CHAPTER1 STARTING POINTS

Our goal: The purpose of this chapter is to help you find out what you need to
read first about ASCEND 1V in order to accomplish some portion of
your mathematical modeling tasks. Since there is no single “best order”
to learn in for all people, we list the introductory documents and their
“sound bytes” concisely, in the hope that this makes your search task
less difficult. If ASCEND IV is new to you, work through the first three
listed in sequence, then branch to the special topics you need most
Without further ado, your goals.

1.1 PRIMAL SUBJECTS

Chapter 2 Building and solving a small mathematical modefrom a “simple”
problem description of a water tank. This is basic mathematical
modeling of a physical system. If you have never, ever used ASCEND
IV, you should probably start here to build and solve a model.

Chapter 3 Making any model easier to share with otherdy adding basic
methods, scripts, and model interfaces.

Chapter 4 Reusing a model for plotting and case studiesith an introduction to
type refinement and inheritance. Defining and executing a case study to
generate data and plots which indicate how your mathematical model
responds to alternative input values.

Chapter 5 Managing modeling project fileswith REQUIRE and PROVIDE.
ASCEND will automatically load the other type definition files you
need when working on a model if you follow some simple rules.

1. Ifyou last used ASCEND as ASCEND lll running on an HP or Apollo, ASCEND 1V is new to you.

Chapter 6

howto-specify
(Art,Ben, in progress)

Chapter 7

Chapter 8

Chapter 9

howto-libraryl
(NOTES, check
methods, etc)

Chapter 10

1.2

Chapter 11

howto-columnl
(Art, in progress)

howto-reactor
(Duncan, in progress)

Chapter 12

STARTING POINTS

Defining a plot which gathers scattered datérom your models into a
plt_plot that can be viewed from the Browser window.

Defining a “square” or “well-posed” problem when your model gets
big. Writing a “specify” method is the only reliable way to go, and even
this is not simple unless you plan ahead. Degrees of freedom can be

tricky.

Defining new types of variable®r constants when the standard
library does not have what you want.

Entering correlation equations with units and how we support
degrees Farenheit.

Defining new units of measurédased on Sl or other existing units.

Getting it right the first time. Modeling reliably in teams requires
communicating all problem aspects including the goals to be met, the
mathematical problem to be solved, the solution process, and the
testing criteria that define an acceptable solution. You can do all these
in ASCEND IV.

Making basic models easy to use latdsy adding METHODS.

Defining more standard methods and your own methods so you do not
have to remember how you made the model work yesterday, last week,
last year, or in your last incarnation. It's almost automatic.

ENGINEERING SUBJECTS

Defining a chemical mixture and physical property calculatios for
use in process simulation. Equilibrium thermodynamics, phases,
species, and all that jazz. Adding species and correlations to the
database.

Defining a steady-state distillation columnn a flowsheet using the
column library that comes with ASCEND IV.

Defining a chemical reactor modein a flowsheet. Not a task for the
faint of heart, but probably far easier than defining a new reactor in
almost any commercial simulator.

Defining a simple dynamic model (initial value problem)jand
watching it respond. Water level in a tank.

Last modified: June 20, 1998 8:51 pm

ENGINEERING SUBJECTS

howto-dynamic2 Defining a complex dynamic modelsing dynamic libraries.
(Duncan, in progress) Dynamic vapor-liquid flash tank.

howto-column2 Simulating a dynamic distillation columnin a flowsheet using
(Duncan, in progress) ASCEND.

howto-control Controlling dynamic systems, disturbances, and all those pesky
(Duncan, in progress) graphing tools using the Script window and Tcl.

Chapter 13 Writing a conditional model where which equations apply is
determined by variable values or boundary expressions.

Chapter 14 (Ben, in Defining a dynamic model with end-point conditiongboundary
progress) value problem) using our collocation (bvp) library.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-overview.fm5

STARTING POINTS

Last modified: June 20, 1998 8:51 pm

CHAPTERZ2 A DETAILED ASCEND EXAMPLE

the purpose for this
chapter

FORBEGINNERS THE MODELING OF
A VESSEL

You read our propaganda about the ASCEND system in which we said
it was to help technical people create hard models. We said you can
tackle really large models -- 100,000 equations, compiling and solving
them in minutes on a PC. We also pointed out that you can readily solve
the small problems many currently solve using a spreadsheet, only once
posed you can solve them inside out, upside down and backwards.

This sounded intriguing so you downloaded the system and installed it.
Aside from getting the load module to transfer without error (there still
are network problems), this step proved quite straight forward. You
double clicked the ASCEND icon on your desktop and started it up for
the first time. Four windows opened up. You panicked.

Who wouldn’t?

To use this system properly requires that you learn how to use it. If you
pay the price to do so - and we hope it is not a large price, then we
believe you will find the tools we have provided to help you create and
debug models will pay you back handsomely.

This (Chapter 2)and the next two chapters (Chapter 3 and Chapter 4)
are meant to be a good first step along the path to learning how to use
ASCEND. We shall lead you through the steps for creating and testing
a simple model. You will also learn how to improve this model so it
may be more readily shared with others. We will present our reasons
for the steps we take. We shall show you all the buttons you should
push as you proceed.

We strongly suggest you put time aside and go through all three of
these chapters to introduce yourself to ASCEND. It should take you
about two to three hours. The second chapter is particularly important if
you wish to understand our approach to good modeling practices.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

6 A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

the problem Step M/e are going to create and test an ASCEND model to compute,
the mass of the metal in the sides and ends of the thin-walled
cylindrical vessel shown in Figure 2-1.

N
N

Figure 2-1 A thin-walled cylindrical vessel with flat ends

Step 2:This model is to become a part of a library of models which
others can use in the future. You must document it. You must add
methods to it to make it easy for others to make it well-posed. You
should probably parameterize it, and finally you must create a script
which anyone can easily run that solves an example problem to
illustrate its use.

topics covered Topics covered in this and the following two chapters are:
Chapter 2 (this » Converting the word description to an ASCEND model.
chapter)

Loading the model into ASCEND, dealing with the error
messages.

* Compiling the model.

Browsing the model to see if it looks right

Solving the model.

Examining the results.

More thoroughly testing the model.

Chapter 3 » Converting the model to a more reusable form by adding methods
to it and by parameterizing it.

» Creating a script to load and execute an instance of the model.

Chapter 4 » Creating an array of models.

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCEND MODEL 7

» Using an existing library model for plotting.

« Creating a case study using the model.

We shall introduce many of the features of the modeling language as
well as the use of the interactive interface you use when compiling,
debugging, solving and exploring your model. Language features
include units conversion, arrays and sets.

2.1 CONVERTING THE WORD DESCRIPTION INTO

AN ASCEND MODEL

an ASCEND model
is a type definition

Every ASCEND model is, in fact, a type definition. To “solve a model,”
we make an instance of a type and solve the instance. So we shall start
by creating a vessgpedefinition. We will have to create our type
definition as a text file using a text editor. (Possible text editors are
Word, Framemaker, Emacs, and Notepad. We shall discuss editors
shortly.)

We need first to decide the parts to our model. In this case we know that
we need the variables listed in Table 2-1. We readily fill in the first
three columns in this table. We shall discuss the entry in the last column
in a moment.

Table 2-1 Variables required for model

Symbol Meaning Typical Units AS.CEND
variable type

D vessel diameter | m, ft length

H vessel height m, ft length

wall_thickness wall thickness mm, in length

metal_density metal density | kg/m3, lbm/ft3 mass_density

We will be computing the masses for the metal in the side wall and in
the ends for this vessel. As this is a thin-walled vessel, we shall
compute the volume of metal as the area of the walls times the wall
thickness. The following equations allow us to compute the required
areas

side wall area= DH (2.1)
nD”
single end area e (2.2)

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

type definition library
for variables and
constants

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

We should be interested in the volume of the vessel, which we compute
as:

vessel volume= end areeH (2.3)

We add the variables in Table 2-2 to our list.

Table 2-2 Some more variables required for vessel model
ASCEND

Symbol Meanin Typical Units .
y 9 yp variable type

side_area area in the sidel ;2 2 area
wall of the vesse

end_area total area in thel 2. 2 area
ends of the vessel

vessel_volume | volume of the |m3 f3 volume
vessel

metal_volume total volume of | 3 3 volume
metal in walls

metal_mass total mass of thgkg, lbm mass
metal in the

walls of the ves-
sel

We believe that no one should create a model of any consequence
without worrying about the units for expressing the variables within it.
We consider that to be a commandment handed down from somewhere
on high; however, we know that others do not believe as we do. Grant
us our beliefs. We have created in the ASCEND system a library of
variable and constant types called

atoms.a4l

The file type “.a4l” designates it to be an “ASCEND 1V library” file.
Double click on this link to see the approximately 150 different types
ranging from universal constants suchmds3.14159...) and e

(=2.718...) to length, mass and angles. If we have not created one that
you need, you can use this library of types to see how to construct one
for yourself and add it to your file of type definitions. You will find
detailed instructions for how to make your own variable type library in
Chapter 7, “How to Define Variables and Scaling Values in an
ASCEND Model,” on page 73.

ASCEND considers variable and constant types to be elementary or

“atomic” to the system. These type definitions can contain only
attributes for variables and constants. They cannot contain equations,

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCEND MODEL 9

dimensions and units
in ASCEND.

for example. Thus ASCEND calls such a type definitioatamrather
than amodel Figure 2-2 illustrates the definition for the tydume

ATOM volume REFINES solver_var
DIMENSION L"3
DEFAULT 100.0{ft"3};
lower_bound := 0.0{ft"3};
upper_bound := 1e50{ft"3};
nominal := 100.0{ft"3};
END volume;
Figure 2-2 A typical type definition called an atom used to
define variable and constant types. Here we illustrate
the type that defines volume.

The definition starts by stating that volume is a specialization of
solver_var The typesolver_varrefines a base type in the system

known ageal and adds several attributes to it that a nonlinear equation
solver may need, such as a lower and upper bounds, a fixed flag, and so
forth.

The type definition for volume states that volume has dimensionality of
length to the power 3 (L"3) where L is one of the 10 dimensions
supported by ASCEND (see “Dimensionality:” on page 161 in
ASCEND Syntax document for the 10 dimensions defined within the
ASCEND language).

One may express the value for a volume using any units which are
consistent with the dimensionality of L"3, such as {ft"3}, {m"3},
{gal}, or even {mile”4/mm}. Setting the lower bound to 0 {ft"3} says
volume must be a nonnegative number. ASCEND used the nominal
value for scaling a variable of type volume when solving, here £00 ft

One may change the values for the bounds, default and nominal values
at any time.

We now can understand the last column in Table 2-1 and Table 2-2. For
each variable or constant in the system, we have identified its type in
the fileatoms.a4l That is, we looked in this file for the type definition
that corresponded to the variable we were defining and listed that type
here. This task is not as onerous as it seems. As we shall see later, we
provide a tool to find for you all atom types that correspond to a
particular set of units, e.g, ft*3 -- i.e., the computer will do the
searching for you.

In Figure 2-3 we see the definition of one of the universal constants
contained in atoms.a4l. This definition is very short; it gives the name

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

10

universal constant
definition

the first version of the
code for vessel

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

of the typecircle_constantthat it refinegeal_constanaind that it has

the value 1 {PI} where the internal conversion needed for {Pl} is
defined in the file defining the built-in units in ASCEND. One can add
more units if desired at any time to ASCEND by defining one or more
personal units files (Chapter 9 tells you how to do this).

UNIVERSAL CONSTANT circle_constant
REFINES real_constant ;== 1{Pl};
Figure 2-3 The type definition for circle_constant which has the
value of 1 {PI} (equals 3.1415926536)

We shall in fact find this constant useful in our program, and we can
either introduce a constant with this value or simply use the value 1{PI}
in our program. We shall choose to do the latter.

It is time to write our first version for the model, which we do in
Figure 2-4. We first list any other files containing type definitions
which this model will use; here we list “atoms.a4l” following the
keywordREQUIRE ASCEND is sensitive to case so pay attention to
where we use and do not use capital letters. Keywords are always
capitalized. Often for clarification we use capital letters in a name we
use for a variable or label (e.g., we use D for diameter rather than d).
Note that all ASCEND statements end with a semicolon (i.e., with ;)
and not at the end of a line and that blank lines have no impact.
Comments are between opening and closing parenthesis/asterisk pairs,
e, (* and *)'.

REQUIRE "atoms.a4l";

MODEL vessel;
(* variables *)
side_area, end_area IS A area;
vessel_vol, wall_vol IS_A volume;
wall_thickness, H, D IS_A distance;
H_to D_ratio IS_ A factor;
metal_density IS_A mass_density;
metal_mass IS A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D2/ 4;
Sides: side_area = 1{PI} * D * H;
Cylinder: vessel_vol =end_area * H;

Metal_volume: (side_area + 2 * end_area) *
wall_thickness = wall_val;
HD_definition: D * H_to_D_ratio = H;
VesselMass: metal_mass = metal_density * wall_vol;
END vessel;

Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCEND MODEL 11

2.2

please do not alter the
modelssubdirectory

Figure 2-4 First version of the type definition fassel.
(Available asvesselPlain.a4t the ASCEND
model library)

Our model definition has the following structure for it so far:

* MODEL statement
* list of variable we intend to use in the type definition
e equations

* END statement

While we have put the statements in this order, we could mix up and
intermix the middle two types of statements, even going to the extreme
of defining the variables after we first use them. The MODEL and END
statements begin and end the type definition.

You should see little that surprises you in the syntax here. However,
you may have noted that we have created a definition that says
absolutely nothing about how to use the variables and equations listed.
There is no solution procedure buried in this type definition. In
ASCEND the idea of solving is separate from saying what we intend to
solve. Also note that we have not said anything about the values for any
of the variables nor what we intend to calculate and what variables we
intend to treat as fixed input.

EDITING , COMPILING AND BROWSING AN
ASCEND MODEL

Could we compile an instance of a vessel given this definition? If there
had been some arrays in our definition for which we did not say how
many items were in the arrays, we could not. However, here we could
compile an instance, putting aside storage space for each of the
variables and somehow capturing the equations relating them.

When we compile new models, we need a place to store them. One
possibility would be to put them into theodelssubdirectory of the
ASCEND installation (e.g., in .../ASCEND/ascend4/models/).
However, you really should leave the contents of this subdirectory
untouched—always. You might think of it as being read only. We count
on being able to replace it totally every time you install a new version
of ASCEND. Whenever we add new model libraries or corrected
versions of previously existing model libraries, we put them in this

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

12

rather put your things
into theascdata
subdirectory (you own

it)

create a text file
containing the model
definition

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

subdirectory. ASCEND does nothing to enforce this rule while you run
it, but please do not blame us if an upgrade wipes out changes you
made in ascend4/models/; we warned you.

To avoid this problem, ASCEND also creates a subdirectory called
ascdatathat it will not touch when you install a new version of
ASCEND. It will look in this subdirectory first when looking for a file
to load when you have not given a full path name for finding that file.
The install process for ASCEND will plaescdatainto your home
directoryt. ASCEND tells you where it has placed this subdirectory
when you start it. If you forget where it is, press the “About ASCEND
IV button on the Script window Help menu and look below the GNU
ASCEND picture. It should say something like:

USER DATA DIRECTORY /usrO/ballan/ascdata

It is within the folderascdatathat you should place any ASCEND
models you create. When running a script (which we shall talk about
later), ASCEND first looks in this subdirectory for files, and then it
looks in themodelssubdirectory. It stops looking when it finds the first
available version of the file. For further details on this search, see
Chapter 5.

Next open an editor, such as Word, FrameMaker, emacs, pico, vi, vim,
Notepad or Wordpad. Now type in or, better yet, cut and paste in the
statements in Figure 2-4. Be very careful to match the use of capital
and small letters. Do not worry about blanks between symbols but do
not embed blanks within symbols. In other words, do not put a blank in
the middle of the symbalide wallbut do not worry about putting zero

or more blanks betweeside_walland= in an equation.

When you are finished, be sure to save the file as a text file (e.g., on a
PC as a .txt file). Call it vesselPlain.a4c. The “.a4c” stands for
“ASCEND IV code.” Editors such as Word and FrameMaker require
you to use th&ave Asnethod to save and then to choose the file type
to betext Microsoft editors will append “.txt” to the file name. Remove
the .txt ending off the file name -- do not let Microsoft bully you into
thinking you should not -- and change it to “.a4c”.

(This model is also available @ssselPlain.a4m the ASCEND
models library, but we suggest it would be better for you to go through

1. On Windows 95, you can identify a subdirectory to be your home directory by adding a line of the form
“SET HOME=FullPathNameToSubdirectory” to the file c:\autoexec.bat. Add it without the quotes,
replacing the right hand side with the full path name to the desired home directory - e.g., SET
HOME=c:\mydocu~1\1998\. On UNIX and NT systems, your home directory is likely pretty obvious.

Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCEND MODEL 13

start the ASCEND
system. Move and
resize the windows to
make yourself
comfortable.

note that each window
by itself looks pretty
nonthreatening

hey, where did that
window go? | want it
back NOW!

the exercise of creating your own version here. At the least copy the
library file to your ASCEND space so you can play with your own
version at this time.)

When you are done, you should have a text file caksdelPlain.a4c
stored in youmascdatasubdirectory. It should contain precisely the
statements in Figure 2-4 with care having been taken to match capital
and lower case letters as shown there.

Start the ASCEND system by double clicking on the ASCEND icon if
you are on a PC or typing ascend at the command line if you are using a
UNIX machine. Four window/swill appear, three smaller ones and one
larger one that tells you about ASCEND. You can close this larger
window by pressing itdismissbutton. Move the three smaller ones
around on your screen so they do not overlap or so they overlap very
little. Resize them if you want to. You might start by putting the one
calledScript in the upper left, the one calledrary in the upper right
and the one calle@onsolein the lower right. We shall assume you
have placed them in these positions in the following so, even if that is
not your favorite placement, it might be useful to use it for now.

The Script window shows the license and warranty information for
ASCEND: ASCEND is protected by the GNU General Public License
Version 2 and comes with absolutely no warranty.

As you can see, each window by itself looks like a pretty normal
window. Each has buttons across the top under which one will find
different tools to run. Each also has one to three subwindows for
displaying things. Each had+lp button that you can push at any time
that you want to read all kinds of detailed things about the window. For
the moment we will provide you with the “just in time” details here so
you do not need to be sidetracked just yet by pushing Hepe

buttons.

If you ever lose a window, open tBeript window and under th€ools
button, select the window you wish to open. You cannot los8dhpt
window unless you shut down ASCEND. In the upper right of each
window are Window 95/NT like buttons that iconify, enlarge and close
the windows (underscore, box and X respectively). Picking X will
remove the window from your screen. You get it back by going to the
Script as described above or, as you will discover, by exporting
something to it.

2. UNIX users of ASCEND will only see three windows appear. The xterm where you started ASCEND
replaces th€onsolewindow.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

14

| want to go to dinner
(or I just panicked
when | saw four
windows).How do |
quit ASCEND?

saving window
positions

start by loading and
compiling using tools
in the Library window

use thdeft mouse
button unless we tell
you otherwise
(however, on you

own explore using the
right mouse button in
any of the windows)

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

Picking the small X box in the upper right for tBeript window is a

first step in exiting ASCEND. Try it but hit the cancel button when you
are asked to confirm your desire to leave. It always pays to know how
(not just when) to quit. If you want to get the Script window out of the
way, iconify it (pick the underscore button at the top right of the
window). You will have to know how to recover an iconified window to
retrieve it later - usually a simple single or double click on the icon does
the trick.

If you like where you have placed the windows for ASCEND on your
display, you can get ASCEND to remember all their locations by going
to theScript window and selectin§ave all appearancasder the

View button. A similar tool exists for each window for saving only its
position.

We shall start with theibrary window in the upper right. This
window provides you with the tools to load and compile files
containing type definitions. You can also display the code for the
different types you have loaded.

Let's load your file. Under thEile button select thRead types from

file tool. You select this tool by clicking on it using e mouse

button - i.e., the button you should have expected to use. A window will
appear asking you to find the file you want to read into ASCEND.
Navigate to where you storgdsselPlain.a4€in the subdirectory
ascdata and select that file. If you have the wrong ending on the file
(you left.txt or you forgot to putadcas the ending), tell the system to
list all files and pick the one you want. Tladcis used by the system

to list only the files it thinks you might want to load, but ASCEND isn'’t
fussy. It will attempt to load any file you pick.

Look in the Console window at the lower right, and, if the file loads
without any errors being listed there, you should see

AscendlV% REQUIREing file “atoms.a4l”
REQUIREIng file “system.a4l”
REQUIREiIng file “basemodel.a4l”
REQUIREiIng file “measures.a4l”

If this is what you see, you can skip past the next bit to where you
should start to compile an instance. The next bit has some useful hints
on how to debug your models. If you want some debugging experience,
put a known error into yowesselPlain.a4tile and see what happens.
This move will give you a reason to read the following section.

Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCEND MODEL 15

DO NOT ignore the
diagnostics that
might appear in the
Consolewindow

how do | jump to line
100 of a file when
using some of the
standard editors?

reloading a file
overwrites the
previous version

If the Console window in the lower right starts filling with several tens
of lines of diagnostics, look to see if you included the REQUIRE
statement at the beginning of your model file. Without that statement,
ASCEND is missing all the definitions for the types of variables in your
model, and it will go wild telling you so. It might also be choking on a
Word document because you forgot to save it as a text file.

While loading the files containing these types, ASCEND will look very
closely at the syntax and will give you all kinds of diagnostic messages
in the Console window (lower right) if you have done something

wrong. It will also at times spew out some warning messages if you
have done something thought to be poor modeling style. You must heed
the error messages as the file will not load if there are any. ASCEND
will tell you if it did not load the file.

