 to

ed
s

g
re
ried
e
 set
 at

e.

ch
In 1983 Dean Benjamin proposed the first version of a modeling
language for posing complex models. Larry Gaydos and Art
Westerberg further developed this language in the spring of 1984.

ASCEND III In 1984 Peter Piela undertook a PhD project with Art Westerberg to
“reduce the time needed to create and solve a complex model by o
order of magnitude.” He developed what became ASCEND III. He
had the help of two Carnegie Mellon University undergraduate
students, Tom Epperly and Karl Westerberg, and of Roy McKelvey,
member of the faculty in the Design Department in Fine Arts. This
team developed this system on the Apollo workstation and in Pasca
comprised three parts: a modeling language and compiler, an
interactive user interface and a suite of solvers. The language use
object-oriented principles, with the exception of hiding of information
Modelers define types to create model definitions. A type (called a
model in ASCEND) is a collection of variables and complex parts
whose types are previously defined and the definition of the equati
that model is to supply. A model can also be the refinement of a
previously defined type. The language fully supported associative
arrays and sets. For example, a distillation column is an array of tra
It also supported deferred binding by allowing one to reach inside a
part and alter one of its parts to be a more refined type. The langu
and its compiler obviated the need to have a system programmer w
the seven subroutines needed in ASCEND II.

The interactive user interface supplied the user with organized acc
to the many tools in the ASCEND III system. There were tools to lo
model definitions, to compile them, to browse them, to solve them,
probe them, to manipulate the display units (e.g., ft/s) for reporting
variable values, to create reports and to run methods on them. One
could even point at a part and ask that it be made into a more refin
type (triggering the compiler to restart). As previously solved value
were not overwritten, they became the starting point for the more
complex model. Thus one could creep up on the solution by solvin
more and more complex versions of a model. Many of the tools we
there specifically to aid the user in debugging their models as they t
to solve them. A tool could tell a user that the model appeared to b
singular and why. Another set of tools aided in picking a consistent
of variables to fix before solving. Browsing allowed the user to look
all parts of the model. It was easy to check the configuration of a
model. One could ask that parts of a model be solved one at a tim

Experience by Peter Piela, Oliver Smith, Neil Carlberg and Art
Westerberg with ASCEND III demonstrated very clearly thatskilled
modelers could develop, debug and solve very complex models mu
more rapidly than they could with previously available tools, easily
Last modified: June 20, 1998 10:33 pm

234

ith
ns.
 for
ion
time

ey
s

est

000

tem

es.

he

ur
ere
se
of a

be
e

e
del.
meeting the original target of a order of magnitude reduction in time
required.

ASCEND IIIc In the fall of 1992, Kirk Abbott and Ben Allan approached Art
Westerberg and said they wanted to convert the ASCEND III system
from Pascal into C. They would also use Tcl/Tk for the interface. W
these changes, the system would then run on most Unix workstatio
Tom Epperly and Karl Westerberg had already created a C version
the compiler and solver. Abbott and Allan wanted to do this convers
even after they were warned that converting the system would take
that they could be using to do more apparently relevant work to
complete their PhD theses. They insisted2. They were aided by Tom
Epperly who, although located remotely, worked with them on the
compiler. In eight months and putting in excessively long hours, th
had a working system that could could mimic most of the capabilitie
of the ASCEND III system.

Several students and a few people outside CMU could now use the
system for modeling. Bob Huss and Boyd Safrit performed the hard
testing when they used ASCEND IIIc to model nonideal distillation
processes. They developed and solved models involving up to 15,
equations. Using a rudimentary capability for solving initial value
problems, Safrit also solved dynamic models.

2. It should be understood that Art Westerberg was tbrilled they insisted on doing this conversion.

With use came the
recognition of a need
for improvements.

Attempts to teach ASCEND to others showed that it was a great sys
to speed up the modeling process for experts. Nonexperts found it
nearly impossible to reuse models contained in the ASCEND librari
The library for computing the thermodynamic properties of mixtures
was particularly elegant but almost impossible to reuse. Modelers
would reinvent their own properties models quickly, unable to use t
library models.

