ASCEND IV

Advanced System for Computations in ENgineering Design

A portable mathematical modeling environment.
Release 0.8
Sept 26, 1997
Partial revision for release 0.9
June 20, 1998

Authors:
Arthur Westerberg and research group
Department of Chemical Engineering, Carnegie Mellon University
Benjamin Allan, Vicente Rico-Ramirez, Mark Thomas, Kenneth Tyner
Other Helpful People Too Numerous To Mention Here

Sponsors 1993-1997:
Computer Aided Process Design Consortium
Institute for Complex Engineered Systems
National Science Foundation grant for the Engineering Design Research Center
US Department of Energy

We are deeply indebted to the authors and contributors at large who created Tcl/Tk. Many thanks
Dr. Osterhout!

Keywords:

ASCEND, CONOPT, EDRC, FORTRAN, GAMS, GNU license, GUI, ICES, LSODE, Leven-
berg-Marquardt, MINLP, NLP, Newton, ODE, Tcl, Tk, UNIFAC, boundary value, chemical engi-
neering, collocation, complex engineered system,, conditional modeling, copyleft, degrees of
freedom, design, design research cente,r distillation, dynamic, engineering design, free software,
freeware, initial value, initialization, interactive, large-scale, linear algebra, linear equations,
mathematical modeling, mixed integer, modeling system, nonideal thermodynamics, nonlinear
program, object oriented, optimization, ordinary differential equation, Pitzer vapor, reactive distil-
lation, scalable, scaling, simulation, solving, structural analysis, Wilson liquid.

Documentation Bird’s Eye View

ASCEND IV 1
Advanced System for Computations in ENgineering Design 1
Documentation Bird’s Eye View 2
Documentation Detail Map 4

A typical scenario for running the ASCEND system 18
Getting Started with ASCEND 22
Script 26
Library 38
Browser 50
Solver 60

The Data Probe Window 72
ASCPLOT 78
Display slave 86
ASCEND Units 90

The ASCEND Toolbox 96
The System Utilities Window 100
Font Selection Dialog 108
The Print Dialog 112
Solved simple modeling problems with ASCEND 116
A Conditional Modeling Example: Representing a Superstructure 122
A Simple Chemical Engineering Flowsheeting Example 144
The ASCEND predefined collection of models 162
The ASCEND IV language syntax and semantics 164
Units library 218
Brief History of ASCEND 232
INDEX 236

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpLOP.doc

Last modified: June 20, 1998 10:33 pm

Getting Start

Script

windows

Documentation Detail Map

A typical scenario for running the ASCEND system 18
ed with ASCEND 22
Philosophy 22
Getting the ASCEND system and installing it 22
Starting ASCEND 23
0 ASCENDDIST 23
o] ASCENDHELP 23
o] ASCENDLIBRARY 23
26
Figure ASCEND'’s Script Window 26
The Script Menu Bar 27
Script File Menu 27
o] New File 27
o] Read File 27
o] Import File 27
o] Exit ASCEND 27
0] Save 27
o] Save As 27
0 Buffer List 27
Script Edit Menu 27
o] Record actions 27
o] Select all 28
o] Delete statements 28
o] Cut 28
o] Copy 28
0] Paste 28
Script Execute Menu 28
o] Run statements selected 28
o] Step through statements selected 28
Script Options window 28
o] Save all options and appearances for all
28
Script View window 29
o] Font 29
0] Save Script appearance 29
o] Save all appearances 29
Script Tools window 29
Script Help menu 29
o] On SCRIPT 29
o] On getting started with ASCEND 29
o] About ASCEND IV 30
The Script Language 30
Summary 30

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

o] <arg> 30
0] <al,a2> 30
o] <al a2> 30
o] [al] 30
o] [a,b] 30
o] glfdid 30
o] glfpid 30
o] {} 30
Quick reference: 31
o] ASSIGN 31
o] BROWSE 31
o] CLEAR_VARS 31
o] COMPILE 31
o] DELETE 31
o] DISPLAY* 31
o] INTEGRATE 31
o] MERGE 31
o] PLOT 31
o] PRINT 31
o] PROBE 31
o] READ 31
o] REFINE 31
o] RESTORE* 31
o] RESUME 31
o] RUN 31
o] SAVE* 31
o] SHOW 31
o] SOLVE 31
o] WRITE 31
Commands 32
o] ASSIGN 32
o] BROWSE 32
o] CLEAR_VARS 32
o] COMPILE 32
o] DELETE 32
o] DISPLAY 32
o] INTEGRATE 32
o] MERGE 33
o] OBJECTIVE 33
o] PLOT 33
o] PRINT 33
o] PROBE 33
0 READ 33
o] REFINE 34
o] RESTORE 34
o] RESUME 34

Last modified: June 20, 1998 10:33 pm

o] RUN 34
o] SAVE 34
0 SHOW 34
o] SOLVE 34
o] WRITE 35
o] 35
Script Window Bindings 35
o] M1 35
o] M1-Drag 35
o] Shift-M1[-Drag] 35
o] Double-M1 35
o] Double-M1-Drag 35
o] Triple-M1 35
o] Triple-M1-Drag 35
o] M2 35
o] M2-Held-Down 35
o] M3 35
o] Control-M1 35
o] Control-k 36
o] Control-w 36
o] Meta-w 36
o] Control-y 36
0] Meta-y 36
Library 38
Figure ASCEND Library Window. 38
Figure Data structure used to store type defini-
tions. 40
> Menu Bar 40
- The file Menu 40
o] Read types from file 40
o] Close window 41
o] Exit ASCEND 41
- The Edit Menu 41
o] Create simulation 41
o] Suggest methods 41
o] Delete Simulation 41
o] Delete all types 42
Figure The Create Simulation Dialog 42
- The Display Menu 42
o] Code 42
0] Ancestry 42
o] Refinement hierarchy 42
o] External functions 42
o] Hide type 42
o] UnHide type 42
o] Hide/Show Fundamentals 43

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

Unhide.

Browser

Figure Select the fundamental type to Hide or

43
The Find Menu 43
o] ATOM by units 43
o] Type by name 43
Figure The Library’s Find Type dialog. 44
o] Type by fuzzy name 44
o] Pending statements 44
o] To Display 44
o] To Console 44
o] To File 44
The Options Menu 44
o] Generate C binary 45
o] Simplify compiled equations 45
0 Save options 45
The View Menu 45
0] Font 45
o] Open automatically 45
o] Save appearance 45
The export Menu 45
o] Simulation to Browser 46
o] Simulation to Solver 46
o] Simulation to Probe 46
The help Menu 46
o] On LIBRARY 46
Type Refinement Hierarchy Window 46

Figure The Type Refinement Window. 47
Figure The Parts window displays the parts. 47

Figure The Hierarchy Roots Window. 49
50
Figure ASCEND'’s Browser window. 50
The Menu Bar 51
BROWSER File menu 51
o] Read values 51
0] Write values 51
o] Close window 51
0 Exit ASCEND 51
BROWSER Edit Menu 51
o] Run method 51
o] Clear Vars 52
0] Set value 52
0] Refine 52
0 Merge 52
o] Compile 53
o] Resume Compilation 53
0] Create Part 53

Last modified: June 20, 1998 10:33 pm

Solver

BROWSER Display menu

o] Attributes

0 Relations

o] Conditional Relations

o] Logical Relations

0 Conditional Logical Relations

o] Whens

o] Plot

0 Statistics
BROWSER Find menu

0] By name

0] By type

o] Aliases

o] Where created

0 Clique

o] Eligible variables

o] Active Relations

o] Operands

0 Pendings
BROWSER Options menu

0 Hide Passed Parts

0 Suppress Atoms

o] Display Atom Values

o] Check Dimensionality

o] Save Options

o] Hide Names

o] UnHide Names
BROWSER view menu

0] Font

o] Open automatically

o] Save window appearance
BROWSER Export menu

o] to Solver

o] Many to Probe

53
53
53

53

53
54
54
54
54
54
54
54
56

56
57
57

57

57

57
57
57
57

57

58

58

58

58

58
58

58

58

58

58
58

Figure Filtering instances sent to the Probe 59

(0]

Item to Probe

BROWSER Help menu

(0]

On BROWSER

Figure Solver Window
The Solver Menu Bar
Solver File Menu

(0]
(0]

Close Window
Exit ASCEND

Solver Edit Menu

(0]

Remove instance

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

59
59
59

60

60
61

61
61

61

61

61

o] Select objective 61
- Solver Display Menu 61
o] Status 61
o] Unattached variables 61
o] Unincluded relations 61
0] Incidence matrix 61
Figure The Incidence Matrix 62
- Solver Execute Menu 62
0 Solve 62
o] Single step 62
0] Integrate 63
- Solver Analyze menu 63
o] Reanalyze 63
o] Debugger 63
0 Overspecified 63
o] Find dependent eqns. 63
o] Find unassigned eqns. 63
o] Evaluate unincluded egns. 63
o] Find vars near bounds 63
o] Find vars far from nominal 64
- Solver View Menu 64
o] Font 64
o] Open automatically 64
0] Save Solver appearance 64
- Solver Export Menu 64
0] to Browser 64
o] to Probe 64
Solver Button Bar 64
o] Solver Select Button 64
o] Solver Options Button 65
o] Halt Button 65
General parameters page 65
Figure General Parameter Page 65
Available Solvers 67
QRSIv 67
Debugger 69
Figure The Debugger Window 70
The Data Probe Window 72
= Overview 72
Figure Probe window 73
The File menu 73
0 New buffer 73
o] Read file 74
0] Save 74
0] Save as 74
o] Print 74

Last modified: June 20, 1998 10:33 pm

ASCPLOT

Display slave

0 Close window
o Exit ASCEND
o] Buffer list

The Edit Menu
o] Highlight all

o] Remove selected names

o] Remove all names

o Remove UNCERTAIN names

o] Copy
The View Menu

o Font

o] Open automatically

o] Save window appearance
The Export Menu

o] to Browser

o] to Display
The Probe Filter
The Help Menu
Figure Probe import filter

Plot maker
Figure The Ascend Plot Window
The Edit Menu
The Execute Menu
Figure The Create Data Window
The Display Menu
Figure The Graph Generics Window
Figure Complete Plot
Navigation
Figure Phase Diagram

Overview

Figure Display slave window
Display File Menu

o] Print

o] Close window

o] Exit ASCEND
Display Edit Menu

o] Cut
0 Copy
o] Paste
Display View Menu
o] Show comments in code
o] Save Display options
0] Font
o] Open automatically

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

10

74
74
74
74
74
74
74
74
74
75
75
75
75
75
75
75
75
75
76
78
78
78
79
79
80
81
82
83
84
85
86
86
86
87
87
87
87
87
87
87
87
87
87
87
87
88

o] Save window appearance 88

- Font 88
- Open automatically 88
- Display Help Menu 88
Title line 88
ASCEND Units 90
The Menu Bar 90
o] Units vs dimensions 90
o] Typical use 90
Figure The Units of measure window 91
- Units File Menu 91
o] Read file 91
o] Save file 91
o] Close window 91
o] Exit ASCEND 92
- Units Edit Menu 92
o] Set precision 92
0 Set basic units 92
- Units Display Menu 92
o] Show all units 92
- Units View Menu 92
o] SI(MKS) set 92
o] US Engineering set 92
o] CGS set 92
o] Font 92
o] Open automatically 92
o] Save window appearance 92
- Units Help Menu 93
i’ An essay on units vs dimensions 93
On UNITS 94
The ASCEND Toolbox 96
Figure The ASCEND Toolbox window. 96
Exit 97
Ascplot 97
Help 97
Utilities 97
Internals 97
" Bug Report 98
The System Utilities Window 100
" Overview 100

Figure The System Utilities window manages
ASCEND'’s interaction with the operating system and with other pro-

grams. 100

" Variables 101

- WWW Root URL 101

- WWW Restart Command 102

Last modified: June 20, 1998 10:33 pm

12

- WWW Startup Command 102

- ASCENDLIBRARY Path 102

- Scratch Directory 103

- Working Directory 103

- Plot Program Type 103

- Plot Program Name 103

- Text Edit Command 103

- Postscript Viewer 104

- Spreadsheet Command 104

- Text Print Command 104

- PRINTER Variable 104

- ASCENDDIST Directory 104

- TCL_LIBRARY Environment Variable 105

- TK_LIBRARY Environment Variable 105

:: Buttons 105

- OK 106

- Save 106

- Read 106

- More 106

- Help 106

Font Selection Dialog 108

> Overview 108

Figure The font selection dialog. 108

Font Menu 109
Style Menu 109
Cancel Button 109
OK Button 109
Current Font Sample 110
Font Sampler Area 110
Point Size Slider 110
Current Font Selection 110

i’ Setting the Default Font 110

The Print Dialog 112

> Overview 112

Figure The print dialog. 112

.. Settings 112

- Destination 112

- Printer 114

- Name of file 114

- Enscript flags 114

- User print command 114

" Buttons 115

- OK 115

- Help 115

- Cancel 115

Solved simple modeling problems with ASCEND 116

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

13

i’ Roots of a polynomial

- Problem statement

- Answer

i’ Numerical integration of tabular data
- Problem statement

- Answer

116
117
117
118
118
119

A Conditional Modeling Example: Representing a Superstructure

122

Figure Superstructure used in the example of the

appllcatlon of the when statement122
The WHEN Statement
The Problem Description
The Code
A Simple Chemical Engineering Flowsheeting Example
The problem description

The code
The ASCEND predefined collection of models
0] system.a4l
o] atoms.a4l
o] Typical use of library files
0 Examples and scripts

The ASCEND IV language syntax and semantics
" Preliminaries

- Punctuation

keywords:

**)

()

{}

[]

- Basic Elements

cooooooooocooMoooooooooo

L
M
T
E
Q
TMP
LUM
P
S
C

- Basic Concepts

122
124
124
144
144
145
162
162
162
163
163
164
165
166
166
167
167
167
168
168
168
168
168
168
168
169
169
169
169
169
170
170
170
170
170
175

Last modified: June 20, 1998 10:33 pm

14

Data Type Declarations 178
o] UNIVERSAL 179
- Models 179
o] MODEL 179
o] foo 179
0 bar 179
o] column(n,s) 180
o] flowsheet 180
- Sets 181
0] == 181
o] UNION[setlist] 181
(o] + 181
o] INTERSECTION]] 182
o] * 182
0 - 182
o] CARD[set] 182
o] CHOICE][set] 182
o] IN 182
0 SUCH_THAT (* 4 *) 183
o] | 183
- Constants 184
o] real_constant 184
o] integer_constant 184
o] symbol_constant 184
o] boolean_constant 184
0] == 185
- Variables 185
o] ATOM 185
o] DEFAULT, DIMENSION, and DIMEN-
SIONLESS 185
o] real 186
o] integer 186
0 boolean 186
o] symbol 186
0] = 186
0 DATA (* 4+ %) 187
o] 188
- Relations 188
0 =, >=, <=, <, >, <> 189
o] MAXIMIZE, MINIMIZE 189
o] + 189
o] - 189
o] * 189
o] / 189
o] n 189
o] - 189

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

15

ordered_function()
SUM[term set]
PRODJterm set]
MAX[term set]

o] MIN[term set]
- Derivatives in relations (* 4+ *)
- External relations
- Conditional relations (* 4 *)
- Logical relations (* 4 *)
- NOTES (* 4 ¥
i’ Declarative statements
IS_A
IS_REFINED_TO
ALIASES (* 4 %)
ALIASES/IS_A (*4%)
WILL_BE (* 4 *)
ARE_THE_SAME

o O 0O

(@)

ARE_ALIKE
FOR/CREATE
FOR/CHECK
SELECT/CASE (*4*)
CONDITIONAL (*4%)
WHEN/CASE (* 4 *)
IS_A
IS_REFINED_TO
ALIASES (* 4 *)
ALIASES/IS_A (*4%)
WILL_BE (* 4)
ARE_THE_SAME

ARE_ALIKE
FOR/CREATE
SELECT/CASE (*4*)
CONDITIONAL (*4%)
0 WHEN/CASE (* 4 ¥)
Procedural statements
o METHODS

OO0 0000000000000 O0O0DO0DO0OD0DO0DO0ODO0ObO0OO0OOO

WILL_BE_THE_SAME (* 4 %)
WILL_NOT_BE_THE_SAME (* 4 *) 196
ARE_NOT_THE_SAME (* 4+ ¥)

WILL_BE_THE_SAME (* 4 %)
WILL_NOT_BE_THE_SAME (* 4 *) 202
ARE_NOT_THE_SAME (* 4+ ¥)

189
189
190
190
190

190

190
191
191

191
194
195

195
195
195

195

195

196

196
196
196
196
196
196
196
197
197
198
199
200
200
202

202
202
203
204
204
204
204
204

0 ADD METHODS IN type_name; (*4*%)

205

0] REPLACE METHODS IN type_name,;

(*4%) 205

Last modified: June 20, 1998 10:33 pm

16

o] ADD METHODS IN DEFINITION
MODEL; 205
o] METHOD 205
o] FOR/DO statement 206
o] IF 207
o] SWITCH (* 4 *) 207
o] CALL 207
o] RUN 207
i’ Parameterized models 208
- The parameter list 208
- The WHERE list 210
- The assignment list 210
- Refining parameterized types 210
i’ Miscellany 211
- Variables for solvers 211
o] solver_var 211
o] lower_bound 211
o] upper_bound 211
0 nominal 211
o] fixed 212
o] generic_real 212
0] solver_semi, solver_integer,
solver_binary 212
o] ivpsystem.a4l 212
- Supported attributes 213
o] (*4+7) 213
- Single operand real functions: 213
o] exp() 213
o] In() 213
o] sin() 213
o] cos() 213
o] tan() 213
0 arcsin() 213
o] arccos() 213
o] arctan() 213
o] erf() 213
o] sinh() 213
o] cosh() 213
o] tanh() 214
0 arcsinh() 214
o] arccosh() 214
0] arctanh() 214
o] Inm() 214
o] abs() 214
- Logical functions 215
o] SATISFIED() (*4%) 215

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

17

- UNITS definitions 215
Units library 218
; Units 218

The basic units in an extended SI MKS system 218
i’ Units defined in measures.a4l, the default system units li-
brary of atoms.a4l. 219
Brief History of ASCEND 232

Last modified: June 20, 1998 10:33 pm

CHAPTER 1

18

A TYPICAL SCENARIO FOR RUNNING
THE ASCEND SYSTEM

The ASCEND system is a modeling environment. We have designed it
to allow modelers to pose, debug and solve or optimize models
described by up to of the order of a hundred thousand nonlinear
algebraic equations on a conventional UNIX workstation or PC running
Windows NT4 or Windows 95. The ASCEND system comprises three
major parts: the ASCEND modeling language for posing models, the
ASCEND interactive environment to allow users to compile, debug and
execute models, and a suite of solvers and optimizers.

Detailed information on modeling appears in Chapter 15, Chapter 16,
Chapter 17, and the Howto-ASCEND documents. The primary aim of
this book is to describe the graphic user interface of ASCEND (a
moving target if ever there was one) and to serve as a language
reference (Chapter 19). You would typically proceed as follows to use
the ASCEND GUI for modeling.

1. Using your favorite text editor (e.qg., xem]a)cyou will create a
model of the problem you wish to solve in the ASCEND
modeling language. ASCEND models are type definitions. Each
model typically includes a declaration of the parts from which it
Is constructed, including variables, instances of previously
defined types and arrays of any of these. Each model also
includes the equations it adds to the model definition over and
above those equations that its parts will provide. Finally if you
abide by our advice on model writing, you will also write three or
four methods that you will later run interactively on the compiled
model instance to prepare it to be solved.

If the model is particularly complex, you will probably create
your model using types defined earlier by yourself and others.
For chemical process flowsheet models, we provide a library of
types. We also provide a file that contains most of the types of
variables and constants anyone would use to construct a model.

2. Start up the interactive ASCEND user interface by typing

1. Xemacs is a very powerful text editor which is widely used on UNIX workstations. It is available for free
for both UNIX workstations and PCs through the WWW (search on xemacs).

[afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

19

ATYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

‘ascend’ on the Unix shell command line or double clicking on

the ASCEND icon on a PC. A number of different tool sets, each
represented by a special window, open up on the screen. The one
you will likely focus on at first is the SCRIPT window. In this
window under Tools, you will open whichever tool window you
want to work with at first, probably the LIBRARY tool set which
provides tools to load text files containing ASCEND models.

You will likely move and/or resize these windows.

Using a tool in the LIBRARY tool set, you will load the files
containing the previously defined types of which your model
makes use. You will open last the file containing the model you
have just written. Unless you are incredibly skilled and/or lucky,
you will see several error messages indicating that you have not
correctly posed your model as the system attempts to load your
new file. Moving back to your favorite editor you will correct
syntax errors discovered by this file loading process, attempt
again to load, make more corrections, etc.

Once your new model description can pass the loading process
without errors, you will compile a simulation for it. Again there
could be errors.

You will export this compiled simulation to the BROWSER tool
set so you can look at the model, examining all its parts. If there
were compiler errors, you may use tools in this tool set to aid you
to find exactly what you have done wrong in posing the model.

For example, if it is a particularly complex model, you will
methodically examine it to see if you have configured it as you
wanted.

Once you are through inspecting the model and have removed all
the errors that of which you are aware, you will prepare the model
to be solved. This you will do by asking the system to execute the
methods you should have written to go with your model
description. If you abide by the style of modeling that we
strongly advocate, your model will have these methods attached
to it -- written before your first atttempt to compile it. These
methods will be for setting initial values for the variables, for
scaling the variables, and for setting the “fixed” flags for a
sufficient number of variables to make the model instance well-
posed. To be well-posed means a number of things, among them
that the model has the same number of variables to be calculated
as equations available for calculating them.

You will next export the model to the SOLVER tool set. When
importing a model, the SOLVER tool set analyzes the model to
discover how many variables and equations are in its description.

Last modified: June 20, 1998 10:33 pm

20

If it is not an optimization problem, the SOLVER looks to see if it
is well-posed and, if not, will issue warning messages and open
up an interactive tool provided to aid you to make it well-posed
right then and there. What you learn while using this tool you
will likely encode right away into the model description so the
next time you compile this model, it will become well-posed
without this interactive step.

8. You can interactively choose among the available solvers and will
most likely choose our nonlinear equation solving solver. With
fingers crossed, you will ask the solver to start solving.

9. Whether or not it solves successfully, you will likely return to the
BROWSER to inspect the results as you can view the value for
every variable and equation residual in the model using the
BROWSER. If the solving process fails, you can select tools both
in the BROWSER and the SOLVER to look for the likely
problem. For example, you may have posed your problem and its
initial conditions such that the solution is out of bounds. A tool
will tell you if the SOLVER has driven any of the variables in the
model to their bounds. Another will tell you if some of your
variables are poorly scaled. Yet another will investigate the
model to see it if is locally singular, and if it is, that tool will
report to you exactly which equations (by name) have given it
reason to believe that to be so. (In the near future, this tool will
also tell you that you should change what you are fixing and what
you are calculating to remove this singularity, if such a move
would prove useful. It will give you a list of variables from which
to choose for each of these trades.)

10. You may wish to see the output in units different from those
currently used. Opening the UNITS tools set will allow you to
change wholesale from S| to American Engineering and/or to
change individual units such as those for pressure from bars to
atm.

11. You may have opened the SCRIPT tool set before loading the
model files. Before doing all the above steps within ASCEND,
you may then have activated a tool to record all the steps you will
subsequently take to load, compile, initialize and solve the model.
This tool will construct a script from the steps it sees you taking.
You wlil likely then edit this script, for example to delete some of
the missteps you have taken, and then save it. You may also pick
out any of the steps in the script and execute them at any time
rather than look for the tools in the tool set windows. You would
use a script to aid you to repeat all the above steps quickly while
you are debugging a model. You will also prepare a script to hand
your model to someone else to execute. Indeed, your first

[afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

21

ATYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

experience with ASCEND may be to run a script that someone
else has provided so you can be sure to run your first example
successfully.