You should consider heeding the warnings if you get any. If you ignore
them now, they may come back and haunt you later. However, there are
times when we issue a warning but everything will work, and you will
think we were not too clever. Our response: better modeling style can
eliminate these warnings. (It's been our system so we get to have the
last word.)

The error and warning messages will contain a line number in the file
where the error has occurred. This will be the line number as counted
by an editor with the first line being line 1 in the file. Editors always
provide you with a means to get directly to a line number in a file. Find
out how to do that or you will not be too happy with debugging a large
file. For example, in emacs, typ€#l-c (type the lettec while

holding down theCtrl key) followed by the lettey, then a line number
and a carriage return. In Word and FrameMaker on the PCCtyg

and follow the instructions. For FrameMaker on UNIX, find @eeto
Pagetool and open it (Esc-v p or look undéew).

You will be in the debug mode for a new system so do not expect it to
be totally obvious the first few times you make an error. We have tried
to use language that should be meaningful, but we may have failed or
the error may be pretty subtle and not possible for us to anticipate how
to describe it in your terms. (Send us a bug report if you have any good
ideas on language.)

You can reload any file your have corrected usindRibsad types from
file tool under thd-ile button. It will overwrite the previous version of
the file only if the file has changed since it was last loaded (pretty
clever, right -- we do not reload those big files unless you make a
change even if you tell us to).

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

16

displaying the code

now compile asv’

and pass the instance
to theBrowser

examinev by playing
with it in theBrowser

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

You can display the code you have written. Select the model vessel in
the right window of the Library. Then under the Display button at the
top, select the tool Code. The Display window will open displaying the
code for this model.

Okay, you have your file loaded without getting any diagnostics. You
are ready to compile. In thgbrary window, look in the left window
and select the fileesselPlain.a4dt contains the type definition you
wish to compile. You should see the tymssebppear in the right
window. SelectvesselUnder theEdit button, selecCreate simulation.

A small window opens and asks you to name the simulation. Cdll it
-- yes, just the lettenv* and select OK.” Short names for instances
often seem to be preferable.

Look again in th&€onsolewindow for diagnostics. If everything
worked without error, you will see some statistics telling you how
many models, relations and so forth you have created during the
compile step.

You may see the following message in @@nsolewindow:

Found STOP statement in METHOD basemodel.a4l:239
STOP {Error! Standard method “default_self” called but
not written in MODEL.};
In call to METHOD default_self (depth 1) in instance v
Line 239, File: basemodel.a4l.

You can safely ignore this message for now. In the next chapter, we will
discuss writing methods and the meaning of this message.

Selectv is a vessdh the bottom of th&ibrary window. Then under

the Exportbutton, selecBimulation to Browseto exportv to the

Browser tool set. ThBrowser window will open and contam It

might be useful to enlarge this window and move it down a bit, placing
it a bit to the right of the center of your computer display. (Remember
you can save this positioning and sizing of Bnewser window by

going under th&jiew button and pickingave appearance

In the left upper window of thBrowser, you will findv to be the

current object. Listed in the right window are all the parts of the current
object. You will see the variables listed here along with an indication of
their type. For example, you will fildylinder IS A relatiorandD IS A
distancelisted, among many otheiSylinderis one of the equations

you wrote describing the model whilewas the diameter of the vessel.

Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCEND INSTANCE 17

included flags for
relations

2.3

if ASCEND stops
responding, hunt
down one of those
“nasty” windows
with a “yellow lock”
and close it properly

If you pick any of the parts in the right or bottom windows, it becomes
the current object; its parts then show in the right window. For example,
a relation has hooleanpart (a flag that takes the value TRUE or
FALSE) indicating whether or not it is to be included when ASCEND
solves the equations you defined for the model.

If you wish to display the current value for this flag, pick the tool

Display Atom Valueander theview button. This tool toggles a switch

that causes either the value or the type to show for a variable, a constant
or a relation in the upper right window of tBeowser. Try toggling it

back and forth and looking at different things in Brewser.

Pick each of the tools undeirewand note what happens to the
displaying of things in thBrowser.

Across the bottom of thBrowser window note the buttons you can

select labele®V, DVand so forth. If you have made tBeowser

window large enough, you will see to the right of these buttons the type
of objects whose value you want to appear or not in the [Bvasvser
window as you toggle each button. Toggle each of these buttons and see
if the lower display changes. If it does not, then this type of part is not

in the current object.

SOLVING AN ASCEND INSTANCE

Well, you have been patient. While there are lots of interesting tools left
to explore in théBrowser, perhaps it is time to try to solve this model.
To solvev, make it the current object (it alone should be listed in the
upper left window of th&rowser). Then, under thExportbutton,

selectto Solver TheSolver window will open, along with a smaller
window labelecEligible. Move theEligible window up a bit so it does

not cover any or very little of th&olver window. Move theSolver

window to the lower left and enlarge it so you can see all of its contents.

This Eligible window is one of the “nasty” ones. If it is open and you
do not do something to make it happy and go away, it will stop you
from doing anything else in the ASCEND system. Such windows
appear with a black lock icon in a yellow field -- we shall call it a
“yellow lock.” They demand you attend to them NOW. A good solution
would be for such a window to stay open and on top of all the other
open windows. Unfortunately we have not been able under all window
managers to stop it from ducking under another window. If you ever
find ASCEND unwilling to respond, iconify the other windows to get
them out of the way, until you find one of these windows. On the PC
you can go to the icon bar at the bottom of your screen and, by clicking

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

18

is our problem well
posed?

picking variables we
are going to fix

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

on the window, bring it to the top. Then do whatever it takes to make it
happy and close properly -- such as cancel it. If you are not careful
here, for example, this window will hide under ®aver window

before you are through with it.

The Solver window contains the information we need to see to explain
why theEligible window opened in the first place. Examine the
information theSolver displays. It tells you thathas 6 relations

defining it and that all are equalities and included. It has no inequalities.
On the right side we see there are 10 variables and all are “free.” A free
variable is one for which you want the system to compute a value.
Hmm, 6 equations in 10 variables. Something is wrong here. For a
well-posed problem, you want 6 equations in 6 variables (i.e., square).
ASCEND reports that the system is underspecified by 4. This means
you need to pick four of the variables and declare them to be fixed. You
will also have to pick values for these fixed variables before you can
solve for the remaining 6. For such a small problem as this one, this
task is not formidable. For a model with 50,000 equations and 60,000
variables, one would quit and go home. We have exposed a need here.
We certainly would like ASCEND to help us here for this small
problem. But we insist that it help us in major ways to make the 50,000
equation, 60,000 variable problem possible.

Okay, the small help such as needed here is whigligdle window
opened. Let’s return to it. It lists all the variables of those not yet fixed
that are eligible to be fixed and still leave us a calculation that has a
chance to solve. The very fast algorithm to find eligible variables does
an analysis of the structure of the equations. It cannot guarantee the
resulting problem is numerically well-posed, but picking a variable it
does not list as one to fix will guarantee the problem is numerically
singular. Good luck on solving it if it is. We will go for coffee rather
than wait for you to succeed.

So look at the list and decide what you would like to fix for your first
calculation with this model. Diameter.D) seems a good choice. Now
you can see why we called the instance just plaiv.cddonger name
would get tiring here. Anyway, piockD. Immediately the list reappears
with v.D no longer on it. (ASCEND has just repeated the eligibility
analysis.)

We have three more to pick. On the list are both vessel heighgnd
v.H_to_D_ratio We certainly cannot pick both of these. One implies
the other if we know a value forD. Pickv.H _to D ratio Note that

v.H is no longer eligible. Good. We would be worried if it were still
there.

Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCEND INSTANCE 19

ASCEND partitions
the problem into
smaller problems for
solving

displaying the
incidence matrix

We seev.metal_densityPick it. Strange. Metal mass and volume stayed
eligible. Well, okay. If we pick metal mass, wall thickness is implied,
and the same is true if we were to pick metal volume. However, it
seems much more natural to pwekll_thicknesso make that the last
variable picked. Th&olver window now says this problem is square
(i.e., it has 6 equations in the same number of unknowns). Table 2-3
summarizes the four variables we have elected here to fix.

Table 2-3 Variables we have fixed

variable

D

H_to_D_ratio

metal_density

wall_thickness

Toward the bottom right of th&olver window, we see there are 6
“blocks.” What are blocks? ASCEND has examined the equations and,
in this case, has discovered that not all the equations have to be solved
simultaneously. There are 6 blocks of equations which it can solve in
sequence. 6 blocks and 6 equations means that ASCEND has found a
way to solve the model by solving 6 individual equations in sequence -
- i.e., one at atime. That is great.

But ASCEND is going to be even smarter than this about solving in this
case. If an equation is being solved by itself and if it is simple enough
algebraically, ASCEND will rearrange it and solve directly for the one
variable that is not yet calculated in it -- without iteration. Here all the
equations are in fact that simple. This problem, with the 4 variables we
selected to be fixed, can be solved entirely without iteration.

Can we see what ASCEND has just discovered? It turns out we can (we
would not have asked if we could not). UnderEhgplay button on the
Solver, select theéncidence matrixool. A window pops open showing

us the incidence of variables in the equations and display them in the
order that ASCEND has found to solve them. The dark squares are
incidences under the variables for which we are solving; the lighter
looking X’s to the right side are incidences for the variables we have
fixed. Click on the incidence in the upper left corner. ASCEND
immediately identifies it for us as the end_area. It identifies the
equation as the one we labeled FlatEnds. We can go back to our model
and find the equation ASCEND will solve first. The other variable in
this equation is in the set we fixed; pick it and discover it is D, the
vessel diameter. Of course we can compute the area of the ends given
the diameter. The end_areaiD?/4.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

20

which variables are
currently fixed for this
problem?

specifying values for
the fixed variables -
this approach is useful
for small problems

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

Play with the other incidences here. See what the other equations are
and the order ASCEND will use to solve them.

Okay, we return to our task of solving. We need next to supply values
for the variables we have selected to be fixed. Again, the approach we
are going to take is acceptable for this small problem, but we would not
want to have to do what we are about to do for a large problem.
Fortunately, we really have thought about these issues and have some
nice approaches that work even for extremely large problem -- like
100,000 equations.

Let's see. Do you remember the variables we fixed? What if you do
not? Well, we go back to ttgrowser. Be surev remains the current
object (it alone is in the upper left window). Under the bulion pick
the By typetool. A small window opens with default information in it
saying it will find for us all objects contained in the current objexft
typesolver_varwhose fixed flags are setTRUE These are precisely
the attributes for the variables we have fixed. Sé€é&cand a list of the
four variables we fixed earlier appears.

For each variable on this list, we should supply a value. Select D in the
lower window of theBrowser using the right (theght, not the left --
makev the current object and do it again) mouse button. A window
opens in which we input a value for Put in the valud in the left

window andft in the right. Continue by putting in the values for the
variables as listed in Table 2-4. These values immediately appear in the
Browser window as you enter them. If you did not fully appreciate the
proper handling of dimension and units before, you just got a taste of
its advantages. YOU did not have to worry about specifying these

Table 2-4 Values to use for fixed variables

variable value units

D 4 ft
H_to_D_ratio 3

metal_density 5000 kg/m”3
wall_thickness 5 mm

things in consistent preselected units.

You can now solve this model. Go t8elver window and, under the
Executebutton, pickSolve You will get a message telling you the
model solved. Dismiss that message and return Brtheser window
to examine the results. You should see the following results

Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCEND INSTANCE 21

D =1.21922 meter

H = 3.65765 meter

H to D ratio=3

end_area = 1.16748 meter"2
metal_density = 5000 kilogram/meter"3
metal_mass = 408.62 kilogram
side_area = 14.0098 meter"2
vessel_vol = 4.27025 meter*3
wall_thickness = 0.005 meter

wall_vol = 0.0817239 meter"3

alter the units used for You may wish to alter the units used to display these results. For
displaying values example, you enter the diameE2in ft. You may wish to reassure
yourself the 1.21922 meter is 4 ft. Go to Bwipt window and under
the Toolsbutton seleciMeasuring unitsTheUnits window will open.
Enlarge it appropriately and then place it to the top and far right of your
display.

Since length is a basic dimension in ASCEND, there is only one way to
change the units for displaying length: underEkli button selecBet
basic unitsa cascading menu will appear, seleebhgth Another
cascading menu will open with all the alternate units supported in
ASCEND for length. Seledt. The units for all length variables will
switch toft. Look at the values in tH&rowser window.

The left upper window of thenits window contains many variable
types that have composite dimensions. For example, you will find
volume there. Pick it and the right window fills with all the alternative
units in which you can express volume.

Play with changing the units for displaying the various variables in the
vessel instance

One point - the left window displaying types having composite
dimensions will display only one type for each composite dimension. If
the atom types you have loaded were to include volume_scale as well
as volume, then only one of the two types, volume or volume_scale,
will be listed here. Changing the units to express either changes the
units for both.

returning to a When you are done, you may wish to return to a consistent set, such as
consistent set of units SI. Under theview button are different sets; pi&d (MKS) set

now we can solve the We can now resolve our vessel instance in any number of different

model in other ways ways. For example we can ask what the diameter would be if we had a
volume of250 €. To accomplish this calculation, we need first to make

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

22

clearing all thdixed
flags

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

vessel voluma variable whose value we wish to fix. When we do this
the model will be overspecified. ASCEND will indicate this problem to
us and offer us a list of variables - including the vessel diarDetane

of which we will have to “unfix.” Finally we need to alter the value of
vessel_volumt the desired value and solve. Explicit instructions to
accomplish these steps are as follows.

* In theBrowser window, makevessel volumthe current object
(select it using the left mouse button). The right window of the
Browser display the parts of theessel_volumemong them is
thefixedflag with a value oFALSE

* (If you do not see the value fbxedbut rather its type as a
boolean under theview button at the top, seleBisplay Atom
Values)

» Pickfixedwith theright mouse button, and, in the small window
that opens, delete the value FALSE, enter the VERIgEand
select OK.

* Now makev the current object by picking it in the left window of
the Browser.

» Exportv to theSolver again by selectingp Solverunder the
Exportbutton. A window entitledverspecifiedwill appear
listing the variables.D, v.H_to_D_ratioandv.vessel_volume
Pick v.D and hit theOK button; ASCEND will reset its fixed flag
to FALSE

» Finally, return to thérowser window and seleatessel_volume
with theright mouse button. In the small window that appears
type 250in the left windowft*3 in the right, and hit th&K
button.

* Under theExecutebutton in the Solver window, select Solve.

Note theSolver reports only 4 blocks for 6 equations. This time it has
to solve some equations simultaneously. InSbkver window, under

the Display button, select thincidence matrixool. You will see that

the first three equations must be solved together as a single block of
equations.

For a more complicated model you may wish to start over on the
process of selecting which variables are fixed. You can sékéue

flags for all the variables in a problemRALSEall at once -- without
knowing which are currently set IRUE In theBrowser window,

under theEdit button, select thRun methodool. A window will open

that displays a list of default methods that are automatically attached to
every model in ASCEND. One is call@earAll. Pick it and hitOK.

Last modified: June 20, 1998 8:51 pm

DISCUSSION 23

All the fixed flags for the entire model will now be resetAd. SE Can

you think of a way to check if this is true? (Do you remember how to
check which variables are currently fixed? Repeat that check and you
should find no variables are on the list.)

You might now want to play by changing what you calculate and fix.

2.4 DISCUSSION

You have just completed the creation and solving of a very small model
in ASCEND. In doing so, you have been exposed to some interesting
issues. How can we separate the concept of the model from how we
intend to solve it? How do we make a model to be well-posed -- i.e., a
model involvingn equations im unknowns -- so we can solve it? How
should one handle the units for the variables in a modeling system?
What we have shown you here is for a small model. We still need to
show you how one can make a large model well-posed, for example.
You will start to understand how one can do this in the next chapter.

The next chapter is crucial for you to understand if you want to begin to
understand how we approach good modeling practice. Please do
continue with it. As it uses the vessel model, it would, of course, be
best to continue with that chapter now.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-modell.fm5

24

A DETAILED ASCEND EXAMPLE FOR BEGINNERS THE

Last modified: June 20, 1998 8:51 pm

ADDING COMMENTS AND NOTES 25

CHAPTER3 PREPARING A MODEL FOR REUSE

notes are active
comments

3.1

There are four major ways to prepare a model for reuse. First, you
should add comments to a model. Second, you should add methods to a
model definition to pass to a future user your experience in creating an
instance of this type which is well-posed. Third, you should
parameterize the model type definition to alert a future user as to which
parts of this model you deem to be the most likely to be shared. And
fourth, you should prepare a script that a future user can run to solve a
sample problem involving an instance of the model. We shall consider
each of these items in turn in what follows.

ADDING COMMENTS AND NOTES

In ASCEND we can create traditional comments for a model — i.e.,
add text to the code that aids anyone looking at the code to understand
what is there. We do this by enclosing text with the delimiters (* and *).
Thus the line

(* This is a comment *)

is a comment in ASCEND. Traditional comments are only visible when
we display the code using tBésplay codeool in theLibrary window
or when we view the code in the text editor we used to create it.

We suggest we can do more for the modeler with the concéjuite§
a form of “active” comments available in ASCEND. ASCEND has
tools to extract notes and display them in searchable form.

In Figure 3-1 we show two types of notes the modeler can add. Longer
notes are set off in block style starting with the keyword NOTES and
ending with END NOTES. In this model, we declare two notes in this
manner: (1) to indicate who the author is and (2) to indicate the creation
date for this model. Note that the notes are directed to documenting
SELF which is the model itself — i.e., the vessel model as a whole
object. The object one documents can be any instance in the model —
any variable, equation or part. The tools for handling notes can sort on
the terms enclosed in single quotes so one could, for example, isolate
theauthornotes for all the models.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

26 PREPARING A MODEL FOR REUSE

REQUIRE "atoms.a4l";

MODEL vessel;
NOTES
‘author’ SELF {Arthur W. Westerberg}
‘creation date' SELF {May, 1998}
END NOTES;
(* variables *)
side_area "the area of the cylindrical side wall of the vessel",
end_area "the area of the flat ends of the vessel"
IS_A area;
vessel_vol "the volume contained within the cylindrical vessel",
wall_vol "the volume of the walls for the vessel"
IS_A volume;
wall_thickness "the thickness of all of the vessel walls",
H "the vessel height (of the cylindrical side walls)",
D "the vessel diameter"”
IS_A distance;
H_to D ratio "the ratio of vessel height to diameter"
IS_A factor;

metal_density "density of the metal from which the vessel
is constructed”
IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"
IS_A mass;

(* equations *)
FlatEnds: end_area = 1{PI} * D2/ 4;
Sides: side_area = 1{PI}*D * H;
Cylinder: vessel_vol = end_area * H;
Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;
HD_definition; D*H _to D ratio = H;
VesselMass: metal_mass = metal_density * wall_vol,
END vessel;

ADD NOTES IN vessel;

‘description' SELF {This model relates the dimensions of a
cylindrical vessel -- e.g., diameter, height and wall thickness
to the volume of metal in the walls. It uses a thin wall
assumption -- i.e., that the volume of metal is the area of
the vessel times the wall thickness.}

'‘purpose’ SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-1 Vessel model with Notes added (model
vesselNotes.a4c)

Last modified: June 20, 1998 8:50 pm

ADDING METHODS

there are short notes,
long notes and
separate notes

3.2

Running method specify in v

27

A user may use any term desired in the single quotes. We have not
decided yet what the better set of terms should be so we do not as yet
suggest any. With time we expect the terms used to settle down to just a
few that are repeated for all the models in a library.

There are also short notes we can attach to every variable in the model.
A “one liner” in double quotes just following the variable name allows
the automatic annotation of variables in reports.

The last few lines of Figure 3-1 shows adding notes we write in a
separatéDD NOTES INbbject. This object can appear before or after
or in a different file from the object it describes. This style of note
writing is useful as it allows another person to add notes to a model
without changing the code for a model. Thus it allows several different
sets of notes to exist for a single model, with the choice of which to use
being up to the person maintaining the model library. Finally, it allows
one to eliminate the “clutter” the documentation often adds to the code.

ADDING METHODS

We would next like to pass along our experiences in getting this model
to be well-posed—i.e., we would like to tell future users which
variables we decided to fix and which we decided to calculate. We
would also like to provide some typical values for the variables we
decided to fix. ASCEND allows us to attach any number of methods to
a type definition. Methods are procedural code that we can request be
run through the interface while browsing a model instance. We shall
include methods as described Table 3-1 to set just the right fixed flags
and variable values for an instance of our vessel model to be well-
posed.

The system has defaults definitions for all these methods. You already
saw that to be true if you went through the process of setting all the
fixedflags toFALSEIn the previous chapter. In case you did not, load
and compile theesselPlain.a4model in ASCEND. Export the

compiled instance to tH&rowser. Then in theBrowser, under theedit
button, seledRun methodYou will see a list containing these and other
methods we shall be describing shortly. Sedpeicifyand hit theOK

button. Then look in the Console window. A message similar to the
following will appear, with all but the first line being in red to signify
you should pay attention to the message:

Found STOP statement in METHOD
C:\PROGRAM FILES\ASCEND\ASCEND4\models\basemodel.a4l:307

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

28

PREPARING A MODEL FOR REUSE

STOP {Error! Standard method "specify" called but not written in MODEL.};

writing thespecify
andvaluesmethods

This message is telling you that you have just run the desfjaedify
method. We have to hand-craft evepecifymethod so the default
method is not appropriate. This message is alerting us to the fact that
we did not yet write a specigpecifymethod for this model type.