Models larger than about 17,000 equations took more space than o
largest workstation could provide. The models by Huss and Safrit w
pushing the limits. Abbott and Allan established the goal to increa
the size possible by a factor of at least ten, i.e., to about a quarter
million equations. ASCEND needed to solve models more quickly.
Without counting the increases coming from faster and larger
hardware, the goal here too was a factor of ten. If solving were to
that fast, then compiling would stand out as unacceptably slow. Th
goal: ten times faster.

Abbott, with Allan, exposed a new style for modeling in ASCEND. H
created prototypes of the various repeating types that occur in a mo
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

235 BRIEF HISTORY OFASCEND

arts
a
pile

e

fore

 by

f
e,
zed

e
f a

ers
me

e
elf.

mple
 use
l.
n

cal,

T

0
ytes
The compiled equations and other data structures to define these
prototypes then became available for all subsequent instances of p
that were of the same type as the prototype. Only the instance dat
needed to be developed separately. Demonstrated impact on com
times was dramatic.

Abbott, with Allan, looked at how to speed up the solving times. Th
new twist was to use the model structure as defined by the model
definition to expose a global reordering for the model equations be
presenting them for solution. The time to solve the linear Newton
equations as the inner loop of solving nonlinear equations dropped
factors of 5 to 10.

ASCEND IV Ben Allan has taken a lead role and worked with Mark Thomas,
Vicente Rico-Ramirez and Ken Tyner to produce the next version o
ASCEND, ASCEND IV. Playing the role of tester, an undergraduat
Jennifer Perry, demonstrated that Allan’s introduction of parameteri
types dramatically increased the reusability of the model libraries,
converting it into an almost automatable exercise. Adding languag
constructs to permit the modeler to state what constitutes misuse o
model leads to the system generating diagnostics the model itself
defines. Allan also completely revised the data structures and the
interface between ASCEND and its solvers so that adding new solv
is much less work and so the solvers in ASCEND themselves beco
separable from ASCEND and usable by others.

Allan also defined the addition of NOTES to ASCEND which are lik
methods except they are not understood by the ASCEND system its
Rather they can be passed to programs outside ASCEND. An exa
includes documentation notes which a documentation manager can
to compose answers to queries about what is in an ASCEND mode
Another is a note that contains a bitmap description of a part that a
external package could use to draw a symbol of that part.

ASCEND IV can now handle discrete variables and constants (logi
binary, symbolic, and integer). It supports the solver directing that
parts of the model be excluded when solving such as when solving
using implicit enumeration (dynamic model modification). CONOP
is now attached for optimization. The standard solver is rapidly
becoming much more robust. ASCEND IV can generate a GAMS
model corresponding the ASCEND model, giving access to solvers
GAMS has that ASCEND does not.

While not quite there just yet, the goal to compile and solve 250,00
equations on a 150 megahertz workstation having about 250 megab
of fast memory in a few tens of minutes is in sight.
Last modified: June 20, 1998 10:33 pm

236
INDEX

Symbols
$ 167
. 168
: label indicator 168
Numerics
4 167
4+ 165
A
ambiguity 177
ARE_THE_SAME

merging streams 156
array 172

sparse 173
ASCEND III 166
associative array 172
B
BNF 165
braces 167, 171
brackets 168
C
colon 168
comment 167
compiling 177
Conditional Modeling 122
currency 170
D
Data Type 178
declarative 179
default_self 178
dimensionality 169

wild card 170
dot 168
double colon 168
double dot 168
E
efficiency

compiling equations 167
electric current 169
environment variables 23
F
flash

simple 153

FLEX 165
Flowsheeting 144
FOR 174
formal definition 175
ftp 165
G
gas constant 171
I
implicit (anonymous) type or class 176
impossible equations 177
impossible statement 178
index variable 174
instance 175
instantiation 177
integer range 168
integration 118
IS_A 166
J
jagged array 173
L
label 174
length 169
LHS 167
limit

strings 171
luminous intensity 170
M
mass 169
Matlab 174
matrix algebra 174
MAX_INTEGER 168
MAX_REAL 169
METHODS 179
mixer 150
MKS 169
model 179
N
name list 175
names 167

compound 167
O
ordered

sets not 172
ordered list 175
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpIX.doc