Last modified: June 20, 1998 10:33 pm

CHAPTER 2

2.1

GETTING STARTED WITH ASCEND

PHILOSOPHY

Our goal is to create a set of very powerful modeling/solving tools. A
side effect is that users can often find uses for the tools we did not
anticipate. Another is that, while we have tried to build a user interface
that lets every user from beginner to expert use our tools (or theirs
combined with ours!) in a comfortable fashion, we have almost
certainly erred on the side of giving the user too much control.
Knowing that to be the case, the user should fearlessly dive in and try to
use the system, at first by doing some of the simple problems we have
provided in this documentation. The first step, of course, is to start the
system up, the purpose of this section.

This chapter largely out of date. See howto-ascend.pdf and instructions
on http://www.cs.cmu.edu/~ascend/ascend_download.htm instead

2.1.1 &ETTING THE ASCEND SYSTEM AND INSTALLING IT

Installing the UNIX
version

ASCEND is available through our Web page. Using your web browser,
go the URL

http://www.cs.cmu.edu/~ascend/Home.html
Follow the instructions (the ftp link) there to download ASCEND.

If you are downloading a version to run on a UNIX workstation, then
find someone who is a UNIX expert to help you. The process will
involve transferring the source files for ASCEND along with a MAKE
file. The MAKE file will allow a UNIX specialist to compile ASCEND
and get it ready for use. There are detailed instructions that come with

23

Installing the PC
version

GETTING STARTED WITH ASCEND

this version to help in installing it. (Your expert’s expertise may be
very minimally required for installing it on most systems.)

If you are downloading to a PC running under either NT or Windows
95, you will be downloading ASCEND4.zip. Uncompress using
WinZip, double click on install.exe and follow the instructions.

2.1.2 SARTING ASCEND

2.1.2.1 PR PCUSERS ONLY

On the PC, simply double click on the ASCEND icon.

2.1.2.2 FOR UNIX USERS ONLY

Environment
Variables

ASCENDDIST

ASCENDHELP

ASCENDLIBRARY

The ASCEND 1V interface is an open system written in TCL on top of
several libraries of C code. The users are expected to customize it to
suit their individual tastes.

We assume users are at least aware of the existence of environment
variables and X resources. If you are not, contact your UNIX expert or
the person who installed ASCEND on your system.

Normally, if you are running oNIX your system administrator will
have set up a shell script to let you run ASCEND simply by typing
ascend . To see if this is true, try typing

ascend -h

If this doesn’t work, you may need to define the following environment
variables in yourlogin (or perhapsprofile) file, or if you can

find the ASCEND binary, it will frequently run without requiring a
shell script.

points to the directory where the ASCEND code has been installed.

setenv ASCENDDIST /usrl/ballan/asc4/test

points to the ASCEND help file tree on your system. The tree does not
have to reside with the rest of the distribution, though it may. This
should have been configured for you when was installed.

is a colon-separated list of directories where ASCEND looks for files
which are required by other files or which are read into ASCEND from
a script without giving a complete path name. If you do not define
ASCENDLIBRARY, the system will make guesses that usually work.

setenv ASCENDLIBRARY $ASCENDDIST/models/examples:$ASCENDDIST/models/libraries

Last modified: June 20, 1998 10:33 pm

PHILOSOPHY

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/getting_started.fm5

24

25

GETTING STARTED WITH ASCEND

Last modified: June 20, 1998 10:33 pm

CHAPTER3 &SCRIPT

The Script Utility (see Figure 3-1) allows us to record the process of solving a model, or any other
user interface process. Once this process is recorded in the form of a script, the script can be
repeated either fully or in part. The solution process for a given model can be communicated to
another modeler by distributing a script saved to a file. Following is an outline of the various
menus and buttons on the script window along with a library of the ASCEND commands which
can be recorded.

Ble E# Egeule Opams Wew Tosls H""l

This file is part of the ASCEND Modeling Library and is released
under the CNU Public License as described at the end of this file.
#

This file demonstrates the use of simple_fs.adc

DELETE TYPES;
READ FILE "simple_fs.adc";

COMPILE tc OF test_controller;
BROWSE tc;

RUN tc.values;

RUN tc.reset;

SOLVE tc;

RUN tc.scale;

SOLVE 1c;

Jusrifballeni newimede | = Hmple (5.8

Figure 3-1 ASCEND’s Script Window

27 SCRIPT

3.1 THE SCRIPT MENU BAR

3.1.1 ERIPT FILE MENU

The script file menu provides several functions for managing script
files. The script utility may contain multiple scripts but will only
display one at any given time. Upon startup a scratch workspace is

provided
New File Request a buffer name and creates a new buffer with this name.
Read File Requests a filename through the file selection box and proceeds to load

this file (which is assumed to contain ASCEND Script and/or Tcl
statements) into a new Script window buffer. No error checking is
performed on the loaded file.

Import File Requests a filename through the file selection box and appends the text
contained in this file to the end of the current buffer.

Exit ASCEND Exit the ASCEND system. You will asked to confirm that you wish to
do this.
Save Saves the text in the current script buffer window to the current script

file (indicated by the filename at the bottom of the script window). The
existing file is overwritten.

Save As Request a filename through the file selection box and saves the text in
the current script buffer window to this file. If the specified file exists,
it is overwritten.

Buffer List A list of scripts used in the current ASCEND session is displayed at the
bottom of the file menu. A script can be redisplayed in the script
window by selecting it from the buffer list. This window contains the
words “License-Warranty.tcl” when you first start ASCEND (which is
the initial contents of the Script buffer).

Note: if you alter the contents (for example, clear it), the system will

restore the modified contents and not the original contents. The file you
originally read remains unchanged unless you save to it.

3.1.2 SRIPT EDIT MENU

Record actions When the record function is activated a log of interface events with
defined ASCEND Script commands is appended to the end of the
current script window buffer. Most, but not all, interface events have

Last modified: June 20, 1998 10:32 pm

THE SCRIPTMENU BAR

Select all

Delete
statements

Cut

Copy

Paste

28

corresponding script commands. The record function can be turned on
and off by toggling the pull down button on the grill menu or the record
button at the bottom of the script window.

Selects (highlights) all text in the window. (A known bug exists here --
if you do not place the cursor into the text buffer the first time you use
this tool, the highlighting may not occur although the text is in fact
highlighted.)

Removes (cuts) theelectedext. The removed text is NOT saved for
later pasting.

Cut highlighted text to the computer paste buffer. You can paste this
text into any application that supports cut, copy and paste -- e.g., into
Framemaker or Excel.

Copy highlighted text to the computer paste buffer. You can paste this
text into any application that supports cut, copy and paste -- e.g., into
Framemaker or Excel.

Paste the contents of the computer paste buffer into the Scipt buffer at
the point of the cursor.

3.1.3 SRIPT EXECUTE MENU

Run statements
selected

Step through
statements
selected

This button takes the selected text, breaks it into statements delimited
by any semicolons (;) that appear in the selection, and executes each
statement in the Tcl global environment.

This button allows you to single step through the highlighted
statements. Two windows open: a small window that allows you to
proceed to the next statement (next button), change from single step to
running the rest of the script automatically (go button) or stop (stop
button) and the Display where, while single stepping, you will see the
statement being executed.

3.1.4 ZRIPT OPTIONS WINDOW

Save all

options and
appearances for
all windows

This tool saves the complete current appearance of the ASCEND
windows and all the options selected anywhere in the system. It writes
the text fileascend.adind a number of text files ending wid#ointo

the subdirectorascdatain your “home” directory. The ascend.ad file

is a collection of the information placed into the .a4o files at the time
you run this instruction. Its main role is to aid in dubugging.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

29 SCRIPT

At any time, you can go into any of the windows and use the
appropriate Save “window” appearance button to write a new .a4o file
for that window. You can also save new options where such tools exist
throughout the system, resulting in other .a4o files. The new
information in these .a4o files will not be reflected in ascend.ad file, but
it will be what is used to set window positions, etc., overriding what is
in the ascend.ad file.

3.1.5 ERIPT VIEW WINDOW

Font Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Save Script Saves the current settings for this window for font settings and window

appearance size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

Save all Saves a .a4o file for all the ASCEND windows. (See the above
appearances instruction to see the purpose of these files.)

3.1.6 ERIPT TOOLS WINDOW

Use the tools in this menu to open other windows in ASCEND when
they are closed or iconified.

This menu lists the major ASCEND windows. Selecting one of them
will open that window on your screen. See the help manuals for these
windows to find out more about them. This menu has almost exactly
the same content as the ASCEND toolbox window. See the
documentation corresponding to the toolbox for more details.

3.1.7 ERIPT HELP MENU

On SCRIPT Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

On getting Brings up a text description of where to look for help on getting started
started with with using ASCEND -- the howto book (i.e., it points to the pdf version
ASCEND of this document on the WWW.) You may, of course, look in any local

(but perhaps outdated) copy of the documentation.

Last modified: June 20, 1998 10:32 pm

THE SCRIPT LANGUAGE 30

About ASCEND IV Brings up a window telling you briefly about the GNU license and

<arg>
<al,a2>

<al a2>

[a1]
[a,b]
qlfdid

glfpid

{

other information about the ASCEND |V software. This same window
opens the first time you start ASCEND on your computer.

3.2 THE SCRIPT LANGUAGE

3.2.1 YIMMARY

Script keywords are commands defined for ASCEND (in CAPS) which
may be used on the commandline or in the Script. Keywords are
actually Tcl functions which encapsulate one or more of the C
primitives and other Tcl procedures, so that the user can conveniently
emulate button presses. A working knowledge of tcl is not necessary to
benefit from the Script’s functionality; however, the tcl literate user will
be able to create very powerful scripts.

Each keyword takes 0 or more arguments. The use of arguments is
given in the following syntax:

indicates the use @frg is required.
indicates that the use of eithet or a2 is required

indicates use of bothal andaZ2 required. Usually written
<al> <a2>

indicates the use @fl is optional.

indicates that eithex or b is optional, but not both.
is short for ‘QuaLiFieD IDentifier

is short for ‘QuaLiFied Procedure IDentifier’

OF, WITH, TO, and other args in all CAPS are modifiers to the
keyword which make it do different things.

It is generally best tenclose all object names and units {braces}
to prevent Tcl from performing string substitution.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

31 SCRIPT

3.2.2 QUICK REFERENCE :

ASSIGN Sets the value of something atomic
BROWSE Exports an object to the browser
CLEAR_VARS Sets all the fixed flags to FALSE
COMPILE Compiles a simulation of a given type
DELETE Deletes a simulation or the type library
DISPLAY* Displays something

INTEGRATE Runs an IVP integrator

MERGE Performs an ARE_THE_SAME

PLOT Creates a plot file

PRINT Prints one of the printable windows
PROBE Exports an object to the probe

READ Reads in a model, script, or values file.
REFINE Performs an IS_REFINED_TO
RESTORE* Reads a simulation from disk.
RESUME Resumes compiling a simulation

RUN Runs a procedure

SAVE* Writes a simulation to disk

SHOW Calls a unix plot program on a file from PLOT
SOLVE Runs the solver

WRITE Writes values in Tcl format to disk

* [tems not yet implemented.

Last modified: June 20, 1998 10:32 pm

THE SCRIPT LANGUAGE 32

3.2.3 (GOMMANDS
ASSIGN ASSIGN <qlfdid> <value> [units]

Sets the value of atom ‘qlfdid’ from the script. If value is real, it is
required to give a set of units compatible with the dimensions of the
variable. If the variable has no dimensions yet, ASSIGN will fix the
dimensions.

BROWSE BROWSE <qlfdid>

Exports glfdid to the browser, displaying it as the current instance in the
browser.

CLEAR_VARS CLEAR_VARS <qlfdid>
Sets the value of the fixed flag to FALSE for all the variables on glfdid.

COMPILE COMPILE <simname> [OF] <type>

Build a simulation of the type given with name simname. You can get
away with leaving out OF or spelling it wrong.

DELETE DELETE <TYPES,simname>

The modifier TYPES will cause all simulations to be deleted. If a
simulation name (simname) is specified only that simulation will be
deleted.

DISPLAY DISPLAY <kind> [OF] <qlfdid>

How glfdid is displayed varies with kind. kinds are: VALUE
ATTRIBUTES CODE ANCESTRY

INTEGRATE INTEGRATE {qlfdid args}

Runs an integrator on qglfdid. There are several permutations on the
syntax. It is best to have solved glfdid before hand to have good initial
values.

INTEGRATE qglfdid (assumes LSODE and entire range)
INTEGRATE qlfdid WITH (assumes entire range)
INTEGRATE glfdid FROM n1 TO n2 (assumes Isode)
INTEGRATE qglfdid FROM n1 TO n2 WITH integrator

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

33

MERGE

OBJECTIVE

PLOT

PRINT

PROBE

READ

SCRIPT

Requires:

e nl<n2

» (lfdid be of an integrable type (a refinement of ivp.)
MERGE <qlfdid1> [WITH] <qlfdid2>
ARE_THE_SAME glfdid1 and qlfdid2 if possible.
OBJECTIVE
Semantics of OBJECTIVE that will be supported are unclear as no
OBJECTIVE other than the declarative one is yet supported. Not
implemented yet

PLOT <qlfdid> [filename]

Writes plot data from glfdid, which must be a plottable instance, to
filename.

PRINT <PROBE,DISPLAY>
Prints out the text currently in the Probe or Display.
PROBE ONE gfdid

Exports the item glfdid to the Probe.

PROBE ALL qlfdid
PROBE glfdid

Exports items found in glfdid matching the current specifications of
Visit in the Browser. By default, all variables and relations.

Items always go to currently selected probe context.

READ [FILE,<VALUES,SCRIPT>] <filename>

Loads a file from disk. Searches for files in directories (Working
directory):.:.$ASCENDLIBRARY unless a full path name is given for
filename.

The modifier FILE is used to indicate that the file contains ASCEND

source code (ASCEND source code files normally have a .asc
extension).

Last modified: June 20, 1998 10:32 pm

THE SCRIPT LANGUAGE

REFINE

RESTORE

RESUME

RUN

SAVE

SHOW

SOLVE

34

The modifier VALUES is used to indicate that the file contains variable
data written by WRITE VALUES (These files normally have a .values
extension).

The modifier SCRIPT is used to indicate that the file is a script file to be
loaded at the end of the Script window (Script files normally have a .s
extension).

If neither VALUES nor SCRIPT are found, FILE will be assumed.
Note: You will get quite a spew from the parser if you leave out the
SCRIPT or VALUES modifier by accident.

REFINE <qlfdid> [TO] <type>

Refines qglfdid to given type if they are conformable.

RESTORE <file>

Reloads a simulation from disk

RESUME <simname>

Reinvokes compiler on simname.

RUN <qlfpid>

Run the procedure glfpid as if from the browser Initialize button.

SAVE <sim> [TO] <filename>

Filename will be assumed to be in Working directory (on utils page)
unless it starts with a / or a ~. Not implemented yet.

SHOW <filename,LAST>

Invokes the plotter program on the filename given or on the file LAST
generated by PLOT.

SOLVE <(lfdid> [WITH] [solvername]

Exports glfdid to the solver and attempts to solve it with the default
solver (usually QRSIv) or the solver indicated by the optional
solvername argument. Solvername must be given as it appears on the
menu buttons. Bugs: Should use current solver rather than default.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

35

WRITE

M1

M1-Drag
Shift-M1[-Drag]
Double-M1

Double-M1-Drag

Triple-M1
Triple-M1-Drag
M2
M2-Held-Down
M3

Control-M1

UNIX bindings:

3.3

SCRIPT

WRITE <kind> <glfdid> <file> [args]
Write something (what sort of write indicated by kind) about glfdid to a

file. args may modify as determined by kind. At present only VALUES
is supported. SYSTEM (for solver dump) would be nice.

WRITE VALUES filename.

Filename must be a full path name or in the pwd, also known as ‘.’ .

SCRIPT WINDOW BINDINGS

In the event binding descriptions that follow, M1 is short for mouse-
button-1 (the left mousebutton), M2 is the middle button, and M3 is the
right mouse button. On machines with no middle button, M3 is still the
right mouse-button and M2 is unavailable.

repositions the cursor.

selects text.

extends the selection.

selects the nearest word.

selects the nearest word and those you drag over, whole words at a
time.

selects the nearest line.

selects the nearest line and those you drag over, whole lines at a time.
does nothing.

has an effect similar to the scrollbar.

does nothing.

Starts another part of a disjoint selection.

The text widgets in ASCEND share a common stack of cut/copy/paste

text pieces. This is a CMU extension of the text bindings, not default
Tk behavior, and it is EMACS-like, but not EMACS (EMACS uses a

Last modified: June 20, 1998 10:32 pm

SCRIPT WINDOW BINDINGS

Control-k
Control-w

Meta-w

Control-y

Meta-y

MSW bindings:

36

ring, not a stack.) When the stack is empty, Paste does nothing. This is
a design decision. The Tcl function ascPopText can be changed to
behave differently.

Cuts text to the end of the current line, putting it on the stack.

Cuts the selected text, putting it on the stack.

(e.g. diamond-w on most Sun keyboards) Copies the selected text onto
the stack.

Pastes the most recent text added to the stack, and removes it from the
stack.

Not supported.
The standard Control-X, Control-C, Control-V bindings of Microsoft

Windows clipboard apply to text widgets. The UNIX text stack is not
available.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

37

SCRIPT

Last modified: June 20, 1998 10:32 pm

CHAPTER4 LIBRARY

The Library window (Figure 4-1) in ASCEND allows the user to rig@ésinto the ASCEND
system from filescompiletypes into instances, and delete types.

Types are the templates used to create simulations. They come in two
flavors: ATOM, which has a value associated with the instance name
when it is instantiated, and MODEL, which has no value. ATOMs are
the variables and constants in ASCEND; MODELSs are the complex
structures one can build in ASCEND. ATOMSs, further, come in vanilla

File Edit Display Find Options View Export ﬂeﬂ
Iatoms.aﬂll«:ﬂ: controller I
basemodel.adl< flash
flowsheet
system.adl<0> | mixer
mixture
molar_stream
reactor
splitter
T,.r test flowsheet _',r

test_controller IN AusrOsball anSnewsascendd

tc IS_A test_controller Y

P~ = 4

Figure 4-1 ASCEND Library Window.

39

LIBRARY

and UNIVERSAL flavors. Universal atoms have a single compiled
instance which is global to all simulations created.

Both ATOMS and MODELS are defined in source files. By convention,
source files are named with the endiraggc (ASCEND 1V code)

and a4l (ASCEND 1V library). You are free to use any other ending,
but you will find the ASCEND file type filters you use when browsing
for files will be ineffectual.

In the ASCEND Library window, source files appears in the upper left
box. On the other hand, the types defined in the highlighted source file
appear in the upper right box. A double-button2 in either box will
compile the highlighted type definition. It doesn't reselect. The upper
left box should perhaps have double-button2 bound to reread the
selected source module. The ASCEND fundamental type such as
integer, real, etc., are not shown in the library window, since their
definition is performed internally, not by using a specific source file.
The lower box of the ASCEND Library window contains the name of
the simulations that have been compiled and can be run.

The data structure used to store type definitions is sketched in
Figure 4-2.

Last modified: June 20, 1998 10:32 pm

MENU BAR 40

Type Library

type desc 1

-}

type desc 2 type dégz\s\

Not es: type desc3 has a refinement ptr to type desc 2
type desc2 has a refinenent ptr to type desc 1

The problemis when type desc 2 is being redefined
by rel oading a new nodul e

Figure 4-2 Data structure used to store type definitions.

4.1 MENU BAR

The menu bar on the Library window has eight entries: File, Edit,
Display, Find, Options, View, Export and Help.

4.1.1 THE FILE MENU

Readtypesfrom This loads type definitions into the system. The file selection dialog is
file used to select a source file.

The names of types are unique within the system. A new definition of a
type overwrites the old definition of a type in all cases. If the new
definition and the old definition were read from files of the same name,
this overwrite will be done silently. If the new definition comes from a

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

41

Close window

Exit ASCEND

4.1.2

Create
simulation

Suggest methods

Delete
Simulation

LIBRARY

different file, the overwrite will be done noisily.

This is incorrect, but perhaps is as it ought to beExisting types

which refined or had parts that were of the old type definition will now
refine or have parts which are of the new type. e.g. If you reread
system.asc (and hence solver_var) everybody in the interface library
who pointed at the old solver_var type will now point at the new
solver_var type

Instances already compiled using the definitions that have been
overwritten will continue to point at a copy of the old definition the
system has squirreled away somewhere. These squirreled away copies
will not necessarily be the same as what is in the interface type library
if you have reread a file with a newer type definition. This may cause
refinement of the old instance to fail. In general if you redefine a type,
you will probably want to reinstantiate things that depend on that type.

It closes the ASCEND'’s Library window. To reopen, use the Tools
menu in the Script window or use the SCRIPT tool in the Toolbar
window.

Exit the ASCEND system. You will be asked to confirm that you wish
to do this.

THE EDIT MENU

Create (or instantiate) a simulation based on a type definition. Anytime
that the compile button is selected, the compile dialog window shown
in Figure 4-3 will ask for the name which will be used to identify the
simulation. All simulation created can be seen and in the lower box of
the ASCEND Library window. This box can contain any number of
simulations.

Pick any type in the right window and apply this tool to write suggested
methods for that type. See the Howto book, Chapter 2, for a list of the
methods we suggest one should write for models. These suggested
methods are prototypes which you can cut and paste into your favorite
text editor. You should be carefully edit them before adding them to the
model type definition.

This tool works to remove previously compiled simulations listed in the
bottom subwindow of the Library window. Select a simulation to delete
and use this tool to eliminate it from ASCEND. ASCEND will clear the
model from the Browser and Solver. Iltems placed into the Probe
window are not deleted.

Last modified: June 20, 1998 10:32 pm

MENU BAR

Delete all
types

Code

Ancestry

Refinement
hierarchy

External
functions

Hide type

UnHide type

42

Destroys all simulations and deletes all types. This option has no effect
in the fundamental definitions. Deleting all types clears the Browser
and Solver windows, but not the Probe window.

Simulation name: |

0K Cancel Help

Figure 4-3 The Create Simulation Dialog

4.1.3 THE DISPLAY MENU

Most of the options in the Display Menu will be enabled only if a type
definition has been selected; this is because the tasks performed in the
menu are implicitly associated with a type definition.

Displays the source code of the selected type in the ASCEND Display
Window.

Allows the use of the Type Refinement Hierarchy Window. See
Section 4.2 on page 46 documenting this window.

Displays the refinement hierarchy of the selected type in the ASCEND
Display window.

Display in the Display window any external function defined from a
loaded package library.

The Browser will not display any type definition which you select to be
hidden with this tool. You may select to hide the type or the type and all
its refinements. For example, doing the latter walver_var will

hide all variables in a compiled instance of the model.

Reverses the action of “hiding” a type. Select the type in the right
window and select unhide if that tool is lit. The Browser will
immediately begin to display this previously hidden type. The default
for all the type definitions (except fundamentals) is to be “unhidden”.

Both Hide Type and UnHide Type have two selections as a submenu.
The user can ask for the un/hiding of only skeéected typeor for the
un/hiding of the selectetype and its refinements

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

43

Hide/Show
Fundamentals

ATOM by units

Type by name

4.1.4

LIBRARY

This special option is given because fundamental types do not appear as
definitions in the ascend libraries, but we still may want to able/enable
such types for browsing purposes. When this button is selected, the
window shown in Figure 4-4 will be used to perform the desired hiding
or unhiding of any of the fundamental types.