Try running theClearAll method. The defaulearAll method is
always the one you will want so it does not put out a message to alert
you that it is the default. d

Table 3-1 Some of the methods we require for putting a model into an
ASCEND library

method description

ClearAll a method to set all théxedflags for variables in the type t
FALSE This puts these flags into a known standard statgq —
i.e., all areFALSE All models inherit this method from the
base model and the need to rewrite it is very, very rare.

O

specify a method which assumes all the fixed flags are currently|
FALSEand which then sets a suitable sefixadflags to
TRUEto make an instance of this type of model well-posed.
A well-posed model is one that is squareuations im
unknowns) and solvable.

reset a method which first runs the ClearAll method and then the
specifymethod. We include this method because it is very
convenient. We only have to run one method to make any
simulation well-posed, no matter how its fixed flags are qur-
rently set. All models inherit this method from the base
model, as wittClearAll. 1t should only rarely have to be
rewritten for a model.

values a method to establish typical values for the variables we have
fixed in an application or test model. We may also supply val-
ues for some of the variables we will be computing to aid in

solving a model instance of this type. These values reflettive-
ness that we have tested for a simulation of this type and
found to work.

To write thespecifyandvaluesmethods for our vessel model, we note
that we have successfully solved the vessel model in at least two
different ways above. Thus both variations are examples of being
“well-posed.” We can choose which variation we shall use when
creating thespecifymethod for our vessel type definition. Let us choose
the alternative where we fixessel _volumeéd_to D _ratiq
metal_densityndwall_thicknesand provided them with the values of
250 ft*3, 3, 5000 kg/m”&éd5 mmrespectively to be our “standard”
specification.

Last modified: June 20, 1998 8:50 pm

ADDING METHODS

default methods
ClearAll andresetare
appropriate

REQUIRE "atoms.a4l";
MODEL vessel;
NOTES
‘author’

29

As already noted, the purposeQiearAll is to set all the fixed flags to
FALSE a well-defined state from which we can start over to set these
flags as we wish them s&esetsimply runsClearAll and therspecify

for a model. The default versions for these two methods are generally
exactly what one wants so one need not write these.

Figure 3-2 illustrates our vessel model with our local versions added
for specifyandvalues Look only at these for the moment and note that
they do what we described above. We show some other methods we
shall explain in a moment.

SELF {Arthur W. Westerberg}

‘creation date' SELF {May, 1998}

END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",
end_area "the area of the flat ends of the vessel"

IS_A area;

vessel_vol "the volume contained within the cylindrical vessel",
wall_vol "the volume of the walls for the vessel"

IS_A volume;

wall_thickness "the thickness of all of the vessel walls",

H
D
IS_A distance;

"the vessel height (of the cylindrical side walls)",
"the vessel diameter"”

H_to D ratio "the ratio of vessel height to diameter"

IS_A factor;

metal_density "density of the metal from which the vessel
is constructed”
IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"
IS_A mass;
(* equations *)
FlatEnds: end_area = 1{PI} * D2/ 4;
Sides: side_area = 1{PI}*D * H;
Cylinder: vessel_vol = end_area * H;
Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;
HD_definition; D*H _to D ratio = H;
VesselMass: metal_mass = metal_density * wall_vol,
METHODS

METHOD specify;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

30 PREPARING A MODEL FOR REUSE

NOTES
'‘purpose’ SELF {to fix four variables and make the problem well-posed}
END NOTES;
vessel_vol.fixed = TRUE;
H_to_D_ratio.fixed = TRUE;
wall_thickness.fixed := TRUE;
metal_density.fixed = TRUE;
END specify;
METHOD values;
NOTES
'‘purpose’ SELF {to set the values for the fixed variables}
END NOTES;
H_to_D_ratio = 2
vessel_vol = 250 {ft"3};
wall_thickness = 5{mm};
metal_density := 5000 {kg/m"3};
END values;
METHOD bound_self;
END bound_self;
METHOD scale_self;
END scale_self;
METHOD default_self;
D = 1{m}
H = 1{m}
H_to_D_ratio =1
vessel_vol = 1{m"3};
wall_thickness = 5{mm};
metal_density := 5000 {kg/m"3};
END default_self;
END vessel;

ADD NOTES IN vessel;

‘description' SELF {This model relates the dimensions of a
cylindrical vessel -- e.g., diameter, height and wall thickness
to the volume of metal in the walls. It uses a thin wall
assumption -- i.e., that the volume of metal is the area of
the vessel times the wall thickness.}

'‘purpose’ SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-2 Version of vessel with methods added
(vesselMethods.a4c)

In Table 3-2 we describe additional methods we require before we will

put a model into one of our libraries. Each of these had two versions,
both of which we require. The designatioselfis for a method to do

Last modified: June 20, 1998 8:50 pm

ADDING METHODS

31

something for all the variables and/or parts we have defined locally
within the current model with ai$_Astatement. The designatioall

is for a method to do something for parts that are defined within an
“outer” model that has an instance of this model as a part. The “outer”
model is at a higher scope. It can share its parts with this model by
passing them in as parameters, a topic we cover shortly in Section 3.3.
Only the_selfversions of these methods are relevant here and are in
Figure 3-2.

Table 3-2 Additional methods required for model in ASCEND
libraries

description
(The_selfversions of each of these methods should run the
_selfversions for the same method for all of its parts that are
method instances of models created withI&n Astatement. Theall
version should first run the _self version of the same method
and then the all version for all of its parts passed in as
parameters with @ILL_BEstatement.)

default_self a method called automatically when any simulation is com-

default_all piled to provide default values and adjust bounds for any|vari-
ables which may have unsuitable defaults in their ATOM
definitions. Usually the variables selected are those for which
the model becomes ill-behaved if given poor initial guesses or
bounds (e.g., zero).

bound_self a method to update thepper_boundind lower_boundralue

bound_all for each of the variables. ASCEND solvers use these bound
values to help solve the model equations.

scale_self a method to update theominalvalue for each of the vari-

scale_all ables. ASCEND solvers will use these nominal values to

rescale the variable to have a value of about one in magritude
to help solve the model equations.

check_self a method to check that the computations make sense. A first
check_all this method may be empty, but, with experience, one can add
statements that detect answers that appear to be wrong{ As

ASCEND already does bounds checking, one should not
check for going past bounds here. However, there could [be a
rule of thumb available that suggests one computed variable
should be about an order of magnitude larger than another.

This check could be done in this method.

adding our remaining Thebound_selaindscale selfmethods we have written are both

standardmethods to
a model definition

empty. We anticipate no difficulties with variable scaling or bounding
for this small model. Larger models can often give difficult problems in
solving if the variables in them are not properly scaled and bounded,;
these issues must be taken very seriously for such models.

We have included the variables that define the geometry of the vessel in
defaults_selimethod to avoid such things as negative initial values for

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

32

using methods when

solving

let's compute

metal_masss.

H_to_D_ratio

3.3

PREPARING A MODEL FOR REUSE

vessel_volumérhe compiler for ASCEND runs this method as soon as
the model is compiled into an instance so the variables mentioned here
start with their default values.

Exit ASCEND and repeat all the steps above to edit, load and compile
this new vessel type definition. Then proceed as follows.

* |n theBrowserwindow, examine the values for those variables
mentioned in thelefault_selimethod. Note they already have
their default values.

« To place the new instangen a solvable state, go to tBeowser
window. Pick the comman@un methodinder theEdit button.
Select first the methodhluesand hitOK.

* Repeat the last step but this time select the metsad

In theBrowser, examine the values for the variables listed in the
methodvaluesin Figure 3-2. They should be set to those stated
(remember you can alter the units ASCEND uses to report the values
by using the tools in thgnits window).Also examine théixedflags

for these variables; they should allBRUE (remember that you can

find which variables are fixed all at once by usinggh¢ypecommand
under theFind button).

» Finally exportv to theSolver. TheEligible window should NOT
appear; rather th&olver should report the model to Bgquare

» Solve by selectin@olveunder theExecutebutton.

The inclusion of methods has made the process of making this model
much easier to get well-posed. This approach is the one that works for
really large, complex models. For chemical engineering process unit
models there are one or two additional tips covered in Chapter 10.

PARAMETERIZING THE VESSEL MODEL

Reuse generally implies creating a model which will have as a part an
instance of a previously defined type. For example, let us compute
metal_masss a function of thel_to_D_ratiofor a vessel for a fixed
vessel_volumaNe would like to see if there is a value for the
H_to_D_ratiofor which themetal _mass minimum for a vessel with a
givenvessel_volumaNe might wonder imetal_masgoes to infinity

as this ratio goes either to zero or infinity.

Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL 33

3.3.1 (REATING A PARAMETERIZED VERSION OF VESSEL

parameters indicate To use instances of our model as parts in another model, we can

likely object sharing parameterize it. We use parameterization to tell a future user that the
parameters are objects he or she is likely to share among many different
parts of a model. We wish to create a table containing different values
of H to_D_ratiovs.metal_massWe can accomplish this by
computing simultaneously several different vessels having the same
vessel_volumevall_thicknesandmetal densityThe objects we want
to see and/or share for each instance of a vessel should include,
thereforeH_to_D_ratiqg metal_mass, metal_denswgssel_volume
andwall_thickness

The code in Figure 3-3 indicates the changes we make to the model
declaration statement and the statements defining the variables to
parameterize our model.

REQUIRE "atoms.a4l";
MODEL vessel(
vessel_vol "the volume contained within the cylindrical vessel"
WILL_BE volume;
wall_thickness "the thickness of all of the vessel walls"
WILL_BE distance;
metal_density "density of the metal from which the vessel is constructed"
WILL_BE mass_density;
H_ to D ratio "the ratio of vessel height to diameter"
WILL_BE factor;

metal_mass "the mass of the metal in the walls of the vessel"
WILL_BE mass;
);
NOTES
‘author' SELF {Arthur W. Westerberg}
‘creation date' SELF {May, 1998}
END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",
end_area "the area of the flat ends of the vessel"
IS_A area;
wall_vol "the volume of the walls for the vessel"
IS_A volume;
H "the vessel height (of the cylindrical side walls)",
D "the vessel diameter"
IS_A distance;
(* equations *)
FlatEnds: end_area = 1{PI} * D2/ 4;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

34

PREPARING A MODEL FOR REUSE

Sides: side_area = 1{PI} * D * H;
Cylinder: vessel vol =end_area * H;
Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;
HD_ definition: D *H_to_D_ratio = H;
VesselMass: metal_mass = metal_density * wall_vol,
METHODS
METHOD specify;
NOTES

'‘purpose’ SELF {to fix four variables and make the problem well-posed}

END NOTES;
vessel_vol.fixed
H_to_D_ratio.fixed

wall_thickness.fixed
metal_density.fixed

END specify;
METHOD values;
NOTES

TRUE;
= TRUE;
= TRUE;
= TRUE;

'‘purpose’ SELF {to set the values for the fixed variables}

END NOTES;
H_to D ratio
vessel_vol
wall_thickness
metal_density

END values;
METHOD bound_self;
END bound_self;
METHOD bound_all;
RUN bound_self;
END bound_all;
METHOD scale_self;
END scale_self;
METHOD scale_all;
RUN scale_self;
END scale_all;
METHOD default_self;
D
H
END default_self;
METHOD default_all;
RUN default_self;
vessel_vol
wall_thickness
metal_density
H_to D ratio
END default_all;

= 2

= 250 {ft"3};

= 5{mm}

:= 5000 {kg/m"3};

1{m}
1{m}

= 1{m"3};

= 5{mm}

:= 5000 {kg/m"3};
=1

Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL 35

END vessel;

ADD NOTES IN vessel;

‘description' SELF {This model relates the dimensions of a
cylindrical vessel -- e.g., diameter, height and wall thickness
to the volume of metal in the walls. It uses a thin wall
assumption -- i.e., that the volume of metal is the area of
the vessel times the wall thickness.}

'‘purpose’ SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-3 The parameterized version of vessel model
(vesselParams.a4c)

Substitute the statements in Figure 3-3 for lines 2 through 9 in
Figure 3-2. Save the result in the filesselParam.a4c

Note the use of the WILL_BE statement in the parameter list. By
declaring that the type of a parameter will be compatible with the types
shown, the compiler can tell immediately if a user of this model is
passing the wrong type of object when defining an instance of a vessel.

3.3.2 WBING THE PARAMETERIZED VESSEL MODEL

Creating a table of We next need to create a type definition that will set up our table of

metal _mass values H_to_D_ratiovalues vsmetal_masso we can observe approximately

vs. H_to_D ratio where it attains a minimum value. ASCEND allows us to create arrays
of instances of any type. Here we shall create an array of vessels. The
type definition is shown in Figure 3-4.

REQUIRE "atoms.a4l";
MODEL vessel(
vessel_vol "the volume contained within the cylindrical vessel"
WILL_BE volume;
wall_thickness "the thickness of all of the vessel walls"
WILL_BE distance;
metal_density "density of the metal from which the vessel is constructed"
WILL_BE mass_density;
H_to_D ratio "the ratio of vessel height to diameter"
WILL_BE factor;
metal_mass "the mass of the metal in the walls of the vessel”
WILL_BE mass;
);
NOTES
‘author' SELF {Arthur W. Westerberg}
‘creation date' SELF {May, 1998}
END NOTES;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

36 PREPARING A MODEL FOR REUSE

(* variables *)
side_area "the area of the cylindrical side wall of the vessel",
end_area "the area of the flat ends of the vessel”

IS _A area;
wall_vol "the volume of the walls for the vessel"

IS_A volume;
H "the vessel height (of the cylindrical side walls)",
D "the vessel diameter"

IS_A distance;

(* equations *)
FlatEnds:end_area = 1{PI} * D"2 / 4;
Sides:side_area = 1{PI} * D * H;
Cylinder:vessel_vol = end_area * H;
Metal_volume:(side_area + 2 * end_area) * wall_thickness = wall_vol;
HD_definition:D * H_to_D_ratio = H;
VesselMass:metal_mass = metal_density * wall_vol;
METHODS
METHOD specify;
NOTES
'purpose’ SELF {to fix four variables and make the problem well-posed}
END NOTES;
vessel_vol.fixed TRUE;
H_to_D_ratio.fixed .= TRUE;
wall_thickness.fixed := TRUE;
metal_density.fixed := TRUE;

END specify;
METHOD values;
NOTES
'purpose’ SELF {to set the values for the fixed variables}
END NOTES;
H_to D ratio = 2
vessel_vol = 250 {ft"3};
wall_thickness = 5{mm}
metal_density := 5000 {kg/m"3};
END values;

METHOD bound_self;
END bound_self;
METHOD bound_all;

RUN bound_self;
END bound_all;
METHOD scale_self;
END scale_self;
METHOD scale_all;

RUN scale_self;
END scale_all;

Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL

METHOD default_self;

D = 1{m}
H = 1{m}

END default_self;

METHOD default_all;
RUN default_self;
vessel_vol = 1{m"3}
wall_thickness = 5{mm}
metal_density := 5000 {kg/m"3};
H_to_D_ratio =1

END default_all;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a
cylindrical vessel -- e.g., diameter, height and wall thickness
to the volume of metal in the walls. It uses a thin wall
assumption -- i.e., that the volume of metal is the area of
the vessel times the wall thickness.}

'‘purpose’ SELF {to illustrate the insertion of notes into a model}

END NOTES;

MODEL tabulated_vessel values;

vessel_volume "volume of all the tabulated vessels"
IS_A volume;

wall_thickness "thickness of all the walls for all the vessels"
IS_A distance;

metal_density "density of metal used for all vessels"
IS_A mass_density;

n_entries "number of vessels to simulate"

IS_A integer_constant;
n_entries :== 20;
H_to_D_ratio[1..n_entries] "set of H to D ratios for which we are
computing metal mass"”

IS_A factor;
metal_mass[1..n_entries] "mass of metal in walls of vessels"
IS_A mass;
FOR i IN [1..n_entries] CREATE
V[i] "the i-th vessel model"

IS_A vessel(vessel volume, wall_thickness,
metal_density, H_to_D_ratio[i], metal_mass[i]);
END FOR;

METHODS

METHOD default_self;
END default_self;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

37

38

METHOD specify;
RUN Vv[1..n_entries].specify;
END specify;
METHOD values;
NOTES 'purpose' SELF {to set up 20 vessel models having H to D ratios
ranging from 0.1 to 2.}

END NOTES;
vessel_volume = 250 {ft"3};
wall_thickness = 5{mm}
metal_density := 5000 {kg/m"3};
FOR i IN [1..n_entries] DO
H_to_D_ratio[i] = i/10.0;
END FOR;
END values;

METHOD scale_self;
END scale_self;
END tabulated_vessel_values;

ADD NOTES IN tabulated_vessel values;

‘description' SELF {This model sets up an array of vessels to
compute a range of metal_mass values for different values
of H_to_D ratio.}

'‘purpose’ SELF {to illustrate the use of arrays in ASCEND}

PREPARING A MODEL FOR REUSE

END NOTES;

3.4

Figure 3-4 The code for thabulated vessel_ valuesodel
(vesselTabulated.a4c)

Add this model to the end of the filesselParam.a4gafter the vessel
model) and save the file mssselTabulated.a4€ompile an instance of
tabulated_vessel valuésall it tvv), run thevaluesandspecify
methods for it, and then solve it. You will discover that the tenth
element of thenetal_massarray, corresponding to &h to_D_ratioof

1 has the minimum value &f1L0.257 kilograms

CREATING A SCRIPT TO DEMONSTRATE THIS
MODEL

The last step to make the model reusable is to create a script that
anyone can easily run. Running the model successfully will allow a

user to demonstrate the use of the model and to explore an instance it
by browsing it.

Last modified: June 20, 1998 8:50 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 39

ASCEND allows one to create such a script using either an editor or the
tools in theScript window.

Restart the ASCEND system. You will have three windows open plus
the large one which you can close by pressindigiissbutton. The
Script, theLibrary and theConsole" windows remain

In the Script window you will see the license agreement information
for ASCEND. First get a new script buffer by selectingilesv filetool
under theFile button.

Select the tooRecord actionsinder theedit button to start recording
the steps you are about to undertake.

* IntheLibrary window, under th&dit button, selecDelete all
types Hit Delete allon the small confirmation window that
appears.

* Load the filevesselTabulated.a4the file containing the model
calledtabulated_vessel_valud3o this by selecting thRead
types from fileool under thd-ile button and browsing the file
system to find it. If you have trouble finding it, be sure to set the
Files of typewindow at the bottom of the file browsing window to
allow all types of files to be seen.

» Select the typgabulated_vessel_valu@sthe rightLibrary
window and compile an instance of it by selectingGneate
simulationtool under theé=dit button. In the small window that
appears, enter the natwy and hitOK.

« Export the instance to tigrowser by selecting th&imulation to
Browsertool under thé&xportbutton.

« Initialize the variable values by running th&uesmethod. Do
this by selecting thRun methodool under thé&dit button. Select
thevaluesmethod and hiOK.

« Set the fixed flags to get a well-posed problem by repeating the
last step but this time select tlesetmethod.

» Export the instanceyv to theSolver by selecting théo Solver
tool under théexportbutton.

» Solve tvv by selecting th8olvetool under théxecutebutton in
the Solver window.

* Return to thescript window and turn off the recording by
selecting thdRecord actionsool under the=dit button.

1. UNIX users should treat the xterm where they started ASCEND a<thesolewindow.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

40

DELETE TYPES;

PREPARING A MODEL FOR REUSE

» Save the script you have just created by selectin§aketool
under theFile button of theScript window. Name the file
vesselTabulated.a4mote the$ ending) to indicate it is the script
to run an example problem for models in lesselTabulated.a4c
(note the ¢ ending) file.

» Exit ASCEND by selecting thExit ASCENDiool under thd=ile
button on theScript window. The contents of tH&cript window
will be similar to that in Figure 3-5 (the path to the file may
differ).

e Restart ASCEND.

» Open the script you just created by selectingRbad filetool
under theFile button on the&script window. (Be sure you are
allowing the system to see files with the endidgby setting the
Files of typewindow at the bottom of the file browsing window.)

» Highlight all the instructions in this script and then execute the
highlighted instructions by selecting tBéatements selectéabol
under theExecutebutton.

You will run the same sequence of instructions you ran to create the
script.

READ FILE "vesselTabulated.a4c";
COMPILE tvv OF tabulated_vessel_values;

BROWSE {twv};

RUN {tvv.reset};

RUN {tvv.values};

SOLVE {tvwv} WITH QRSlyv;

34.1

Figure 3-5 Script to run vesselTabulated.a4c (this is the
contents of the file vesselTabulated.a4s)

DSCUSSION

In this chapter we converted the vessel model into a form where you
and others in the future will have a chance to reuse it. We did this by
first adding methods to make the problem well-posed and to provide
values for the fixed variables for which we readily found a solution
when playing with our original model as we did in the previous chapter.
We then thought of a typical use for this model and developed a
parameterized version based on that use. If this model were in a library,
a future user of it would most often simply have to understand the
parameters to create an instance of this type of model. We next added

Last modified: June 20, 1998 8:50 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 41

NOTES, a form of active comments, to the model. We suggest that
notes are much more useful than comments as we can provide tools that
can extract them and allow us to search them, for example, to find a
model with a given functionality. Finally, we showed you how to create

a script by turning on a “phone” session where ASCEND records the
actions one takes when loading, compiling and solving a model. One
can save and play this script in the future to see a typical use of the
model.

