
232

ts at

82
nior

 of
orm
d the
rical
that

s
t

ms.

for

l

bug
CHAPTER21 BRIEF HISTORY OFASCEND

ASCEND is an acronym which stands forAdvanced System for
Computations in ENgineering Design1. The name ASCEND first
appeared in print in 1978. The ASCEND programs are a series of
modeling systems that Arthur Westerberg and his graduate studen
Carnegie Mellon University have developed since that time.

1. ASCEND originally stood for “Advanced System for Chemical ENgineering Design” but the second
generation system and following are not discipline specific, thus the name change.

ASCEND I Dean Benjamin developed the first ASCEND system. It was an
interactive system in Fortran. Chemical engineering students at
Carnegie Mellon University used this system from about 1978 to 19
to carry out multicomponent flash calculations. It supported the se
design project.

ASCEND II Almost in parallel, Michael Locke developed the ASCEND II
simulation system for his PhD thesis [1981]. ASCEND II allowed
users to create models by configuring them using predefined types
parts. System maintainers defined the library of types, each in the f
of seven handcrafted Fortran subroutines. These routines compute
space needed for the data when instancing a part, generated nume
values for the partial derivatives and the residuals of the equations
the part instance provided to the overall model, generated proper
variable and equation scaling and the like. Michael Locke used thi
system to create models involving a few thousand equations to tes
variants of the Sequential Quadratic Programming algorithm. Tom
Berna and he developed for optimizing structured engineering syste
Selahattin Kuru also used ASCEND II to generate and test solution
algorithms for dynamic simulation that he subsequently developed
his PhD. Two companies used the software architectural design of
ASCEND II to create their own internal equation-based modeling
systems.

Experience at this time demonstrated that models involving severa
thousands of equations were solvable and could even be efficiently
optimized. The question of interest moved from how to solve large
equation-based models to how to aid an engineer to pose them, de
them and get them to solve.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

233 BRIEF HISTORY OFASCEND

ne

 a

l. It

d
.

ons

ys.

age
rite

ess
ad

 to

ed
s

g
re
ried
e
 set
 at

e.

ch
In 1983 Dean Benjamin proposed the first version of a modeling
language for posing complex models. Larry Gaydos and Art
Westerberg further developed this language in the spring of 1984.

ASCEND III In 1984 Peter Piela undertook a PhD project with Art Westerberg to
“reduce the time needed to create and solve a complex model by o
order of magnitude.” He developed what became ASCEND III. He
had the help of two Carnegie Mellon University undergraduate
students, Tom Epperly and Karl Westerberg, and of Roy McKelvey,
member of the faculty in the Design Department in Fine Arts. This
team developed this system on the Apollo workstation and in Pasca
comprised three parts: a modeling language and compiler, an
interactive user interface and a suite of solvers. The language use
object-oriented principles, with the exception of hiding of information
Modelers define types to create model definitions. A type (called a
model in ASCEND) is a collection of variables and complex parts
whose types are previously defined and the definition of the equati
that model is to supply. A model can also be the refinement of a
previously defined type. The language fully supported associative
arrays and sets. For example, a distillation column is an array of tra
It also supported deferred binding by allowing one to reach inside a
part and alter one of its parts to be a more refined type. The langu
and its compiler obviated the need to have a system programmer w
the seven subroutines needed in ASCEND II.

The interactive user interface supplied the user with organized acc
to the many tools in the ASCEND III system. There were tools to lo
model definitions, to compile them, to browse them, to solve them,
probe them, to manipulate the display units (e.g., ft/s) for reporting
variable values, to create reports and to run methods on them. One
could even point at a part and ask that it be made into a more refin
type (triggering the compiler to restart). As previously solved value
were not overwritten, they became the starting point for the more
complex model. Thus one could creep up on the solution by solvin
more and more complex versions of a model. Many of the tools we
there specifically to aid the user in debugging their models as they t
to solve them. A tool could tell a user that the model appeared to b
singular and why. Another set of tools aided in picking a consistent
of variables to fix before solving. Browsing allowed the user to look
all parts of the model. It was easy to check the configuration of a
model. One could ask that parts of a model be solved one at a tim

Experience by Peter Piela, Oliver Smith, Neil Carlberg and Art
Westerberg with ASCEND III demonstrated very clearly thatskilled
modelers could develop, debug and solve very complex models mu
more rapidly than they could with previously available tools, easily
Last modified: June 20, 1998 10:33 pm

234

ith
ns.
 for
ion
time

ey
s

est

000

tem

es.

he

ur
ere
se
of a

be
e

e
del.
meeting the original target of a order of magnitude reduction in time
required.