Fundamental Types:

integer N
when

real_constant

boolean

integer_constant

real

set

symbol

unSELECTed_part

symbol_constant

boolean_constant

EXTERNAL_MODEL -

Dismiss ‘ Tagall | Hide |UnHide|

Figure 4-4 Select the fundamental type to Hide or Unhide.

THE FIND MENU

This extremely handy tool allows you to find all the ATOMS that are
currently loaded into the library whose dimensionality conforms to a
user specified set of units. For example, if you have loaded the library
atoms.a4l into the Library, then you can use this tool to find all atom
definitions that could be expressed in ft*3 or in kJ/mol. To use, select
the tool. In the window that opens type in the units and select OK. You
do have to know the units ASCEND will recognize. Open the Units
window and under the Display menu select Show all units for a
complete list.

Finds a type by its name. The type will become the current type
highlighted in the Library right and left upper windows.

Last modified: June 20, 1998 10:32 pm

MENU BAR

Type by fuzzy
name

Pending
statements

To Display

To Console

To File

44

Find Which Type? '

)4 | Cancel | Help

Figure 4-5 The Library’s Find Type dialog.

Finds all type names currently loaded in the Library window that match
a word (provided by the user) in any fuzzy way. For instance, the name
columnwould list the following: demo_column, mw_demo_column,
plot_column, etc. if these were currently loaded in the Library. The
fuzzy name is defined in a dialog window similar to that used in the
Find Type by name option.

There are three selections under the Pending Statements submenu,
these ardo Display, To Console andTo File. Pendings in a

simulation are relations that have not yet been fully processed by
ASCEND'’s compiler. It is the modeler’s job to correct the pending
relations in order to arrive at a fully functional simulation. Corrections
may be made by either creating a model which refines the current
model or by editing ASCEND code and starting over. This option gives
the user access to information about the type and location of the
pending statements. Often pending statements arise from a common
cause such as a incorrectly qualiified or misspelled name for a set.

By selecting th@o Display option, all of the simulation pendings are
displayed in théisplay window.

By selecting th@o Consoleoption, all of the simulation pendings are
displayed in the Console window (in UNIX, the Console is the window
from which you started ASCEND V).

By selecting thdo File option, theFile select boxs opened and the
user is asked to enter the name of the file in which to save the model
pendings.

4.1.5 THE OPTIONS MENU

The titles for most of these tools more or less describes their purpose.
We will not describe them With these options, you can turn on or off
messages ASCEND will generate while compiling. Turning off
warning and error messages will, of course, mean that you will not be
told about problems your model may have that we were able to detect.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

45 LIBRARY

Since ASCEND will still compile in spite of warning messages (which
generally reflect your model does not conform to what we believe to be
good modeling practice), you may wish to suppress them. See the
Howto Book, Chapter for a discussion of good modeling practice.

We describe only those tools that do not turn on and off compiler

messages.
Generate C If you have a C compiler installed and ASCEND knows about it, then
binary you may elect to have ASCEND compile C code to evaluate equation

residuals in ASCEND. The compiler finds and will, when this option is
selected and possible, compile only a piece of code for each unique
equation type, of which there are very few in any model. The evaluation
of residuals will be much faster using compiled C code.

Simplify This option is on by default. ASCEND will reduce terms in equations
compiled such as a product of constants whose values it knows to a single
equations resultant constant when you select this option. Whole terms in

equations may disappear if ASCEND finds them multiplied by the
constant zero.

Save options Save the current setting for all the options selected using items in this
menu. ASCEND put the saved information into a text file
library_opt.a4oand which it then saves in thecdatasubdirectory of
your “home” directory.

4.1.6 THE VIEW MENU

Font Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Open Toggles a switch which, if set, will cause this window to open
automatically whenever anything is placed into it.
Save appearance Saves the current settings for this window for font settings and window

size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

4.1.7 THE EXPORT MENU

There are three selections under this submenu, theSénauktion to
Browser, Simulation to Solver, andSimulation to Probe

Last modified: June 20, 1998 10:32 pm

TYPE REFINEMENT HIERARCHY WINDOW 46

Simulation to By selecting th&imulation to Browser option, the simulation
Browser highlighted in the lower box of the Library window is loaded into the
Browser From theBrowser the model can be explored in more detail.

Simulation to By selecting th&imulation to Solveroption, the simulation

Solver highlighted in the lower box of the Library window is loaded into the
Solver (Note that exporting to the solver causes a degrees of freedom
analysis to be carried out.)

Simulation to By selecting th&imulation to Probe option, all of the variables of the

Probe simulation highlighted in the lower box of the Library window are
loaded into thé’robe This is not recommended as there are usually
more variables in a model than the user would wish to view at one time.
However, if the user does wish to look at all of the variables and their
current values, th8imulation to Probe option can be useful.

4.1.8 THE HELP MENU

On LIBRARY Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

4.2 TYPE REFINEMENT HIERARCHY WINDOW

The type tree is a directed acyclic graph (DAG) based on the type
hierarchy currently defined in the interface Library. Selection of the
tool Display Ancestry (mentioned above when describing tools under
the Display menu) for any selected type gives the entire refinement
hierarchy for that type, by enabling the use of the window shown in
Figure 4-6.

The current focus in the hierarchy is indicated by a rectangle around the
type name and the Current type.

The buttons on the left in the type window operate on the currently
selected type:

‘Atoms’ shows the types of ATOMic parts in the selected type
definition. It also shows the incremental code for the type. You can
select from the part types list to look at a different hierarchy.

‘Code’ shows the internally stored code of the selected type. The
expressions, both algebraic and logical, are in reverse Polish notation.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

47

LIBRARY
I Type Refinement Hierarchy |
Atoms Codde Parts Roots Help
Current Type: test flowsheet Print 0K
flowesheet N
test flowsheet]|
P~ | &

Figure 4-6 The Type Refinement Window.

This is different from the way the code of the Library Display Code
button shows it. Comparison of the two is sometimes a useful
debugging tool.

‘Parts’ (Figure 4-7)shows the types of MODEL parts in the selected

MODEL types in test_flowsheet:
flash Al
mixer
reactor
splitter

£
OK Cancel

Figurd-7
The Parts window displays the parts.

type definition. It also shows the incremental code for the type.

The ‘<<<* (or backtrack) button backs up to the previously displayed
type hierarchy, if there is one.

Last modified: June 20, 1998 10:32 pm

TYPE REFINEMENT HIERARCHY WINDOW 48

‘Roots’ (Figure 4-8) shows the existing root types, that is, the existing
types which are not refinements of anything.

While ASCEND is building the graph, you may see a spew in the
window from which ASCEND was started about orphaned types. This
means there are types in the Library which are refinements of older
types which are no longer in the Library.

While ASCEND is getting the Atom or Model parts list for a type, part
types names which are undefined will be spewed.

When an older type is replaced in the Library by a new one of the same
name, the old one is squirreled away where types that refined it can still
see it. The only way to get current types to look at the new definition
without touching the source files for the current types is to delete all
types and reread the entire Library.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

49

Figure 4-8

Hierarchy roots:

EXTERNAL MODEL
hoolean
hoolean_constant
controller

flash

flowsheet

integer
integer_constant
logic_relation
mixer

mixture
molar_stream
reactor

real

real_constant
relation

sel

splitter

symbol
symbol_constant
un3SELECTed_part
when

QK Cancel

.|

The Hierarchy Roots Window.

Last modified: June 20, 1998 10:32 pm

LIBRARY

CHAPTERS BROWSER

The Browser window (Figure 5-1) provides the means with which to view the parts of a
simulation. When a simulation is exported to the Browser, the name of the simulation appears in
the Browser’s upper left box and the child instances of the simulation appear in the upper right
box. Selecting a child instance in the right box will move the instance to the bottom of the stack
in the left box and display it's children in the right box. The instance tree can be traversed in this
manner until an atom (usually a variable) resides at the bottom of the stack in the left box and it’s
attributes appear in the right box. Selecting a member of the stack in the left box will clear any
lower instances on the stack and display the selected instance’s children in the right box.

File Edit Display Find Options View Export ﬂeﬂ
T te alpha I5_A ARRAY OF factor REFINEMENT [N
fs ave alpha=1

I b IS_A ARRAY OF relation REFINEMEN1

eq IS_A ARRAY OF relation REFINEMENTS
feed IS_A molar_stream
flash_1 : 1.79769e+308 mole/second

lig IS_A molar_stream
- van IS5 & mnlar stream

£ |~ [
ave alpha=1

flash_1 : 1.79769e+308 molefsecond
vap_to feed ratio =0.5

P |

@ Ry w DV @ RR I LR _| RC | DC Discrete variahles
Figure 5-1 ASCEND'’s Browser window.

P

51 BROWSER

A subset of the instances appearing in the upper right box as well as the values of these instances
appear in the Browser’s lower box. Which subset of instances appears in the lower box is
controlled by the user by clicking in some of the options given in the bar at the bottom of the
Browser window. In Figure 5-1 RV has been selected. RV standReflivVariables. Therefore,

the child instances of fl1 which are real variables and the values of these real instances are shown
in the lower box. Other options in the bar at the bottom of the Browser window, which can be
simultaneously selected, are DV (Discrete Variable), RR (Real Relations), LR (Logical

Relations), RC (Real Constants) and DC (Discrete Constants). Selecting an instance in the lower
box with the right button of the mouse will have the same effect as selecting the same instance in
the upper right box. On the other hand, selecting an instance in the lower box with the left button
of the mouse will bring up the “Set Value” Dialog box, which will give the user the option of
modifying the value of the selected instance. More about the “Set Value” option will be given in

the following section of this document.

5.1 THE MENU BAR

« The menu bar on the Browser window has eight entries: File,
Edit, Display, Find, Options, View, Export, and Help.

5.1.1 BROWSER HLE MENU

Read values Reads the values from a file previously saved by Write Values. Values
files are read using full path names (including the simulation name).
The simulation for which values are being read does not necessarily
have to be in the Browser (but it should exist). You may specify that the
values are to be read into a different simulation or simulation part than
they were originally saved from, provided the old and new locations are
compatible. If the original simulation does not exist, you will be asked
for a new simulation name.

Write values Saves the values for the instance in the Browser to a file for later
rereading.
Close window Closes the Browser window. To reopen, go to the Script window and

selectinstance browseunder the tools menu or select the BROWSER
on the Toolbox window.

Exit ASCEND Exit the ASCEND system entirely. You will be asked if you really wish
to complete this instruction.

5.1.2 BROWSER BDIT MENU

Run method If the instance in the left box has one or more methods available, Edit -
>Run Method will be available for selection. Selecting Run Method

Last modified: June 20, 1998 10:32 pm

THE MENU BAR

Clear Vars

Set value

Refine

Merge

52

will display the Methods Selection Window containing a list of
available methods for the current Browser instance. A method is
selected by clicking it's name (only one method can be selected at a
time). Depressing the OK button will run the selected method.
Depressing the Show button will display the code for the selected
method. Depressing the Cancel button will close the Method Selection
Window without running any method.

In ASCEND, the type solver_var and all its refinements constitute a
variable for solution purposes. Each variable has a boolean, named
“fixed”, as one of its children. When a variable’s fixed boolean, or
fixed flag as it is commonly called, is set to False, the variable is
considered an output variable (i.e. the solver will determine its value).
The Clear Vars method sets the fixed flag of every variable which is a
child of the current Browser instance to False.

When the current Browser instance is a real, symbol, integer, or
boolean Edit->Set Value will be available for selection. Selecting Set
Value displays the Set Value Dialog box. The value (and units in the
case of reals) may be set by filing in the value (and units) fields of the
Set Value Dialog box and depressing the OK button. Depressing the
Cancel button closes the Set Value Dialog box. Booleans are assigned
simply by double clicking the mouse button 2 on their name when it
appears in the right browser box.Write values

Selecting Edit->Write Values saves the attribute values of all atoms
which are descendents of the current instance to a file. A file select box
is displayed so a new file may be created or an old file over written.
The attribute values are written to the selected file along with their path
names relative to the current instance. The first line of the file specifies
the path from the simulation to the current instance.

Refines the current Browser instance to a given type. Edit->Refine may
only be selected if the Library contains types which are refinements of
the current Browser instance type. Selecting Edit->Refine displays the
eligible types for the refinement of the current part in the Refinement
dialog box. Selecting a type and depressing OK refines the current type
to the selected type. Depressing Show displays the ASCEND code for
the selected type. Depressing the Cancel button closes the Refinement
dialog box without making any refinements.

ARE_THE_SAME the current part (left side of the Browser) with
another given part. Do not ARE_THE_SAME parts from 2 different
simulations. You cannot merge parts of atoms (which are atomic) with
anything. The dialog box will ask for the name of the instance that you

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

53

Compile
Resume

Compilation

Create Part

Attributes

Relations

Conditional
Relations

Logical
Relations

BROWSER

want to merge with the instance highlighted in the left box of the
browser.

Submenu containing Resume Compilation and Create Part.

Attempts to process any pending statements in the simulation in the
Browser. It does not matter where in the simulation you have browsed
to, Resume always starts at the top.

This is a feature of the PASCAL version only. The proper way to add a
part to a simulation is to create a refinement of the original model in a
new file, read in that definition, and refine the simulation up to that new
model.

5.1.3 BROWSER DsPLAY MENU

Display the attributes of a real variable. Other functionality may be
added later to this button.

Display all the relations at or below the current point in the Browser.
Relations get arbitrary names unless explicitly named by the user in
code. The arbitrary name, at the moment consists of ParentName_n
where n is the number of the nth relation in the MODEL ParentName.
If this name is not unique, enough letters a-z get added to make it
unigue. When the instance highlighted in the left box of the Browser is
a real variable, this option will display all of the relation in which such
a variable is incident.

Display all the conditional relations in or in the children or
grandchildren etc., of the current object in the Browser. Conditional
Relations do not have to be satisfied. They are used as boundaries in
conditional programming. The arbitrary name of a conditional relation
is obtained in the same way as any other relation, but in general, the
name of a conditional relation must be provided by the user, since the
operator SATISFIED requires such a name.

Display all the logical relations in or in the children or grandchildren
etc., of the current object in the Browser. Logical Relations get
arbitrary names unless explicitly named by the user in code. The
arbitrary name of a Logical Relation follows the same pattern as that of
real relations. When the instance highlighted in the left box of the
Browser is a boolean variable, this option will display all of the logical
relation in which such a boolean variable is incident.

Last modified: June 20, 1998 10:32 pm

THE MENU BAR

Conditional
Logical
Relations

Whens

Plot

Statistics

By name

By type

54

Display all the logical relations in or in the children or grandchildren
etc., of the current object in the Browser. Conditional Logical Relations
do not have to be satisfied. They are used as conditions to check in
conditional programming.The arbitrary name of a conditional logical
relation is obtained in the same way as any other logical relation, but in
general, the name of a conditional logical relation must be provided by
the user, since the operator SATISFIED requires such a name.

This option is enabled for instances of models, relations, booleans,
symbols, and integers. For the case of a model instance, this button will
display not only all the when instances defined as parts of such a
model, but also the when instances which include such a model in one
of their CASEs. Distinction is made between those two possibilities.
For relation, boolean, symbol and integer instances, this option displays
the when instances which include such relation, symbol, etc., either in
one of their CASEs or in the list of conditional variables. When
instances are useful for the conditional configuration of a problem and
always get arbitrary names.

Invokes a plotting program, if allowable, on the current object. The
type of plot generated is controlled by the Utilities page variables
Plot.type and Plot.program. See the relevant chapters in the Howto
manual on plotting to find the types which ASCEND will plot. Also see
the ASCEND library of models supporting plotting: plot.a4l (and any
of the other model files containing the name plot which have examples
of plotting within them).

Prints out some information about the object tree in the Browser
starting with the current object and going downward through its
children, grandchildren, etc.

5.1.4 BROWSER HND MENU

Search for an instance with a given qualified name and go there. The
name of the instance to search for is defined in the dialog. This option
may be useful for jumping around in the instance tree. Since hames can
be quite long, you may find this tool most useful when you have found
the name elsewhere and can cut and then paste it into the dialogue box
that opens for this tool.

You can search for objects of any particular type with certain attributes.
The default type will list all fixed solver_vars for the problem. The
allowable searches are best explained by examples as shown in
Table 5-1 (with the third being the default just mentioned). The search

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

55

BROWSER

Table 5-1 Examples of the performance of the Find by type option

Type Attribute [Low Value |High Value [Explanation

unit Find all parts that are units.

solver_var Find all refinements of solver_var
with a part fixed

solver_var TRUE Find all refinements of solver_var
with a part fixed where
fixed==TRUE

stream 4 Find all streams with part Ftot
where value is 4 epsilon

stream 4 10 Find all streams with part Ftot
where 4 <= Ftot <= 10

relation VALUE |0 Find all relations with a residual
0 + epsilon

symbol VALUE |ACH Find all symbols where VALUE is
‘ACH’

symbol VALUE | ACH ACZ find all symbols where ‘ACH’ <=

VALUE <='ACZ

component_constal

Find all parts that are
component_constants

symbol_constant

VALUE UNDEFINED Find all undefined

symbol_constants. Works for all
types with a value.

is loosely matched, i.e. any object that is of the type given, OR a
refinement of the type given and matches the attribute qualifications,
will be on the list of items found.

If there are no matches, there is no results box: just a message in a
popup error message.

The results of the Find appear in a box and you can export one or more
of the results in the box to the Browser or the Probe by selecting them
and clicking on Browser or Probe. When you have finished exporting
items to wherever you like, click on OK. Do close this box as the rest of
the interface will ignore you until you do.

Notes:
« Clear any of the extra fields not required for your search before

you hit OK. We will usually find nothing that matches if there are
extra search parameters hanging around that don’t make sense.

Last modified: June 20, 1998 10:32 pm

THE MENU BAR

Aliases

Where created

56

* VALUE is a special keyword for dealing with atomic types.
Variables and symbols have a value internally but not a child
named VALUE. Similarly, relations have a residual but not as an
accessible part with that name.

« Symbols and integers will be matched exactly if only a low value
IS given. The matching of symbols given a low and high value is
done lexically according to the collating sequence of the machine
in use.

* Frequently what you really want to see is the name of a set of
things of a given type -- e.g. a case where you want to know what
components are in a flowsheet. Find will return the instances
though, not their common parent. Simply export one to the
Browser and then click up a level to see the set of components in
use.

* You can tab between fields in the Find by Type widget.

* You can select a type name in the library. Pick the type in the right
window. Its name will appear in the lower middle window.
Highling the name and use the typical method to copy a set of
highlighted characters for your computer (e.g., Ctrl-c on a PC).
Then use the typical way to paste into the type slot of the Find by
Type Window (Ctrl-v on a PC).

» Epsilon is about 1e-8 in terms of the Sl units for any real quantity.

Find all the other names that the current object has in the simulation.
For example, assume that you have named a simulation as fs. Assume
further that the output stream from the mixer, m1, is merged with the
input stream for the reactor, r1. Then, that stream is an object with two
different names. Suppose you are looking at rl.feed as the current
object. Asking for aliases will give the list

fs.rl.feed
fs.m1.output

If you pick one of the aliases, it can be exported to the BROWSER, the
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements and by passing them into a
parameterized MODEL.

Find the other names that the current object was CONSTRUCTED
under. If an object is shown as being created under 4 names, it means
that once there were 4 objects and that 3 were destroyed in merge

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

57 BROWSER

(ARE_THE_SAME) statements to reach the current unity. (Merging is
expensive).

If you pick one of the names, it can be exported to the BROWSER, the
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements or by passing them into a
parameterized MODEL, but these names do not appear in the list of
creations.

Clique Find all the instances that ARE_ALIKE with the current one. The
instances shown are bound together so that if the formal type of one is
changed, they are all upgraded with the first. Parameterized objects
cannot be ARE_ALIKE'd because when parameters exist the formal
type requires outside information (the parameters) in order to check
that it is being used in a valid way.

Eligible Find real variables eligible to be fixed. If the solver is occupied by the

variables same simulation, this query is thrown to the Solver. If not, the degrees
of freedom are analyzed as if the current model were exported to the
Solver.

Active Find all the relations of the current object. You may tag one, several or

Relations all of the relations found and export them to the Probe. You may also

export the first tagged relation to the Browser.

Operands If the current object is a relation, list all the operands in it. One or more
of these may then be exported to the Probe. You may also export the
first tagged operand to the Browser.

Pendings List in the Console window all the statements that the compiler failed to
compile for the current Browser object.

5.1.5 BROWSER OQPTIONS MENU

Hide Passed Toggles the display of parts which were passed into the Browser object

Parts as passed parameters. Note that these shared objects were created by a
parent (or grandparent, etc.) of the current Browser object and will
appear on the list of parts for that parent.

Suppress Atoms This button toggles whether or not to show atomic instances in the
upper right box of the Browser window.

Display Atom This button toggles whether to display values or to display the types of

Values atoms in the child box (upper right side) of the Browser. For the case of
relations, the residual shown with the relation is the last computed by
the solver and not the residual at the current values of the variables.

Last modified: June 20, 1998 10:32 pm

THE MENU BAR

Check
Dimensionality

Save Options

Hide Names

UnHide Names

5.1.6

Font

Open
automatically

Save window
appearance

5.1.7

to Solver

Many to Probe

58

This switch turns warnings about relation inconsistency off and on. In
principle it should not be necessary, but for the quick and dirty model it
is sometimes handy.

Save the current options in this menu. When you restart ASCEND, the
system will reset the options to these saved settings.

This option has a similar functionality from that of Hide Types in the
ASCEND Library windows. That is, it will hide or unhide instances for
browsing purposes. The difference, however, is that this option hides by
name, not by type. To clarify, it is quite different to hide instances with
the name fs than to hide all instances of type test_flowsheet.

Reverses the effect of the command Hide Names. A list of hidden
names appear from which you can select what to unhide..

BROWSERVIEW MENU

Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Toggles a switch which, if set, will cause the Browser window to open
whenever anything is placed into it by an export command.

Saves the current settings for this window for font settings and window
size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

BROWSER EXPORT MENU

Checks the model for exportability (must be of type MODEL without
any pending compilation) and, if acceptable, sends it to the Solver.

Sends the child instances of the current part being browsed to the
Probe. The types of instances sent to the Probe are selected in the
filtering window shown in Figure 5-2. Every switch toggles whether or
not to export each of types to the Probe.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

59 BROWSER

Exporting from Itc.fs.ﬂ1 |

Probe buffer: |current

Collect relations

Collect logical relations
Collect booleans

Collect integers

Collect reals

Collect symbols

Collect sets

Collect subatomic hooleans
Collect subatomic integers
Collect subatomic reals
Collect subatomic symbols
Collect subatomic sets
Collect boolean constants
Collect integer constants

Collect real constants

e e I S

Collect symbol constants

OK Help Cancel

Figure 5-2 Filtering instances sent to the Probe

Item to Probe Exports the instance on the left box of the Browser to the Probe.

5.1.8 BROWSER HLP MENU

On BROWSER Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

Last modified: June 20, 1998 10:32 pm

CHAPTERG6 SOLVER

The purpose of th8olver Utility shown in Figure 6-1s to provide support for the numerical

solving and debugging of an imported instance. To this end the Solver allows the user to access
numerical solvers and analysis functions and displays statistical and status information for the
problem being solved. The upper section of the solver window contains a menu bar; buttons for
selecting numerical solvers, solver options, and halting the solver; a label containing the name of
the current instance (or problem being solved); and a label containing the type of the current
instance. The remainder of the Solver window is devoted to providing statistics about the
problems relations and variables along with a description of the problem’s state.