In the next chapter, we look at how we can plot the results we created in
the model vesselTabulated.a4c. We will have to reuse a model someone
else has put into the library of available models. In other words, the
“shoe is on the other foot,” and we quickly experience the difficulties
with reuse first hand. We will also learn how to run a case study from
which we can extract the same information with a single vessel model
run multiple times.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

42

PREPARING A MODEL FOR REUSE

Last modified: June 20, 1998 8:50 pm

CREATING A PLOT

CHAPTER4

43

CREATING A PLOT (USING A
LIBRARY MODEL)

In this chapter we are going to produce a plot by using a model that
someone else has created. We gain two lessons: (1) you will understand
first hand the difficulties one encounters when trying to use a model
someone else has created and (2) you will learn how to produce a plot
in ASCEND. The approach we take is not the one you should take if
your goal is simply to produce this plot. Our goal is pedagogical, not
efficiency. In the last chapter we created an array of vessel models to
produce the data that we now about to plot. We approached this
problem this way so you could see how one creates arrays in ASCEND.
Having this model, we have the data. The easiest thing we can do now
it use it to produce a plot.

We also have in ASCEND the ability to do case studies over a model
instance, varying one or more of the fixed variables for it over a range
of values and capturing the values of other variables that result. This
powerful case study tool is the proper way to produce this plot as
ASCEND only has to compile one instance and solve it repeatedly
rather than produce an array of models. We finish this chapter showing
you how to use this case study tool.

4.1 CREATING A PLOT

We want a plot ometal_massalues vsH_to D _ratia If we look

around at the available tools, we find there Bad tool under the

Display button in theBrowser window. While not obvious, it turns out
we can plot the arrays we produce when we include instances of type
plt_plot_integerandplt_plot_symboin our model. We find these types
in the fileplot.a4llocated in the ASCEND4 models directory which is
distributed with ASCEND. Figure 4-1 is a print out of that file (but with
line numbers added so we can reference them here).

REQUIRE "system.a4l"; 1
PROVIDE "plot.a4l"; 2
(***\ 3
plot.a4l 4
by Ben Allan 5

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

44 CREATING A PLOT (USING A LIBRARY MODEL)

Part of the Ascend Library 6
This file is part of the Ascend modeling library. 7
Copyright (C) 1997 Benjamin Andrew Allan 8
The Ascend modeling library is free software; you can redistribute 9
it and/or modify it under the terms of the GNU General Public License as 10
published by the Free Software Foundation; either version 2 of the 11
License, or (at your option) any later version. 12
The Ascend Language Interpreter is distributed in hope that it will be 13
useful, but WITHOUT ANY WARRANTY:; without even the implied warranty of 14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15
General Public License for more details. 16
You should have received a copy of the GNU General Public License along with17
the program; if not, write to the Free Software Foundation, Inc., 675 18
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 19

\a *kkkkhkk *kkkkk *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *% n) 20

(***\ 2 1

$Date: 97/08/04 15:22:21 $ 22
$Revision: 1.1 $ 23
$Author: ballan $ 24
$Source: /afs/cs.cmu.edu/project/ascend/Repository/models/plot.a4l,v $ 25
(*
== 27
PLOT.A4L 28
--------------- 29
AUTHOR:Ben Allan 30
provoked by plot.lib by Peter Piela and Kirk A. Abbott 31
DATES:03/97 - Original code. 32
CONTENTS: 33
A parameterized plot library mostly compatible 34
with plot.lib, but with variable graph titles. 35
) 36
MODEL pltmodel() REFINES cmumodel(); 37
END pltmodel; 38
MODEL plt_point(39
X WILL_BE real; 40
y WILL_BE real; 41
) REFINES pltmodel(); 42
END plt_point; 43
(***) 44
MODEL plt_curve(45
npnts IS_A set OF integer_constant; 46
y_data[npnts] WILL_BE real; 47
x_data[npnts] WILL_BE real; 48
) REFINES pltmodel(); 49
(* points of matching subscript will be plotted in order of 50

Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 45

* increasing subscript value. 51

*) 52
legend IS_A symbol; (* mutable now! *) 53
FOR i IN [npnts] CREATE 54

pnt[i]lS_A plt_point(x_datali],y_datali]); 55

END FOR; 56

END plt_curve; 57

(***) 58

MODEL plt_plot_integer(59
curve_set IS_A set OF integer_constant; 60
curve[curve_set] WILL_BE plt_curve; 61

) REFINES pltmodel(); 62
title, XLabel, YLabel IS_A symbol; (* mutable now! *) 63
Xlow IS_A real; 64
Ylow IS_A real; 65
Xhigh IS_A real, 66
Yhigh IS_A real; 67
Xlog IS_A boolean; 68
Ylog IS_A boolean; 69

END plt_plot_integer; 70

MODEL plt_plot_symbol(72
curve_set IS_A set OF symbol_constant; 73
curve[curve_set] WILL_BE plt_curve; 74

) REFINES pltmodel(); 75
title, XLabel, YLabel IS_A symbol; (* mutable now! *) 76
Xlow IS_A real; 77
Ylow IS_A real; 78
Xhigh IS_A real; 79
Yhigh IS_A real; 80
Xlog IS_A boolean; 81
Ylog IS_A boolean; 82

END plt_plot_symbol; 83

Figure 4-1 The file plot.a4l

As you can see, this file contains the two types we seek—starting in
lines 59 and 72, respectively. However, before we can use them, we do
need to understand them. We are, so to speak, on the receiving end of
the reusability issue. If you spend some time, you will find that you can
decipher these model definitions. To make that less painful, we will
help you do so here. If these models were better documented, they
would be much less difficult to interpret. In time we will add Notes to
them to remedy this deficiency.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

46

CREATING A PLOT (USING A LIBRARY MODEL)

4.1.1 MODEL REFINEMENT

please, explain
“refines”

MODEL cmumodel();

The first model, pltmodel, is two lines long, havingl@DEL

statement indicating it “refine€mumodebnd arEND statement. We

have not encountered the concept of refinement as yet. In ASCEND the
“refines” means the modpltmodelinherits all the statements of
cmumodela model which has been defined at the end of the file
system.a4lWe show the code famumodein Figure 4-2, and we note
that it too is an empty model. It is, as it says, a root for a collection of
loosely related models. You will note (and forgive) a bit of dry humor
by its author, Ben Allan. So far as we know, this model neither
provokes nor hides any bugs.

(* This MODEL does nothing except provide a root
* for a collection of loosely related models.

* If it happens to reveal a few bugs in the software,
* and perhaps masks others, well, what me worry?

* BAA, 8/97.
")

END cmumodel;

parents and children
in a refinement
hierarchy

order does not matter
in declarative code

but it does in the
procedural code for
methods

Figure 4-2 The code for cmumodel

We need to introduce the concept of type refinement to understand
these models. We divert for a moment to do just that.

Suppose modds refines model. We callA the parent model arigl

the child. The child modd inherits all the code defining the parent
modelA. In writing the code for modd, we do not write the code it
inherits fromA; we simply understand it is there already. The code we
write for modelB will be only those statements that we wish to add
beyond the code defining its parent. ASCEND supports only single
inheritance; thus a child may have only one parent. A parent, on the
other hand, may have many children, each inheriting its code.

We are dealing in ASCEND with models defined by their variables and
equations. As we have noted above, the order for the statements
defining each of these does not matter—i.e., the variables and equations
may be defined in any order. So adding new variables and equations
through refinement may be done quite easily.

In contrast, the methods are bits of procedural code—i.e., they are run
as a sequence of statements where order does matter. In ASCEND, a
child model will inherit all the methods of the parent. If you wish to

alter the code for a method, you must replace it entirely, giving it the
same name as the method to be replaced. (However, if you look into the

Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 47

documentation on the methods (syntax.pdf), you will find that the
original method is still available for execution. You simply have to add
a qualifier to its name to point to it.)

If we look into this file we see the refinement hierarchy shown in
Figure 4-3.cmumodels the parent model for all these models.
pltmodelis its child. The remaining three models are children of

pltmodel
cmqudel
pltmodel

plt_Curve plt_plot_integer plt_plot_symbol

Figure 4-3 The refinement hierarchy in the file plot.a4l

(We can have ASCEND show us the refinement hierarchy. From the
Library window, selecRead types from fitkom theFile button, and
click onplot.a4l(you may need to change the filter to seedH#files).
Selectplot.a4l from the left hand-pane of thebrary , and then
plt_plot_symbofrom the right-hand pane. Finally, choose Ameestry
tool from theDisplay button.)

There are three reasons to support model refinement, with the last being
the most important one.

reasons for refinement We write more compact codeThe first reason is compactness of
coding. One can inherit a lot of code from a parent. Only the new
statements belonging to the child are then written to define it.
This is not a very important reason for having refinement.

» Changes we make to the parent propagaté\ second reason is
that one can edit changes into the parent and know that the
children will inherit those changes without having to alter the
code written for the child. (Of course, one can change the parent
in such a way that the changes to the child are not what is wanted
for the child, introducing what will likely become some
interesting debugging problems.)

with the most * We know what can substitute for what The most important
important being we reason is that inheritance tells us what kinds of parts may be
know what can substituted for a particular part in a model. Because a child
substitute for what inherits all the code from its parent, we know the child has all the

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

48

CREATING A PLOT (USING A LIBRARY MODEL)

variables and equations defined for it that the parent does—and
typically more.We can use an instance of the child as a
replacement for an instance of the parentThus if you were to
write a model with the paA1l of typeA in it, someone else can
create an instance of your model and substitute @&favhich is

of typeB. This substituted part will have all the needed variables
in it that you assumed would be there.

This third reason says that when a object passed as a parameter
WILL_BE of typeA, we know that a part of either typeor typeB will
work.

4.1.2 GONTINUING WITH CREATING A PLOT

We are going to include in our model a part of tpfieplot_integeror
plt_plot_symbothat ASCEND can plot. We need to look at the types of
parameters required by whichever of these two we select to include
here. Tracing back to its parents, we see them to be empty so all the
code for these types is right here.

The first parameter we need iswave_setvhich is defined to be a set
of integer_constanbr of symbol_constaniVe have to guess at this
time at the purpose faurve_setlt would really help to have notes
defining the intention here and to have a piece of code that would
demonstrate the use of these models. At present, we do not. We
proceed, admitting we will appear to “know” more than we should
about this model. It turns out thairve_setllows us to identify each
of the curves we are going to plot. These models assume we are
plotting several variables (let’s call theifi], y[2], ...) against the
same independent variadeThe values for curve_set are the ‘1’, ‘2’,
etc. identifying these curves.

Here we wish to plot only one curve presentimgtal masss.
H_to_D_ratia We can elect to ugst_plot_symboband label this curve
‘5 mm. The label 5 mm is asymbolso we will create a set of type
symbolwith this single member.

The second object has to be a object of plpecurve

Looking at line 45, we see how to include an object of pfpeurve It

must be passed three objects: a set of integers (e.g., the set of integers
from 1 to 20) and two lists of data giving thevalues vs. the-values

for the curve. In the modé&bulated_vessel valuese have just these

two lists, and they are namatetal massndH_to_D_ratia

Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 49

In Figure 4-4, we show the code you need to add to the model
tabulated_vessel valuds contains a part calledassVSratiof type
plt_plot_symbothat ASCEND can plot. This code is at the end of the
declarative statements in tabulated_vessel_values. It also replaces the
first method, METHOD default_self.

CurveSet "the index set for all the curves to be plotted"
IS_A set OF symbol_constant;
CurveSet :==['5 mmY;

Curves['5 mm'] "the one curve of 20 points for metal_mass vs. H_to_D_ratio"
IS_A plt_curve([1..n_entries], metal_mass, H_to_D_ratio);
massVSratio "the object ASCEND can plot"
IS_A plt_plot_symbol(CurveSet, Curves);

METHODS
METHOD default_self;
(* set the title for the plot and the labels for the ordinate and abscissa *)
massVSratio.title :=
'‘Metal mass of the walls vs H to D ratio for a thin-walled cylindrical
vessel’;
massVSratio.XLabel :='H to D ratio’;
massVSratio.YLabel := 'metal mass IN kg/m”3';
END default_self;

Figure 4-4 The last bit of new code to include a plot in the
modeltabulated vessel valuésave as
vesselPlot.a4c)

Also just after the first line in this fle—which reads

REQUIRE “atoms.a4l”;

place the instruction

REQUIRE “plot.a4l”;

When you solve this new instance and maessSVratidhe current
object, you will find thePlot tool under thdisplay button in the
Browser window lights up and can be selected. If you do this, you will
get a plot ofnetal_masss.H_to_D_ratia A clear minimum is
apparent on this plot & to_D_ratioequal to approximately one.

You should create a script to run this model just as you did for
vesselTabulated.a4n the previous chapter. Save itvesselPlot.a4ds

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

50 CREATING A PLOT (USING A LIBRARY MODEL)

4.2 CREATING A CASE STUDY FROM A SINGLE
VESSEL

You may think creating an array of vessels and a complex plot object
just to generate a graph is either an awful lot of work or a method
which will not work for very large models. You think correctly on both
points. The plt_plot models are primarily useful for sampling values
from an array of inter-related models that represent a spatially
distributed system such as the pillars in a bridge or the trays in a
distillation column. You can conduct a case study, solving a single
model over a range of values for some specified variable, using the
Script command STUDY.

We will step through creating a base case and a case study using the
vessel model. Start by opening a new buffer in the Script window and
turning on the record button of the Script’'s edit menu. In the Library
window run the “Delete all types” button to clear out any previous
simulations. Load the vessel model from the file vesselMethods.a4c
you created in Section 3.2.

4.2.1 THE BASE CASE

compile a vessel. Select and compile the vessel model. Give the simulation thé name
Select the simulatiol in the bottom pane of the Library window and
use the right mouse button (or Alt-x b) to send the simulation to the
Browser.

solving the base case. In the Browser, place the mouse cursor over the upper left pane. Use the
right mouse button to run methogset andvalues |, then send the
model to the Solver by typing “Alt-x s”. Move the mouse to the Solver
window and hit the F5 key to solve the model.

graphical case study We now know that it takes 535.7 kg of metal to make a 250 cubic foot

optimization vessel which is twice as high as it is broad. Suppose that now we want
to know the largest volume that this amount of metal can contain
assuming the same wall thickness is required. Perhaps a skinnier or
fatter vessel can hold more, so we need to do a case study using the
aspect ratiofl_to_D ratio) as the independent variable. Use the
Browser to chang¥.metal_mass.fixed to TRUE, since we are
using a constant amount of metal. The solver will want you to free a
variable now, so seletstvessel vol to be freed, since volume is
what we want to study.

Last modified: June 20, 1998 8:51 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 51

script recorded so far

Turn off the recording button on the Script window. The recording
should look something like

DELETE TYPES;

READ FILE {vesselMethods.a4c};
COMPILE V OF vessel;

BROWSE {V};

RUN {V.reset},

SOLVE {V} WITH QRSlv;

ASSIGN {V.metal_mass.fixed} TRUE {};

you must type the next line in the script yourself.
ASSIGN {V.vessel_vol.fixed} FALSE {};

The file ascend4/models/vesselStudy.a4s was recorded in a similar
manner.

4.2.2 CASE STUDY EXAMPLES

configuring a case
study

The STUDY command takes a lot of arguments. We'll explain them all
momentarily, but should you forget them simply enter the command
STUDYwithout arguments in the ASCEND Console window or xterm
window to see an error message explaining the arguments and giving an
example. Enter the following command in the Script window exactly as
shown except for the file name followi@UTFILE. Specify a file to

be created iyour ascdata directory.

STUDY {vessel_vol} \

IN {V}\

VARYING {{H_to_D_ratio} {0.1} {0.5} {0.8} {1} {1.5} {2} \
{3} {4} {8}}\

USING {QRSIv}\

OUTFILE {/usrO/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

This is the simplest form of case study; the backslashes at the end of
each line mean that it is all one big statement. Select all these lines in
the Script at once with the mouse and then hit F5 to execute the study.
The solver will solve all the cases and produce the output file
vvstudy.dat. The quickest way to see the result is to enter the following
command in the Script, then select and execute it. (Remember to use
the name of your file and not the name shown).

ASCPLOT {/usrO/ballan/ascdata/vvstudy.dat};
ASCPLOT CLOSE; #omit if you want to see data table

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

52

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

CREATING A PLOT (USING A LIBRARY MODEL)

You should get a graph that looks something like Figure 4-5. The
largest volume is in the neighborhood oftarto D ratio of 1.

AscPlot

V.vessel_vol meter”3

|

|

Figure 4- Study of votume as a function of H/D.

4.2.2.1 MULTI -VARIABLE STUDIES

We now have an idea where the solution is most interesting, so we can
do a detailed study where we also monitor other variables such as
surface areas. Additional variables to watch can be added to the
STUDY clause of the statement.

STUDY {vessel_vol} {end_area} {side_area} \

IN {V}\

VARYING {{H_to_D_ratio} {0.5} {0.6} {0.7} {0.8) {0.9}\
{1} {1.1} {1.2} {1.3}}\

USING {QRSIv}\

OUTFILE {/usrO/ballan/ascdata/vvstudy.dat} \

Last modified: June 20, 1998 8:51 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 53

ERROR STOP;
ASCPLOT {/usrO/ballan/ascdata/vvstudy.dat};
ASCPLOT CLOSE; #omit if you want to see data table

4.2.2.2 MULTI -PARAMETER STUDIES

We can also do a multi-parameter study, for example also varying the
wall thickness allowed. In general, any number of the fixed variables
can be varied in a single study, but be aware that ASCEND’s relatively
simple plotting capabilities do not yet include surface or contour maps
so you will need another graphic tool to view really pretty pictures.

STUDY {vessel_vol} \

IN {V}\

VARYING\

{{H_to_D_ratio} {0.8) {0.9} {1} {1.1} {1.2} {1.3}}\
{{wall_thickness} {4 {mm}} {5 {mm}} {6 {mm}} {7 {mm}}}\
USING {QRSIV}\

OUTFILE {/usrO/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

ASCPLOT {/usrO/ballan/ascdata/vvstudy.dat};

In this study the peak volume occurs at the seimte _D_ratio for

any wall thickness but the vessel volume increases for thinner walls.
This may be hard to see with the default graph settings, but column 2 in
rows 8-11 (H_to_D = 1.0) of the ASCPLOT data table have the largest
volumes for any given thickness in column 1. Notice that the units must
be specified for thevall_thickness values in the VARYING

clause.

4.2.2.3 ROTTING OUTPUT WITH OTHER TOOLS

To convert the study results from the ASCPLOT format to a file more
suitable for importing into a spreadsheet, the following command does
the trick. As usual, change the names to match gscaata

directory.

asc_merge_data_files excel \

{lusrO/ballan/ascdata/vvs.txt} \
{fusrO/ballan/ascdata/vvstudy.dat}

If you prefer Matlab style text, substitute ‘matlab’ for ‘excel’ in the line
above and change the output name from ‘vvs.txt’ to ‘vvs.m’.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

54 CREATING A PLOT (USING A LIBRARY MODEL)

4.2.3 STUDYBEHAVIOR DETAILS

variable list We now turn to the details of the STUDY statement. As we saw in
Section 4.2.2.1, any number of variables to be monitored can follow the
STUDY keyword.

IN clause The IN clause specifies which part of a simulation is to be sent to the
Solver; a small part of a much larger model can be studied if you so
desire. All the variable and parameter names that follow the STUDY
keyword and that appear in the VARYING clause must be found in this
part of the simulation.

parameter list The VARYING clauses is a list of lists. Each inner list gives the name
of the parameter to vary followed by its list of values. Each possible
combination of parameter values will be attempted in multi-parameter
studies. If a case fails to solve, then the study will behave according to
the option set in the ERROR clause.

solver name The solver named in the USING clause is invoked on each case. The
solver may be any of the algebraic solvers or optimizers, but the
integrators (e.g. LSODE) are not allowed.

data file name The case data are stored in the file name which appears in the
OUTFILE clause. By default, this file is overwritten when a STUDY is
started, so if you want multiple result files, use separate file names.

error handling When the solver fails to converge or encounters an error, the STUDY
can either ignore itfRROR IGNOR[Eand go on to the next case, warn
you ERROR WARNNd go on to the next case, or sStBRROR
STOB. The ERROR option makes it possible start a case study and go
to lunch. Cases which fail to solve will not appear in the output data
file.

Note that if the model is numerically ill-behaved it is possible for a case
to fail when there is in fact a solution for that combination of
parameters. STUDY uses the solution of the last successfully solved
case as the initial guess for the next case, but sometimes this is not the
best strategy. STUDY also does not attempt to rescale the problem from
case to case. When a case that you think should succeed fails, go back
and investigate that region of the model again manually or with a more
narrowly defined study.

Last modified: June 20, 1998 8:51 pm

DISCUSSION 55

4.3 DISCUSSION

We have just led you step by step through the process of creating,
debugging and solving a small ASCEND model. We then showed you
how to make this model more reusable, first by adding comments and
methods. Methods capture the “how you got it well-posed” experience
you had when first solving an instance of the vessel model. We then
showed you how to parameterize this model and then use it to construct
a table ofmetal_massalues vsH_to_D _ratiovalues. Finally we

showed you how to add a plot of these results. You should next look at
the chapter in the documentation where you create two more small
ASCEND models. This chapter gives you much less detail on the
buttons to push. Finally, if you are a chemical engineer, you should
look at the chapter on the script and model for a simple flowsheet
(simple_fs.a4s and simple_fs.a4c respectively).

With this experience you should be ready to write your own simple
ASCEND models to solve problems that you might now think of
solving using a spreadsheet. Remember that once you have the model
debugged in ASCEND, you can solve inside out, backwards and upside
down and NOT just the way you first posed it—unlike your typical use
of a spreadsheet model.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

56

CREATING A PLOT (USING A LIBRARY MODEL)

Last modified: June 20, 1998 8:51 pm

UsING REQUIREAND PROVIDE 57

CHAPTERDS

5.1

5.1.1

MANAGING MODEL DEFINITIONS,
LIBRARIES, AND PROJECTS

Most complex models are built from parts in one or more libraries. In
this chapter we show typical examples of how to make sure your model
gets the libraries it needs. We then explain in more general terms the
ASCEND mechanism which makes this work and how you can use it to
manage multiple modeling projects simultaneously.