ASCEND IIIc In the fall of 1992, Kirk Abbott and Ben Allan approached Art
Westerberg and said they wanted to convert the ASCEND III system
from Pascal into C. They would also use Tcl/Tk for the interface. W
these changes, the system would then run on most Unix workstatio
Tom Epperly and Karl Westerberg had already created a C version
the compiler and solver. Abbott and Allan wanted to do this convers
even after they were warned that converting the system would take
that they could be using to do more apparently relevant work to
complete their PhD theses. They insisted2. They were aided by Tom
Epperly who, although located remotely, worked with them on the
compiler. In eight months and putting in excessively long hours, th
had a working system that could could mimic most of the capabilitie
of the ASCEND III system.

Several students and a few people outside CMU could now use the
system for modeling. Bob Huss and Boyd Safrit performed the hard
testing when they used ASCEND IIIc to model nonideal distillation
processes. They developed and solved models involving up to 15,
equations. Using a rudimentary capability for solving initial value
problems, Safrit also solved dynamic models.

2. It should be understood that Art Westerberg was tbrilled they insisted on doing this conversion.

With use came the
recognition of a need
for improvements.

Attempts to teach ASCEND to others showed that it was a great sys
to speed up the modeling process for experts. Nonexperts found it
nearly impossible to reuse models contained in the ASCEND librari
The library for computing the thermodynamic properties of mixtures
was particularly elegant but almost impossible to reuse. Modelers
would reinvent their own properties models quickly, unable to use t
library models.

Models larger than about 17,000 equations took more space than o
largest workstation could provide. The models by Huss and Safrit w
pushing the limits. Abbott and Allan established the goal to increa
the size possible by a factor of at least ten, i.e., to about a quarter
million equations. ASCEND needed to solve models more quickly.
Without counting the increases coming from faster and larger
hardware, the goal here too was a factor of ten. If solving were to
that fast, then compiling would stand out as unacceptably slow. Th
goal: ten times faster.

Abbott, with Allan, exposed a new style for modeling in ASCEND. H
created prototypes of the various repeating types that occur in a mo
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

235 BRIEF HISTORY OFASCEND

arts
a
pile

e

fore

 by

f
e,
zed

e
f a

ers
me

e
elf.

mple
 use
l.
n

cal,

T

0
ytes
The compiled equations and other data structures to define these
prototypes then became available for all subsequent instances of p
that were of the same type as the prototype. Only the instance dat
needed to be developed separately. Demonstrated impact on com
times was dramatic.

Abbott, with Allan, looked at how to speed up the solving times. Th
new twist was to use the model structure as defined by the model
definition to expose a global reordering for the model equations be
presenting them for solution. The time to solve the linear Newton
equations as the inner loop of solving nonlinear equations dropped
factors of 5 to 10.

ASCEND IV Ben Allan has taken a lead role and worked with Mark Thomas,
Vicente Rico-Ramirez and Ken Tyner to produce the next version o
ASCEND, ASCEND IV. Playing the role of tester, an undergraduat
Jennifer Perry, demonstrated that Allan’s introduction of parameteri
types dramatically increased the reusability of the model libraries,
converting it into an almost automatable exercise. Adding languag
constructs to permit the modeler to state what constitutes misuse o
model leads to the system generating diagnostics the model itself
defines. Allan also completely revised the data structures and the
interface between ASCEND and its solvers so that adding new solv
is much less work and so the solvers in ASCEND themselves beco
separable from ASCEND and usable by others.

Allan also defined the addition of NOTES to ASCEND which are lik
methods except they are not understood by the ASCEND system its
Rather they can be passed to programs outside ASCEND. An exa
includes documentation notes which a documentation manager can
to compose answers to queries about what is in an ASCEND mode
Another is a note that contains a bitmap description of a part that a
external package could use to draw a symbol of that part.

ASCEND IV can now handle discrete variables and constants (logi
binary, symbolic, and integer). It supports the solver directing that
parts of the model be excluded when solving such as when solving
using implicit enumeration (dynamic model modification). CONOP
is now attached for optimization. The standard solver is rapidly
becoming much more robust. ASCEND IV can generate a GAMS
model corresponding the ASCEND model, giving access to solvers
GAMS has that ASCEND does not.

While not quite there just yet, the goal to compile and solve 250,00
equations on a 150 megahertz workstation having about 250 megab
of fast memory in a few tens of minutes is in sight.
Last modified: June 20, 1998 10:33 pm

	Chapter 21 Brief History of ASCEND
	ASCEND I
	ASCEND II
	ASCEND III
	ASCEND IIIc
	With use came the recognition of a need for improv...
	ASCEND IV