Figure 6-1 Solver Window

Hle Edit Display Execute Analyze WView Export Help
SOLVER: QRSIv | Options [y Halt |
tc
IS5 _Atest controller |
I~ Show system statistics:

Relations: 43 |Variables: o5

Active: 43 |Active: 35

included equalities: 43 free: 43

included inequalities: 0 fixed: 12

State: square

Inactive: 0 Inactive: 0

included equalities: 0 free: 0

included inequalities: 0 fixed: 0
Unincluded: 0 Unattached: 0
Objective: noniBlocks: 8

Iterations: 0f0

Error: 0 Current block: 8

Solved variables: (43

61

6.1

6.1.1

Close Window

Exit ASCEND

6.1.2

Remove instance

Select
objective

6.1.3

Status

Unattached
variables

Unincluded
relations

Incidence
matrix

SOLVER

THE SOLVER MENU BAR

The menu bar on the Solver window has eight entries: File, Edit,
Display, Execute, Analyze, View, Export, and Help.

DLVER FILE MENU

Close the Solver window. To open it again, go to the Script window and
select the Solvers tool under the Tools menu or select Solver on the
Toolbox.

Exit the ASCEND system completely. You will be asked to verify that
you really do want to exit.

DLVER EDIT MENU

Removes the current instance from the solver.
Provides a list of objectives from which one may select. The selected

objective will be used in any subsequent optimizations until another
objective is selected.

DLVER DISPLAY MENU

Shows the internal status of the
Solver along with the largest block
scaled residual vector two-norm.

OK
converged
max. block error (1)
1.626725280789307e-13.
Dismiss

Shows variables not incident in any of the relations in the current
system being solved. (These variables are not a part of the current
problem. Changing their attributes will have no effect on the problem.)

Shows relations not in the current system being solved.

Incidence matrix shows the incidence of variables in relations (See
Figure 6-2). Clicking mouse-1 (left button) on the matrix displays the
names and numbers of the relation/variable at that coordinate, whether
that coordinate is occupied or not. A box is drawn around the
partitioned block containing the selected coordinate and the block
number is displayed. The selected block or the entire incidence matrix

Last modified: June 20, 1998 10:32 pm

THE SOLVER MENU BAR

Solve

Single step

62

may be printed by selecting the PrintBlock or the Print button
respectively. The scale of the incidence matrix can be changed by
sliding the magnification bar and depressing the Redraw button.
Depressing the OK button will close the INCIDENCE window.

Drawing large dense matrices may take a while. Drawing matrices on
problems bigger than about 1000x1000 may be prohibitively expensive
on slow machines. The row/column ordering is that done by the
selected solver, except that fixed vars and unincluded relations are
moved to the edges.

Figure 6-2 The Incidence Matrix

File View Help
Variahle: |23
Var Name: |fs.f|1 vap.state.y[A’]
Equation: |22
Eqn Mame: |fs.ﬂ1.feed.f_def[’C’]
Block: |1
e N
.. =
I.. i - = "
~ =)
Magnification: 4 Redraw |

6.1.4 SLVER EXECUTE MENU

Solve the current problem as an algebraic or optimization problem
depending on what solver is selected

Perform a single iteration of the system with the solver in question. In
some solvers (e.g. MINOS) there is no iteration mode. For these
selecting single step will result in a full solve attempt.

For QRSIv, an iteration will be a Newton like step if there are many
variables in the current block or if the current block is a blackbox
singleton. Singletons not from blackboxes are numerically inverted
when being solved.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

63

Integrate

6.1.5

Reanalyze

Debugger

Overspecified

Find dependent
eqgns.

Find unassigned
eqgns.

Evaluate
unincluded
egns.

Find vars near
bounds

SOLVER

Invoke the selected integrator (LSODE currently available) on the
problem.

SDLVER ANALYZE MENU

Reanalyzes the current problem to determine if a proper set of variables
has been fixed to make the problem well-posed (i.e., square).

Opens a tool which deals with the system as a numbered list of
variables and relations. See Section 6.4, "Debugger,” on page 69 for
more information about the Debugger.

Finds and displays the variables that can be freed to reduce the degrees
of freedom in an overspecified system.

Finds structural or numeric dependencies of a system.

Numeric DependencyDoesn’t mean much on an unsolved system.
This command inverts one block at a time and checks the blocks for
numeric dependency using the QRSIv solver. Any non-zero
dependency is reported, but those relations with coefficients down
around machine epsilon (1e-16) are probably not dependent. Poorly
scaled problems can appear more singular than they really are.

Structural Dependency.Find the equations or variables involved in a
structural dependency. For systems that should be square, this is similar
to overspecified, but for DAE’s this detects the equations which need to
be differentiated to overcome an index problem in the model. The user
interface for reporting the data returned is not complete.

Shows the equations which cannot be assigned by the structural
analysis.

Evaluates the residuals of unincluded relations and checks them for

convergence. This may or may not be a wise idea, depending on why

the relations have been excluded.

This will write variable names passing the test
abs(value-bound)/nominal < epsilon (6.1)

to the console. The test is performed first for lower bounds and then for

upper bounds and the results are clearly marked. This tool can be used

for locating variables which may yield a more tractable problem when
moved to the bound and fixed while freeing other variables. The value

Last modified: June 20, 1998 10:32 pm

SOLVER BUTTON BAR

Find vars far
from nominal

Font
Open
automatically

Save Solver
appearance

to Browser

to Probe

Solver Select
Button

64

of Epsilon can be set on the Solvers General parameter page accessible
through the Options button in the Solver window.

This tool will write variable names passing test
abs(value-nominal)/nominal > bignum (6.2)

to the console. This test can be used for locating variables which are
poorly scaled and for evaluating where model initialization methods
need improvement. The value of bignum can be set using the Solvers
General parameter page accessible through the Options button in the
Solver window.

6.1.6 LVER VIEW MENU

Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Toggles a switch which, if set, will cause this window to open
whenever anything is placed into it.

Saves the current settings for this window for font settings and window
size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

6.1.7 SLVER EXPORT MENU

6.2

This button sends the instance currently in the Solver to the Browser.

This button sends the instance currently in the Solver to the Probe
piecewise; that is, all the variables and relations get shipped, not the
instance name itself.

SOLVER BUTTON BAR

The solver button bar, which is located just below the solver menu,
contains three buttons, the solver select button, the solver options
button, and the halt button.

This button contains the name of the currently selected solver.
Depressing this button reveals a menu of available solvers which can be
selected.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

65

Solver Options
Button

Halt Button

Iterations before
screen update

6.2.1

SOLVER

The Options menu on the solver allows the user to view and to change
the settings for the parameters associated with ASCEND'’s solvers. A
solver’s parameters may be changed even when the solver is empty or
another solver is selected. Depressing the options button reveals a list
of parameter pages which can be selected for viewing (and editing).

Below, we discuss using the parameter pages and the general solver
parameters; solver specific parameters are discussed below in
Section 6.3, "Available Solvers,” on page 67.

Halts the solver and returns control to the interface as soon as possible.
Not all solvers connected to ASCEND will respond to the halt signal.

(ENERAL PARAMETERS PAGE

Selecting General under Options will display the General Parameter
Page (See Figure 6-3).This is where we keep items relevant to the
interface and to the way mathematical specialty functions and utilities
are handled in ASCEND. Following, we will discuss the parameters
that appear on this page.

Figure 6-3 General Parameter Page

iterations before screen update |10

cpu sec before screen update 3

modified log epsilon 1e-08

bound check epsilon lr
far from nom bignum IF
integrator state log ly.dat—
integrator observation log W
integrator log S1 units W
integrator log columns W

W overwrite integrator logs
—I check numeric rank after solving

_1 show block summary

OK | Help |

Because the interface update is sometimes rather time consuming (or
more accurately when the window manager is slow, the interface holds
up the solver) this specifies how many iterations to stay down in the
solver algorithm before returning to the user interface to update
statistics. In the case of floating point errors or solution completion

Last modified: June 20, 1998 10:32 pm

SOLVER BUTTON BAR

CPU seconds before
screen update

Modified log epsilon

Bound check epsilon

Far from nom bignum

Integrator state log

Integrator
obsenation log

Integrator log Sl units

66

before the limit is reached, the return and update will happen
immediately rather than waiting for the limit to be reached. For solvers
that don't truly iterate in an accessible fashion (e.g. MINOS) this
parameter is ignored.

For solvers which do offer access to status information between
iterations, this is the maximum number of cpu seconds before an
interface update. If, while still not done with the number of iterations
given in “iterations before screen update,” the solver algorithm detects
that the cpu seconds limit has expired, then it will return early to update
the interface. At least one iteration will be completed before the clock
is checked.

This parameter controls the value for epsilon in the “Inm” function.
Lnm can be used instead of natural log (In) when the argument is likely
to be very small or to go negative in the solution process. This avoids a
host of floating point errors in initialization and solving of many kinds
of models.

The modified natural log functidnis defined as

E In(x)0(x>¢)

[l

) O

f(x) = SEX_1+ In(S)D(XSS)E
O

The first derivative of this function is continuous. The second derivative
has a jump from 0 to -47 at x =¢.

This is the epsilon parameter used in the [link: to obvious location/Find
vars near bounds] utility under the Solvers Analyze Menu.

This is the bignum parameter used in the [link: to obvious location/Find
vars far from nom] utility under the Solvers Analyze Menu.

This is the name of the file for integrator state variable output. It
defaults to y.dat in the current directory.

This is the name of the file for user defined observation output during
integration. It defaults to obs.dat in the current directory.

This switch causes the output to be written in Sl units or in the user’s
selected interface units.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

67

Integrator log
columns

Overwrite integer logs

Check numeric rank
after solving

Shawv block summary

6.3

6.3.1

SOLVER

This option selects how the state and observation logs should be
formatted. We can produce fixed or variable width formats suitable for
import into nearly any other software package.

This switch lets the user control whether integration log files should be
appended or replaced with each run.

When selected the numeric rank will be checked at the solution and a
message will be displayed if the system is rank deficient.

When selected the cost statistics (cpu, interations, evaluations) for all
blocks of significant size will be listed to the screen after each solve.

AVAILABLE SOLVERS

Here is the list of solvers that at one time or another have been
connected to ASCEND:

* Slv

« QRSIv

» LSODE

* MINOS

e LSSIv

* Opt (SQP)

+ CONOPT

* Make MPS
All of these solvers may not be available in your installation of

ASCEND. A brief description of ASCEND'’s primary solver, QRSlv,
follows.

QRSV

QRSIv is a nonlinear algebraic equation solver based on the paper “A
Modified Least Squares Algorithm for Solving Sparse NxN Sets of
Nonlinear Equations” by A. Westerberg and S. Director (EDRC TECH
REPORT 06-5-79).

Last modified: June 20, 1998 10:32 pm

AVAILABLE SOLVERS

68

6.3.1.1 RARAMETERS

Time limit
Iteration limit

Minimum pivot

(epsilon)

Pivot tolerance

Maximum residual

Partitioning

Detailed info

Auto-resole

write to file
SlvLinsol.dat

shaw singletons
details

Following is an incomplete list of control parameters for the QRSIv
algorithm. Most users will only change the time limit, iteration limit,
and maximum residual as the default parameter values work quite well.

The total number of seconds allowed in 1 push of the Solve button.
Total number of iterations in for any single partition in the problem.

the smallest pivot value allowed in the linear solution of a subproblem.

pivot selection criterion.

This is the maximum absolute error that QRSIv is allowed to consider
an equation as solved. Self scaling equations will more easily satisfy
this than those that aren’t. E.g. an energy balance (with terms the size
of 10"8) will have a far harder time meeting this convergence criterion
if you do not divide them through by an appropriate constant.

If off, entire problem will be solved as a block. Divergence is usually
the result on nonlinear problems of any size above 25 or so.

QRSIv spews all sorts of info if you turn this switch on. The utility of
such info is often as much for the authors of slv as for the user. The
volume of info is large. Most of the spew (that to do with singletons
(1x1 blocks) is suppressed if the switch ‘show singletons details’ is off.

When complete, the solver is supposed to rerun itself for changes of
significance made in the interface if this switch is on.

If this switch is on, a whole set of files named SlvLinsol.dat.X where X

is integer are produced during the solution of the problem. The X
increments for each successive linear system inversion or solution. The
files contain Jacobian and rhs data in machine readable forms for
import to stand-alone solver tools. There are generally quite a lot of
them. X always starts at O for a given ascend session and goes up from
there.

When the ‘detailed solving info required’ switch is ON this switch
controls whether or not full singleton solving information is shown. In
particular, if this is off all direct solve spew is cancelled, leaving that
which usually of interest, the NxN block solution iterations, to be
displayed.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

69

bipartial pvoting

SOLVER

An experimental option for stabilizing the RANKI algorithm on hard
problems. It enables searching of both current row and column during
linear factorization. It is somewhat more expensive in terms on fill and
CPU time, but can lead to solution of otherwise unsolvable problems.
The modification is due to Joe Zaher. This option is likely to be
replaced by a choice of several linear routines eventually. The original
motivation came from distillation models which become illconditioned
as tray number grows.

6.4 DEBUGGER

The Debugger shown in Figure 6-4 is an aid for examining the
variables and relations in the Solver. The debugger is often used in
tandem with the incidence matrix because the debugger is queried
using the solvers’s internal relation/variable indexing (which starts at
0). When a variable (relation) number is typed in the variable (relation)
entry box the variable (relation) Name and Attribute buttons may be
clicked to obtain information about the variable (relation). The
information is printed to the console window. The variable (relation)
may also be exported to either the Browser or Probe by making the
appropriate selection under the export pull down menu.

Last modified: June 20, 1998 10:32 pm

DEBUGGER

70

Figure 6-4 The Debugger Window

Variable:

Name |

Attributes

Export
Equation:

Name

Attributes
Export

Elock:

Variables
Equations

Export to probe

System:

Variables

Export to probe

OK | Help |

When a variable or relation number is entered in the debugger, the
corresponding partitioned block number appears in the ‘block’ entry
box. Statistics on the number of rows and columns in the block are
displayed just below the block entry box. Note that a block number can
also be entered directly into the block entry box. The Variables
(Equations) pull down menu below the block entry box contains the
selections Values, Attributes, and Probe (and Find Dependent).
Selecting Values or Attributes will write the requested information to
the console for each variable (equation) in the block. Selecting Probe
will export the block’s variables (equations) to the probe. Selecting
Find Dependent under the Equations pull down menu will write the
name of any dependent equations within the block to the console.
Selecting the Export to Probe button will export both the block’s
variables and equations to the probe.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

71

SOLVER

The debugger also responds to requests relating to the overall system,
or current solver instance. A Variables pull down menu and an Export
to Probe button are located beneath the ‘System’ label on the debugger.
The Variables menu contains the selections Values, Attributes, Reset
Values, and Reset Nominals. Selecting Values or Attributes will write
the requested information to the console for each variable in the
system. Selecting Reset Values will reset the system’s variables to their
nominal values. Selecting Reset Values will reset the system’s nominals
to their current variable values.

Last modified: June 20, 1998 10:32 pm

CHAPTER Y/

7.1

THE DATA PROBE WINDOW

OVERVIEW

Thedata probe shown in Figure 7isla window which manages
collections of names from the ASCEND simulation universe. Each
collection is kept in a buffer, and the user can switch among as many
buffers as are needed for convenience. For example, the first buffer may
be used as a set of bookmarks to store the names of interesting
submodels within a large simulation, a second buffer can be used to
monitor a set of key variables, and a third can be used to monitor
specifications. The browser provides a two-level view of information -
the probe provides a random access vigwew GIF is required for

this window -- the Help button is in the wrong place)

73

New buffer

7.2

THE DATA PROBE WINDOW

Figure 7-1 Probe window

Fle Edit Viewr Export Help

tc.is.r1.feed.Ftot = 917.431 mole/second Y
te.fs.r1 feed. f['A7] = 91.3353 mole/second
tc.is.r1 feed f['B’] = ¥37.656 mole/second
tc.fs.r1.feed.i['C7] = 88.4398 mole/second
tc.fs.rl.feed.state.y['A’] = 0.0995554
tc.fs.r1._feed.state.y['B’] = 0.804045
tc.fs.rl feed.statey[’C’] = 0.0963994
tc.fs.r1.stoich_coef['A"] =0
tc.is.r1_stoich_coef['B’] = -1
tc.fs.r1.stoich_coef['C’] = 1
tc.fs.r1 turnover = 51.6359 mole/second
tc.fs.sp1.out[1].Ftot = 8.25688 mole/second
tc.fs.sp1.out[1].f['A’] = 0.872073 mole/second J
£

tc.fs.spl.out[1].f['B’] = 6.49148 mole/second
tc.fs.sp1.out[1].f['C’] = 0.893331 mole/second
tc.fs.spl.split[1] = 0.01

~ |-~
MoMNameO.adp

_

Names are imported to any collection buffer from the other parts of the
user interface or from a previously saved file of names. Once collected,
a name remains in the buffer until the user removes it, even if the type
library and simulations are deleted. This way the set of names is
preserved when the user makes a small modification to a MODEL and
rebuilds it.

Names in probe buffers are displayed with their corresponding values
or other attributes as appropriate. When a name is not well defined
(perhaps because the simulation it came from has been deleted
temporarily) the attribute displayed is “UNCERTAIN.” As soon as the
name becomes well-defined again by having a corresponding
simulation object built, the correct attribute will appear. Names of
atomic objects (reals, integers, sets, symbols, booleans) which have not
yet been assigned a value will be shown as “UNDEFINED” until some
operation assigns them a value.

THE FILE MENU

This starts another collection of names, which is initially empty. Each
buffer receives a standard name when it is created, NoNameX.a4p,
where X is the number of the buffer. These buffer names appear at the
bottom of the File menu.

Last modified: June 20, 1998 10:32 pm

THE EDIT MENU

Read file

Save

Save as

Print

Close window

Exit ASCEND

Buffer list

7.3

Highlight all

Remove selected
names

Remove all
names

Remove
UNCERTAIN names

Copy

74

This appends a file full of names into the current buffer and will
automatically attempt to associate them with the simulations in the
system. This way the name list can be reloaded from a prior work
session. The file name is not associated with the buffer.

This will save the names in the current buffer to a file with the buffer’s
menu name. If you wish to save with a more meaningful name, use
“Save as.” Values are not saved with these names. To save the values,
use the Print command.

This allows you to specify the directory and file name in which to save
the names in the current buffer.

This lets you print the current buffer to a printer or a file. This prints
what you see in the buffer window, including the values. The printer
setup dialog will pop up for you to set the destination.

Close this window. To reopen use the Data Probe tool under the Tools
menu in the Script or select the PROBE button in the Toolbox.

Exit the ASCEND system. You will asked to verify that you really want
to exit.

You can create several different Probe buffers. A list of the buffers
appears at the bottom of the File menu.

THE EDIT MENU

Select all items in the displayed buffer.

This options removes all highlighted lines in the window. The selection
in the probe can be set in a disjointed fashion using Ctrl while selecting.
One can select continguous items by dragging or by holding down the
Shift key when selecting the first and last item to be highlighted.

This options removes all names in the current buffer window.

This removes all names that are not well defined. These are the names
displayed as “name = UNCERTAIN.”

This copies all the selected items in the current buffer to the computer
clipboard. The items may then be pasted into any application that
supports the clipboard -- for example, another ASCEND window, a
Frame document and Excel.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

75

Font
Open
automatically

Save window
appearance

to Browser

to Display

7.4

7.5

7.6

7.6.1

THE DATA PROBE WINDOW

THE VIEW MENU

Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Toggles a switch which, if set, will cause the Browser window to open
whenever anything is placed into it by an export command.

Saves the current settings for this window for font settings and window
size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

THE EXPORT MENU

This option sends the first selected name in the probe to the browser.

This options sends some form of the selected names in the probe to the
Display slave window, replacing whatever used to be in the display.

THE PROBE FILTER

A class or classes of object can be imported to the probe en masse. The
import filter shown in Figure 7-I&ts you select which collection of

names (probe buffer) is to receive the imported names which are of the
types checked. Currently the probe filter window is accessible only

from the Browser Export button.

The filtering import can also be executed from the Script using the
PROBE command. The list of ones and zeros required for the PROBE
command is ordered in the same way as the list of types in the import
filter window. The easiest way to set the list of ones and zeros is to use
the Script recording feature and the Browser Export Many to probe
button.

THE HELP MENU

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

Last modified: June 20, 1998 10:32 pm

THE PROBE FILTER

Figure 7-2 Probe import filter

Exporting from tuif.Feed

Probe buffer: |current

Collect relations

Collect logical relations
Collect booleans

Collect integers

Collect reals

Collect symbols

Collect sets

Collect subatomic booleans
Collect subatomic integers
Collect subatomic reals
Collect subatomic symbols
Collect subatomic sets
Collect boolean constants
Collect integer constants
Collect real constants

e) Y Iy

Collect symbol constants

0K | Help

Cancel

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

76

77

THE DATA PROBE WINDOW

Last modified: June 20, 1998 10:32 pm

CHAPTER8 ASCPLOT

8.1 PLOT MAKER

The following contains a description of the options available in each of
the Ascend Plotmenus. Théscend Plotvindow shown in Figure 8-1

Figure 8-1 The Ascend Plot Window

hle Edit Ezecute Display Options Help

(0) vessel.dat {DATASET Fri Feb 06 13:19:45 19983

P |

unused variables plotted variables

Y 5y | 1) 1 v.cost currency
L4 |
=Y | v | =]

kil
Independent: [0} indvar v.H_to_D_ratio
"\, [HINT:

Spreadsheet-like list of data in the selected set shown here when

J requested

from Display mernu.

i L
| =
N Col 0 Col 1

indvar 1

currency

1 29.4146

2 29.8522

3 31.4219

5 34.646

] 10 41.1862
¥i 20 50.3385

is a result of clicking on the ascplot button from the Toolbox with the
left mouse button.

79

8.1.1

8.1.1.1

8.1.1.2

8.1.1.3

8.1.1.4

8.1.1.5

8.1.2

ASCPLOT

THE EDIT MENU

From theEdit Menu, the following options are available when a data
set has not yet been loadédad data setandSelect grapher The
Save data setUnload data set andMerge data setsoptions are
available after one or more data sets have been loaded into the plot
window.

LOAD DATA SET
SelectingLoad data setopens thé-ile select boxvindow. This
window is used to select the file that contains the data generated from
the dynamic simulation. The default file is obs.dat. This file contains
the observation variables as set forth in the dynamic library models.
After having selected the appropriate file, press the OK button and
return to theAscend Plotvindow.

R\VE DATA SET

This option is currently not functional.

LNLOAD DATA SET

By highlighting the desired data set and seledtingpad data set

from theFile menu, the user can remove the data set frorAshend
Plotwindow. TheDelete these data sete/mdow appears to verify that
the user wants to remove the indicated data sets.

MERGE DATA SETS

$LECT GRAPHER
Currently, the only supported grapher is Xgraph (or its tk flavored
version tkxgraph). Other possible graphers are XMGR and gnuplot.

Since these graphers are not distributed with the ASCEND distribution,
they are also not supported.

THE EXECUTE MENU

To plot the variables in the plotted variables section, s¥lett plot
file from theExecutemenu.

Last modified: June 20, 1998 10:32 pm

PLOT MAKER 80

8.1.2.1 MEW PLOT FILE

This option will plot the variables displayed in the plotted variables
section of theAscend Plotindow.

8.1.2.2 WRITE PLOT FILE
To save the output in its graphical representation, Sélete plot file
from theExecutemenu. Selecting this option opens Hile select
box Enter the name of the file to be saved and press the OK button.
The default extension for the graph is .xgraph.