UsING REQUIRE AND PROVIDE

REQUIREING SYSTEM.A4L

Suppose you are in a great hurry and want to create a simple model and
solve it without concern for good style, dimensional consistency, or any
of the other hobgoblins we preach about elsewhere. You will write
equations using onlgeneric_realariables as defined in system.a4l.

The equations in this example do not necessarily have a solution. In
your ascdata (see howtol) directory you create an application model
definition file “myfile.a4c” which looks like:

REQUIRE “system.a4l”;
MODEL quick_n_dirty;
X=y"2;
y =X + 2%z,
Z = cos(x+y);
X,y,z IS_A generic_real;
(* homework problem 3, due May 21. *)
END quick_n_dirty;

The very first line ‘REQUIRE “system.a4l”; tells ASCEND to find and
load a file named “system.ad4l” if it has not already been loaded or
provided in some other way. This REQUIRE statement must come
before the MODEL which uses tgeneric_realATOM that system.a4l
defines.

The REQUIRE statements in a file should all come at the beginning of
the file before any other text, including comments. This makes it very

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

58

5.1.2

5.1.3

never require
system.a4l in an
application model.

MANAGING MODEL DEFINITIONS, LIBRARIES, AND

easy for other users or automated tools to determine which files, if any,
your models require.

On the ASCEND command line (in the Console window or xterm) or
in the Script window, you can then enter and execute the statement

READ FILE “myfile.a4c”;

to cause system.a4l and then myfile.a4c to be loaded.

(HAINING REQUIRED FILES

Notice when you read myfile.a4c that ASCEND prints messages about
the files being loaded. You will see that a file “basemodel.a4l” is also
loaded. In system.a4l you will find at the beginning the statements

REQUIRE “basemodel.a4l”;
PROVIDE “system.a4l”;

The basemodel library is loaded in turn because of the REQUIRE
statement in system.a4l. We will come back to what the PROVIDE
statement does in a moment. This chaining can be many files deep. To
see a more complicated example, enter

READ FILE column.a4l;

and watch the long list of files that gets loaded. If you examine the first
few lines of each file in the output list, you will see that each file
REQUIRES only the next lower level of libraries. This style minimizes
redundant loading messages and makes it easy to substitute equivalent
libraries in the nested lower levels without editing too many higher

level libraries. The term “equivalent libraries” is defined better in the
later section on PROVIDE.

BETTER APPLICATION MODELING PRACTICE

It is generally a bad idea to create a model using only generic_real
variables. The normal practice is to use correct units in equations and to
use dimensional variables. In the following file we see that this is done
by requiring “atoms.a4l” instead of “system.a4l” and by using correct
units on the coefficients in the equations.

REQUIRE “atoms.a4l”; MODEL quick_n_clean;

x = y"2/1{PI*radian};
y = x + 2{PI*radian}*z;

Last modified: June 20, 1998 8:51 pm

UsING REQUIREAND PROVIDE 59

Z = cos(X+y);

X,y IS_A angle;

z IS_A dimensionless;
(* homework problem 3, due May 21. *)
END quick_n_clean;

5.1.4 QBSTITUTE LIBRARIES AND PROVIDE

ASCEND keeps a list of the already loaded files, as we hinted at in
Section 5.1.1. A library file should contain a PROVIDE statement, as
system.a4l does, telling what library it supplies. Normally the
PROVIDE statement just repeats the file name, but this is not always
the case. For example, see the first few lines of the file ivpsystem.a4l
which include the statement

PROVIDE “system.a4l”;

indicating that ivpsystem.a4l is intended to be equivalent to file
system.a4l while also supplying new features. When ivpsystem.a4l is
loaded both “system.a4l” and “ivpsystem.a4l” get added to the list of
already loaded files. For one explanation of when this behavior might
be desirable, see Section 12.1. Another use for this behavior is when
creating and testing a second library to eventually replace the first one.

When a second library provides compatible but extended definitions
similar to a first library, the second can be substituted for the first one.
The second library will obviously have a different file name, but there

is no need to load the first library if we already have the second one
loaded. ivpsystem.a4l is a second library substitutable for the first
library system.a4l. Note that the reverse is not true: system.a4l does not

PROVIDE “ivpsystem.a4l”;

so system is not a valid substitute for ivpsystem.

5.1.5 REQUIRE AND COMBINING MODELING PACKAGES

Model libraries frequently come in interrelated groups. For example,
the models referred to in Ben Allan’s thesis are published electronically
as a package models/ben/ in ASCEND IV release 0.9. To use Ben’s
distillation libraries, which require rather less memory than the current
set of more flexible models, your application model should have the
statement

REQUIRE “ben/bencolumn.a4l”;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

60

5.2

5.2.1

5.2.2

5.2.3

MANAGING MODEL DEFINITIONS, LIBRARIES, AND

at the beginning.

Combining models from different packages may be tricky if the
package authors have not documented them well. Since all packages
are open source code which you can copy into your ascdata directory
and modify to suit your needs, the process of combining libraries
usually amounts to changing the names of the conflicting model
definitions in your copy.

Do NOT use \ instead of / in the package name given to a REQUIRE
statement even if you are forced to use Microsoft Windows.

How REQUIRE FINDS THE FILES IT LOADS

The file loading mechanism of REQUIRE makes it simple to manage
several independent sets of models in simultaneous development. We
must explain this mechanism or the model management may seem
somewhat confusing. When a REQUIRE statement is processed,
ASCEND checks in a number of locations for a file with that name:
ascdata, the current directory, and the ascend4/models directory. We
will describe how you can extend this list later. ASCEND also looks for
model packages in each of these same locations.

ASCDATA

If your ascdata directory exists and is readable, ASCEND looks there
first for required files. Thus you can copy one of our standard libraries
from the directory ascend4/models to your ascdata directory and
modify it as you like. Your modification will be loaded instead of our
standard library. See Section 2.2 for how to find your ascdata directory.

THE CURRENT DIRECTORY

The current directory is what you get if you type ‘pwd’ at the ASCEND
Console or xterm prompt. Under Microsoft Windows, the current
directory is usually some useless location. Under UNIX, the current
directory is usually the directory from which you started ASCEND.

ASCEND4/MODELS/

The standard (CMU) models and packages distributed with ASCEND
are found in the ascend4/models/ subdirectory where ASCEND is
installed. This directory sits next to the directory ascend4/bin/ where
the ascend4 or ascend4.exe executable is located.

Last modified: June 20, 1998 8:51 pm

How REQUIREFINDS THE FILES IT LOADS 61

5.2.4 MULTIPLE MODELING PROJECTS

If you dislike navigating multi-level directories while working on a
single modeling project, you can separate projects by keeping all files
related to your current project in one directory and changing to that
directory before starting ASCEND. If you have files that are required in
all your projects, keep those files in your ascdata directory. Under
Windows, cd to the directory containing the current project from the
Console window after starting ASCEND.

5.2.5 EXAMPLE : FINDING “BEN/BENCOLUMN .A4L"

Suppose an application model requires bencolumn.a4l from package
ben as shown in Section 5.1.5. Normally ASCEND will execute this
statement by searching for:

~/ascdata/ben/bencolumn.a4l
./ben/bencolumn.a4l
$ASCENDDIST/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from directory /usrl/ballan/projects/
testl under UNIX, the full names of these might be

/usrO/ballan/ascdata/ben/bencolumn.a4l
/usrl/ballan/projects/testl/ben/bencolumn.a4l
{usr/local/lib/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from some shortcut on a Windows
desktop, the full names of these locations might be

C:\winnt\profiles\ballan\ascdata\ben\bencolumn.a4l
C:\Program Files\netscape\ben\bencolumn.a4l
C:\ASCEND\ascend4\models\ben\bencolumn.a4l

The first of these three which actually exists on your disk will be the
file that is loaded.

5.2.6 How REQUIRE HANDLES FILE AND DEFINITION
CONFLICTS

Normally you simply delete all types before loading a new or revised
set of ASCEND models and thus you avoid most conflicts. When you
are working with a large simulation and several smaller ones, you may
not want to delete all the types, however. We decided to make

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

62

5.2.7

MANAGING MODEL DEFINITIONS, LIBRARIES, AND

REQUIRE handle this situation and the almost inevitable redundant
REQUIRE statements that occur in the following reasonable way.

When a file is REQUIREd, ASCEND first checks the list of loaded and
provided files for a name that matches. If the name is found, then that
file is checked to see if it has changed since it was loaded. If the file has
changed, then any definition that was changed is loaded in the
ASCEND Library and the new definition is used in building any
subsequently compiled simulations. Old simulations remain
undisturbed and are not updated to use the new definitions since there
may be conflicts that cannot be automatically resolved.

EXTENDING THE LIST OF SEARCHED DIRECTORIES

ASCEND uses the environment variable ASCENDLIBRARY as the
list of directory paths to search for required files. Normally you do not
set this environment variable, and ASCEND works as described above.

To see or change the value of ASCENDLIBRARY that ASCEND is
using, examine ASCENDLIBRARY in the System utilities window
available from the Script Tools menu. Changes made to environment
variables in the utilities window are NOT saved. If you are clever
enough to set environment variables before running ASCEND, you can
make it look anywhere you want to put your model files. Consult your
operating system guru for information on setting environment variables
if you do not already know how.

Last modified: June 20, 1998 8:51 pm

THE GRAPH WE WANT

63

CHAPTERG6 PLOTTING DATA SAMPLED FROM

COMPLEX MODELS

Often you need a plot of data sampled from arbitrary locations in a
model that are not naturally grouped in a single easily plotted vector.
The plot.a4l library provides models (plt_curve, plt_plot_symbol, and
plt_plot_integer) that can be used with the Browser’s Display Plot
button. In this chapter we see how to create such a plot using the
ASCEND statement ALIASES/IS_A to sample data from a mechanical
system of stretched springs, masses, anchors, and fingers. Creating
plots of time series data output from ASCEND's initial value solver
LSODE is discussed in Section 12.3, "Viewing Simulation Results,” on
page 125.

Chemical engineers who can tolerate distillation models should visit
the file plotcol.a4c in the models library for more complicated
examples of plotting and visit the mod&inple_column_profileis
column.a4l for more complicated examples of sampling data. Reading
this chapter first may be of help in interpreting those models.

6.1 THE GRAPH WE WANT

We want to plot the positions X1 to X3 of the connecting hooks h1, h2,
and h3 in a mechanical system as shown in Figure 6-1. The anchor,

Figure 6-1 Spring test model system, st.

hooks, springs, and finger (we could replace either spring with a block
mass, also) are all separate objects which we have modeled very
simply. These models are given at the end of the chapter and can also
be found (with improvements) in forceld.a4c, a model file in the
distributed ASCEND libraries.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

64

6.2

R.OTTING DATA SAMPLED FROM COMPLEX MODELS

Plotting is usually a post-solution analysis tool, so our plots should not
be entangled with the basic models or with the total mechanical system
model,st We might want to explain the systetrto someone and this
could be hard to do if the code is cluttered up with plot information.

CONSTRUCTING A PLOT CURVE

The plot library models follow object-oriented thinking carefully,
perhaps a little too carefully. A plt_plot_integer is a plottable model
built out of plt_curves which are in turn built out of arrays of data
points from the user. Constructing these data arrays is the only
significant challenge in using the plot models. Begin by building a new
model with the systerst as a part:

MODEL plot_spring_test;

st IS_A spring_test;

Plot_X IS_A plt_plot_integer(curve_set,curves);
END plot_spring_test;

We want to create a plt_curve from the array of hook numbers
y_data[1..3] plotted against horizontal hook position x_data[1..3].
There are obvious problems with the model aboueresand
curve_setre used without being defined and there is no mention of
X_data or y_data.

Begin by using an ALIASES/IS_A statement to construct the array of
positions x_data from the variables X stored in the hooks of nsbdel

x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X) WHERE Xset
IS_A set OF integer_constant;

This statement creates a set, Xset, indexing a new array x_data with
elements collected from st. Since the value of Xset is not specified, it
becomes by default the set [1,2,3].

Now we need the hook numbers, y_data. These do not exist in st, so we
create them. We will set the numeric values of these iddfault_self
method. We will include method in the final model, but do not show it
here.

y_data[Xset] IS_A real;

Having both y_data and x_data, we can construct a curve from them:

X_curve IS_A plt_curve(Xset,y_data,x_data);

Last modified: June 20, 1998 8:51 pm

CONSTRUCTING THE ARRAY OF CURVES 65

6.3 CONSTRUCTING THE ARRAY OF CURVES

We have a curve, but the plt_plot_integer model Plot_x expects an array
of curves and the set indexing this array as input. We can make both
from X_curve easily using, once again, an ALIASES/IS A statement.

curves|curve_set] ALIASES (X_curve) WHERE curve_set IS_A
set OF integer_constant;

All the pieces are now in place, so we have the final model:
MODEL plot_spring_test;

(* create our system model and plot. *)
st IS_A spring_test;
Plot_X IS_A plt_plot_integer(curve_set,curves);

(* Gather the sampled data into an array *)
x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X)
WHERE Xset IS_A set OF integer_constant;

(* Create the Y coordinates *)

y_data[Xset] IS_A real;

(* create the curve *)

X_curve IS_A plt_curve(Xset,y_data,x_data);

(* Make X_curve into the array for plt_plot_integer *)
curves[curve_set] ALIASES (X_curve) WHERE
curve_set IS_A set OF integer_constant;

METHOD default_self;
RUN st.default_self;
st.s1.L0 := 0.2{m}; (* make st more interesting *)
RUN Plot_X.default_self;
RUN X_curve.default_self;
FOR i IN Xset DO
y_data[i] :=i;
END FOR;
X_curve.legend := ‘meter’;
Plot_X.title := *Hook locations’;
Plot_X.XLabel := ‘location’;
Plot_X.YLabel := *hook #;
END default_self;
END plot_spring_test;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

R.OTTING DATA SAMPLED FROM COMPLEX MODELS

6.4 RESULTING POSITION PLOT

We can compile the plot model and obtain the graph in with the
following short script.

READ FILE forceld.a4c;
COMPILE pst OF plot_spring_test;
BROWSE {pst};

RUN {pst.st.reset};

SOLVE {pst.st} WITH QRSlv;
PLOT {pst.Plot_X};

SHOW LAST;

We can also obtain the plot by moving to pst.Plot_X in the Browser
window and then pushing the Display->Plot button or then typing
“Alt-d p”. We see the hooks are positioned near 0, 230, and 370 mm.
We also see that xgraph sometimes makes less than pretty graphs.

Hook locations
hook #

meter
3.00
2.90
2.80
270
2.60
250
2.40
2.30
2.20
2.10
2.00
1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90 toeation {m} x 10
0.00 100.00 200.00 300.00

Figure 6-2 Plot_X in plot_spring_test

Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING MASS, ANCHOR, AND FINGER MODELS 67

REQUIRE “atoms.a4l”;

6.5 1-DMECHANICAL HOOK , SPRING, MASS,

ANCHOR, AND FINGER MODELS

The models used in this chapter are very simple versions of masses and
springs horizontally at rest, but possibly under tension, stretched
between an anchor and a finger. Only the code absolutely necessary for
this example is given here; the full code with methods and additional
comments is given in forceld.a4c, an ASCEND modeling example in
the library.

These models could easily be extended to include mass, momentum,
and acceleration in two or three dimensions. Most of the methods in the
forceld.a4c models are unedited from the code generated by the
ASCEND Library button Edit->Suggest method. If you improve on
these models, please share them with us and the rest of the ASCEND
community.

CONSTANT spring_constant REFINES real_constant DIMENSION M/T"2;
CONSTANT position_constant REFINES real_constant DIMENSION L;
ATOM position REFINES distance DEFAULT 0{m};

END position;

MODEL hook;
F_left, F_right IS_A force;
F_left = F_right;
X IS_A position;
METHODS
METHOD default_self;
(* ATOM defaults are fine *)
END default_self;
METHOD specify;
F_right.fixed := TRUE;
END specify;
METHOD specify_float;
END specify_float;
END hook;

MODEL massless_spring(
k IS_A spring_constant;
h_left WILL_BE hook;
h_right WILL_BE hook;

) WHERE (

h_left, h_right WILL_NOT_BE_THE_SAME;

);

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

68 R_.OTTING DATA SAMPLED FROM COMPLEX MODELS

LO, dx IS_A distance;
h_right.X = h_left.X + LO + dx;
F=k*dx;
h_left.F_right = F;
h_right.F_left=F;
F IS_A force;
METHODS
METHOD default_self;
dx := 1{cm};
LO := 10{cm};
END default_self;
METHOD specify;
LO.fixed := TRUE;
RUN h_left.reset;
RUN h_right.reset;
h_left.F_right.fixed := FALSE;
h_left.X.fixed := TRUE;
END specify;
METHOD specify_float;
LO.fixed := TRUE;
RUN h_left.specify_float;
RUN h_right.specify_float;
END specify_float;
END massless_spring;

MODEL massless_block(
h_left WILL_BE hook;
h_right WILL_BE hook;
) WHERE (
h_left, h_right WILL_NOT_BE_THE_SAME;
);
width IS_A distance;
h_left.F_right = h_right.F_left;
h_right.X = h_left.X + width;
X “center of the block” IS_A position;
X = width/2 + h_left.X;
METHODS
METHOD default_self;
width := 3{cm};
END default_self;
METHOD specify;
width.fixed := TRUE;
RUN h_left.reset;
h_left.F_right.fixed := FALSE;
h_left.X.fixed := TRUE;
RUN h_right.reset;

Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING MASS, ANCHOR, AND FINGER MODELS

END specify;

METHOD specify_float;
width.fixed := TRUE;
RUN h_left.specify_float;
RUN h_right.specify_float;

END specify_float;

END massless_block;

MODEL anchor(
x IS_A position_constant;
h_right WILL_BE hook;

h_right.X = x;

F = h_right.F_left;

F IS_A force;
METHODS
METHOD default_self;
END default_self;
METHOD specify;

RUN h_right.reset;
END specify;
METHOD specify_float;
END specify_float;
END anchor;

MODEL finger(
hl WILL_BE hook;
);
pull IS_A force;
h1l.F _right = pull;
METHODS
METHOD default_self;
pull := 3{N};
END default_self;
END finger;

MODEL finger_test;
NOTES ‘ascii-picture’ SELF {

\--O--NMWW--O--| |--O(_\

(N
(reference)-h1-(s1)-h2-(m1)-h3-(pinky)
}

END NOTES;
reference IS_A anchor(0.0{m},h1);
h1l1S_A hook;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

69

70

s1IS_A massless_spring(100{kg/s"2},h1,h2);
h2 IS_A hook;
m1l IS_A massless_block(h2,h3);
h3 1S_A hook;
pinky 1S_A finger(h3);
METHODS
METHOD default_self;
RUN h1l.default_self;
RUN h2.default_self;
RUN h3.default_self;
RUN ml.default_self;
RUN pinky.default_self;
RUN reference.default_self;
RUN sl.default_self;
END default_self;
METHOD specify;
RUN m1.specify_float;
RUN pinky.reset;
RUN reference.specify_float;
RUN s1.specify_float;
END specify;
END finger_test;

MODEL spring_test;

NOTES *ascii-picture’ SELF {
\\--O--NVWW/--O--\WA--O(\
(reference)-h1-(s1)-h2-(s2)-h3-(pinky)

}

END NOTES;
reference IS_A anchor(0.0{m},h1);
h1l1S_A hook;

s11S_A massless_spring(100{kg/s"2},h1,h2);
h2 IS_A hook;
s2 IS_A massless_spring(75{kg/s"2},h2,h3);
h3 IS_A hook;
pinky IS_A finger(h3);
METHODS
METHOD default_self;
RUN hl.default_self;
RUN h2.default_self;
RUN h3.default_self;
RUN s2.default_self;
RUN pinky.default_self;
RUN reference.default_self;
RUN s1.default_self;
END default_self;

R.OTTING DATA SAMPLED FROM COMPLEX MODELS

Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING MASS, ANCHOR, AND FINGER MODELS

METHOD specify;
RUN pinky.reset;
RUN reference.specify_float;
RUN s1.specify_float;
RUN s2.specify_float;
END specify;
END spring_test;

REQUIRE “plot.a4l”;
MODEL plot_spring_test;

(* create our model *)
st IS_A spring_test;

(* Now gather the sampled data into an array for plotting *)
x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X)
WHERE Xset IS_A set OF integer_constant;

(* Now create the Y coordinates of the plot since there is no
* natural Y coordinate in our MODEL.

)

y_data[Xset] IS_A real; (* all will be assigned to 1.0 *)

X _curve IS_A plt_curve(Xset,y_data,x_data);

(* Make X_curve into the expected array for plt_plot *)
curves|curve_set] ALIASES (X_curve) WHERE
curve_set IS_A set OF integer_constant;

Plot_ X IS_A plt_plot_integer(curve_set,curves);
METHODS
METHOD default_self;
RUN st.default_self;
st.s1.L0 := 0.2{m};
RUN X_curve.default_self;
RUN Plot_X.default_self;
FOR i IN Xset DO
y_datali] :=i;
END FOR;
X_curve.legend := ‘meter’;
Plot_X.title := ‘Hook locations’;
Plot_X.XLabel := ‘location {m}’;
Plot_X.YLabel := ‘hook #’;
END default_self;
END plot_spring_test;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

71

72

R.OTTING DATA SAMPLED FROM COMPLEX MODELS

Last modified: June 20, 1998 8:51 pm

73

CHAPTER/ How TO DEFINE VARIABLES AND

the purpose of this
chapter

SCALING VALUES IN AN ASCEND
MODEL

By now you have probably read Section 2, "A Detailed ASCEND
Example for Beginners: the modeling of a vessel,” on page 5 and seen
an example of how to create a model using existing variable types in
ASCEND. You found that variables of types area, length, mass,
mass_density, and volume were needed and that they could be found in
the library atoms.a4l. You want to know how to generalize on that; how
to use variables, constants, and scaling values in your own models so
that the models will be easier to solve.