237 INDEX
P
parameterized model 180
parentheses 167
pending statements 177
plane angle 170
Q
quantity 169
R
reactor

simple 152
reusable 180
RHS 167
S
semantics 164
semicolon 168
sets 172
solid angle 170
sparse array 173
splitter

simple 155
structural parameter 177

symbol 171
syntax 164
T
tabular data 118
temperature 170
time 169
type 175
U
unit

syntax 170
UNIVERSAL 179
V
value

integer 168
real 169

W
WHEN 122
Y
YACC 165
Last modified: June 20, 1998 10:33 pm

	ASCEND IV
	Advanced System for Computations in ENgineering De...
	Documentation Bird’s Eye View
	Documentation Detail Map
	Chapter 1 A typical scenario for running the ASCEN...
	Chapter 2 Getting Started with ascend
	2.1 Philosophy
	2.1.1 Getting the ASCEND system and installing it
	Installing the UNIX version
	Installing the PC version
	2.1.2 Starting ASCEND
	2.1.2.1 For PC users only
	2.1.2.2 For UNIX users only

	Environment Variables
	ASCENDDIST
	ASCENDHELP
	ASCENDLIBRARY

	Chapter 3 Script
	3.1 The Script Menu Bar
	3.1.1 Script File Menu
	New File
	Read File
	Import File
	Exit ASCEND
	Save
	Save As
	Buffer List

	3.1.2 Script Edit Menu
	Record actions
	Select all
	Delete statements
	Cut
	Copy
	Paste

	3.1.3 Script Execute Menu
	Run statements selected
	Step through statements selected

	3.1.4 Script Options window
	Save all options and appearances for all windows

	3.1.5 Script View window
	Font
	Save Script appearance
	Save all appearances

	3.1.6 Script Tools window
	3.1.7 Script Help menu
	On SCRIPT
	On getting started with ASCEND
	About ASCEND IV

	3.2 The Script Language
	3.2.1 Summary
	<arg>
	<a1,a2>
	<a1 a2>
	[a1]
	[a,b]
	qlfdid
	qlfpid
	{}

	3.2.2 Quick reference:
	ASSIGN
	BROWSE
	CLEAR_VARS
	COMPILE
	DELETE
	DISPLAY*
	INTEGRATE
	MERGE
	PLOT
	PRINT
	PROBE
	READ
	REFINE
	RESTORE*
	RESUME
	RUN
	SAVE*
	SHOW
	SOLVE
	WRITE

	3.2.3 Commands
	ASSIGN
	BROWSE
	CLEAR_VARS
	COMPILE
	DELETE
	DISPLAY
	INTEGRATE
	MERGE
	OBJECTIVE
	PLOT
	PRINT
	PROBE
	READ
	REFINE
	RESTORE
	RESUME
	RUN
	SAVE
	SHOW
	SOLVE
	WRITE

	3.3 Script Window Bindings
	M1
	M1-Drag
	Shift-M1[-Drag]
	Double-M1
	Double-M1-Drag
	Triple-M1
	Triple-M1-Drag
	M2
	M2-Held-Down
	M3
	Control-M1
	UNIX bindings:
	Control-k
	Control-w
	Meta-w
	Control-y
	Meta-y

	MSW bindings:

	Chapter 4 Library
	4.1 Menu Bar
	4.1.1 The file Menu
	Read types from file

	This is incorrect, but perhaps is as it ought to b...
	Close window
	Exit ASCEND

	4.1.2 The Edit Menu
	Create simulation
	Suggest methods
	Delete Simulation
	Delete all types

	4.1.3 The Display Menu
	Code
	Ancestry
	Refinement hierarchy
	External functions
	Hide type
	UnHide type
	Hide/Show Fundamentals

	4.1.4 The Find Menu
	ATOM by units
	Type by name
	Type by fuzzy name
	Pending statements
	To Display
	To Console
	To File

	4.1.5 The Options Menu
	Generate C binary
	Simplify compiled equations
	Save options

	4.1.6 The View Menu
	Font
	Open automatically
	Save appearance

	4.1.7 The export Menu
	Simulation to Browser
	Simulation to Solver
	Simulation to Probe

	4.1.8 The help Menu
	On LIBRARY

	4.2 Type Refinement Hierarchy Window

	Chapter 5 Browser
	5.1 The Menu Bar
	5.1.1 BROWSER File menu
	Read values
	Write values
	Close window
	Exit ASCEND

	5.1.2 BROWSER Edit Menu
	Run method
	Clear Vars
	Set value
	Refine
	Merge
	Compile
	Resume Compilation
	Create Part

	5.1.3 BROWSER Display menu
	Attributes
	Relations
	Conditional Relations
	Logical Relations
	Conditional Logical Relations
	Whens
	Plot
	Statistics

	5.1.4 BROWSER Find menu
	By name
	By type
	Aliases
	Where created
	Clique
	Eligible variables
	Active Relations
	Operands
	Pendings

	5.1.5 BROWSER Options menu
	Hide Passed Parts
	Suppress Atoms
	Display Atom Values
	Check Dimensionality
	Save Options
	Hide Names
	UnHide Names

	5.1.6 BROWSER view menu
	Font
	Open automatically
	Save window appearance

	5.1.7 BROWSER Export menu
	to Solver
	Many to Probe
	Item to Probe

	5.1.8 BROWSER Help menu
	On BROWSER

	Chapter 6 Solver
	6.1 The Solver Menu Bar
	6.1.1 Solver File Menu
	Close Window
	Exit ASCEND

	6.1.2 Solver Edit Menu
	Remove instance
	Select objective

	6.1.3 Solver Display Menu
	Status
	Unattached variables
	Unincluded relations
	Incidence matrix

	6.1.4 Solver Execute Menu
	Solve
	Single step
	Integrate

	6.1.5 Solver Analyze menu
	Reanalyze
	Debugger
	Overspecified
	Find dependent eqns.

	Numeric Dependency
	Structural Dependency
	Find unassigned eqns.
	Evaluate unincluded eqns.
	Find vars near bounds
	Find vars far from nominal

	6.1.6 Solver View Menu
	Font
	Open automatically
	Save Solver appearance

	6.1.7 Solver Export Menu
	to Browser
	to Probe

	6.2 Solver Button Bar
	Solver Select Button
	Solver Options Button
	Halt Button
	6.2.1 General parameters page
	Iterations before screen update
	CPU seconds before screen update
	Modified log epsilon
	Bound check epsilon
	Far from nom bignum
	Integrator state log
	Integrator observation log
	Integrator log SI units
	Integrator log columns
	Overwrite integer logs
	Check numeric rank after solving
	Show block summary

	6.3 Available Solvers
	6.3.1 QRSlv
	6.3.1.1 Parameters

	Time limit
	Iteration limit
	Minimum pivot (epsilon)
	Pivot tolerance
	Maximum residual
	Partitioning
	Detailed info
	Auto-resolve
	write to file SlvLinsol.dat
	show singletons details
	bipartial pivoting

	6.4 Debugger

	Chapter 7 The Data Probe Window
	7.1 Overview
	7.2 The File menu
	New buffer
	Read file
	Save
	Save as
	Print
	Close window
	Exit ASCEND
	Buffer list