8.1.2.3 NSERT COLUMN

Selecting thénsert column option from theExecutemenu opens the
Create Datawindow. This window is shown in Figure 8-2.

Figure 8-2 The Create Data Window

r] Create Data
Insert after Column 0

Column type formula

Formula A(3r-1,8c) +1

Insert at end {overrides Column)

Forget this insertion

0K Help

There are several options available from@neate Datawindow.
8.1.2.3.1 Insert after Column

This can be any number between 0 and the maximum number of
variables in the observation file. For example, if the user wishes to add
a column after the third column, the user should enter a 3 in this space.

8.1.2.3.2 Column type

The default value for Column type is data, however by placing the
cursor over the data box and pressing the left mouse button, another
option is reveiled. The other option is formula. The user should select
data if no formula can be used to describe the information to be added
to the spreadsheet. The user should select formula if that is appropriate.
In this case, a column was inserted after Column 0 and we are using the
formula Column type.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

81 ASCPLOT

8.1.2.3.3 Formula
If the data option was selected in the previous section, then this does
not apply. However, if the formula option was selected, then the user
can edit the default formula. The default formula takes the value of the

variable in the current row ($r) and the column before the new column
($c-1) and adds one (+1) to it.

8.1.2.3.4 Insert at end (overrides Column)

The user can select this box to place the new column after the last
column in the spreadsheet. This will override anything in the Insert
after Column line.

8.1.2.3.5 Forget this insertion

The user can select this box to ignore the changes made to the
spreadsheet.

8.1.2.4 RECALCULATE COLUMN
This option is currently not functional.

8.1.2.5 NSERT ROW
The insert row option has the same options as the Insert Column option.
Note that the formula take the value from the row immediately before it
($r-1) and the current column ($c) and adds one (+1) to it.

8.1.2.6 RECALCULATE ROW

This option is currently not functional.

8.1.3 THE DISPLAY MENU

TheDisplay menu has various features which include showing and
hiding the data in the spreadsheet, setting plot titles, loading old plots,
updating existing plots, and deleting plots.

8.1.3.1 $iow DATA / HIDE DATA
Selecting th&Show dataoption from theDisplay menu loads the data
into the spreadsheet in the bottom section ofAeend Plotvindow.

This option then toggles tdide data. Selecting this option will hide
the data just loaded into the spreadsheet section of the window.

Last modified: June 20, 1998 10:32 pm

PLOT MAKER

82

8.1.3.2 &T PLOT TITLES

Selecting the&Set plot titles option from theDisplay menu opens the
Graph Genericsvindow. This window is shown in Figure 8-3.

Figure 8-3 The Graph Generics Window

=] Graph Generics

Plot Title Composition Profile

¥ Axis Title Time

Y Axis Title Composition

Column 2 legend {at {}

Column 3 legend '} {}

Column 4 legend f’c’y i}

i 0K Help

There are several options within this window depending on the number
of variables being plotted.

8.1.3.2.1 Plot Title

The user can change the default title (AscPlot) to something that is
more descriptive and meaningful for the given data. In this case, we set
the title to be Composition Profile since we are plotting the mole
fractions of the components in the system.

8.1.3.2.2 X Axis Title

The user can change the default title (X) to something more descriptive.
In this case, we are plotting the time on the x-axis.

8.1.3.2.3 Y Axis Title

The user can change the default title (Y) to something more descriptive.
In this case, we are plotting the Composition on the y-axis.

8.1.3.2.4 Column # legend

In this case, (#) is the number of the variable being plotted. If variables
2, 3, and 4 are being plotted, the will be entries iGhaph Generics
window entitled Column 2 legend, Column 4 legend, and Column 4
legend. These entries can be changed to something less descriptive than
the default. Usually the default for this field is a bit much. In this case,
the legend was changed to ‘a’, ‘b’, and ‘c’.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

83 ASCPLOT

8.1.3.3 LoAD OLD PLOT
This option is currently not functional.
8.1.3.4 WDATE PLOT
This option is currently not functional.
8.1.3.5 [ELETE PLOT
This option is currently not functional.
The plot of the completed graph is shown in Figure 8-4.

Figure 8-4 Complete Plot

8.1.3.6 THE GRILL @

The grill is located directly to the right of PLOT MAKER. Clicking on
this button with the left mouse button opensXi@&raph Control

window. By clicking on the More button located at the bottom of the
window, the user can scroll through numerous available options for the
graphs. Some of these options include line color, fonts, graph type (i.e.
log or semilog), and marker types. These are left to the user to explore.

Last modified: June 20, 1998 10:32 pm

NAVIGATION

84

8.2 NAVIGATION

Open a file using thieoad data setsoption from theFile menu. You

will notice that the selected file is now displayed in the top section of
the Ascend Plowindow. By double-clicking on the file name with the
left mouse button, the observation variables are now placed in the
section entitled unused variables. The unused variables are the list of
variables that the user does not want to look at in the current graph.

To select a variable to plot, highlight the desired variables using the left
mouse button and click on the (>>) button. This will move the variable
from the unused variables list to the plotted variables list. Once this is
done, you can now plot the variable.

The two buttons separating the unused variabes section and the plotted
variables section are used to add (>>) and remove (<<) variables to and
from the plotted variables list.

You will notice that there is a section of thecend Plotvindow

entitled Independent. Here the independent variable is time. This was
set in the dynamic library file. If the user desires to look at the phase
plot of two of the compositions, the user must move one of the
compositions into the Independent variable position.

To do this, let's assume that all of the variables are currently in the
unused variables list and we wish to plot the composition of component
‘c’ versus the composition of component ‘b’. Thus, component ‘c’ is
now going to be our independent variable. Highlight component ‘c’ in
the unused variables list and press the (V) button. This button is one of
two buttons located directly under the (>>) and (<<) buttons. The (V)
button on the left is used to move variables between the unused
variables list and the Independent variable list while the (V) button on
the right is used to move variables between the plotted variables list and
the Independent variable list. Therefore, we are going to use the (V)
button on the left.

By doing this, we see that the composition of component ‘c’ is now the
independent variable and the time is now an unused variable. Select the
composition of component ‘b’ and press the (>>) button to move the
variable from the unused variables list to the plotted variables list. The
only remaining task is to edit the plot title and axes usin@#telot

titles option from theDisplay menu. Assuming we have done this as
described above, the resulting graph is shown in Figure 8-5.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

85

ASCPLOT

The remaining section of tiescend Plowindow is the HINT: section.
This section contains a brief description of the various buttons and
sections of the Ascend Plot window.

Figure 8-5 Phase Diagram

Last modified: June 20, 1998 10:32 pm

CHAPTER9 DISPLAY SLAVE

9.1 OVERVIEW

The display slave window (Figure 9-1) functions as a dumping ground
for information which is too complex to display in other ways in the
Library, Browser or other primary windows. It has rudimentary editing
abilities so the user can manually adjust the format of displayed
information if needed, for example by rearranging a highly nonlinear
relation with more than a few variables. Changes to displayed text do
not affect the rest of the system in any way.

Figure 9-1 Display slave window

Ble EdFl Wew Help
HODEL milxture,

COmponents IS_h set OF symbol_constant;

v [component IE A fraction;

SUM[y([i] | 1 IF componente] = 1.0;
HETHOOE

METHID specify;
¥loomponente] . fixed = TRUOE;
YICHOICE [components]] . fixed = FALSE;
END spacify;

END mixture

TRl T

87

Print

Close window

Exit ASCEND

Cut

Copy

Paste

Show comments
in code

Save Display
options

Font

9.2

9.3

9.4

DISPLAY SLAVE

DIsPLAY FILE MENU

This option brings up the default print dialog described in the section
Utilities. The print command can be used to save the displayed text to a
file.

The option closes the display window.

Exit the ASCEND system. You will be asked to verify that you really
wish to exit ASCEND.

DispPLAY EDIT MENU

Cut highlighted text to the computer paste buffer. You can paste this
text into any application that supports cut, copy and paste -- e.g., into
Framemaker or Excel.

Copy highlighted text to the computer paste buffer. You can paste this
text into any application that supports cut, copy and paste -- e.g., into
Framemaker or Excel.

Paste the contents of the computer paste buffer into the Scipt buffer at
the point of the cursor.

DisPLAY VIEW MENU

This option controls whether or not comments are displayed when code
is displayedas read from source filesThis setting is not retroactive;

that is code already displayed will not be redisplayed when changing
this setting.

When code is displayed in the machine representation, i.e. with
eguations and set expressions in postfix (reverse polish) notation,
comments are never displayed.

Saves the current settings for this window for its options. These become
the default settings when opening this window in the future. These
settings are saved in@dotext file for this window which the sytem
stores in the subdirectoascdatain your “home” directory.

Opens the window that lets you reset the fonts for this window. You can
select the type of font, the style (bold, etc.) and the size for the font.

Last modified: June 20, 1998 10:33 pm

TITLE LINE

Open
automatically

Save window
appearance

88

Toggles a switch which, if set, will cause the Browser window to open
whenever anything is placed into it by an export command.

Saves the current settings for this window for font settings and window
size and placement on your computer screen. These become the default
settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

9.4.1 FONT

This option brings up the standard font setting dialog so you can
change the size, style, and font of the characters in the display window.

9.4.2 (CPEN AUTOMATICALLY

This option controls whether or not the display slave window opens
automatically when it receives information. Sometimes it is easier to
send several items to the display and then open it at the end.

9.4.3 DSPLAY HELP MENU

9.5

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

TITLE LINE

The title line at the bottom of the window is set by the last client to
export something to the display. The user may edit the title, but the next
time new information is displayed, these edits will be lost.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/display.fm5

89

DISPLAY SLAVE

Last modified: June 20, 1998 10:33 pm

CHAPTER 10 ASCEND WNITS

Units vs
dimensions

Typical use

10.1 THE MENU BAR

The Units Tool Set provides tools to allow the user to change the
display units for variables.

We distinguish betweeamits anddimensionsn ASCEND. The
dimensions of acceleration, for example, are’liE., length/time
squared. Units for acceleration are: mfshr? and so forth. A chapter
in the Howto book tells you how to enter dimensioned equations into
ASCEND and includes a useful discussion on units and dimensions.
Also see the ASCEND syntax document for a discussion.

The user will typically first pick the overall system of units such as Sl,
American Engineering or cgs. Alternatively the user may select to use
thedefaultdisplay of units for some or all variable types. Displaying in
default units means ASCEND will present the units in terms of the ten
basic dimensions supported by ASCEND (length, time, temperature,
etc.). The user can select the units to be used for each basic dimension.
Whichever of these alternatives the user selects, he or she may then also
choose the units ASCEND should use to display particular variable
types. An example would be to select first Sl units, then override the
display of energy to be in default units and pressure to be in atm.

Once users have created their favorite choices for display units, they
may save them to files for later restoration.

We describe here the various tools available within the Units tool set, as
seenin

91

Read file

Save file

Close window

ASCEND WNITS

Figure 10-1 The Units of measure window
File Edit Display View ﬂeﬂ
Ielectric_field defaulk _'_"'T
=l haly iV LT
enktropss Cal
force keal
ftrecuency PCu
heakt _capacikty |
inducktance kd
inverss ktemperakbur cal

k_con=tant
magnekic fi=ld
mass_densikty

Mass _ Ssec

J molar densikty

calorie

g

Joule

Eesy

lbm*fEaA2 fmnl

S=k uniks:

ETu

j;Basic units:
lbm

1l _mole
fc

=

R

o=

F

cd

deg

_',.f =rad

10.1.1 WuITS FILE MENU

Reads in a file previously saved using the “Save file” command.
Restores the display units to those previously saved.

Writes out (in the current working

reading this file back in later.

Close this window. To reopen it, select Measuring units in the Tools
menu of the Script or select the UNITS button on the Toolbox window.

directory) a plain text version of the
user specified display units. Units which are defaulted are not written to
this file. One can restore the display units to those currently set by

Last modified: June 20, 1998 10:33 pm

THE MENU BAR 92

Exit ASCEND Exit the ASCEND system. You will be asked to verify that you really
wish to exit ASCEND.

10.1.2 WiITS EDIT MENU

Set precision Use the slider switch for this tool to set the number of digits of
precision for displaying variable values to between 4 and 16. Precision
is the number of digit displayed when the number is displayed using
scientific notation. For example, 0.12345678 e04 for 1234.5678 has a
precision of 8 digits.

Set basic units Drops a cascading window in which are listed the ten basic dimensions

for ASCEND. You can select in which units you wish to see each base
dimenion to be displayed using this list.

10.1.3 WITS DisPLAY MENU

Show all units Causes the Display window to open showing the extensive set of units
conversions currently used in ASCEND. The list opens in the Display
window.

10.1.4 WiITS VIEW MENU

SI(MKS) set Pushing this button makes the default display units Sl units.

US Engineering Pu_shing this button makes the default display units US Engineering
set units.

CGS set Pushing this button makes the default display units CGS units.

Font Opens the window that lets you reset the fonts for this window. You can

select the type of font, the style (bold, etc.) and the size for the font.

Open Toggles a switch which, if set, will cause the Browser window to open
automatically whenever anything is placed into it by an export command.

Save window Saves the current settings for this window for font settings and window
appearance size and placement on your computer screen. These become the default

settings for opening this window in the future. These settings are saved
in a adotext file for this window which the sytem stores in the
subdirectoryascdatain your “home” directory.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/units.fm5

ASCEND WNITS

10.1.5 WITS HELP MENU

Brings up a text description of where to look for help on this window
(i.e., it points to the pdf version of this document on the WWW.) You
may, of course, look into the section mentioned in any local (but
perhaps outdated) copy of the documentation.

10.2 AN ESSAY ON UNITS VS DIMENSIONS

ASCEND stores all numbers in SI (MKS) units internally. The units
associated with a dimensionality (as exemplified by some atom) will be
used when displaying variables of that dimensionality. These units can
be manipulated through the Units window.

Numbers with unrecognized dimensionality (higher derivatives,
multipliers, residuals and what not) will be given units consistent with
the display units defined for the 10 base dimensions. The display units
for the 10 dimensions can be changed through the Units window
Display menu if you prefer an alternate default set such as US
engineering, and so forth.

We recognize 10 base dimensions in the compiler:

L distance meter m

M mass kilogram kg

T time second s

E e-current ampere A

Q quantity mole mole
TMP temperature Kelvin K
LUM luminous intensity candela cd
P plane angle radian rad

S solid angle steradian srad

C currency currency CR

The units conversions are defined in $ASCENDDIST/compiler/
units_input, which is not particularly restricted. Units_input is
converted to an efficient binary form (unitsfile.uni) at the time
ASCEND is installed.

It can be argued that C is not a fundamental dimension, from a physical
standpoint. There is more to life than physics: there is economy, hence
engineering, hence an Advanced System for Computations in
ENgineering Design.

Last modified: June 20, 1998 10:33 pm

AN ESSAY ON UNITS VS DIMENSIONS 94

The dimensions P and S are ‘supplementary’ according to the General
Conference, but their use makes the coding of ASCEND much cleaner
and easier.

10.2.1 ONUNITS

The left box in the Units window lists a set of atom types, each having a
unique dimensionality. Selecting an atom in the left box will fill the

right box with different possible units that the system knows about to
display this type of variable. Dimensionless atoms and wild
dimensioned atoms are not shown since they do not have display units.
If you do not see an atom you expect here, it is because ASCEND
already found another atom of the same dimensionality, e.g. fugacity
may show up instead of pressure.

Selecting a unit in the right box sets that unit as the display unit for all
variables having the same dimensionality of the selected atom in the
left box. Thus pickingatm for fugaciy will also change pressure units
to atm. Selecting ‘default’ will cause the display to be a combination of
thefundamentalnits (a nice way to remind oneself of the fundamental
units for energy, for example).

Fundamental units are the units corresponding to single dimensions.
These units are chosen on the Display menu under the dimension
choices. No atoms with fundamental units are listed in the left box. The
current set of fundamental units is always shown at the very bottom of
the units window. This set is used whenever a value is displayed which
does not have a user specified units set associated with its
dimensionality. The fundamental units are created via the units_input
file mentioned above. If you do not find one you want, ask whoever
compiled your version of unitsfile.uni to add the missing unit and
rebuild the unitsfile.uni.

If converting the units for a variable makes the display of that number
impossible (e.g., due to overflow). ASCEND will first attempt to
display it using its fundamental units. If it still cannot be displayed, it
will be displayed in Sl units.

You may specify a new combination of existing units (e.g. Pa*s) using
the Set unitswhich is the line at the bottom of the window. Type in the
combination desired and press RETURN.

Unit strings may not have parentheses in them. For example, kg/
(m*s”2) is not allowed.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/units.fm5

95

ASCEND WNITS

Last modified: June 20, 1998 10:33 pm

CHAPTER 11 THE ASCEND TooLBOX

Thetoolbox window shown in Figure 111éts the users open and close
the various windows for the tool sets available in ASCEND. The
toolbox window is a vertical window containing 12 buttons: exit,
ascplot, help, utilities, bug report, LIBRARY, BROWSER, SOLVER,
PROBE, UNITS, DISPLAY, SCRIPT.

The buttons in the toolbox with names in ALL CAPS (LIBRARY and
following) open and close the windows for the corresponding tool sets

exit

ascoplot

help

utilities

bug report

LIBRARY

BECOWSEE

SOLYVER

PEOEE

UMITS

DIZPLAY

SCREIPT

Figure 11-1 The ASCEND Toolbox window.

97 THE ASCEND TooLBOX

in ASCEND'. As each of these toolsets has its own documentation, we
shall not discuss them here. We discuss here only the first set of
buttons: Exit, Ascplot, Help, Utilities, and Bug Report.

11.1 &IT

This button shuts down all of ASCEND after making sure you want to
quit. ASCEND does no checking to see if there is unsaved work so be
certain you have saved what you want of it before selecting this button.

(For more advanced users, we note that, just before exiting, we call the
tcl function user_shutdown which may be redefined in the

.ascendrc file in your HOME directory. Under Windows, the
_ascendrc is the name of the corresponding file.)

11.2 ASCPLOT

Selecting this button opens the plotting tool for ASCEND. You can find
any file that contains data for a plot and plot it with this tool. Ascplot is
described elsewhere.

11.3 HELP

Pressing this button will provide access to the Help Documentation for
ASCEND. The help system is described elsewhere.

11.4 UTILITIES

Selecting this button opens the system utilities window. The system
utilities window is described elsewhere.

11.5 INTERNALS

The internals window gives catalog access to the global Tcl arrays that
maintain and control the GUI and other ASCEND options. It also gives
access to the list of ASCEND functions (C callbacks) that are defined
and their built-in documentation. Casual users should not use this tool.

1. The more advanced user should note that changing the iconname of a window (via
ascend.ad) does not change its toolbox name.

Last modified: June 20, 1998 10:33 pm

BuG REPORT

98

11.6 BUG REPORT

The link

http://www.cs.cmu.edu/~ascend/Email.html

is connected to the web server for ASCEND at CMU. Alternatively,
send a bug report to

ascend+bugs@cs.cmu.edu

if you cannot access this link. We do not have an 800 number, but we
usually get to bug reports very quickly.

When submitting a bug report, please try to

1.
2.
3.

Duplicate the error.
Tell us in excruciating detail how you duplicated it.

Report to us the platform and operating system (OS) on which
you are running. Also please tell us the distribution number for
the ASCEND code on which you are running. This is research
software. We are not committed to backward compatibility, and
we do not have access to all the platform/OS combinations out
there. If the bug you report has been fixed in a newer version,
your only fix is to get the new version or fix it yourself. If you are
on a platform to which we do not have access, we will consider
working out the bugs with you in the hope that you will then give
us back a copy for the new platform.

Send along any model code you have that is involved in the bug
manifestation. It may happen that, in the process of fixing the
ASCEND bug, we could fix some of your model bugs. We are not
in the business of debugging your model code unless it is also
interesting to our research. We often find new applications of
ASCEND interesting, however.

Subscribe to the ASCEND user mailinglist/bboard: Send mail to
ascend+subscribe@edrc.cmu.edu

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/toolbox.fm5

99

THE ASCEND TooLBOX

Last modified: June 20, 1998 10:33 pm

CHAPTER 12 THE SYSTEM UTILITIES WINDOW

12.1 OVERVIEW

Thesystem utilities window shown in Figure 1displays and allows
modification of the variables which control the interaction of ASCEND
with the operating system and with other programs.

The values of the variables are initialized from the user’s environment,
from the file.ascend-config in the user's HOME directory, and
from settings within ASCEND.

If the user chooses to save the system utility settings, ASCEND writes
the current values of the variables into fdecend-config in the
user's HOME directory. ASCEND will automatically reread those
values in the next time it starts.

ASCEND Utility Settings |

Text print command|}} fdev/null cat

PRINTER (foo_bar |
TCL_LIERARY \fusr/local/lib/ascend/1ib/
TK_LIBRAZRY dir |/usr/local/lib/ascend/1ib/
W restart |rMozilla E41) |
WY root URL |fusrflocalflibfascendfhelﬂ
W startup |rMozilla E41) |

Spreadshest command unset |

04 Save | Eead | More | Help

Figure 12-1 The System Utilities window manages ASCEND’s
interaction with the operating system and with other
programs.

101 THE SYSTEM UTILITIES WINDOW

When working with the system utilities window, it is important to
remember that changes to the variables propagatediately
throughout ASCEND, and that there is no way to undo or cancel
changes made to the variailes

12.2 VARIABLES

The system utilities window contains the following settings. Settings
marked with an asteriskare not saved irascend-config

To change a variable’s value, click in the box to the right of the
variable’s label and type the new value. This new value is immediately
available to the ASCEND system.

12.2.1 WWW RooTt URL

ASCEND distributes its help system as HTML documents, and spawns
a web browser to view these documents. The variable WWW Root
URL gives the root of the ASCEND help tree, and the variables WWW
Restart Command and WWW Startup Command contains commands
to connect to a running web browser and to start a new web browser,
respectively.

WWW Root URL contains the first part of a URL to the ASCEND help
tree; it is not necessarily a complete URL. The variable should end in a
forward slash (/). Theélelp menus and buttons in ASCEND will

append text to this value and invoke WWW Restart Command or
WWW Startup Command with the complete URL.

The person who installs ASCEND at a site should set this variable to
the root of the directory containing that site’s copy of the ASCEND
help files, for example:

file://localhost/usr/local/lib/ascend/help/

at CMU ICES.

The value
http://www.cs.cmu.edu/~ascend/help/
will connect you to the help pages at the ASCEND web site.

1. Some variables can be restored to the values in effect the last time the system utilities were saved, but this
only works if the user has previously saved the values, and it does not restore every variable.

Last modified: June 20, 1998 10:33 pm

VARIABLES 102

12.2.2 WWW RESTART COMMAND

This is a command to redirect the attention of your already running web
browser to a new URL. If this command returns an error code,
ASCEND will attempt to start a new browser using the WWW Startup
Command.

If your favorite browser does not support restarting, set the value of this
variable tofalse . This will cause a new browser to start for every
help query from the ASCEND interface.

ASCEND will replace every occurrence%iin this command with

the URL to be viewed. The default value of WWW Restart Command
is

netscape -remote openURL(%U)

12.2.3 WWW SraARTUP COMMAND

This is a command to start your favorite web browser. This command is
invoked if the value of WWW Restart Commandatse or if
attempting to start a browser using that command returns an error code.

ASCEND will replace every occurrence%iUin this command with

the URL to be viewed. The default value of WWW Startup Command
is

netscape %U

12.2.4 ASCENDLIBRARY PATH

The ASCENDLIBRARY variable contains a list of directories that the
Library and Script tools search to find files containing ASCEND
models and scripts.