This chapter is meant to explain the following things:

» The “Big Picture” of how variables, constants, and scaling values
relate to the rest of the ASCEND IV language and to equations in
particular. We'll keep it simple here. More precise explanations
for the language purist can be found in “The ASCEND IV
language syntax and semantics” (syntax.pdf). You do not need to
read about the “Big Picture” in order to read and use the other
parts of this chapter, but you may find it helpful if you are having
trouble writing an equation so that ASCEND will accept it.

* How to find the type of variable (or constant) you want. We keep
a mess of interesting ATOM and CONSTANT definitions in
atoms.a4l. We provide tools to search in already loaded libraries
to locate the type you need.

* How to define a new type of variable when we do not have a
predefined ATOM or CONSTANT that suits your needs. It is very
easy to define your own variable types by copying code into an
atoms library of your own from atoms.a4l and then editing the
copied definition.

* How to define a scaling variable to make your equations much
easier to solve.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

74

ATOM

How To DEFINE VARIABLES AND SCALING VALUES IN AN

7.1 THE BIG PICTURE: A TAXONOMY

As you read in Section 3, "Preparing a model for reuse,” on page 25,
simulations are built from MODEL and ATOM definitions, and

MODEL and ATOM definitions are defined by creating types in an
ASCEND language text file that you load into the ASCEND system.
Figure 7-1 shows the types of objects that can be defined. You can see

real

<—— ATOM boolean
integer
symbol

(TYPE

real relation solver_var
logical relation
WHEN relationship

real_constant
CONSTANT boolean_constant
integer_constant

symbol_constant

set OF| integer_constant
symbol_constant

MODEL

Figure 7-1 The Big Picture: How to think about variables

there are many more types than simply real variables used for writing
equations. Some of these types can also be used in equations. You also
see that there are three kinds of equations, not simply real relations.
Throughout our documentation we call real relations simply “relations”
because that is the kind of equation most people are interested in most
of the time. Notice that “scaling values” do not appear in this diagram.
We will cover scaling values at the end of this The major features of

this diagram are:

* Any variable quantity for use in relations, logical relations, or
when statements or other computations. These come in the usual
programming language flavors real, boolean, symbol, integer. Not
all kinds of atoms can be used in all kinds of equations, as we
shall explain when describing relations in a little bit. Atoms may
be assigned values many times interactively, with the Script
ASSIGN statement, with the METHOD := assignment operator,

Last modified: June 20, 1998 8:51 pm

THE BIG PICTURE: A TAXONOMY 75

or by an ASCEND client such as a solver.

An ATOM may have attributes other than its value, such as .fixed in
solver_var, but these attributes are not atoms. They are subatomic
particles and cannot be used in equations. These attributes are
interpretable by ASCEND clients, and assignable by the user in the
same ways that the user assigns atom values.

Each subatomic particle instance belongs to exactly one atom instance
(one variable in your compiled simulation). This contrasts with an atom
instance which can be shared among several models by passing the
atom instance from one model into another or by creating aliases for it.

CONSTANT » Constants are “variables” that can be assigned no more than once.
By convention, all constant types in atoms.a4l have names that
end in _constant so that they are not easily confused with atoms.
A constant gets a values from the DEFAULT portion of its type
definition, by an interactive assignment, or by an assignment in
the a model which uses the :== assignment operator. Constants
cannot be assigned in a METHOD, nor can they be assigned with
the := operator.

Integer and symbol constants can appear as members of sets or as
subscripts of arrays. Integer, boolean, and symbol constants can be used
to control SELECT statements which determine your simulation’s
structure at compile-time or to control SWITCH and WHEN behavior
during problem solving .

set » Sets are unordered lists of either integer or symbol constants. A
set is assigned its value exactly once. The user interface always
presents a set in sorted order, but this is for convenience only. Sets
are useful for defining an array range or for writing indexed
relations. More about sets and their use can be found in
syntax.pdf.

relationships « Relations and logical relations allow you to state equalities and
inequalities among the variables and constants in you models.
WHEN statements allow you to state relationships among the
models and equations which depend on the values of variables in
those models. Sets and symbols are not allowed in real or logical
relations except when used as array subscripts.

Real relations relate the values of real atoms, real constants, and integer

constants. Real relations cannot contain boolean constants and atoms,
nor can they contain integer atoms.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

76

MODEL

SOLVER_VAR

Scaling value

How To DEFINE VARIABLES AND SCALING VALUES IN AN

Logical relations relate the values of boolean atoms and boolean
constants. The SATISFIED operator makes it possible to include real
relations in a logical relation. Neither integer atoms and constants nor
real atoms and constants are allowed in logical relations. If you find
yourself trying to write an equation with integer atoms, you are really
creating a conditional model for which you should use the WHEN
statement instead. See Section 13, "Creating Conditional Models in
Ascend,” on page 131 to learn about how ASCEND represents this kind
of mathematical model. There are also a real variable types,
solver_integerlndsolver_binarywhich are used to formulate

equations when the solver is expected to initially treat the variable as a
real value but drive it to an integer or 0-1 value at the solution. The
integer programming features of ASCEND are described in a technical
report by Craig Schmidt not yet available electronically. See system.a4l
for elementary details.

Like atoms, real and logical relations may have attributes, subatomic
particles for use by ASCEND clients and users. The name of a relation
can be used in writing logical relations and WHEN statements.

WHEN statements are outside the scope of this chapter; please see
Section 13, "Creating Conditional Models in Ascend,” on page 131 or
syntax.pdf for the details.

* A model is simply a container for a collection of atoms, constants,
sets, relations, logical relations, when statements, and arrays of
any of these. The container also specifies some of the methods
that can be used to manipulate its contents. Compiling a model
creates an instance of it-- a simulation.

* The real atom typsolver_varis the type from which all real
variables that you want the system to solve for must spring. If you
define a real variable using a type which is not a refinement of
solver_var, all solvers will treat that variable as an a scaling value
or other given constant rather than as a variable.

Solver_vars have a number of subatomic attributes (upper_bound,
lower_bound, and so forth) that help solvers find the solution of your
model. ATOM definitions specify appropriate default values for these
attributes that depend on the expected applications of the atom. These
attribute values can (and should) be modified by methods in the final
application model where the most accurate problem information is
available.

« Areal which is not a member of teelver_varfamily is ignored
by the solver. Numerical solvers for problems with many

Last modified: June 20, 1998 8:51 pm

HOW TO FIND THE RIGHT VARIABLE TYPE 77

7.2

Load atoms.a4l

Find an ATOM or
CONSTANT by units

equations in many variables work better if the error computed for
each equation (before the system is solved) is of approximately
size 1.0. This is most critical when you are starting to solve a new
problem at values far, far away from the solution. When the error
of one equation is much larger than the errors in the others, that
error will skew the behavior of most numerical solvers and will
cause poor performance.

This is one of the many reasons that scientists and engineers work with
dimensionless models: the process of scaling the equations into
dimensionless form has the effect of making the error of each equation
roughly the same size even far away from the solution. It is sometimes
easiest to obtain a dimensionless equation by writing the equation in its
dimensional form using natural variables and then dividing both sides
by an appropriate scaling value. We will see how to define an atom for
scaling purposes in the last part of this chapter.

HOw TO FIND THE RIGHT VARIABLE TYPE

The type of real atom you want to use depends first on the
dimensionality (length, mass/time, etc.) needed and then on the
application in which the atom is going to be used. For example, if you
are modeling a moving car and you want an atom type to describe the
car’s speed, then you need to find an atom with dimensionality length/
time or in ASCEND terms L/T. There may be two or three types with
this dimensionality, possibly including real_constants, a real scaling
value, and an atom derived from solver_var.

The first step to finding the variable type needed is to make sure that
atoms.a4l is loaded in your Library window from ascend4/models/
atoms.a4l.

The next step is to open the “ATOM by units” dialog found in the
Library window’s Find menu. This dialog asks for the units of the real
variable type you want. For our example, speed, you would enter “feet/
second,” “furlongs/fortnight,” “meter*3/second/ft"2” or any other
combination of units that corresponds to the dimensionality L/T.

If the system is able to deduce the dimensionality of the units you have
entered, it will return a list of all the currently loaded ATOM and
CONSTANT definitions with matching dimensions. It may fail to
understand the units, in which case you should try the corresponding Sl
units. If it understands the units but there are no matching atoms or
constants, you will be duly informed. If there is no atom that meets
your needs, you should create one as outlined in Section 7.3.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

78

Selecting the right
type

7.3

Saving customized
variable types

How To DEFINE VARIABLES AND SCALING VALUES IN AN

The resulting list of types includes a Code button which will display the
definition of any of the types listed once you select (highlight) that type
with the mouse. Usually you will need to examine several of the
alternatives to see which one is most appropriate to the physics and
mathematics of your problem. Compare the default, bounds, and
nominal values defined to those you need. Check whether the type you
are looking at is a CONSTANT or an ATOM.

You now know the name of the variable type you need, or you know
that you must create a new one to suit your needs.

HOw TO DEFINE A NEW TYPE OF VARIABLE

In this section we will give examples of defining the atom and constant
types as well as outline a few exceptional situations when you should
NOT define a new type. More examples can be found and copied from
atoms.a4l. You should define your new atoms in your personal atoms
library.

The normal location for this personal library is in the user data file
~\ascdata\myatoms.a4l. This file contains the following three lines and
then the ATOM and CONSTANT definitions you create.

REQUIRE “atoms.a4l”; (* loads our atoms first *)
PROVIDE “myatoms.adl”; (* registers your library *)
(* Custom atoms created by <insert your name here> *)

If you develop an interesting set of atoms for some problem domain
outside chemical engineering thermodynamics, please consider mailing
it to us through our web page.

The user data directory ~/ascdata may have a different name if you are
running under Windows and do not have the environment variable
HOME defined. It may be something like C:\ascdata or
\WINNT\Profiles\Your Name\ascdata. When ASCEND is started, it
prints out the name of this directory.

When you write a MODEL which depends on the definition of your
new atoms, do not forget to add the statement

REQUIRE “myatoms.a4l”;

at the very top of your model file so that your atoms will be loaded
before your model definitions try to use them.

Last modified: June 20, 1998 8:51 pm

HOw TO DEFINE A NEW TYPE OF VARIABLE 79

Exceptions

7.3.1 ANEW REAL VARIABLE FOR SOLVER USE

Suppose you need an atom with units {dollar/ft"2/year} for some
equation relating amortized construction costs to building size. Maybe
this example is a bit far fetched, but it is a safe bet that our library is not
going to have an atom or a constant for these units. Here is the standard
incantation for defining a new variable type based on solver_var.
ASCEND allows a few permutations on this incantation, but they are of
no practical value. The parts of this incantation that aitalins should

be changed to match your needs. You can skip the comments, but you
must include the units of the default on the bounds and nominal.

ATOM amortized_area_cost
REFINES solver_var DEFAULT 3.0 {dollar/ft"2/year} ;
lower_bound := O {dollar/ft"2/year} ;
(* minimum value *)
upper_bound ;= 10000 {dollar/ft"2/year} ;
(* maximum value for any sane application *)
nominal := 10 {dollar/ft"2/year} ;
(* expected size for all reasonable applications*)
END amortized _area cost

In picking the name of your atom, remember that names should be as
self-explanatory as possible. Also avoid choosing a name that ends in
_constant(as this is conventionally applied only to CONSTANT
definitions) or_parameterParameter is an extremely ambiguous and
therefore useless word. Also remember that the role a variable plays in
solving a set of equations depends on how the solver being applied
interpretsfixedand other attributes of the variable.

If an atom type matches all but one of the attributes you need for your
problem, say for example the upper_bound is way too high, use the
existing variable type and reassign the bound to a more sensible value
in thedefault_selimethod of the model where the variable is created.
Having a dozen atoms defined for the same units gets confusing in
short order to anyone you might share your models with.

The exception to the exception (yes, there always seems to be one of
those) is the case of a lower_bound set at zero. Usually a lower_bound
of zero indicates that there is something inherently positive about
variables of that type. Variables with a bound of this type should not
have these physical bounds expanded in an application. Another
example of this type of bound is the upper_bound 1.0 on the type
fraction.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

80

7.3.2

Universal exceptions
and unit conversions

How To DEFINE VARIABLES AND SCALING VALUES IN AN

For example, negative temperature just is not sensible for most physical
systems. ASCEND definesemperatureatom for use in equations
involving the absolute temperature. On the other hand, a temperature
difference, delta T, is frequently negative so a separate atom is defined.
Anyone receiving a model written using the two types of atoms which
both have units of {Kelvin} can easily tell which variables might
legitimately take on negative values by noting whether the variable is
defined as éemperatureor adelta_temperature

ANEW REAL CONSTANT TYPE

Real constants which do not have a default value are usually needed
only in libraries of reusable models, such as components.a4l, where the
values depend on the end-user’s selection from alternatives in a
database. The standard incantation to define a new real constant type is:

CONSTANTcritical_pressure_constant
REFINES real_constant DIMENSION M/L/T2

Here again, théalic parts of this incantation should be redefined for
your purpose.

It is wasteful to define a CONSTANT type and a compiled object to
represent aniversalconstant. For example, the thermodynamic gas
constant, R = 8.314... {J/mole/K}, is frequently needed in modeling
chemical systems. The Sl value of R does not vary with its application.
Neither does the value of Numeric constants of this sort are better
represented as a numeric coefficient and an appropriately defined unit
conversion. Consider the ideal gas law, PV = NRT and the ASCEND
unit conversion {GAS_C} which appears in the library ascend4/
models/measures.a4l. This equation should be written:

P*V=n*10{GAS_C}*T,
Similarly, area = pi*r*2 should be written

area = 1{PI} * r"2;
The coefficient 1 of {GAS_C} and {P1} in these equations takes of the
dimensionality of and is multiplied by the conversion factor implied by
the UNITS definition for the units. If we check measures.a4l, we find

the definition of Pl is simply {3.14159...} and the definition of GAS_C
is {8.314... J/mole/K} as we ought to expect.

Last modified: June 20, 1998 8:51 pm

HOW TO DEFINE A SCALING VARIABLE 81

For historical reasons there are a few universal constant definitions in
atoms.a4l. New modelers should not use them; they are only provided
to support outdated models that no one has yet taken the time to update.

7.3.3 NEW TYPES FOR INTEGERS, SYMBOLS, AND BOOLEANS

The syntax for ATOM and CONSTANT definitions of the non-real

types is the same as for real number types, except that units are not
involved. Take your best guess based on the examples above, and you
will get it right. If even that is too hard, more details are given in
syntax.pdf.

7.4 HOw TO DEFINE A SCALING VARIABLE

ASCEND cannot do it
all for you

Scaling atom default
value

A scaling variable ATOM is defined with a name that endsoaleas
follows. Note that this ATOM does not refine solver_var, so solvers will
not try to change variables of this type during the solution process.

ATOM distance_scale REFINES real DEFAULT 1.0{meter};
END distance_scale;

ASCEND uses a combination of symbolic and numerical techniques to
create and solve mathematical problems. Once you get the problem
close to the solution, ASCEND can internally compute its own scaling
values for relations, known elsewhere as “relation nominals”, assuming
you have set good values for tneminalattribute of all the variables.

It does this by computing the largest additive term in each equation.
The absolute value of this term is a very good scaling value.

This internal scaling works quite well, but not when the problem is very
far away from the solution so that the largest additive terms computed
are not at all representative of the physical situation being modeled.
Thescale_selmethod, which should be written for every model as
described in Section 10.4.4, should set the equation scaling values you
have defined in a MODEL based on the best available information. In a
chemical engineering flowsheeting problem, for example, information
about a key process material flow should be propagated throughout the
process flowsheet to scale all the other flows, material balance
equations, and energy balance equations.

The default value for any scaling atom should always be 1.0 in
appropriate Sl units, so that the scaling will have no effect until you
assign a problem specific value. Multiplying or dividing both sides of
an equation by 1.0 obviously will not change the mathematical

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

82

How To DEFINE VARIABLES AND SCALING VALUES IN AN

behavior, but you do not want to change the behavior arbitrarily either--
you want to change it based on problem information that is not
contained in your myatoms.a4l file.

Last modified: June 20, 1998 8:51 pm

EXAMPLE 1— VAPOR PRESSURE 83

CHAPTER S8

8.1

ENTERING DIMENSIONAL
EQUATIONS FROMHANDBOOKS

Often in creating an ASCEND model one needs to enter a correlation
given in a handbook that is written in terms of variables expressed in
specific units. In this chapter, we examine how to do this easily and
correctly in a system like ASCEND where all equations must be
dimensionally correct.

EXAMPLE 1— VAPOR PRESSURE

Our first example is the equation to express vapor pressure using an
Antoine-like equation of the form:

B
T+C

whereP*3is in {atm} andT in {R}. When one encounters this
equation in a handbook, one then finds tabulated values for A, B and C
for different chemical species. The question we are addressing is:

In(P**) = A (8.1)

How should the modeler enter this equation into ASCEND so he or
she can then enter the constants A, B, and C with the exact values
given in the handbook?

ASCEND uses Sl units internally. Therefore, P would have the units
{kg/m/s"2}, and T would have the units {K}.

Equation 8.1 is, in fact, dimensionally incorrect as written. We know
how to use it, but ASCEND does not as ASCEND requires that we
write dimensionally correct equations. For one thing, we can
legitimately take the natural Idgn) only of unitless quantities. Also,

the handbook will tabulate the values for A, B and C without units. If A
is dimensionless, then B and C would require the dimensions of
temperature.

The mindset to enter such equations is to make all quantities that
must be expressed in particular units into dimensionless quantities
which have the correct numerical value.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimegns.fm5

84

8.1.1

8.1.2

8.1.3

ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

We illustrate in the following subsections just how to do this
conversion. It proves to be very straight forward to do.

(GONVERTING THE LN TERM

Convert the quantity within thie() term into a dimensionless number
that has the value of pressure when pressure is expressed in {atm}.

Very simply, we write

P_atm = P/1{atm};

Note that P_atm has to belanensionlesguantity here.

We then rewrite the LHS of Equation 8.1 as

In(P_atm)

Suppose P = 2 {atm}. In Sl units P= 202,650 {kg/m/s"2}. In Sl units,
the dimensional constant 1{atm} is about 101,325 {kg/m/s"2}. Using
this definition, P_atm has the value 2 and is dimensionless. ASCEND
will not complain with P_atm as the argument oflth@ function, as it

can take the natural log of the dimensionless quantity 2 without any
difficulty.

GONVERTING THE RHS

We next convert the RHS of Equation 8.1, and it is equally as simple.
Again, convert the temperature used in the RHS into:

T_R=T/{R};
ASCEND converts the dimensional constant 1{R} into

0.55555555...{K}. Thus T_R is dimensionless but has the value that T
would have if expressed in {R}.

IN SUMMARY FOR EXAMPLE 1

We do not need to introduce the intermediate dimensionless variables.
Rather we can write:

In(P/1{atm}) = A - B/(T/1{R} + C);

Last modified: June 20, 1998 8:51 pm

FAHRENHEIT— VARIABLES WITH OFFSET 85

8.2

8.3

as a correct form for the dimensional equation. When we do it in this
way, we can enter A, B and C as dimensionless quantities with the
values exactly as tabulated.

FAHRENHEIT — VARIABLES WITH OFFSET

What if we write Equation 8.1 but the handbook says that T is in
degrees Fahrenheit, i.e., in {F}? The conversion from {K} to {F} is

T{F} = T{K}*1.8 - 459.67

and the 459.67 is arffset ASCEND does not support an offset for
units conversion. We shall discuss the reasons for this apparent
limitation in Section 8.4.

You can readily handle temperatures in {F} if you again think as we did
above. The rule, even for units requiring an offset for conversion,
remains: convert a dimensional variable into dimensionless one such
that the dimensionless one has the proper value.

Define a new variable
T_degF = T/1{R} - 459.67;

Then code Equation 8.1 as
In(P/1{atm}) = A - B/(T_degF + C);

when entering it into ASCEND. You will then enter constants A, B, and
C as dimensionless quantities having the values exactly as tabulated. In
this example wenustcreate the intermediate variable T_degF.

EXAMPLE 3— PRESSURE DROP

From the Chemical Engineering Handbook by Perry and Chilton, Fifth
Edition, McGraw-Hill, p10-33, we find the following correlation:

2
o = YVg=VI)G
a 144g
where the pressure drop on the LHS is in psi, y is the fraction vapor by
weight (i.e., dimensionlessyg andV, are the specific volumes of gas

and liquid respectively intibm, G is the mass velocity in lbm/hrft
andg is the acceleration by gravity and equal to 4.18xt/Br?.

(8.2)

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimegns.fm5

86

8.4

ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

We proceed by making each term dimensionless and with the right
numerical value for the units in which it is to be expressed. The
following is the result. We do this by simply dividing each dimensional
variable by the correct unit conversion factor.

delPa/1{psi} = y*(Vg-VI)/1{ft*3/bm}*
(G/1{lbm/hr/ft"2})"2/(144*4.18€8);

THE DIFFICULTY OF HANDLING UNIT
CONVERSIONS DEFINED WITH OFFSET

How do you convert temperature from Kelvin to centigrade? The
ASCEND compiler encounters the following ASCEND statement:

d1T1 =d1T2 + a.Td[4];

and d1T1 is supposed to be reported in centigrade. We know that
ASCEND stores termperatures in Kelvin {K}. We also know that one
converts {K} to {C} with the following relationship

T{C} = T{K} - 273.15.