	7.3 The Edit Menu
	Highlight all
	Remove selected names
	Remove all names
	Remove UNCERTAIN names
	Copy

	7.4 The View Menu
	Font
	Open automatically
	Save window appearance

	7.5 The Export Menu
	to Browser
	to Display

	7.6 The Probe Filter
	7.6.1 The Help Menu

	Chapter 8 ASCPLOT
	8.1 Plot maker
	8.1.1 The Edit Menu
	8.1.1.1 Load data set
	8.1.1.2 Save data set
	8.1.1.3 Unload data set
	8.1.1.4 Merge data sets
	8.1.1.5 Select grapher

	8.1.2 The Execute Menu
	8.1.2.1 View plot file
	8.1.2.2 Write plot file
	8.1.2.3 Insert column
	8.1.2.3.1 Insert after Column
	8.1.2.3.2 Column type
	8.1.2.3.3 Formula
	8.1.2.3.4 Insert at end (overrides Column)
	8.1.2.3.5 Forget this insertion

	8.1.2.4 Recalculate column
	8.1.2.5 Insert row
	8.1.2.6 Recalculate row

	8.1.3 The Display Menu
	8.1.3.1 Show data / Hide data
	8.1.3.2 Set plot titles
	8.1.3.2.1 Plot Title
	8.1.3.2.2 X Axis Title
	8.1.3.2.3 Y Axis Title
	8.1.3.2.4 Column # legend

	8.1.3.3 Load old plot
	8.1.3.4 Update plot
	8.1.3.5 Delete plot
	8.1.3.6 The grill

	8.2 Navigation

	Chapter 9 Display slave
	9.1 Overview
	9.2 Display File Menu
	Print
	Close window
	Exit ASCEND

	9.3 Display Edit Menu
	Cut
	Copy
	Paste

	9.4 Display View Menu
	Show comments in code
	Save Display options
	Font
	Open automatically
	Save window appearance
	9.4.1 Font
	9.4.2 Open automatically
	9.4.3 Display Help Menu

	9.5 Title line

	Chapter 10 ascend Units
	10.1 The Menu Bar
	Units vs dimensions
	Typical use
	10.1.1 Units File Menu
	Read file
	Save file
	Close window
	Exit ASCEND

	10.1.2 Units Edit Menu
	Set precision
	Set basic units

	10.1.3 Units Display Menu
	Show all units

	10.1.4 Units View Menu
	SI(MKS) set
	US Engineering set
	CGS set
	Font
	Open automatically
	Save window appearance

	10.1.5 Units Help Menu

	10.2 An essay on units vs dimensions
	10.2.1 On UNITS

	Chapter 11 The ascend Toolbox
	11.1 Exit
	11.2 Ascplot
	11.3 Help
	11.4 Utilities
	11.5 Internals
	11.6 Bug Report

	Chapter 12 The System Utilities Window
	12.1 Overview
	12.2 Variables
	12.2.1 WWW Root URL
	12.2.2 WWW Restart Command
	12.2.3 WWW Startup Command
	12.2.4 ASCENDLIBRARY Path*
	12.2.5 Scratch Directory
	12.2.6 Working Directory
	12.2.7 Plot Program Type
	12.2.8 Plot Program Name
	12.2.9 Text Edit Command
	12.2.10 Postscript Viewer
	12.2.11 Spreadsheet Command
	12.2.12 Text Print Command
	12.2.13 PRINTER Variable*
	12.2.14 ASCENDDIST Directory*
	12.2.15 TCL_LIBRARY Environment Variable*
	12.2.16 TK_LIBRARY Environment Variable*

	12.3 Buttons
	12.3.1 OK
	12.3.2 Save
	12.3.3 Read
	12.3.4 More
	12.3.5 Help

	Chapter 13 Font Selection Dialog
	13.1 Overview
	13.2 Font Menu
	13.3 Style Menu
	13.4 Cancel Button
	13.5 OK Button
	13.6 Current Font Sample
	13.7 Font Sampler Area
	13.8 Point Size Slider
	13.9 Current Font Selection
	13.10 Setting the Default Font