The format of the directory list should resemble the PATH environment
variable for your platform: a colon (:) separated list of directories
(using forward slashes) on UNIX, a semicolon (;) separated list of
directories (using backward slashes) on Windows.

The ASCENDLIBRARY variable is initialized from the user’s

environment or from the ASCEND binary; its value is not saved in the
user’'s.ascend-config file.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

103 THE SYSTEM UTILITIES WINDOW

12.2.5 $RATCH DIRECTORY

The scratch directory is used to write the temporary and plot files that
ASCEND creates. The temporary files are automatically deleted before
you leave ASCEND, but the plot files are not (since people often want
to save plots). You should periodically remove any plot files from the
scratch directory, else you may slow build up a large collection of past
plot files.

Any existing directory you have write access to can be used as the
scratch directory. Under UND&mp is the default value of the scratch
directory. Under Windows, the directory given in the environment
variable TEMP, TMP, or TMPDIR is used as the default value.

12.2.6 WORKING DIRECTORY

Typically, this is the directory you start ASCEND from, but it can be
any existing directory you have write access to. Our handling of the
working directory is a bit “flaky” at the moment because ASCEND’s
command line allows the user to change directories without telling the
rest of the interface about it. Intermediate files are sometimes written in
the working directory.

12.2.7 ROT PROGRAM TYPE

Currently, the only supported plot typexgraph plot
(abbreviateckgraph). This setting tells the plot window what type of
plot file it should generate.

12.2.8 ROT PROGRAM NAME

This is the name of your plotting program. It should accept the plot
type listed in Plot Program Type as input.

The default ixgraph on UNIX andtkxgraph on Windows. Both

xgraph and tkxgraph are available from the ASCEND web site:
http://www.cs.cmu.edu/~ascend/

12.2.9 TexT EDIT COMMAND

This is a command to spawn your favorite text file editor. (Currently,
nothing in ASCEND invokes this command.)

The default i=macs on UNIX andrunemacs on Windows.

Last modified: June 20, 1998 10:33 pm

VARIABLES 104

12.2.10 B®STSCRIPT VIEWER

This is a command to spawn a program for viewing Postscript files.
(Currently, nothing in ASCEND invokes this command).

The default igghostview on UNIX and on Windows.

12.2.11 $READSHEET COMMAND

This is a command to spawn your favorite spreadsheet program.
(Currently, nothing in ASCEND invokes this commé)nd

12.2.12 TEXT PRINT COMMAND

This entry displays the last command generated by the print dialog box.
Changing the value of this entry will have no effect on future printing,
since the print dialog manages all aspects of printing.

This value is displayed here as a hold-over from previous versions of

ASCEND,; developers sometimes use it as a check to make sure the
print dialog is doing the right thing.

12.2.13 PRINTER VARIABLE "

This entry displays the last printer the user selected in the print dialog
box, or the value of the PRINTER or LPDEST environment variable if
the user has not used the print dialog box during this ASCEND session.

Changing the value of this entry will have no effect on future priﬁting
since the print dialog manages all aspects of printing.

This value is not saved in the usedscend-config file.
12.2.14 ASCENDDIST DRECTORY ~

The value of the ASCENDDIST environment variable is the directory
containing the installed ASCEND distribution. If a user can see this

2. Nothing invokes this command because there is no ASCEND code that supports it. Someone needs to write
code that will write out the desired variables as columns of numbers suitable for importing into any
spreadsheet. If you want to be that someone, let us know and we’ll be happy to consult. We have some
pseudocode for this already; contact uassend@cs.cmu.edu

3. Thisis not entirely true. This entry will change the value of the PRINTER environment variable (but not the
LPDEST environment variable). Any command you invoke from ASCEND command prompt that depends
on the PRINTER environment variable will use the value displayed in this entry.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

105

THE SYSTEM UTILITIES WINDOW

variable inside the system utilities window, it means its value is correct.
Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The ASCENDDIST variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.2.15 TCL_LIBRARY ENVIRONMENT VARIABLE i

The value of the TCL_LIBRARY environment variable is the directory
containing the installetitcl files required by Tcl. If a user can see
this variable inside the system utilities window, it means its value is
correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The TCL_LIBRARY variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.2.16 TK_LIBRARY ENVIRONMENT VARIABLE -

The value of the TK_LIBRARY environment variable is the directory
containing the installetitcl files required by Tk. If a user can see

this variable inside the system utilities window, it means its value is

correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The TK_LIBRARY variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

12.3 BUTTONS

The actions associated with the buttons on the system utilities window
are:

Last modified: June 20, 1998 10:33 pm

BUTTONS 106

12.3.1 OK

This button closes the system utilities window. Closing will fail if the
scratch directory and working directory are not writable by the user.

12.3.2 3VE

This button writes the current value of most of the variables in the
system utilities window to a file calledscend-config in your
HOME director)fl. ASCEND will read this file on startup to get your
preferred values.

The variables whose names are in ALL CAPS (i.e.,

ASCENDLIBRARY, PRINTER, ASCENDDIST, TCL_LIBRARY,
TK_LIBRARY) are not saved taascend-config . These are
environment variables that are set as part of the login process. You may
change them interactively, but their interactive values are not saved.

12.3.3 READ

The button causes the system utilities window to reread the values
stored in.ascend-config in your HOME directory. This is useful
for editing.ascend-config outside of ASCEND while running
ASCEND, or for verifying that the changes you saved were properly
saved.

12.3.4 MORE

The button rotates you through the pages of options.

12.3.5 HLP

The button should direct your web browser to this document.

4. Under Windows, you can set your HOME directory by setting the HOME environment variable by opening
the Control Panel, double clicking the System icon, clicking the Environment tab, and adding the HOME
variable to the list of user environment variables.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

107 THE SYSTEM UTILITIES WINDOW

Last modified: June 20, 1998 10:33 pm

CHAPTER 13 FONT SELECTION DIALOG

13.1 OVERVIEW

Thefont selection dialog (Figure 13-i9 used to select the font for the
window from which it is opened. There is no way through the interface
to change the font for every ASCEND window.

Currently, the fonts you select are not remembered across invocations
of ASCEND. This is a feature we will be adding in a future release.

Font Styles cancel | 0K

This i=s a sample of bexk 1in
fcourier! 12 normal , or the closest
makbch. ¥ou can edit this texk. MODEL
fool() 12345678390 _= |@f#d%as*()—+

<, 2/ ~N | " gwerkyuiop

charter 12 normal

clean 12 normol

courier 12 normal

fixed 12 normal

helvetica 12 normal

lucida 12 normal

lucidabright 12 normal
Tucidatvpewriter 12 normal
new century schoolbook 12 normal /

I = e I =

Number of points

| T

4 & 12 16 20 24 26 32 36 40 44 48
Font selected: |{|:|:|urier} 12 normal

Figure 13-1 The font selection dialog.

109

FONT SELECTION DIALOG

To change the default fonts for ASCEND, see Setting the Default Font
later in this chapter.

The font which the font selection dialog displays when it is opened is
independent of the current window’s font. This is actually a feature.
When you close the font selection dialog (by pressing either the OK
Button or the Cancel Button) and reopen it, it will display the same font
as when it was closed. This way, once you find a font you like, you can
change other ASCEND windows to this same font by simply opening
the font selection dialog and pressing OK. As a default, the very first
time you open the font dialog in an ASCEND session, the font is set to
Courier 12 normal

The font selection dialog has eight parts: Font Menu, Style Menu,
Cancel Button, OK Button, Current Font Sample, Font Sampler Area,
Point Size Slider, Current Font Selection.

13.2 FONT MENU

The Font menu displays the fonts available for your platform (e.g,
Helvetica, Courier). Selecting one of these fonts will update the
Current Font Sample and Current Font Selection areas of the window.

13.3 SYLE MENU

The Style menu allows you to specify attributes (e.g., Bold, Italic) for
the selected font. As you add and remove attributes, the Current Font
Sample and the Current Font Selection will reflect the changes.

13.4 CANCEL BUTTON

The Cancel button closes the font selection window without changing
the fonts of the window.

13.5 OK BUTTON

The OK button closes the font selection window and sets the font of the
window to the font listed in the Current Font Selection area.

Last modified: June 20, 1998 10:33 pm

CURRENT FONT SAMPLE 110

13.6 QURRENT FONT SAMPLE

This area of the font selection window shows a sample of text in font,
style, and size you have currently selected.

If you want to see what your current selection does to particular
characters, you may type into this area. Note that your additions will be
deleted when you change any aspect of the font (style, size, font).

13.7 FONT SAMPLER AREA

This area of the font selection window shows you a sample of the fonts
available for your platform. You may make one of the listed fonts the
current selection by clicking the font with the left mouse button. The
currently selected styles and sizes remain in effect.

13.8 ROINT SIZE SLIDER

This slider lets you choose the point size of the font. The text displayed
in the Current Font Sample updates immediately.

13.9 QURRENT FONT SELECTION

This area displays the Tcl name for the font (including the size and
style(s)) that you have currently selected. You may type in this area, but
doing so will have no effect on the font.

13.10 &TTING THE DEFAULT FONT

To have ASCEND use the same font each time you run it, you need to
do the following steps.

1. Use the font selection dialog to choose a font you like. Make a
note of the Tcl name for the font; this name is displayed in the
Current Font Selection area of the window.

2. Open the system utilities window and make a note of the value of
ASCENDDIST.

Exit ASCEND.
4. Under the ASCENDDIST directory, there should be a directory

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/fontsel.fm5

111 FONT SELECTION DIALOG

calledTK, and in this directory a file callescend.ad . Cogy
this file to your HOME directoryand name itascend.ad

5. Add the following lines at the end @fscend.ad |, replacing
courier 11 normal with the font you noted in Step 1.

Global font courier 11 normal
Global labelfont courier 11 normal
Toolbox font courier 11 normal
Library font courier 11 normal
Display font courier 11 normal
Browser font courier 11 normal
Probe font courier 11 normal
Units font courier 11 normal
Script font courier 11 normal
Solver font courier 11 normal
Debugger font courier 11 normal

6. Saveascend.ad , and restart ASCEND.

Note that this file also contains the default size and position for most
ASCEND windows. To change the position or size of a window, edit
the lines containingeometry ; the format for the geometry is
WWHH-xx +yy

whereWWs the width of the windowtHis its heightxx is the

distance between the left edge of the screen and the left edge of the
window, andyy is the distance between the screen’s top edge and the
window’s top edge.

1. To set your HOME directory under Windows, open the Control Panel, double click the System icon, select
the Environment tab, and set the HOME environment variable to a directory you want to consider “home”.
2. Under Windows, the nameascend.ad also works.

Last modified: June 20, 1998 10:33 pm

CHAPTER 14 THE PRINT DIALOG

14.1 OVERVIEW

Theprint dialog shown in Figure 14-dllows the user to modify the
settings which control the printing of information from within
ASCEND.

14.2 FTTINGS

14.2.1 DESTINATION

This is a pop-up menu that allows you to select one of the following
options for printing: Print, Write to file, Append to file, Enscript, or

Custom.
Destinaticon Print
Printer miragg
Hame of file IW
Enscript flags |—2rG
User print command |:=-:=- fdev/null cat

OF | Help | Cancel |

Figure 14-1 The print dialog.

113 THE PRINT DIALOG

14.2.1.1 RINT

On UNIX machines, this option sends the window’s contents to the
printer specified in the Printer fiel®RINTER). Under SystemV
systems, the command

Ip-d PRINTER

is used as the interface to the printer; on all other UNIX systems, the
command

lpr -P PRINTER

is used.

Under Windows, the command

notepad /p

is used to send the window’s contents to the user’s default printer. This
will not print the Matrix display and other graphic displays correctly
because those generate PostScript. Text windows (Display, Probe,
Script, Library) will print correctly.

14.2.1.2 V\RITE TO FILE
Under UNIX, this option writes the contents of the window to the file
listed in the Name of file field. If a file with the same name exists,
ASCEND will overwrite the file after verifying that the user wants to
overwrite the file.

This option is not available on the Windows platform.

This option is another version of Save As and will likely go away in
future releases of ASCEND.

14.2.1.3 APPEND TO FILE
Under UNIX, this option appends the contents of the window to the file
listed in the Name of file field. If the file does not exist, it will be
created.
This option is not available on the Windows platform.
This option will likely go away in future releases of ASCEND.

14.2.1.4 ENSCRIPT

On UNIX, this option uses thenscript ~ program to queue the
window’s contents to the printer specified in the Printer field

1. HP-UX, SGI IRIX, and Solaris 2.x.

Last modified: June 20, 1998 10:33 pm

SETTINGS 114

(PRINTER). On SystemV systems, the command
enscript -d PRINTER enscript-flags
is used; on all other UNIX systems, the command
enscript -P PRINTER enscript-flags
is used. The value of enscript-flags is the value specified in the Enscript
flags field.
This option is not available on the Windows platform.
14.2.1.5 @sTOM
This option allows the user to specify a custom print command. The
user should type their custom command in the User print command
field; the command should accept a file name as its final argument.

This option is not available on the Windows platform.

14.2.2 RRINTER

Under UNIX, this field specifies the printer to send the document to
when the Destination is Print or Enscript.

This field has no effect under Windows.

14.2.3 NAME OF FILE

Under UNIX, this field contains the name of the file used by the Write
to file and Append to file options.

This field has no effect under Windows.

14.2.4 BNSCRIPT FLAGS

Under UNIX, this field contains the options sent toghscript
program when the Destination is Enscript.

This field has no effect under Windows.

14.2.5 WSER PRINT COMMAND

Under UNIX, this field contains the command used to “print” the
window’s contents when the Destination is Custom. This command
should accept the name of a file (a temporary file containing the
contents of the window) as its final argument.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/print_dialog.fm5

115 THE PRINT DIALOG

This field has no effect under Windows.

14.3 BUTTONS

14.3.1 OK
Pressing this button accepts the settings, sends the document to the
printer or to the specified file, and closes the print dialog. The values

displayed in the Text print command and the PRINTER fields in the
system utilities window will change to reflect the new settings.

14.3.2 HLP

Pressing this button should cause your web browser to display this
document.

14.3.3 OANCEL

This button ignores any changes you may have made to the settings and
closes the print dialog. The file is not printed.

Last modified: June 20, 1998 10:33 pm

CHAPTER 15 SOLVED SIMPLE MODELING
PROBLEMS WITHASCEND

In this chapter we present two simple modeling problems for which we
then show you our ASCEND models for solving them. Modeling is a
matter of style, and we will start to show you what we believe to be
good styles for modeling. We assume you have not used the ASCEND
system before. These problems are very generic and should be readily
followed by anyone with a modest technical background.

One purpose is to show you some of the different ways you can use
ASCEND. Specifically we want to show you that you can use
ASCEND to setup and solve the simple types of problems that you
might have solved using a spreadsheeting program. Indeed, we use
ASCEND to solve homework problems quite often. When you factor in
the powerful debugging tools, you might find it faster to use ASCEND,
especially as the models get more complex. And no one would want
(we think) to solve a 20,000 simultaneous nonlinear equation model
using a spreadsheeting program.

A major advantange of using ASCEND is that once you have written,
debugged and learned to solve such a model, you can interactively alter
the "fixed" flags for the variables, changing which variables are to be
fixed and which to be calculated. You can then immediately solve or
optimize the new problem, using the previously solved problem as the
initial guess.

15.1 ROOTS OF A POLYNOMIAL

In this problem you wish to find the roots of a polynomial. Assume
you do not wish to keep the code. You could readily use a spreadsheet

117 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

program with its "root finder" routine to solve this type of problem, but
you can as readily use ASCEND.

15.1.1 HROBLEM STATEMENT

Numerically compute the roots ()f—l)(x-S)(x+7)(>@+1) =0. (Givenin
this form the roots are obviously 1, 5, and -7. Two roots are complex,
and ASCEND will not find them.)

15.1.2 ANSWER

You can find the roots by guessing initial points after typing in, loading
and compiling the following model. You would use any text editor to
enter this model into the computer. If you use a "WYSIWYG" (what
you see is what you get) editor such as Word or Framemaker, be sure to
save the file ast@xt only file. If possible, use a simpler text editor.

MODEL polynomial_roots; 1
X IS_A generic_real; 2
(X-1)*(x-5)*(x+7)*(x"2+1) = 0; 3

END polynomial_roots; 4

This simple model is a stand-alone model. You need no other
predefined libary models to support it. Load and compile an instance
of this model (using tools in the LIBRARY tool set), browse it (using
the BROWSER tool set) to see if it appears to have compiled correctly,
and then pass it to the SOLVER tool set.

This model involves a single equation in the single unknown variable,
X. The ASCEND solver treats a single equation in one unknown in a
special manner when asked to solve it. The solver first attempts to
rearrange the equation by simple algebraic manipulations to isolate the
unknown on the left hand side of the equation in the form x =
expression not involving X. In this form, solving is simply evaluating
the expression on the right hand side once. Here the solver would fail
as there is no way to isolate x on the left hand side as the equation is a
fifth order polynomial in x. When rearrangement fails, the solver uses
bisection to locate a root in the range between the lower and upper
bound on the variable. You can see the bounds, x.lower and x.upper,
using the BROWSER. The default values for these bounds are plus and
minus 16° respectively, which gives a very large range in which to

Last modified: June 20, 1998 10:33 pm

NUMERICAL INTEGRATION OF TABULAR DATA 118

look for the root. You should change the bodrtdsmore realistic
ones. Selecting bounds to be -10 to 0 and then solving will find the root
x=-7. Selecting other values will find the other roots.

This model illustrates that you can quickly set up and solve simple
problems using ASCEND. Note that you would have been required to
place bounds on x had you used a goal seeking tool in a spreadsheeting
program if you wanted to control which root to locate.

15.2 NUMERICAL INTEGRATION OF TABULAR
DATA

This problem is similar to the previous one in that it is very easy to set
up and solve. It adds in the notion of units (e.g., ft, m, hr, atm) which
ASCEND handles in a straight-forward manner, relieving modelers
from thinking about converting among the many units they might use
when expressing the data for a problem.

Again we are talking about producing throw-away code. All we are
really concerned with here is the answer which we intend to put into a
report. We are using ASCEND as a "calculator.”

15.2.1 FROBLEM STATEMENT

Given the following velocity data vs. time, estimate numerically the
distance one has traveled between time equal to zero and 100 seconds.

Table 1: Velocity data to be integrated

data point time, velocity,
number S ft/min
1 0 100
2 10 120
3 20 130
4 30 135
5 40 140
6 50 160
7 60 180

1. To setthe value for a variable interactively, select the variable when it is display in the right window or in the
lower window with the RIGHT mouse button (the other button). A window for changing its value opens.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

119

SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

Table 1: Velocity data to be integrated

data point time, velocity,
number S ft/min
8 70 210
9 80 240
10 90 220
11 100 200

15.2.2 ANSWER

(This example will be solved using variables whose types are defined in
the file atoms.a4l. You must load this file first before loading the file
with the code below, else you will experience a number of diagnostic
messages indicating missing type definitions. See Chapter 18 for a
discussion of libraries on ASCEND.)

The distance traveled is the integral of the velocity over time. We can
use Simpson’s rule to carry out this integration for evenly spaced
points.

d = ((V[1] + 4 V[2] + V[3]) + (vV[3] + 4 V[4] + V[5]) +....
+(V[N-2] + 4 V[N-1] + V[N]))*At6 (15.1)

whered is the distance covered when traveling at the veloc\igs$,

listed. This formula requires there to be an odd number of 3 or more
evenly space data points, which is fine here as we have eleven velocity
points evenly spaced in time. (If there had been an even number of
points, we could use Simpson'’s rule for all but the last time interval and
use a simple trapezoidal rule to integrate it.)

An ASCEND model to evaluate this distance is as follows. The types
definitions forspeedtime anddistanceare in the fileatoms.a4l

MODEL travel_distance; 1
kmax IS_Ainteger_constant; 2
v[1..2*kmax+1] IS_A speed; 3
delta_time IS_Atime; 4
d IS_A distance; 5

Last modified: June 20, 1998 10:33 pm

NUMERICAL INTEGRATION OF TABULAR DATA 120

d = SUM[v[2*k-1]+4*V[2*K]+V[2*k+1] SUCH_THAT K IN

[1..kmax]]*delta_time/6; 7
END travel_distance; 8
9
MODEL test_travel_distance REFINES travel_distance; 10
kmax ==5; 11
12
METHODS 13
METHOD specify; 14
v[1..2*kmax+1].fixed = TRUE; 15
delta_time.fixed = TRUE; 16
END specify; 17
18
METHOD values; 19
v[1] := 100 {ft/min}; 20
v[2] := 120 {ft/min}; 21
V[3] := 130 {ft/min}; 22
v[4] := 135 {ft/min}; 23
v[5] := 140 {ft/min}; 24
V[6] := 160 {ft/min}; 25
v[7] := 180 {ft/min}; 26
v[8] := 210 {ft/min}; 27
v[9] := 240 {ft/min}; 28
v[10] := 220 {ft/min}; 29
v[11] := 200 {ft/min}; 30
delta_time =10 {s}; 31
END values; 32
END test_travel_distance; 33

If you look carefully at this model, you will note that we did NOT
account for the conversion factors required because velocities are in ft/
min while the time increment is in seconds. ASCEND understands
these units and makes all the needed conversions. When you run this
model, you can ask for the distance to be displayed to you in any
supported length units you would prefer (e.g., ft, mile, m, cm,
angstroms, lightyears). The distance traveled, when reported using Sl
units, is 42.84 m.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

121 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

Last modified: June 20, 1998 10:33 pm

THE WHEN STATEMENT 122

CHAPTER 16 A CONDITIONAL MODELING
EXAMPLE: REPRESENTING A
SUPERSTRUCTURE

To give an example of the application of the conditional modeling tool
in ASCEND -thewHEN statement-, we developed a simplified model
for the superstructure given in Figure 16-1. The code listed below
exists in a file in the ASCEND models subdirectory entitled
when_demo.a4¢/ou could run this example by loading this file and
using it and its corresponding scnphen_demo.a4s

o |
T

s2
Ql [) Pby
Feed 1 (cheap) high conv, high cost
@ p r2
s1 ¥ co A+B-»C
ri
® D_{Qj_’D'* <1000
Feed 2(exp.) low conv, low cost ton/day

>90 %
pure C

Figure 16-1 Superstructure used in the example of the application of the when statement

16.1 THE WHEN STATEMENT

Before showing the example, we want to start by giving a brief
explanation about the semantics of the WHEN statement, a tool which
allowsASCEND to represent conditional models efficiently.

In theWHEN statement, we take advantage of the factAB@END is

based on object oriented concepts where model definitions can contain
parts that contain parts to any level. Furthermora@S@END, a simple

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

123

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

relation is treated as an object by itself and can have a name. Based on
these ideas, the syntax for telEN statement is:

WHEN (list_of variables)

CASE list_of values_1:
USE name_of_equation_1;
USE name_of _model_1;
CASE list_of values_2:
USE name_of_equation_2;
USE name_of _model_2;
CASE list_of values_nminusl:
USE name_of_equation_nminul;
USE name_of _model_nminus1;

OTHERWISE:

USE name_of_equation_n;
USE name_of _model_n;

END,;

The following are important observations about the implementation:

1

TheWHEN statement does not mean conditional compilation. We
create and have available the data structures for all of the variables
and equations in each of the models. This is actually a requirement
for the solution algorithms of conditional models. All the models
and equations whose name is given in each of the cases should be
declared inside the model which containsMWh€EN statement.

The variables in the list of variables can be of any type among
boolean, integer or symbol or any combination of them. That is, we
are not limited to the use of boolean variables. Obviously, The list
of values in each case must be in agreement with the list of
variables in the number of elements and type of each element. In
other words, order matters in the list of variables of¥ReN

statement, and parentheses are enclosing this list to make clear such
a feature.