Now suppose d1T2 has the value 173.15 {K} and a.Td{4} has the value
500 {K}. What is d1T1 in {C}? It would appear to have the value
173.15+500-273.15 = 400 {C}. But what if the three variables here are
really temperature differences? Then the conversion should be

T{dC} = T{dK}.

where we use the notation {dC} to be the units for temperature
difference in centigrade and {dK} for differences in Kelvin. Then the
correct answer is 173.15+500=673.15 {dC}.

Suppose d1T2 is a temperature and d1T2 is a temperature difference
(which would indicate an unfortunate but allowable naming scheme by
the creator of this statement). It turns out that a.Td[4] is then required to
be a temperature and not a temperature difference for this equation to
make sense. We discover that an equation that involves the sums and
differences of temperature and temperature difference variables will
have to have an equal number of positive and negative temperatures in
it to make sense, with the remaining having to be temperature
differences. Of course if the equation is a correlation, such may not be
the case, as the person deriving the correlation is free to create an

Last modified: June 20, 1998 8:51 pm

THE DIFFICULTY OF HANDLING UNIT CONVERSIONS DEFINED WITH OFFSET 87

equation that “fits” the data without requiring the equation be
dimensionally (and physically) reasonable.

We could create the above discussion just as easily in terms of pressure
where we distinguish absolute from gauge pressures (e.g., {psia} vs.
{psig}). We would find the need to introduce units {dpisa} and {dpsig}
also.

8.4.1 (ENERAL OFFSET AND DIFFERENCE UNITS

Unfortunately, we find we have to think much more generally than the
above. Any unit conversion can be introduced both with and without
offset. Suppose we have an equation which involves the sums and
diffences of terms t1 to t4:

t1+12-(t3+1t4) =0 (8.3)

where the units for each term is some combination of basic units, e.g.,
{ft/s"2/R}. Let us call this combination {X} and add it to our set of
allowable units, i.e., we define

{X} = {ft/s"2/R}.
Suppose we define units {Xoffset} to satisfy:
{Xoffset} = {X} - 10

as another set of units for our system. We will also have to introduce
the concept of {dX} and and should probably introduce also
{dXoffset} to our system, with these two obeying

{dXoffset} = {Xoffset}.

For what we might call a “well-posed” equation, we can argue that the
coefficient of variables in units such as {Xoffset} have to add to zero
with the remaining being in units of {dX} and {dXoffset}.

Unfortunately, the authors of correlation equations are not forced to
follow any such rule, so you can find many published correlations
which make the most awful (and often unstated) assumptions about the
units of the variables being correlated.

Will the typical modeler get this right? We suspect not. We would need

a very large number of unit conversion combinations in both absolute,
offset and relative units to accomodate this approach.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimegns.fm5

88

ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

We suggest that our approach to use only absolute units with no offset
is the least confusing for a user. Units conversion is then just
multiplication by a factor both for absolute {X} and difference {dX}
units— we do not have to introduce difference variables because we do
not introduce offset units.

When users want offset units such as gauge pressure or Fahrenheit for
temperature, they can use the conversion to dimensionless variables
having the right value, using the style we introduced above, i.e.,
T_defF = T/1{R} - 459.67
and
P_psig = P/1{psi} - 14.696
as needed.
Both approaches to handling offset introduce undesirable and desirable
characteristics to a modeling system. Neither allow the user to use units

without thinking carefully. We voted for this form because of its much
lower complexity.

Last modified: June 20, 1998 8:51 pm

CAVEATS

89

CHAPTER9 DEFINING NEW UNITS OF MEASURE

Order matters!

Multiplicative unit
conversions only!

9.1

9.2

Occasionally units of measure are needed that do not come predefined
in the ASCEND system. You can define a new unit of measure by
defining the conversion factor. In this chapter, we examine how to do
this easily for an individual user and on a system-wide basis.

CAVEATS

Order matters for defining units of measure in three ways.

» a unit of measure must be defined before it is used anywhere.

+ the first definition ASCEND reads for a unit of measure is the
only definition ASCEND sees.

* new units can be defined only from already defined units.

Measuring units are absolutely global in the ASCEND environment—
they are not deleted when the Library of types is deleted. Once you
define a unit’s conversion factor, you are stuck with it until you shut
down and restart ASCEND. For any unit conversion definition, only the
first conversion factor seen is accepted. Redefinitions of the same unit
are ignored.

The various units ASCEND uses are all obtained by conversion factors
(multiplication only) from the Sl units. So, for example, temperatures
may be in degrees Rankine but not in Fahrenheit. In this chapter we
address creating new conversion factors. For handling non-
multiplicative conversions (such as the Fahrenheit or Celsius offsets)
see Section 8.2.

INDIVIDUALIZED UNITS

There are two scenarios for individualized units of measure. One in
which you need a measure defined only for a specific model and
another in which you want to define a measure that you will use
throughout your modeling activities in the future. The syntax for both is
the same, but where best to put the UNITS statement differs.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-units.fm5

DEFINING NEW UNITS OF MEASURE

9.2.1 WNITS OF MEASURE FOR A SPECIFIC MODEL

Units of measure which are used in only one model can be defined at
the beginning of the model itself or before the model, but not the units
appear in the model definition. Let us suppose you want to measure
speed in {furlong/fortnight} in a model. ASCEND does not define
furlong, fortnight, or furlong/fortnight. (We cannot find standard
definitions for them!).

MODEL mock_turtle;
d IS_A distance;
delta_tIS_A time;
s IS_A speed
s = d/delta_t;
(* We really should write s * delta_t = d;
* to avoid division by zero.
)
UNITS
furlong = {3.17*kilometer};
fortnight = {10*day};
END UNITS;
METHODS
METHOD default_self;
d := 1 {furlong};
t:= 5 {hours};
END default_self;
(* other standard methods omitted *)
END mock_turtle;

In mock_turtle we definfurlong andfortnight conversions before they

are used in the methods and before any equations which use them.
Also, notice that even though ASCEND rejects this model

mock_turtle , as it will because of the missing “;” aftesgeed ” in

the fourth linefurlong andfortnight still get defined. The UNITS
statement can appear in any context and gets processed regardless of
any other errors in that context.

9.2.2 WNITS OF MEASURE FOR ALL YOUR PERSONAL MODELS

If you commonly use a set of units that is not in the default ASCEND
library measures.a4l, you can create your own personal library of units
in the user data directory ascdata. The location of this directory is given
by ASCEND at the end of all the start-up spew it prints to the Console
window (or xterm under UNIX) as shown below. You will see a path
other thanusrO/ballan/ of course.

Last modified: June 20, 1998 8:51 pm

NEW SYSTEM-WIDE UNITS

9.3

91

User data directory is /usrO/ballan/ascdata

Create the library file myunits.a4l in your ascdata directory. This file
should contain a UNITS statement and any comments or NOTES you
wish to make. This file should contain any conversions that you change
often. For example:

UNITS (* Units for Norway, maybe?*)

euro = {1*currency};

(* currency is the fundamental financial unit *)
kroner = {0.00314*euro};

nk = {kroner};

USdollar = {0.9*euro};

CANdollar = {0.65*USdollar};

END UNITS;

Note that this file contains a definition of USdollar different from that
given in the standard library measures.a4l. ASCEND will warn you
about the conflict. You must load myunits.a4l into ASCEND before
atoms.a4l or any of our higher level libraries. You can ensure that this
happens by putting the statement

REQUIRE “myunits.adl”;

on the very first line in all your model definition files.

NEW SYSTEM-WIDE UNITS

Suppose you are maintaining ASCEND on a network of computers
with many users. You have a standard set of models stored in a
centrally located directory, and you want to define units for use by
everyone on the network. In this case, just edit models/measures.a4l,
the default units of measure library. ASCEND is an open system.

Make the new unit conversion definition statement(s) of the form

newunit = {combination of old units};

as described in Section 9.2. In the file measures.a4l, add your
statement(s) anywhere inside the block of definitions that starts with
UNITS and ends with “END UNITS.” The existing definitions are
divided up into groups by comment statements. If your conversion

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-units.fm5

DEFINING NEW UNITS OF MEASURE

belongs to one of the groups, it is best to put the conversion in that
group. The groups are given in Table 9-1.

Table 9-1 Groups of units in the current measures library

distance

mass

time

molecular quantities

money

reciprocal time (frequency)

area

volume

force

pressure

energy

power

absolute viscosity

electric charge

miscellaneous electromagnetic

swiped from C math.h

constant based conversions

subtly dimensionless measures

light quantities

miscellaneous rates

time variant conversions

SEND THEM IN

We are always on the lookout for useful unit conversions to add to
measures.a4l. If you create a myunits.a4l containing unit conversion
definitions of general use (i.e. not currency exchange rates and other
time-varying conversions), please mail us a copy and include your
name in a comment. Thank you very much.

Last modified: June 20, 1998 8:51 pm

WHY YOU SHOULD FOLLOW OUR WAYS 93

CHAPTER 10 HOw (AND WHY) TO WRITE
STANDARD METHODS

In this chapter we describe a methodology (pun intended) which can
help make anyone who can solve a quadratic equation a mathematical
modeling expert. This methodology helps you to avoid mistakes and to
find mistakes quickly when you make them. Finding bugs weeks after
creating a model is annoying, inefficient, and (frequently)
embarrassing. Because METHOD code can be large, we do not include
many examples here. See Chapter 3, “Preparing a model for reuse,” on
page 25 for detailed examples. One of the advantages of this
methodology is that it allows almost automatic generation of methods
for a model based on the declarative structure (defined parts and
variables) in the model, as we shall see in Section 10.10. Even if you
skip much of this chapter, read Section 10.10

We divide methods into _self and _all categories. The premise of this
method design is that we can write the _self methods incrementally,
building on the already tested methods of previous MODEL parts we
are reusing. In this way we never have to write a single huge method
that directly manipulates 100s of variables in a hierarchy. The _all
methods are methods which simply “top off” the _self methods. With
an _all method, you can treat jugbat of a larger simulation already
built as a self-contained simulation.

Usually discovery of the information you need to write the methods
proceeds in the order that they appear below: check, default, specify,
bound, scale.

10.1 WHY YOU SHOULD FOLLOW OUR WAYS

If debugging is the Some geniuses make more mistakes than anyone else -- because they
repair of modeling try more things that anyone else. Part (perhaps a very large part) of
errors, then modeling what makes such a genius different from the rest of humanity is that
must be the process of they quickly recognize their own mistakes and move on to something
creating those errors. else before anyone notices that they have screwed up! Solving a
problem as far and as fast as you can, and then going back to criticize

1. Somebody famous said something like this about programming computers. The principle holds.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

94

How (AND WHY) TO WRITE STANDARD METHODS

every aspect of the solution with an eye to improving it is how you
usually discover right answers. Do it our way so &&CEND can
help you find your mistakes.

We (geniuses or not we'll leave to our users to decide) have found that
it is best to write mathematical MODELs and mathematical modeling
software in ways which make our mistakes (or your mistakes) very
easy to detect. This way it is easier to find and fix problems early,
instead of discovering the bug while the boss and the vice-president (or
the advisor and the industrial sponsor) are hovering near. The
ASCEND system will not force you to write standard methods in your
models. METHODSs of the sort we advocate here make your MODELs
much easier to use and much more reliable. They pay off in the short
run as well as the long run. These guélelines notlaws geniuses

know when to color outside the lines.

If you do not write the standard methods, your MODEL will inherit the
ones given in the library basemodel.a4l. TiearAll andreset

methods here will work for you if you follow the guidelines for the
methodspecify The other methods defined in basemodel.a4l
(check_self, default_self, bound_self, scale_self, check_all, default_all,
bound_all, scale_ajlall contain STOP statements which will warn you
that you have skipped something important, should you accidentally
call one of these methods. If you create a model for someone else and
they run into one of these STOP errors while using your model, that
error isyour fault.

10.2 METHODS * SELF VS * ALL

Too many cooks spoil
the soup.

When you create a model definition, you create a container holding
variables, equations, arrays, and other models. You create methods in
the same definition to control the state of (the values stored in) all these
parts. ASCEND lets you share objects among several models by
passing objects through a model interface (the MODEL parameter list),
by creating ALIASES for parts within contained objects, and even by
merging parts (though this is a dumb idea for any object bigger than a
variable).

The problem this creates for you as a METHOD writer is to decide
which of the several MODELSs that share an object is responsible for
updating that variable’s default, bounds, and nominal values. You could
decide that every model which shares a variable is responsible for these
values. This will lead to many, many, many hard to understand conflicts
as different models all try to manage the same value. The sensible
approach is to make only one model responsible for the bounding,

Last modified: June 20, 1998 8:51 pm

METHODS*_SELFVS *_ALL

Use *_self methods
on locally created
variables and parts

Use *_all methods to
manage a troublesome
part

95

scaling, and default setting of each variable: the model which creates
the variable in the first place.

Consider the following model and creating the *_self methods
default_self, check_self, bound_self, and scale_self for it.

MODEL selfish(
external_var WILL_BE solver_var;
out_thingy WILL_BE input_part;

my_variable IS_A solver_var;
peek_at_variable ALIASES out_thingy.mabob.cost;
my_thingy IS_A nother_part;
navel_gaze ALIASES my_thingy.mabob.cost;
END selfish;

This model should manage the value of the variable it creates:
my_variable External_varcomes in from the outside, so some other
model will create and manageReek_at_variablandnavel _gazealso

are not created here and should not be managed in the *_self methods
of selfish. We want to default, bound, or scale variables in complex
parts we create also. We should cayl _thingy.default_selthenever
default_selis called for this model. We should not call
out_thingy.default_selhowever, as some other model will do so.

Any mathematical subproblem in a large simulation may need to be
isolated for debugging or solving purposes. When this is done using the
Browser and Solver tools, you still need to call scaling, bounding, and
checking methods for all parts of the isolated subproblem, even for
those parts that came in from the outside. This is easily done by writing
*_all methods. In the example abogeale_allwill scaleexternal_var

and callout_thingyscale_allbecause these parts are defined using
WILL_BE statementsscale_allwill then call the locacale_selto do

all the normal scaling.

That'’s the big picture of _self and _all methods. Each kind of method
(bound, scale, default, check) has its own peculiarities which we cover
in Section 10.4 and Section 10.5, but they all follow the rules above
which distinguish among variables and parts defined with WILL_BE
(managed in *_all only), IS_A (managed in *_self only), and

ALIASES (not our responsibility).

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

96

10.3

10.3.1

10.3.2

10.4

How (AND WHY) TO WRITE STANDARD METHODS

How TO WRITE CLEARALL AND RESET

Writing these two standard methods in your model is very simple— do
nothing. You may wish to write alternative reset_* methods as we shall
discuss. These methods are inheritted by all models from the definitions
in basemodel.a4l. Just so you know, here is what they do.

QEARALL

This method finds any variable that is a solver_var or refinement of
solver_var and changes tlizedflag on that var to FALSE. This
method does not change the valuaradludedflags on relations or
return boolean, integer, or symbol variables to a default value.

RESET

This method call€learAll to bring the model to a standard state with
all variables unfixed (free), then it calls the user-wriipecifymethod

to bring the model with an equal number of variables to calculate and
equations to solve. Normally you do not need to write this method:
your models will inherit this one unless you override it (redefine it) in
your MODEL.

This standard state is not necessarily the most useful starting state for
any particular application. This method merely establishes a base case.
There is no ‘one perfect “reset” for all purposes. Other
reset_whatElseYouWant methods can also be written. The name of a
method is a communication tool. Please use meaningful names as long
as necessary to tell what the method does. Avoid cryptic abbreviations
and hyper-specialized jargon known only to you and your three friends
when you are naming methods; however, do not shy away from
technical terms common to the engineering domain in which you are
modeling.

THE * SELF METHODS

The following methods should be redefined by each reusable library
MODEL. Models that do not supply proper versions of these methods
are usually very hard to reuse.

Last modified: June 20, 1998 8:51 pm

THE *_SELF METHODS 97

10.4.1 METHOD CHECK_SELF

This method should be written first, though it is run last. Just like they
taught you in elementary school, always check your work. Start by
defining criteria for a successful solution that will not be included in the
equations solved and compute them in this method. As you develop
your MODEL, you should expect to revise the check method from time
to time, if you are learning anything about the MODEL. We frequently
change our definition of success when modeling.

When a mathematical MODEL is solved, the assumptions that went
into writing (deriving) the equations should be checked. Usually there
are redundant equations available (more than one way to state the
physics or economics mathematically). These should be used to check
the particularly tricky bits of the MODEL.

Check that the physical or intuitive (qualitative) relationships among
variables you expect to hold are TRUE, especially if you have not
written such relationships in terms of inequalities (x*z <=y) in the
MODEL equations.

In some models, checking the variable values against absolute physical
limits (temperature > 0{K} and temperature < Tcritical for example)
may be all that is necessary or possible. Do not check variable values
against their .lower_bound or .upper_bound, as any decent algebraic
solver or modeling system (e.g. ASCEND) will do this for you.

If a check fails, use a STOP statement to notify yourself (or you
MODEL using customer) that the solution may be bogus. STOP raises
an error signal and issues an error message. STOP normally also stops
further execution of the method and returns control to a higher level,
though there are interactive tools to force method execution to
continue. STOP does not crash the ASCEND system.

10.4.2 METHOD DEFAULT _SELF

This method should set default values for any variables declared locally
(IS_A) to the MODEL. It also should rugefault_selbnall the

complex parts that are declared locally (with IS_A) in the MODEL. If
the atoms you use to define your variables have a suitable default
already, then you do not need to assign them a default in this method.

This method should not run any methods on MODEL parts that come

via WILL_BE in the definition’s parameter list. This method also
should not change the values of variables that are passed in through the

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

98

How (AND WHY) TO WRITE STANDARD METHODS

parameter list. Sometimes there will be nothing for this method to do.
Define it anyway, leaving it empty, so that any writer reusing this model
as part of a higher level model can safely assume it is there and call it
without having to know the detalils.

When a top-level simulation is built by the compiler, this method will
be run (for the top-level model) at the end of compilation. If your
model’'sdefault_selinethod does not call the lower ledelfault_self
methods in your model’s IS_Ad parts, it is quite likely that your model
will not solve.

10.4.3 METHOD BOUND_SELF

Much of the art of nonlinear physical modeling is in bounding the
solution. This method should update the bounds on locally defined
(IS_A) variables and IS_A defined MODEL parts. Updating bounds
requires some care. For example, the bounds on fractions frequently
don’t need updating. This method should not bound variables passed
into the MODEL definition or parts passed into the definition.

A common formula for updating bounds is to define a region around
the current value of the variable. A linear region size formula, as an
example, would be:

x.bound= x+ A+ x.nominal

or

v.upper_bound := v + boundwidth * v.nominal;
v.lower_bound := v - boundwidth v.nominal;

Care must be taken that such a formula does not move the bounds
(particularly lower bounds) out so far as to allow non-physical
solutions. Logarithmic bounding regions are also simple to calculate.
Here boundwidth IS_A bound_width; boundwidth is a real atom (but
not a solver_var) or some value you can use to determine how much
“wiggle-room” you want to give a solver.

Small powers of 4 and 10 are usually good values of boundwidth. Too
small a boundwidth can cut off the portion of number space where the
solution is found. Too large a bound width can allow solvers to wander
for great distances in uninteresting regions of the number space.

Last modified: June 20, 1998 8:51 pm

THE *_ALL METHODS 99

10.4.4 METHOD SCALE_SELF

Most nonlinear (and many linear) models cannot be solved without
proper scaling of the variablescale_selthould reset the .nominal

value on every real variable in need of scaling. It should then call the
scale_selmethod on all the locally defined (IS_A) parts of the

MODEL. 0.0 is the worst possible nominal value. A proper nominal is
one such that you expect at the solutarx abg(nox —)<10 . This
method should not change the scaling of models and variables that are
received through the parameter list of the MODEL.

Variables (like fractions) bounded such that they cannot be too far away
from 1.0 in magnitude probably don’t need scaling most of the time if
they are also bounded away from 0.0.

Some solvers, but not all, will attempt to scale the equations and
variables by heuristic matrix-based methods. This works, but
inconsistently; user-defined scaling is generally superior. ASCEND
makes scaling equations easy to do. You scale the variables, which can
only be done well by knowing something about where the solution is
going to be found (by being an engineer, for example.) Then ASCEND
can calculate an appropriate equation-scaling by efficient symbolic
methods.

10.5 THE * ALL METHODS

10.5.1 METHOD DEFAULT _ALL

This method assumes that the arguments to the MODEL instance have
not been properly initialized, as is frequently the case in one-off
modeling efforts. This method should run tefault_allmethod on

each of the parts received through the parameter list via WILL_BE
statements and should give appropriate default values to any variables
received through the parameter list. After these have been done, it
should then callefault_selto take care of all local defaults.

10.5.2 METHOD CHECK_ALL

When solving only a part of a simulation, it is necessary to check the
models and variables passed into the part as well as the locally defined
parts and variables. This method should cladick_allon the parts

received as WILL_BE parameters, then cakck_selfo check the

locally defined parts and equations.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

100 How (AND WHY) TO WRITE STANDARD METHODS

10.5.3 METHOD BOUND_ALL

This method should be likeound_selexcept that it bounds the passed
in variables and callsound_allon the passed in parts. It should then
call bound_self

10.5.4 METHOD SCALE_ALL

This method should be likscale _selabove except that it scales the
variables received through the parameter list and calls scale_all on the
passed in parts. It should then caléle_selto take care of the local
variables and models.