	Chapter 14 The Print Dialog
	14.1 Overview
	14.2 Settings
	14.2.1 Destination
	14.2.1.1 Print
	14.2.1.2 Write to file
	14.2.1.3 Append to file
	14.2.1.4 Enscript
	14.2.1.5 Custom

	14.2.2 Printer
	14.2.3 Name of file
	14.2.4 Enscript flags
	14.2.5 User print command

	14.3 Buttons
	14.3.1 OK
	14.3.2 Help
	14.3.3 Cancel

	Chapter 15 Solved simple modeling problems with AS...
	15.1 Roots of a polynomial
	15.1.1 Problem statement
	15.1.2 Answer

	15.2 Numerical integration of tabular data
	15.2.1 Problem statement
	15.2.2 Answer

	Chapter 16 A Conditional Modeling Example: Represe...
	16.1 The WHEN Statement
	16.2 The Problem Description
	16.3 The Code

	Chapter 17 A Simple Chemical Engineering Flowsheet...
	17.1 The problem description
	17.2 The code

	Chapter 18 The ASCEND predefined collection of mod...
	system.a4l
	atoms.a4l
	Typical use of library files
	Examples and scripts

	Chapter 19 The ASCEND IV language syntax and seman...
	19.1 Preliminaries
	ASCEND is cAsE sensitive!
	19.1.1 Punctuation
	keywords:

	Minor items:
	Tips:

	3:
	4
	4+
	LHS:
	RHS:
	Simple Names:
	Compound names:
	Groupings:
	« »
	(* *)
	()
	Efficiency tip:

	{ }
	[]
	.
	..
	:
	::
	;

	19.1.2 Basic Elements
	Boolean value
	User interface tip:

	Integer value
	Real value
	Reals stored in SI units
	Dimensionality:
	Name
	L
	M
	T
	E
	Q
	TMP
	LUM
	P
	S
	C
	Example of a dimensionally consistent equation.

	Unit expression
	Units
	Symbol Value
	Sets values
	We will say more about sets in 19.2.2.
	Sets are unordered.

	Arrays
	Arrays can be jagged
	Arrays are also instances
	Not contiguous storage
	Index variable
	Label:
	Lists
	Ordered lists:
	19.1.3 Basic Concepts
	Instances and types
	Implicit types
	Parsing
	Instantiation
	default_self

	19.2 Data Type Declarations
	Type qualifiers:
	UNIVERSAL
	Tip: Don’t use UNIVERSAL variables in relations.

	19.2.1 Models
	MODEL

	Simple models:
	foo
	bar

	Parameterized Models
	column(n,s)
	flowsheet

	19.2.2 Sets
	Set Declaration:
	:==

	Set Operations
	UNION[setlist]
	+
	A+B is shorthand for UNION[A,B]

	INTERSECTION[]
	*
	A*B is shorthand for INTERSECTION[A,B]

	Set difference:
	-
	CARD[set]
	CHOICE[set]
	IN
	SUCH_THAT (* 4 *)
	"|" is shorthand for SUCH_THAT.

	|

	19.2.3 Constants
	real_constant

	CONSTANT declaration example:
	integer_constant
	symbol_constant
	boolean_constant

	Setting constants
	:==
	It is suggested, but not required, that names of a...

	19.2.4 Variables
	ATOM
	DEFAULT, DIMENSION, and DIMENSIONLESS
	solver_var is a special case of ATOM and we will s...

	real
	integer
	boolean
	symbol

	Setting variables
	:=
	Note that := IS NOT =.