Names of arrays of models or equations are also allowed inside the
scope of eachASE

TheWHEN statement represents an important contribution to modeling:
it allows the user to define the domain of validity of hwoitdels and
equationsnside the cases ofv@HEN statement. This feature
enormously increases the scope of modeling in an equation based
modeling environment.

Mainly, there are two different ways in which thelEN statement can
be used.:

Last modified: June 20, 1998 10:33 pm

THE PROBLEM DESCRIPTION

124

» First, the WHEN statement can be used to select a configuration
of a problem among several alternative configurations.

* Second, in combination with logical relations, ¥eeEN
statement can be used for conditional programming. That is, a
problem in which the system of equations to be solved depends
on the solution of the problem. A typical example of this
situation is the laminar-turbulent flow transition. The selection of
the equation to calculate the friction factor depends on the value
of the Reynolds number, which is an unknown in the problem.

16.2 THE PROBLEM DESCRIPTION

In the example, there are two alternative feedstocks, two possible
choices of the reactor and two choices for each of the compression
systems. The user has to make 4 decisions (for example, using either
the cheap feed or the expensive feed), therefore, theré are&

feasible configurations of the problem. All these 16 configurations are
encapsulated in oreSCEND model containing AVHEN statements

which depend on the value of 4 boolean variables.

The value of the four boolean variables will determine the structure of
the problem to be solved. In this example, those values are defined by
the modeler, but they also could be defined by some logic inference
algorithm which would allow the automatic change of the structure of
the problem.

The following section gives the code for this model. The first models
correspond to the different types of unit operations existing in the
superstructure. Those model are very simplified. You may want to skip
them and analyze only the modlelwsheetin which the use and

syntax of the WHEN statement as well as the configuration of the
superstructure become evident.

16.3 THE CODE

As the code is in our ASCEND examples subdirectory, it has header
information that we required of all such files included as one large
comment extending over several lines. Comments are in the form (*
comment *). The last item in this header information is a list of the
files one must load before loading this one, sgstem.adénd

atoms.a4l

34

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

125 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

REQUIRE "atoms.a4l"; 35
(* --> measures,system *) 36
PROVIDE "when_demo.a4c"; 37
(***\ 38
when_demo.a4c 39
by Vicente Rico-Ramirez 40
Part of the Ascend Library 41
42
This file is part of the Ascend modeling library. 43
44
The Ascend modeling library is free software; you can redistribute 45
it and/or modify it under the terms of the GNU General Public License as 46
published by the Free Software Foundation; either version 2 of the a7
License, or (at your option) any later version. 48
49
The Ascend Language Interpreter is distributed in hope that it will be 50
useful, but WITHOUT ANY WARRANTY:; without even the implied warranty of 51
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 52
General Public License for more details. 53
54
You should have received a copy of the GNU General Public License along with55
the program; if not, write to the Free Software Foundation, Inc., 675 56
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 57
58
Use of this module is demonstrated by the associated script file 59
when_demo.a4s. 60
62
(********7\-**\ 63
$Date: 1998/05/14 21:39:44 $ 64
$Revision: 1.5 $ 65
$Author: rv2a $ 66
$Source: /afs/cs.cmu.edu/project/ascend/Repository/models/when_demo.a4c,v$67
***) 68
69
* 70
This model is intended to demonstrate the degree of flexibility 71
that the use of conditional statements -when statement- provides 72
to the representation of superstructures. We hope that this 73
application will become clear by looking at the MODEL flowsheet, 74
in which the existence/nonexistence of some of the unit operations 75
is represented by when statements. A particular combination of 76
user defined boolean variables -see method values, configuration2, 77
configuration3- will a define a particular configuration of the 78
problem. 79
80

Last modified: June 20, 1998 10:33 pm

THE CODE 126
This model requires: 81
"system.a4l" 82
"atoms.a4l" 83
*) 84
85
(* FrFrkkkkookkkeke ke) 86
87
MODEL mixture; 88
89
components IS_A set OF symbol_constant; 90
Cpi[components] IS_A heat_capacity; 91
y[components] IS_A fraction; 92
P IS_A pressure; 93
T IS_A temperature; 94
Cp IS_A heat_capacity; 95
96
97
SUM][yJi] | i IN components] = 1.0; 98
Cp = SUMI[Cpi[i] * y[i] | i IN components]; 99
100
METHODS 101
102
METHOD default_self; 103
END default_self; 104
105
METHOD specify; 106
Cpi[components].fixed := TRUE; 107
P.fixed := TRUE; 108
T.fixed := TRUE; 109
y[components].fixed := TRUE; 110
y[CHOICE[components]].fixed := FALSE; 111
END specify; 112
113
END mixture; 114
115
116
(* kkk *) 117
118
MODEL molar_stream; 119
state IS_A mixture; 120
Ftot,fflcomponents] IS_A molar_rate; 121
components IS_A set OF symbol_constant; 122
P IS_A pressure; 123
T IS_A temperature; 124
Cp IS_A heat_capacity; 125
126

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

127 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

components, state.components ARE_THE_SAME;

P, state.P ARE_THE_SAME;
T, state.T ARE_THE_SAME;
Cp, state.Cp ARE_THE_SAME;

FOR i IN components CREATE
f_def{i]: f[i] = Ftot*state.y][il;
END FOR;

METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN state.specify;
state.y[components].fixed := FALSE;
flcomponents].fixed := TRUE;

END specify;

END molar_stream;

(* kkkkkkkkkkkkkkkhkkkkkkhkkhkkkhkkkkkkhhkkhkkkkkkkkk *)

MODEL cheap_feed;
stream IS_A molar_stream;
cost_factor IS_A cost_per_mole;
cost IS_A cost_per_time;

stream.f['A]l = 0.060 {kg_mole/s};
stream.f['B] = 0.025 {kg_mole/s};
stream.f['D'] = 0.015 {kg_mole/s};
stream.f['C'] = 0.00 {kg_mole/s};
stream.T = 300 {K};

stream.P = 5 {bar};

cost = cost_factor * stream.Ftot;
METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN stream.specify;
stream.f[stream.components].fixed := FALSE;

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

Last modified: June 20, 1998 10:33 pm

THE CODE

cost_factor.fixed := TRUE;

stream.T.fixed := FALSE;

stream.P.fixed := FALSE;
END specify;

END cheap_feed;

MODEL expensive_feed;

stream IS_A molar_stream;
cost_factor IS_A cost_per_mole;
cost IS_A cost_per_time;

stream.f['A] = 0.065 {kg_mole/s};
stream.f['B] = 0.030 {kg_mole/s};
stream.f['D'] = 0.05 {kg_mole/s};
stream.f['C'] = 0.00 {kg_mole/s};
stream.T = 320 {K};
stream.P = 6 {bar};

cost = 3 * cost_factor * stream.Ftot;
METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN stream.specify;
stream.f[stream.components].fixed := FALSE;
cost_factor.fixed := TRUE;
stream.T.fixed := FALSE;
stream.P.fixed := FALSE;
END specify;

END expensive_feed;

(* K*kkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkhkhkkkk *)

MODEL heater;

input,output IS_A molar_stream;
heat_supplied IS_A energy_rate;
components IS_A set OF symbol_constant;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

128

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

129

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

cost IS_A cost_per_time; 219
cost_factor IS_A cost_per_energy; 220
221
components,input.components,output.components ARE_THE_SAME; 222
FOR i IN components CREATE 223
input.state.Cpi[i], output.state.Cpi[i] ARE_THE_SAME; 224
END FOR; 225
226
FOR i IN components CREATE 227
input.fi] = output.fi]; 228
END FOR; 229
230
input.P = output.P; 231
232
heat_supplied = input.Cp *(output.T - input.T) * input.Ftot; 233
234
cost = cost_factor * heat_supplied; 235
236
METHODS 237
238
METHOD default_self; 239
END default_self; 240
241
METHOD specify; 242
RUN input.specify; 243
cost_factor.fixed := TRUE; 244
heat_supplied.fixed := TRUE; 245
END specify; 246
247
METHOD segmod; 248
cost_factor.fixed := TRUE; 249
heat_supplied.fixed := TRUE; 250
END segmod,; 251
252
END heater; 253
254
255
(* kkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkhkhhhhkkkkkkkkkkkikikkx *) 256
257
MODEL cooler; 258
259
input,output IS_A molar_stream; 260
heat_removed IS_A energy_rate; 261
components IS_A set OF symbol_constant; 262
cost IS_A cost_per_time; 263
cost_factor IS_A cost_per_energy; 264

Last modified: June 20, 1998 10:33 pm

THE CODE

components,input.components,output.components ARE_THE_SAME;

FOR i IN components CREATE
input.state.Cpi[i],output.state.Cpi[i]
END FOR;

ARE_THE_SAME;

FOR i IN components CREATE
input.f[i] = output.f[i];
END FOR;

input.P = output.P;

heat_removed = input.Cp *(input.T - output.T) * input.Ftot; 276
cost = cost_factor * heat_removed,;
METHODS
METHOD default_self;
END default_self;
METHOD specify;
RUN input.specify;
cost_factor.fixed := TRUE;
heat_removed.fixed := TRUE;
END specify;
METHOD segmod;
cost_factor.fixed := TRUE;
heat_removed.fixed := TRUE;
END segmod,
END cooler;
(* FRFrkkkkkokokkeke koo) 297
MODEL single_compressor; (* Adiabatic Compression *)
input,output IS_A molar_stream;
components IS_A set OF symbol_constant;
work_supplied IS_A energy_rate;
pressure_rate IS_A factor;
R IS_A gas_constant;
cost IS_A cost_per_time;
cost_factor IS_A cost_per_energy;
components,input.components,output.components ARE_THE_SAME;

FOR i IN components CREATE

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

268

272

266

267

271

275

277

299

281

285

286

287

291

292

301
302

303
304

305

306

307

309

310

130

265

269
270

273
274

278
279
280

282
283
284

288
289
290

293
294
295
296
298

300

308

131 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

input.state.Cpi[i],output.state.Cpi[i] ARE_THE_SAME; 311
END FOR; 312
313
FOR i IN components CREATE 314
input.f[i] = output.f[i]; 315
END FOR; 316
317
pressure_rate = output.P / input.P; 318
319
output.T = input.T * (pressure_rate ~(R/input.Cp)); 320
321
work_supplied = input.Ftot * input.Cp * (output.T - input.T); 322
323
cost = cost_factor * work_supplied; 324
325
METHODS 326
327
METHOD default_self; 328
END default_self; 329
330
METHOD specify; 331
RUN input.specify; 332
cost_factor.fixed := TRUE; 333
pressure_rate.fixed := TRUE; 334
END specify; 335
336
METHOD segmod; 337
cost_factor.fixed := TRUE; 338
pressure_rate.fixed := TRUE; 339
END segmod,; 340
341
END single_compressor; 342
343
(* kkk *) 344
345
MODEL staged _compressor; 346
347
input,output IS_A molar_stream; 348
components IS_A set OF symbol_constant; 349
work_supplied IS_A energy_rate; 350
heat removed IS_A energy_rate; 351
T_middle IS_A temperature; 352
n_stages IS_A factor; 353
pressure_rate IS_A factor; 354
stage_pressure_rate IS_A factor; 355
R IS_A gas_constant; 356

Last modified: June 20, 1998 10:33 pm

THE CODE
cost IS_A cost_per_time;
cost_factor_work IS_A cost_per_energy;
cost_factor_heat IS_A cost_per_energy;
components,input.components,output.components ARE_THE_SAME;
FOR i IN components CREATE
input.state.Cpi[i],output.state.Cpi[i] ARE_THE_SAME;
END FOR;

FOR i IN components CREATE
input.f[i] = output.f[i];
END FOR;

output.T = input.T;

pressure_rate = output.P / input.P;

stage_pressure_rate =(pressure_rate)*(1.0/n_stages);
T_middle = input.T * (stage_pressure_rate ~(R/input.Cp));

work_supplied = input.Ftot * n_stages * input.Cp *
(T_middle - input.T);

heat_removed = input.Ftot * (n_stages - 1.0) *
input.Cp * (T_middle - input.T);

cost = cost_factor_work * work_supplied +
cost_factor_heat * heat_removed,;

METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN input.specify;
n_stages.fixed := TRUE;
cost_factor_heat.fixed := TRUE;
cost_factor_work.fixed := TRUE;
pressure_rate.fixed := TRUE;
END specify;

METHOD segmod;

n_stages.fixed := TRUE;
cost_factor_heat.fixed := TRUE;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

132

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

133 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

cost_factor_work.fixed := TRUE; 403
pressure_rate.fixed := TRUE; 404
END segmod,; 405
406
END staged_compressor; 407
408
(* kkk *) 409
410
MODEL mixer; 411
412
components IS_A set OF symbol_constant; 413
n_inputs IS_Ainteger_constant; 414
feed[1..n_inputs], out IS_A molar_stream; 415
To IS_A temperature; 416
417
components,feed[1..n_inputs].components, 418
out.components ARE_THE_SAME; 419
FOR i IN components CREATE 420
feed[1..n_inputs].state.Cpi[i],out.state.Cpi[i] ARE_THE_SAME; 421
END FOR; 422
423
FOR i IN components CREATE 424
cmbli]: out.f[i] = SUM[feed[1..n_inputs].ffi]]; 425
END FOR; 426
427
SUM[(feed[i].Cp *feed[i].Ftot * (feed[i].T - To))|i IN [1..n_inputs]]= 428
out.Cp *out.Ftot * (out.T - To); 429
430
SUM[(feed][i].Ftot * feed[i]. T / feed[i].P)|i IN [1..n_inputs]] = 431
out.Ftot * out.T / out.P; 432
433
METHODS 434
435
METHOD default_self; 436
END default_self; 437
438
METHOD specify; 439
To.fixed := TRUE; 440
RUN feed[1..n_inputs].specify; 441
END specify; 442
443
METHOD segmaod; 444
To.fixed := TRUE; 445
END segmod,; 446
447
END mixer; 448

Last modified: June 20, 1998 10:33 pm

THE CODE

(* kkkkkkkkkkkkhkkkkhkkkkkkhhkkhkkkhkkkkkkhhkkhkkkkkkkkk *)

MODEL splitter;

components IS_A set OF symbol_constant;
n_outputs IS_A integer_constant;

feed, out[1..n_outputs] IS_A molar_stream;
split[1..n_outputs] IS_A fraction;

components, feed.components,

out[1..n_outputs].components ARE_THE_SAME;
feed.state,
out[1..n_outputs].state ARE_THE_SAME;

FOR j IN [1..n_outputs] CREATE
out[j].Ftot = split[j]*feed.Ftot;
END FOR;

SUM[split[1..n_outputs]] = 1.0;
METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN feed.specify;
split[1..n_outputs-1].fixed:=TRUE;
END specify;

METHOD segmod;
split[1..n_outputs-1].fixed:=TRUE;
END segmod,;

END splitter;

(* *kkkkkkkkkk *kkkkkkkkkk *kkkkkkkkkhk *% *)

MODEL cheap_reactor;

components IS_A set OF symbol_constant;
input, output IS_A molar_stream;

low_turnover IS_A molar_rate;
stoich_coef[input.components] IS_A factor;

cost_factor IS_A cost_per_mole;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

450

454
455

456

457

459
460

462

464

465

468

472

476
477

481

487

490
491
492
493
494

134

449

451
452
453

458

461

463

466
467

469
470
471

473
474
475

478
479
480

482
483
484
485
486

488
489

135

cost IS_A cost_per_time;

components,input.components, output.components

FOR i IN components CREATE
input.state.Cpi[i], output.state.Cpili]
END FOR;

FOR i IN components CREATE

output.f[i] = input.f[i] + stoich_coef[i]*low_turnover;

END FOR;

input.T = output.T;
(* ideal gas constant volume *)

input.Ftot * input.T / input.P = output.Ftot * output.T/output.P;

cost = cost_factor * low_turnover;
METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN input.specify;
low_turnover.fixed:= TRUE;
stoich_coef[input.components].fixed:= TRUE;
cost_factor.fixed := TRUE;

END specify;

METHOD segmaod;
low_turnover.fixed:= TRUE;
stoich_coef[input.components].fixed:= TRUE;
cost_factor.fixed := TRUE;

END segmod,;

END cheap_reactor;

(* *kkkkkkkkkk *kkkkkkkkkk *kkkkkkkkkhk *% *)

MODEL expensive_reactor;

ARE_THE_SAME;

ARE_THE_SAME;

503

508

533

components

input, output

high_turnover
stoich_coef[input.components]

IS_A set OF symbol_constant;
IS_A molar_stream;
IS_A molar_rate;
IS_A factor;

Last modified

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

495
496
497
498
499
500
501
502
504
505
506
507
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
534
535
536
537
538
539
540

:June 20, 1998 10:33 pm

THE CODE

cost_factor IS_A cost_per_mole;
cost IS_A cost_per_time;
components,input.components, output.components ARE_THE_SAME;
FOR i IN components CREATE

input.state.Cpi[i], output.state.Cpi[i] ARE_THE_SAME;
END FOR;

FOR i IN components CREATE
output.f[i] = input.f[i] + stoich_coef[i]*high_turnover;
END FOR;

input.T = output.T;
(* ideal gas constant volume *)
input.Ftot * input. T / input.P = output.Ftot * output.T/output.P;

cost = cost_factor * high_turnover;
METHODS

METHOD default_self;
END default_self;

METHOD specify;
RUN input.specify;
high_turnover.fixed:= TRUE;
stoich_coef[input.components].fixed:= TRUE;
cost_factor.fixed := TRUE;

END specify;

METHOD segmod;
high_turnover.fixed:= TRUE;
stoich_coef[input.components].fixed:= TRUE;
cost_factor.fixed := TRUE;

END segmod,;

END expensive_reactor;

(* *kkkkkkkkkk *kkkkkkkkkk *kkkkkkkkkhk *% *)

MODEL flash;
components IS_A set OF symbol_constant;
feed,vap,liq IS_A molar_stream;
alpha[feed.components] IS_A factor;
ave_alpha IS_A factor;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

550

555

579

546

136
541
542
543
544
545
547
548
549
551
552
553
554
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
580
581
582
583
584
585
586

137

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

vap_to_feed_ratio IS_A fraction; 587
588
components,feed.components, 589
vap.components, 590
lig.components ARE_THE_SAME; 591
FOR i IN components CREATE 592
feed.state.Cpili], 593
vap.state.Cpi[i], 594
lig.state.Cpili] ARE_THE_SAME; 595
END FOR; 596
597
vap_to_feed_ratio*feed.Ftot = vap.Ftot; 598
599
FOR i IN components CREATE 600
cmbli]: feed.f[i] = vap.f[i] + liq.f[i]; 601
eq[i]: vap.state.y[i]*ave_alpha = alphali]*lig.state.y][i]; 602
END FOR; 603
604
feed.T =vap.T; 605
feed.T = liq.T; 606
feed.P = vap.P; 607
feed.P = liq.P; 608
609
METHODS 610
611
METHOD default_self; 612
END default_self; 613
614
METHOD specify; 615
RUN feed.specify; 616
alpha[feed.components].fixed:=TRUE; 617
vap_to_feed_ratio.fixed:= TRUE; 618
END specify; 619
620
METHOD segmod; 621
alpha[feed.components].fixed:=TRUE; 622
vap_to_feed_ratio.fixed:= TRUE; 623
END segmod; 624
625
END flash; 626
627
(* TRk) 628
629

Next, the modellowsheets presented. This model represents one of
the applications of th&vHEN statement. Namely, selecting among

Last modified: June 20, 1998 10:33 pm

THE CODE

138

alternative configurations of the problem. Note that in each of the
WHEN statements we define the conditional existence of complete
ASCEND models. A specific combination for each of the conditional
variables -boolean_vars in the example- will define a specific
configuration of the problem. Once a configuration has been selected, it
will be kept until the user decides to change it. Note that the user does
not have to recompile the model to switch among alternative
configurations. The reconfiguration of the system can be done
automatically by simply changing the values of the conditional
variables. An obvious application of this would be the synthesis of
process networks. While running the scripten_demo.a4sote the
changes in the number of active equations, active variables and fixed
variables for the different configurations. For example, the
configuration defined by one of the feeds, two single-stage
compressors and one of the reactors contains 169 active equations.