	Tabular assignments
	DATA (* 4+ *)

	19.2.5 Relations
	Mathematical expression:
	Numerical relations
	Relational operators:
	=, >=, <=, <, >, <>
	MAXIMIZE, MINIMIZE

	Binary Operators:
	+
	-
	*
	/
	^

	Unary Operators:
	-
	ordered_function()

	Real functions of sets of real terms:
	SUM[term set]

	Empty SUM[] yields wild 0.
	PROD[term set]

	Possible future functions:
	MAX[term set]
	MIN[term set]

	19.2.6 Derivatives in relations (* 4+ *)
	19.2.7 External relations
	19.2.8 Conditional relations (* 4 *)
	19.2.9 Logical relations (* 4 *)
	Logical expression
	19.2.10 NOTES (* 4 *)

	19.3 Declarative statements
	Statements
	Compound statements
	CASE statements are here, finally!
	Type declarations are not compound statements.

	ASCEND operator synopses:
	IS_A
	IS_REFINED_TO
	ALIASES (* 4 *)
	ALIASES/IS_A (*4*)
	WILL_BE (* 4 *)
	ARE_THE_SAME
	WILL_BE_THE_SAME (* 4 *)
	WILL_NOT_BE_THE_S AME (* 4 *)
	ARE_NOT_THE_SAME (* 4+ *)
	ARE_ALIKE
	FOR/CREATE
	FOR/CHECK
	SELECT/CASE (*4*)
	CONDITIONAL (*4*)
	WHEN/CASE (* 4 *)
	Reminder:

	Operators in detail:
	IS_A
	IS_REFINED_TO
	ALIASES (* 4 *)
	ALIASES/IS_A (*4*)
	WILL_BE (* 4 *)
	ARE_THE_SAME
	WILL_BE_THE_SAME (* 4 *)
	WILL_NOT_BE_THE_S AME (* 4 *)
	ARE_NOT_THE_SAME (* 4+ *)
	ARE_ALIKE
	FOR/CREATE
	SELECT/CASE (*4*)
	CONDITIONAL (*4*)
	WHEN/CASE (* 4 *)

	19.4 Procedural statements
	METHODS
	ADD METHODS IN type_name; (*4*)
	REPLACE METHODS IN type_name; (*4*)
	ADD METHODS IN DEFINITION MODEL;
	Initialization routines:
	METHOD

	Procedural assignment
	FOR/DO statement
	IF
	SWITCH (* 4 *)
	CALL
	RUN

	Type access to methods:

	19.5 Parameterized models
	19.5.1 The parameter list
	19.5.2 The WHERE list
	19.5.3 The assignment list
	19.5.4 Refining parameterized types

	19.6 Miscellany
	19.6.1 Variables for solvers
	solver_var

	Attributes:
	lower_bound
	upper_bound
	nominal
	fixed
	generic_real

	Kluges for MILPs
	solver_semi, solver_integer, solver_binary
	Integers are relaxable.

	Kluges for ODEs
	ivpsystem.a4l

	19.6.2 Supported attributes
	(* 4+ *)

	19.6.3 Single operand real functions:
	exp()
	ln()
	sin()
	cos()
	tan()
	arcsin()
	arccos()
	arctan()
	erf()
	sinh()
	cosh()
	tanh()
	arcsinh()
	arccosh()
	arctanh()
	lnm()
	Operand dimensionality must be correct.

	Discontinuous functions:
	abs()

	19.6.4 Logical functions
	SATISFIED() (*4*)

	19.6.5 UNITS definitions

	Chapter 20 Units library
	20.1 Units
	20.2 The basic units in an extended SI MKS system
	20.3 Units defined in measures.a4l, the default sy...
	distance
	mass
	time
	molecular quantities
	temperature
	money
	reciprocal time (frequency)
	area
	volume
	force
	pressure
	energy
	power
	absolute viscosity
	electric charge
	miscellaneous electro- magnetic fun
	numeric constants of some interest
	constant based conversions
	subtly dimensionless measures
	light quantities
	miscellaneous rates
	time variant conversions

	Chapter 21 Brief History of ASCEND
	ASCEND I
	ASCEND II
	ASCEND III
	ASCEND IIIc
	With use came the recognition of a need for improv...
	ASCEND IV

	INDEX
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