(* kkkkkkhkhkkkhkhkkkhhkkkhhkkkhkhkkhkhkhkkhhkhkkhhkhkkkkhkhxx *) 630
631
MODEL flowsheet; 632
633
(* units *) 634
635
fi IS_A cheap_feed,; 636
f2 IS_A expensive_feed; 637
638
cl IS_A single_compressor; 639
sl IS_A staged_compressor; 640
641
c2 IS_A single_compressor; 642
s2 IS_A staged_compressor; 643
644
rl IS_A cheap_reactor; 645
r2 IS_A expensive_reactor; 646
647
col,co2 IS_Acooler; 648
h1,h2,h3 IS_A heater; 649
fl1 IS_A flash; 650
spl IS_A splitter; 651
ml IS_A mixer; 652
653
(* boolean variables *) 654
655
select_feedl IS_A boolean_var; 656
select_singlel IS_A boolean_var, 657
select_cheaprl IS_A boolean_var; 658
select_single2 IS_A boolean_var; 659

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

(* define sets *)

ml.n_inputs :==2;
spl.n_outputs == 2;

(* wire up flowsheet *)

fl.stream, f2.stream, cl.input, sl.input
cl.output, s1l.output, ml.feed[2]
m1l.out,col.input

col.output, hl.input

hl.output, rl.input, r2.input
rl.output, r2.output,co2.input
co2.output, fl1.feed

fl1.lig, h2.input

fl1.vap, spl.feed

spl.out[1], h3.input
spl.out[2],c2.input, s2.input
c2.output, s2.output,ml.feed[1]

(* Conditional statements *)

WHEN (select_feedl)
CASE TRUE:
USE f1,
CASE FALSE:
USE f2;
END WHEN;

WHEN (select_singlel)
CASE TRUE:
USE c1;
CASE FALSE:
USE s1,
END WHEN,;

WHEN (select_cheaprl)
CASE TRUE:
USE r1;
CASE FALSE:
USE r2;
END WHEN;

WHEN (select_single2)

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;
ARE_THE_SAME;

Last modified: June 20, 1998 10:33 pm

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

THE CODE

CASE TRUE:
USE c2;
CASE FALSE:
USE s2;

END WHEN,;

METHODS

METHOD default_self;
END default_self;

METHOD segmod;
RUN c1.segmod;
RUN c2.segmod;
RUN sl1.segmod;
RUN s2.segmod;
RUN col.segmod;
RUN co2.segmod;
RUN hl.segmod;
RUN h2.segmod;
RUN h3.segmod;
RUN rl1.seqmod;
RUN r2.seqmod;
RUN fl1.segmod;
RUN spl.segmod;
RUN m1l.segmod;

END segmod,;

METHOD specify;
RUN segmod;
RUN f1.specify;
RUN f2.specify;

END specify;

END flowsheet;

(* kkkkkkkkkkkkkhkkhkkkkkkhkkhkkkhkkkkkkhhkkhkkkkkkkkk *)

MODEL test_flowsheet REFINES flowsheet;

fl.stream.components ;== ['A",'B','C','D'];

METHODS

METHOD default_self;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

140

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

744

746

748

749

750
751

141

END default_self;
METHOD values;

(* Initial Configuration *)
select_feedl := TRUE;
select_singlel := TRUE;
select_cheaprl := TRUE;
select_single2 := TRUE;

(* Fixed Values *)
(* Physical Properties of Components *)

fl.stream.state.Cpi['A"] := 0.04 {BTU/mole/K};
fl.stream.state.Cpi['B'] := 0.05 {BTU/mole/K};
fl1.stream.state.Cpi['C'] := 0.06 {BTU/mole/K};
fl.stream.state.Cpi['D'] := 0.055 {BTU/mole/K};

(*Feed 1 %)
fl.cost_factor := 0.026 {dollar/kg_mole};

(* Feed 2 %)
f2.cost_factor := 0.033 {dollar/kg_mole};

(* Cooler 1 %)
col.cost_factor :=0.7e-06 {dollar/kJ};
col.heat_removed := 100 {BTU/s};

(* Cooler 2 *)
co2.heat_removed := 150 {BTU/s};
co2.cost_factor :=0.7e-06 {dollar/kJ};

(* Heater 1 *)
hl.heat_supplied := 200 {BTU/s};
hl.cost factor := 8e-06 {dollar/kJ};

(* Heater 2 *)
h2.heat_supplied := 180 {BTU/s};
h2.cost_factor := 8e-06 {dollar/kJ};

(* Heater 3 *)
h3.heat_supplied := 190 {BTU/s};
h3.cost_factor := 8e-06 {dollar/kJ};

(* Flash *)

A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

Last modified: June 20, 1998 10:33 pm

THE CODE

fll.alpha['A" := 12.0;
fl1.alpha['B"] := 10.0;
fll.alpha['C'] := 1.0;
fll.alpha['D’] := 6.0;
fll.vap_to_feed_ratio :=0.9;

(* Splitter *)
spl.split[1] :=0.05;

(* Mixer *)
m1.To := 298 {K};

(* Single Compressor 1 *)
cl.cost_factor := 8.33333e-06 {dollar/kJ};
cl.pressure_rate ;= 2.5;

(* Single Compressor 2 *)
c2.cost_factor := 8.33333e-06 {dollar/kJ};
c2.pressure_rate := 1.5;

(* Staged Compressor 1 *)
sl.cost_factor_work := 8.33333e-06 {dollar/kJ};
sl.cost_factor_heat := 0.7e-06 {dollar/kJ},
sl.pressure_rate ;= 2.5;
sl.n_stages = 2.0;

(* Staged Compressor 2 *)
s2.cost_factor_work := 8.33333e-06 {dollar/kJ};
s2.cost_factor_heat := 0.7e-06 {dollar/kJ};
s2.pressure_rate ;= 1.5;
s2.n_stages ;= 2.0;

(* Reactor 1 %)
rl.stoich_coef[AT:=-1;
rl.stoich_coef['B]:=-1;
rl.stoich_coef['C":=1;
rl.stoich_coef['D']:=0;
rl.low_turnover := 0.0069 {kg_mole/s};

(* Reactor 2 *)
r2.stoich_coef['AT:=-1,;
r2.stoich_coef['B:=-1;
r2.stoich_coef['C":=1;
r2.stoich_coef['D']:=0;
r2.high_turnover := 0.00828 {kg_mole/s};

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

798
799
800
801
802

805

808

810
811
812

814
815
816

818
819
820
821
822

824
825
826
827
828

831
832
833
834
835

838
839
840
841
842

142

803
804

806
807

809

813

817

823

829
830

836
837

843

143 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

(* Initial Guess *) 844
845
(* Flash *) 846
fll.ave_alpha:=5.0; 847
848
END values; 849
850
METHOD configuration2; 851
(* alternative configuration *) 852
select_feedl := FALSE; 853
select_singlel := FALSE; 854
select_cheaprl ;= FALSE; 855
select_single2 := FALSE; 856
END configuration2; 857
858
METHOD configuration3; 859
(* alternative configuration *) 860
select _feedl := FALSE; 861
select_singlel := TRUE; 862
select_cheaprl := TRUE; 863
select_single2 := FALSE; 864
END configuration3; 865
866
END test_flowsheet; 867
868
(* kkkkkkkkkkhhkkkkkkkkkkkkkkkkkkhkhhhhhkkkkkkkkkkikrkkx *) 869
870

Last modified: June 20, 1998 10:33 pm

THE PROBLEM DESCRIPTION 144

CHAPTER 17 A SMPLE CHEMICAL ENGINEERING
FLOWSHEETING EXAMPLE

In this example we shall examine a model for a simple chemical
engineering process flowsheet. The code listed below exists in the file
in the ASCEND examples subdirectory entiti¥ohple _fs.asc Except

for some formatting changes to make it more presentable here, it is
exactly as it is in the library version. Thus you could run this example
by loading this file and using it and its corresponding ssiipple_fs.s

17.1 THE PROBLEM DESCRIPTION

This model is of a simple chemical engineering flowsheet. Studying it
will help to see how one constructs more complex models in ASCEND.
Models for more complex objects are typically built out of previously
defined types each of which may itself be built of previously defined
parts, etc. A flowsheet could, for example, be built of units and
streams. A distillation column could itself be built out of trays and
interconnecting streams.

Lines 40 to 56 in the code below give a diagram of the flowsheet we
would like to model. This flowsheet is to convert species B into species
C. B undergoes the reaction.

B-->C

The available feed contains 5 mole percent of species A, a light
contaminant that acts as an inert in the reactor. We pass this feed into
the reactor where only about 7% of B converts per pass. Species C is
much less volatile than B which is itself somewhat less volatile than A.
Relative volatilities are 12, 10 and 1 respectively for A, B and C.
Species A will build up if we do not let it escape from the system. We
propose to do this by bleeding off a small portion (say 1 to 2%) of the B
we recover and recycle back to the reactor.

The flowsheet contains a mixer where we mix the recycle with the feed,

a reactor, a flash unit, and a stream splitter where we split off and
remove some of the recycled species B contaminated with species A

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

145

17.2

A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

Our goal is to determine the impact of the bleed on the performance of
this flowsheet. We would also like to see if we can run the flash unit to
get us fairly pure C as a bottom product from it.

The first type definitions we need for our simple flowsheet are for the
variables we would like to use in our model. The ones needed for this
example are all in the file atoms.a4l. Thus we will need to load
atoms.a4l before we load the file containing the code for this model.

The following is the code for this model. We shall intersperse
comments on the code within it.

THE CODE

As the code is in our ASCEND models directory, it has header
information that we require of all such files included as one large
comment extending over several lines. Comments are in the form (*
comment *).

To assure that appropriate library files are loaded first, ASCEND has
the REQUIRE statement, such as appears on line 61.:

REQUIRE atoms.a4l

This statement causes the system to load thatblas.a4before
continuing with the loading of this fileatoms.a4ln turn has a require
statement at its beginning to casystem.a4to be loaded before it is.

(***\ 1
simple_fs.asc 2
by Arthur W. Westerberg 3
Part of the Ascend Library 4
5
This file is part of the Ascend modeling library. 6
7
Copyright (C) 1994 8
9
The Ascend modeling library is free software; you can redistribute 10
it and/or modify it under the terms of the GNU General Public License as 11
published by the Free Software Foundation; either version 2 of the 12
License, or (at your option) any later version. 13
14
The Ascend Language Interpreter is distributed in hope that it will be 15
useful, but WITHOUT ANY WARRANTY:; without even the implied warranty of 16

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Last modified: June 20,

17

1998 10:33 pm

THE CODE

General Public License for more details.

You should have received a copy of the GNU General Public License along 20
with the program; if not, write to the Free Software Foundation, Inc., 21

675 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.

Use of this module is demonstrated by the associated script file 24
simple_fs.s.

(********7\-**\ 28

$Date: 97/02/20 18:54:21 $

$Revision: 1.5 $

$Author: mthomas $

$Source: /afs/cs.cmu.edu/project/ascend/Repository/models/examples/
simple_fs.asc,v $
\7\-*************7\-*************7\-**) 33

(*

The following example illustrates equation based modeling using the 36
ASCEND system. The process is a simple recycle process.

------- 41

| split |----> purge 43

|
| e 45
[A 46
% | 47
--------------------- 48
Il I 49
————— >| mix |--->| reactor |--->| flash | 50
Il o 51
--------------------- 52
| 53
| 54
----- > C 55

This model requires: “system.a4l”
“atoms.a4l”

)

REQUIRE atoms.a4l

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

18

22

37

29

57

58

146

19

23

25

27

30

31

32

34

35

38
39
40

56

59
60
61

147 A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

The first model we shall define is for defining a stream. In the
document entitled “Equation-based Process Modeling” we argue the
need to define a stream by maximizing the use of intensive variables
and the equations interrelating them. Our problem here requires only
the molar flows for the components as the problem definition provides
us with all the physical properties as constants. Nowhere for this
simple model do we seem to need temperatures, fugacities, etc. To
maximize the use of intensive variables, we will use mole fractions and
total molar flow to characterize a stream. We must include the equation
that says the mole fractions add to unity. Our first model we call

mixture
(* kkk *) 62
63
MODEL mixture; 64
65
components IS_A set OF symbol_constant; 66
y[components] IS_A fraction; 67
68
SUMIyIi] | i IN components] = 1.0; 69
70
METHODS 71
METHOD clear; 72
y[components].fixed := FALSE; 73
END clear; 74
75
METHOD specify; 76
y[components].fixed := TRUE; 77
y[CHOICE[components]].fixed := FALSE; 78
END specify; 79
80
METHOD reset; 81
RUN clear; 82
RUN specify; 83
END reset; 84
85
END mixture; 86
87

Line 66 of the model for mixture defines a set of symbol constants. We
will later include in this set one symbol constant giving a name for each
of the species in the problem (A, B and C). Line 67 defines one mole
fraction variable for each element in the set of components, while line
69 says these mole fractions must add to 1.0.

Last modified: June 20, 1998 10:33 pm

THE CODE 148

We add a methods section to our model to handle the flag setting which
we shall need when making the problem well-posed -- i.e., as a problem
having an equal number of unknowns as equations. We first have a
method called clear which resets all the “fixed” flags for all the
variables in this model to FALSE. This method puts the problem into a
known state (all flags are FALSE). The second method is our selection
of variables that we wish to fix if we were to solve the equations
corresponding to a mixture model. There is only one equation among
all the mole fraction variables so we set all but one of the flags to
TRUE. The CHOICE function picks arbitrariliy one of the members of
the secomponentsFor that element, we reset the fixed flag to FALSE,
meaning that this one variable will be computed in terms of the values
given to the others.

The reset method is useful as it runs first the clear method to put an
instance of a mixture model into a known state with respect to its fixed
flags, followed by runing the specify method to set all but one of the
fixed flags to TRUE.

These methods are not needed to create our model. To include them is
a matter of modeling style, a style we consider to be good practice. The
investment into writing these methods now has always been paid back
in reducing the time we have needed to debug our final models.

The next model we write is for a stream, a model that will include a part
we callstatewhich is an instance of the type mixture.

(* kkokkkkkkkkkkkkkkdkkkkdokkkkdkkkkkkkkdkkkkkkkkik *) 88
89
MODEL molar_stream; 90
91
components IS_A set OF symbol_constant; 92
state IS_A mixture; 93
Ftot,flcomponents] IS_A molar_rate; 94
95
components, state.components ARE_THE_SAME; 96
97
FOR i IN components CREATE 98
f_deffi]: f[i] = Ftot*state.y[i]; 99
END; 100
101
METHODS 102
103
METHOD clear; 104
RUN state.clear; 105
Ftot.fixed := FALSE; 106

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

149 A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

flcomponents].fixed:= FALSE; 107
END clear; 108
109
METHOD segmod; 110
RUN state.specify; 111
state.y[components].fixed:= FALSE; 112
END segmod,; 113
114
METHOD specify; 115
RUN segmod; 116
flcomponents].fixed:= TRUE; 117
END specify; 118
119
METHOD reset; 120
RUN clear; 121
RUN specify; 122
END reset; 123
124
METHOD scale; 125
FOR i IN components DO 126
flil.nominal := f[i] + 0.1{mol/s}; 127
END; 128
Ftot.nominal := Ftot + 0.1{mol/s}; 129
END scale; 130
131
END molar_stream; 132
133

We define our stream over a set of components. We next include a part
which is of type mixture and call stateas mentioned above. We also
include a variable entitleldtot which will represent the total molar
flowrate for the stream. For convenience -- as they are not needed, we
also include the molar flows for each of the species in the stream. We
realize that the components defined within the part catitdand the

set of components we just defined for the stream should be the same
set. We force the two sets to be the same set with the
ARE_THE_SAME operator.

We next write the equations that define the individual molar flows for
the components in terms of their corresponding mole fractions and the
total flowrate for the stream. Note, the equations that says the mole
fractions add to unity in the definition of the state forces the total of the
individual flowrates to equal the total flowrate. Thus we do not need to
include an equation that says the molar flowrates for the species add up
to the total molar flowrate for the stream.

Last modified: June 20, 1998 10:33 pm

THE CODE

150

We again write the methods we need for handling flag setting. We
leave it to the reader to establish that the specify method produces a
well-posed instance involving the same number of variables to be
computed as equations available to compute them. The scale method is
there as we may occasionally wish to rescale the nominal values for our
flows to reflect the values we are computing for them. Poor scaling of
variables can lead to numerical difficulties for really large models. This
method is there to reduce the chance we will have poor scaling.

Note that the nominal values for the remaining variables -- the mole
fractions -- are unity. It does not need to be recomputed as unity is
almost always a good nominal value for each of them.

Our next model is for the first of our unit operations. Each of these will
be built of streams and equations that characterize their behavior. The
first models a mixer. It can have any number of feed streams, each of
which is a molar stream. We require the component set for each of the
feed streams and the output stream from the unit to be the same set.
Finally we write a component material balance for each of the species
in the problem, where we sum the flows in each of the feeds to give the
flow in the output streanout.

(* kkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkhhhhhkkkkkkkkkkiikkx *) 134
135
MODEL mixer; 136
137
n_inputs IS_A integer_constant; 138
feed[1..n_inputs], out IS_A molar_stream; 139
140
feed[1..n_inputs].components, 141
out.components ARE_THE_SAME; 142
143
FOR i IN out.components CREATE 144
cmbli]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 145
END; 146
147
METHODS 148
149
METHOD clear; 150
RUN feed[1..n_inputs].clear; 151
RUN out.clear; 152
END clear; 153
154
METHOD segmod,; 155
END segmod,; 156
157

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

151

A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

METHOD specify; 158
RUN segmod,; 159
RUN feed[1..n_inputs].specify; 160

END specify; 161

162

METHOD reset; 163
RUN clear; 164
RUN specify; 165

END reset; 166

167

METHOD scale; 168
RUN feed[1..n_inputs].scale; 169
RUN out.scale; 170

END scale; 171

172
END mixer; 173

TheMETHOD clearsets all the fixed flags for the parts of this model to
false by running each of their clear methods (i.e., for all the feeds and
for the stream out). If this model had introduced any new variables,
their fixed flags would have been set to FALSE here.

We will implement the method to make the model well posed into two
parts:segmodstands for “sequential modular” which is the mindset we
use to get a unit well-posed) asplecify The first we shall use within
any unit operation to fix exactly enough fixed flags for a unit such that,
if we also make the feed streams to it well-posed, the unit will be well-
posed. For a mixer unit, the output stream results simply from mixing
the input streams; there are no other variables to set other than those for
the feeds. Thus treegmodnethod is empty. It is here for consistency
with the other unit operation models we write next. ErHOD
specifymakes this model well-posed by calling fegimodnethod and
then thespecifymethod for each of the feed streams. No other flags
need be set to make the model well-posed.

METHOD resesimply runsclear followed byspecify Running this
sequence of method will make the problem well-posed no matter which
of the fixed flags for it are set to TRUE before runmagget Finally,
flowrates can take virtually any value so we can inclusteaéemethod

to scale the flows based on their current values.

The next model is for a very simple ‘degree of conversion’ reactor. The
model defines a turnover rate which is the rate at which the reaction as
written proceeds (e.g., in moles/s). For example, here our reaction will
be B --> C. A turnover rate of 3.7 moles/s would mean that 3.7 moles/s
of B would convert to 3.7 moles/s of C. The vector stoich_coef has one

Last modified: June 20, 1998 10:33 pm

THE CODE 152

entry per component. Here there will be three components when we
test this model so the coefficients would be 0, -1, 1 for the reaction

0A+(-1)B+(+1) C=0.

Reactants have a negative coefficient, products a positive one. The
material balance to compute the flow out for each of the components
sums the amount coming in plus that created by the reaction.

(* kkk *) 174
175
MODEL reactor; 176
177
feed, out IS_A molar_stream; 178
feed.components, out.components ARE_THE_ SAME; 179
180
turnover IS A molar_rate; 181
stoich_coef[feed.components]IS_Afactor; 182
183
FOR i IN feed.components CREATE 184
out.f[i] = feed.f[i] + stoich_coef[i]*turnover; 185
END; 186
187
METHODS 188
189
METHOD clear; 190
RUN feed.clear; 191
RUN out.clear; 192
turnover.fixed ‘= FALSE; 193
stoich_coef[feed.components].fixed := FALSE; 194
END clear; 195
196
METHOD segmaod; 197
turnover.fixed = TRUE; 198
stoich_coef[feed.components].fixed := TRUE; 199
END segmod,; 200
201
METHOD specify; 202
RUN segmod; 203
RUN feed.specify; 204
END specify; 205
206
METHOD reset; 207
RUN clear; 208
RUN specify; 209
END reset; 210

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

153 A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

211

METHOD scale; 212

RUN feed.scale; 213

RUN out.scale; 214
turnover.nominal := turnover.nominal+0.0001 {kg_mole/s}; 215

END scale; 216

217

END reactor; 218

219

The METHOD clearfirst directs all the parts of the reactor to run their
clear methods. Then it sets the fixed flags for all variables introduced
in this model to FALSE.

Assume the feed to be known. We introduced one stoichiometric
coefficient for each component and a turnover rate. To make the output
stream well-posed, we would need to compute the flows for each of the
component flows leaving. That suggests the material balances we
wrote are all needed to compute these flows. We would, therefore, need
to set one fixed flag to TRUE for each of the variables we introduced,
which is what we do in thelIETHOD segmod Now when we run
segmodand then thepecifymethod for the feed, we will have made

this model well-posed, which is what we do in METHOD specify

The flash model that follows is a constant relative volatility model. Try
reasoning why the methods attached are as they are.

(* kkk *) 220
221
MODEL flash; 222
223
feed,vap,liq IS_A molar_stream; 224
225
feed.components, 226
vap.components, 227
lig.components ARE_THE_SAME; 228
229
alpha[feed.components], 230
ave_alpha IS_ A factor; 231
232
vap_to_feed_ratio IS_A fraction; 233
234
vap_to_feed_ratio*feed.Ftot = vap.Ftot; 235
236
FOR i IN feed.components CREATE 237
cmbli]: feed.f[i] = vap.f[i] + liq.f[i]; 238

Last modified: June 20, 1998 10:33 pm

THE CODE 154

eq[i]: vap.state.y[i]*ave_alpha = alphali]*lig.state.y][i]; 239
END; 240
241
METHODS 242
243
METHOD clear; 244
RUN feed.clear; 245
RUN vap.clear; 246
RUN lig.clear; 247
alpha[feed.components].fixed = FALSE; 248
ave_alpha.fixed = FALSE; 249
vap_to_feed_ratio.fixed := FALSE; 250
END clear; 251
252
METHOD segmaod; 253
alpha[feed.components].fixed = TRUE; 254
vap_to_feed_ratio.fixed = TRUE; 255
END segmod,; 256
257
METHOD specify; 258
RUN segmod; 259
RUN feed.specify; 260
END specify; 261
262
METHOD reset; 263
RUN clear; 264
RUN specify; 265
END reset; 266
267
METHOD scale; 268
RUN feed.scale; 269
RUN vap.scale; 270
RUN lig.scale; 271
END scale; 272
273
END flash; 274
275
(* kkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkhkhhhhkkkkkkkkkkkikikkx *) 276
277

The final unit operation model is the splitter. The trick here is to make
all the states for all the output streams the same as that of the feed. This
move makes the compositions all the same and introduces only one
eguation to add those mole fractions to unity. The rest of the model
should be evident.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

155

A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

MODEL splitter;

n_outputs IS_A integer_constant;
feed, out[1..n_outputs] IS_A molar_stream;
split[1..n_outputs] IS_A fraction;

feed.components, out[1..n_outputs].components ARE_THE_SAME;

feed.state,
out[1..n_outputs].state ARE_THE_SAME;

FOR jIN [1..n_outputs] CREATE
out[j].Ftot = split[j]*feed.Ftot;
END;

SUM[split[1..n_outputs]] = 1.0;

METHODS

METHOD clear;
RUN feed.clear;
RUN out[1..n_outputs].clear;
split[1..n_outputs-1].fixed:=FALSE;
END clear;

METHOD segmod;
split[1..n_outputs-1].fixed:=TRUE;
END segmod,;

METHOD specify;
RUN segmod;
RUN feed.specify;

END specify;

METHOD reset;
RUN clear;
RUN specify;

END reset;

METHOD scale;

RUN feed.scale;

RUN out[1..n_outputs].scale;
END scale;

END splitter;

Last modified: June 20, 1998 10:33 pm

280

281

282

284

287

289

290

293

299

300

304

309

319

278
279

283

285
286

288

201
292

294
295
296
297
298

301
302
303

305
306
307
308

310
311
312
313
314
315
316
317
318

320
321
322
323

THE CODE

156

(* *kkkk *kkkkk *kkkkkhkkkhkk

MODEL flowsheet;

ml
rl
fll
spl

(* define sets *)

ml.n_inputs
spl.n_outputs

(* wire up flowsheet *)
ml.out, rl.feed
rl.out, fl1.feed
fll.vap, spl.feed
spl.out[2], m1l.feed[2]

METHODS

METHOD clear;
RUN ml.clear;

*kkkkkkkkkk *% *) 324
325

Now we shall see the value of writing all those methods for our unit
operations (and for the models that we used in creating them). We
construct our flowsheet by saying it includes a mixer, a reactor, a flash
unit and a splitter. The mixer will have two inputs and the splitter two
outputs. The next few statements configure our flowsheet by making,
for example, the output stream from the mixer and the feed stream to
the reactor be the same stream.

The methods are as simple as they look. This model does not introduce
any variables nor any equations that are not introduced by its parts. We
simply ask the parts to clear their variable fixed flags.

To make the flowsheet well-posed, we ask each unit to set sufficient
fixed flags to TRUE to make itself well posed were its feed stream well-
posed (now you can see why we wanted to create the methgaed

for each of the unit types.) Then the only streams we need to make
well-posed are the feeds to the flowsheet, of which there is only one.
The remaining streams come out of a unit which we can think of
computing the flows for it.

326

327

IS_A mixer; 328
IS_A reactor; 329
IS_A flash; 330
IS_A splitter; 331

332

333

334
==2; 335
==2; 336

337

338

339
ARE_THE_SAME; 340
ARE_THE_SAME; 341
ARE_THE_SAME; 342
ARE_THE_SAME; 343

344

345

346

347

348

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

157 A SMPLE CHEMICAL ENGINEERING FLOWSHEETING EX-

RUN rl.clear; 349
RUN fl1.clear; 350
RUN spl.clear; 351
END clear; 352
353
METHOD segmaod; 354
RUN ml.segmod,; 355
RUN rl.segmod; 356
RUN fl1.segmod; 357
RUN spl.segmod; 358
END segmod; 359
360
METHOD specify; 361
RUN segmod; 362

RUN ml.feed[1].specify; 363
END specify; 364
365
METHOD reset; 366
RUN clear; 367
RUN specify; 368
END reset; 369
370
METHOD scale; 371
RUN m1l.scale; 372
RUN rl.scale; 373
RUN fl1.scale; 374
RUN spl.scale; 375
END scale; 376
377
END flowsheet; 3