10.6 METHOD SPECIFY

Assuming ClearAll has been run on the MODEL, this method should
get the MODEL to a condition called ‘square’: the case where there are
as many variables with .fixed == FALSE as there equations eligible to
compute them. This is one of the hardest tasks ever invented by
mathematicians if you go about it in the wrong way. We think we know
the right way.

Actually, ‘square’ is a bit trickier to achieve than simply counting
equations and variables. Solvers, such as QRSIv in ASCEND, may help
greatly with the bookkeeping.

The general approach is to:

1. Run “specify” for all the parts (both passed in and locally defined)
that are not passed on into other parts.

2. Fix up (by tweaking .fixed flags on variables) any difficulties that
arise when parts compete to calculate the same variable.

3. Use the remaining new local variables to take care of any leftover
equations among the parts and any new equations written locally.

At all steps 1-3 pay special attention to indexed variables used in
indexed equations. Frequently you must fix or free N or N-1 variables
indexed over a set of size N, if there are N matching equations. In
general, if you think you hawapecifycorrectly written, change the

sizes of all the sets in your MODEL by one and then by two members.
If your specify method still works, you are probably using sets
correctly. Pursuing “symmetry,” the identical treatment of all variables
defined in a single array, usually helps you write specify correctly.

Last modified: June 20, 1998 8:51 pm

METHOD VALUES

101

When writing models that combine parts which do not share very well,
or which both try to compute the same variable in different ways, it
may even be necessary to write a WHEN statement to selectively
TURN OFF the conflicting equations or MODEL fragments. An object
or equation USEd in any WHEN statement is turned off by default and
becomes a part of the solved MODEL only when the condition of some
CASE which USEs that object is matched.

The setting of boolean, integer, and symbol variables which are
controlling conditions of WHEN and SWITCH statements should be
done in the specify method.

There is no ‘one perfect “specify” for all purposes. This routine should
merely define a reasonably useful base configuration of the MODEL.
Other specify_whatElseYouWant methods can also be written. Again,
the name of a method is a communication tool. Please use meaningful
names as long as necessary to tell what the method does. Avoid cryptic
abbreviations and hyper-specialized jargon known only to you and your
three friends when you are naming methods; however, do not shy away
from technical terms common to the engineering domain in which you
are modeling.

10.7 METHOD VALUES

In a final application MODEL, you should record at least one set of
input values (values of the fixed variables and guesses of key solved-for
variables) that leads to a good solution. Do this so no one need reinvent
that set the next time you use the MODEL or someone picks the
MODEL up after you.

10.8 METHODS AND CHEMICAL PROCESS MODELS

This next tip is due to Duncan Coffey. When creating a process model
(such as a flash tank) which involves an equilibrium state calculation
connected to input or output process flow streams, take care in ordering
the calls to these stream and thermodynamic parts. Specifically, calls to
methods in the equilibrium calculation should be daifter calls to
methods in the streams. For example in MODEL
dyn_flash.a4l:detailed_tray:

METHOD default_all;
Qin := 0 {watt};
RUN vapin.default_self;
RUN ligin.default_self;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

102 How (AND WHY) TO WRITE STANDARD METHODS

RUN vapout.default_self;
RUN ligout.default_self;
RUN state.default_self;
RUN default_self;

END default_all;

Here we sestate.default selt called last. The part state shares
information with vapout and ligout, naturally.

10.9 SUMMARY

adding ourstandard We have defined a set of standard methods for ASCEND models which
methods to a model we insist a modeler provide before we will allow a model to be placed
definition in any of our model libraries. These are listed in Table 10-1. As should

Table 10-1List of standard methods we insist be added for each of the
types in our ASCEND library of type definitions

method description

default_self a method called automatically when any simulation is com-
piled to provide default values and adjust bounds for any
locally created variables which may have unsuitable defaults
in their ATOM definitions. Usually the variables selected gre
those for which the model becomes ill-behaved if given poor
initial guesses or bounds (e.g., zero). This method should
include statements to run thefault_selfnethod for each o
its locally created (IS_Ad) parts. This method should be rit-
ten first.

ClearAll a method to set all théxedflags for variables in the type t
FALSE This puts these flags into a known standard statq --
i.e., all areFALSE All models inherit this method from the
base model and the need to rewrite it is very, very rare.

(=

specify a method which assumes all the fixed flags are currently
FALSEand which then sets a suitable sefixadflags to
TRUEto make an instance of this type of model well-posged.
A well-posed model is one that is squareuations im
unknowns) and solvable.

reset a method which first runs the ClearAll method and then the
specifymethod. We include this method because it is ver
convenient. We only have to run one method to make an
simulation well-posed, no matter how its fixed flags are qur-
rently set. All models inherit this method from the base
model, as wittClearAll.

Last modified: June 20, 1998 8:51 pm

METHOD WRITING AUTOMATION 103

Table 10-1List of standard methods we insist be added for each of the
types in our ASCEND library of type definitions

method description

values a method to establish typical values for the variables we have
fixed in an application or test model. We may also supply val-
ues for some of the variables we will be computing to aid in
solving a model instance of this type. These values are gnes
that we have tested for simulation of this type and found
good.

bound_self a method to update thepper_boundand lower_bound
value for each of the variables. ASCEND solvers use thgse
bound values to help solve the model equations. This method
should bound locally created variables and then call
bound_self for every locally created (IS_Ad) part.

scale_self a method to update theominalvalue for each of the vari-

ables. ASCEND solvers will use these nominal values to
rescale the variable to have a value of about one in magritude
to help solve the model equations. This method should
rescale locally created variables and then call scale_self{for
every locally created (IS_Ad) part.

be evident from above, natl models must have associated methods;

our first vessel model did not. It is simply our policy that models in our
libraries must have these methods to promote model reuse and to serve
as examples of best practices in mathematical modeling.

10.10 METHOD WRITING AUTOMATION

Just hit the button
Library.Edit.Suggest
methods and tweak
the results.

ASCEND will help you write the standard methods. Writing most of
the standard methods can be nearly automated once the declarative
portion of the model definition is written. Usually, however, some
minor tweaking of the automatically generated code is needed. In the
Library window, the Edit menu has a “Suggest methods” button. Select
a model you have written and read into the library, then hit this button.

In the Display window will appear a good starting point for the

standard methods that you have not yet defined. This starting point
follows the guidelines in this chapter. It saves you a lot of typing but it

is a starting point only. Select and copy the text into the model you are
editing, then tailor it to your needs and finish the missing bits. The
comments in the generated code can be deleted before or after you copy
the text to your model file.

If you have suggestions for general improvements to the generated
method code, please mail them to us and include a sample of what the

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

104 How (AND WHY) TO WRITE STANDARD METHODS

generated code ought to look likeforethe user performs any hand-
editing. We aim to create easily understood and easily fixed method
suggestions, not perfect suggestions, because procedural code style
tastes vary so widely.

Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 105

CHAPTER 11 THE MODEL LIBRARIES FOR MULTI

COMPONENT, MULTI-PHASE
EQUILIBRIUM CALCULATIONS

This chapter describes the models we provide to compute
thermodynamic properties for multi-phase, multi-component vapor/
liquid mixtures where we assume equilibrium exists among co-existing
phases.

11.1 ADESCRIPTION OF THE LIBRARIES

first the phase
definitions

then the components
and their data

and finally the
mixture
thermodynamic
models

In this section we describe the three librandgses.a4l
components.adndthermodynamics.a4These libraries contain many
models, but the end user is only interested in a few of them. Our
intention is that these few should be very simple to use, with the
complexities buried inside the models.

The first contains the models we use to define the phases we allow for a
mixturia (i.e., vapor, liquid, vapor/liquid, liquid/liquid and vapor/liquid/
liquid)™.

The second library contains the models having all the component
physical properties for the components we include with ASCEND —
e.g., there are property values for heat capacity, heat of vaporization,
accentric factor and so forth for water, methanol, carbon dioxide, etc.
There is also the very extensive list of group contribution data we need
to use the UNIFAC method.

The third provides the models we use to compute multi-component
mixture thermodynamic properties for phases, such as ideal gas, Pitzer,
UNIFAC, and Wilson. The final model in this library is the one to
compute equilibrium conditions for multi-component, multi-phase
systems. We provide both a constant relative volatility and a rigorous
phase equilibrium model, with the ability to switch interactively

between which one to use. Thus one can first assume constant relative

1. It should be noted that, while the models will correctly set up the data structures for the liquid/liquid and
vapor/liquid/liquid options, we do not really support these alternatives at this time.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

106 THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

volatility to have a better chance to converge and then switch to the
version that makes the chemical potential equal for a component in all
phases.

11.1.1 THE PHASESAA4L LIBRARY

need to create only ThePhases.adlibrary, see Figure 1121 has only one model in it,

instances of phases_dataThe user creates an instance of this model, specifying

phases_data which phases are to exist for a stream or holdup and which
thermodynamic model the system should use to compute mixture
properties for each phase. Compiling this instance then sets up the data
structures required to characterize those phases for the system.

For example, suppose we want to model a flowsheet consisting of a
single flash unit. Suppose further that we want to allow the feed to the
flash unit to be vapor, liquid or vapor/liquid (i.e., 2 phase). The product
streams from the flash unit will be a vapor phase mixture and a liquid
phase mixture. We would define three instances of the phases_data
model, one for each type of phase condition we wish to model. You can
find the following statements in the modes$tflashmodeh the library
flash.a4l

pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none");

pdL IS_A phases_data('L', 'none', 'UNIFAC _liquid_mixture', 'none");

pdVL IS_A phases_data('VL', 'ideal_vapor_mixture’, 'UNIFAC_liquid_mixture',
'none’);

When compiledpdV, pdL andpdVL contain the data structures the
thermodynamic models require to model a vapor, liquid and vapor/
liquid stream (or holdup).

2. In this and following figures, we represent each model as a rectangle. On the upper left is the name of the
model. In Figure 11-1, the model is phases_data. On the left side we list in order the parameters for the
model. These are shared objects a model containing an instance of phases_data will pass to that instance. An
example would be

pd IS_A phases_data(V, ‘Pitzer_vapor_mixture’, ‘none’, ‘none’)

We list the parts defined locally within a model on the right side of the rectangle, including instances of
models, atoms and sets. The slanted double-headed arrow indicates a set; thus, phases and other_phases are
sets in phases_data.

In Figure 11-3 we show lines connecting a model, call ib a part within another model, calBitpart. The
connection is to the sides of both. This type of connectionBggstis an instance of modél We also
show connections from the bottom of one model, cél ib the top of another, calll; with this
connection we indicate that the lower mobDek a refinement of the upper modz|

Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 107

the phase indicators
and types

The first parameter is a character that indicates the phase option desired
-'ML VLY VLY 'LL and 'VLL. ‘MY is for a material only stream (no
thermodynamic properties are to be computed), V' is for vapor and ‘L
for liquid. This model always expects the user to supply in the last three
parameters an ordered list giving the three single phase mixture models
to be used: vapor, liquidl, liquid2. For a non-existent phase, the user
should supply ‘none’ as the model. If there is only one liquid phase,
liquid2 will not exist. The allowed models we can use to estimate
multi-component phase mixture properties are in the third of the
libraries we describe in this chaptérermodynamics.adWwhich we

discuss shortly in Section 11.1.3.

phases data
phase_indicator reference_phase
vapor_option h
ases
liquid1_option phase_type P fother_phases
liquid2_option

Figure 11-1 Phases.adinodels

11.1.2 THE COMPONENTSAA4L LIBRARY

need to create only
instances of
components_data

In this library (see Figure 11-2) we provide the actual physical property
data for the components supplied with ASCEND. The data we provide
is that found in the tables at the back of Reid, Prausnitz and Pbtiag,
Properties of ®pors & Liquids, 4th Ed, McGraw-Hill, New York

(1986). For a few of the components, we have also identified their
UNIFAC groups. We include a few Wilson binary mixture parameters.

The purpose of this library is similar to thkases.a4library. We wish

to provide an easy-to-use model that will set up the data structures for
the components in a mixture that the thermodynamic models will use
when estimating mixture physical properties. All the user has to do is
create an instance of the bottom-most maedetponents_dafgassing

into it a list of the components in the mixture and the name of one of
them which is to serve as the reference component. This model, having
parts which are instances of the others present in this library, then
compiles into the needed data structures.

An example of use is found in the motkdtflashmodeh the library
flash.a4i

cd IS_A components_data(['n_pentane','n_hexane','n_heptane'],'n_heptane’;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

108

reference component

UNIFAC_constants

THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

When compilectd has in it a data structure containing the physical
properties for the three species listed.

The choice of which species to use as the reference component is up to
the user. Usually a good choice is one that is plentiful in the mixture,

but that need not be so.

compmodel

|

sub

groups mw
groups a ’:! "supported_components Tb

component_constants

roups Te
Pc

Q

etc
group
R subgroups

adding a new
component

td_component_constants

component_name
SELECT
etc
methane
\ chloroform |
water
\ hydrogen |
compaonents_dat.
f components
reference data ’4 components

Figure 11-2 components.a4hodels
One can add more components to this library as follows:
1. add the name of the new component to the list of
supported_componengs the beginning of the model

td_thermodynamic_constar({zart of the WHERE statement that
causes the system to output a diagnostic if someone subsequently

Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES

adding UNIFAC 3.

group identifiers

109

misspells the name of a component)

add the component data as a CASE to the SELECT statement in
td_thermodynamic_constar(fer an example, look at how it is
done for ‘methanol’)

Put the UNIFAC group identifiers for the new component into the
set subgroups. To illustrate, this statement for methanol is:

subgroups :==['CH3', 'OHY;

You can find all the UNIFAC group identifiers possible in the
modelUNIFAC_constantsThen fill in the vectonu with a value

for each of these groups (to indicate how many such groups are in
the molecule). To illustrate, the values for methanol are:

nu['CH3 ==1,
nu['OH'] ==1;

If you are entering the component without identifying its
UNIFAC groups, then enter the subgroups statement and define it
as empty — i.e., write

subgroups ==

adding Wilson 4.

parameters

There should then be no entry far(see the CASE for hydrogen,
for example). An activity coefficient estimated by the UNIFAC
method will be unity for such a component.

To add Wilson parameters, first fill in the names of the other
components for which you are adding data into thevésdn_set
For example, this set for methanol might be:

wilson_set :==['H20'",'(CH3)2CO','CH30H;

Then fill in lambda and energy parameters into the ataaylsda
anddel_ip,one for each of the other components. Again, to
illustrate, these arrays for methanol would be:

lambda['H20'] :==0.43045;
lambda['(CH3)2C0":==0.77204;
lambda[[CH3OH] :==1.0;
del_ip['(CH3)2CO":==2.6493E+002 {J/g_mole};
del_ip['H20'] :==1.1944E+002 {J/g_mole};
del_ip[[CH30OH'] :==0.0 {J/g_mole};

Finally for each of these other components, go to its CASE
statement, add the name of the new component\wil#sn_set
and then add statements to set the corresponding lambda and
energy data. BEN, IS THIS RIGHT??7??

If you are not adding any Wilson data, enter the statement:

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

110

THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

wilson_set ==

11.1.3 THE THERMODYNAMICS.A4L LIBRARY

create instances only Figure 11-3 shows all the models in this library and how they are

of phase_partialand
thermodynamics

related to each other. There are two models in this library that the user
has to worry abouphase_partialandthermodynamicsThe user

creates one instancetbermodynamicor every stream or holdup in a
process model. Each instance, when compiled has parts which are
instances of the other models in this library and which are create the
equations to compute the thermodynamic properties for a multi-
component, multi-phase mixture.

However, the user must pass each instance of a thermodynamics model
an array of instances phase_partialsone for each phase in the

mixture. Onephase_partialsnodel must exist for each phase in each
stream or holdup in the process model as it provides the equations
modeling that phase.

Each of the models in the array of phase_partials must be refined to be
one of the possible models for computing properties for a single phase
mixture, i.e., one of the models lying below fitease_paritalsnodel

in Figure 11-3ideal_vapor_mixturgPitzer_vapor_mixture
UNIFAC_liquid_mixtureor Wilson_liquid_mixturel

Last modified: June 20, 1998 8:51 pm

Guwy sdoidsAyd-omoy/disH/SD0OQA/ . puadse-aipanaaloid/npa nwio so/sre/

[y olweuApowIaLUll SPPON £-TT 2InBiq

thermodynamic_properties

td_model

p v
T h
g

ure_component

P
T
data

ideal_vapor_component

artial_f

omponent

P
T

hase_partials
P
cd T
V_Y | partig
h_y | alpha [components
ay y
slack _Phase Disappearance

P
T
data

V=
h=
g:

Pitzer_vapor_component

P
T
data

V=
h=
g:

VP
T

data

o o<

cd
| | data components
 / pure

- | | data components
pure

Rackett_liquid_component
P

ideat_vapor_mixture

Pitzer_vapor_mixture
cd

UNIFAC liquid_mixture

cd
— | | data components
pure

Wilson_liquid_mixture

\&K data components
pure

thermodynamics

cd

pd
phase[pd.phases
equilibrated

P alpha_bar
T

OI<

y cd.compone

Number_of_other_phases

nts

Slack_PhaseDisappeara

nc%,‘pd.phases

S3IdvydlT 3HL 40 NOILdIYOS3ad v

TTT

112 THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

11.1.3.1 (REATING AN INSTANCE OF A PHASE_PARTIALS ARRAY

The information in an instance opaases_datanodel allows us to
construct this array gghase_partialsWe extract the following code
from the librarystream_holdup.a4b illustrate how we have created
such a model, given a phases_data model.

MODEL select_mixture_type(
cd WILL_BE components_data;
type WILL_BE symbol_constant;
) REFINES sh_base;
phase IS_A phase_partials(cd);
SELECT (type)
CASE 'ideal_vapor_mixture'":
phase IS _REFINED_TO ideal_vapor_mixture(cd);
CASE 'Pitzer_vapor_mixture":
phase IS_REFINED_TO Pitzer_vapor_mixture(cd);
CASE 'UNIFAC_liquid_mixture":
phase IS_REFINED_TO UNIFAC_liquid_mixture(cd);
CASE 'Wilson_liquid_mixture':
phase IS_REFINED_TO Wilson_liquid_mixture(cd);
OTHERWISE:
END SELECT;
boundwidth IS_A bound_width;

END select_mixture_type;

MODEL stream(.......

FOR j IN phases CREATE
smt[j] IS_A select_mixture_type(cd, pd.phase_type[j]);
END FOR;
FOR j IN phases CREATE
phase[j] ALIASES smt[j].phase;
END FOR;
state IS_A thermodynamics(cd, pd, phase, equilibrated);

Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 113

cannot directly We had to be a bit tricky, but we hope we have not been so devious that
embedSELECT you cannot understand what we have done if we explain it to you here.
statements iFOR Look first at the code we extracted from the matielam The models
loops cdandpdare instances of@mponents_datand gophases_datanodel

respectively. If we look insidpd, we will find it contains an array
calledphase_typewith one entry for each phase that gives the type
(name) of the model to be used to set up the equations for that phase.
ASCEND does not alloELECTstatements to be embedded directly
within aFORloop — thus we need a bit of deviousness. For each phase
j we createsmt[j] as an instance ofselect_mixture_typmodel. We
parameterize thgelect_mixture_typeith the components data and

the type (namg)d.phase_type[jpf the model to be used to generate its
equations. Then we embed the select statement within the
select_mixture_typmodel, something ASCEND does allow.

The modekelect_mixture_typappears first in this code. It uses the
type(name) it is passed to select and then to instance the desired
refinement of th@hase_partialsnodel.

Returning to the code extracted from flzshmodel, the secondOR
loop creates the desired array by aliasing the array elgrhasé]j]
with the phase model created within the corresponsiinmignstance.

disappearing phases The multi-phase model handles the case where a phase disappears by
using a complementarity formulation. This formulation relaxes the
constraint for a phase that its mole fractions must sum to unity when it
disappears. Thus the vapor/liquid model will correctly alter the model
to handle the situation when the mixture becomes a superheated vapor
or a subcooled liquid.

11.1.3.2 QREATING AN INSTANCE OF A THERMODYNAMICS MODEL

We are now ready to create an instancetbeamodynamicsnodel.

When compiled this instance contains all the equations needed to
estimate the phase conditions for a multi-phase, multi-component
mixture assuming equilibrium exists among the phases. The following
line of code, extracted from tlstreammodel referred to above,
illustrates its use:

state IS_A thermodynamics(cd, pd, phase, equilibrated);

wherecd is an instance of @amponents_dataodel,pd of a
phases_datanodel,phasean array of instances phase_partialsand
equilibratedabooleanvariable. Wherequilibratedis FALSE the
model will generate the equations assuming constant relative
volatilities (the user must estimate these volatilities). WFRUE, the

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

114

11.2

11.2.1

11.2.2

THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

model generates the equations assuming the chemical potentials for a
component are equal in all phases.

USING THE THERMODYNAMICS MODELS

There are several libraries of models which use the libraries we have
just described. The first library to examine is stream_holdup.a4l. This
library contains steady-state models for a stream and a holdup. The
following gives the parameter list for a user to create an instance of a
stream.

STREAMS AND HOLDUPS

MODEL stream(84
cd WILL_BE components_data; 85
pd WILL_BE phases_data; 86
equilibrated WILL_BE boolean; 87

) REFINES sh_base; 88

The model sh_base is a dummy model to tie all models into this library
back to a common root model. The user need do nothing because of this
refinement. What you should note is that all you need to do to create a
stream is create@mponents_datmodel and phases_datanodel.

One supplies the boolean variablguilibratedas a variable that one

can set interactively or in a method or a script when running the model
to decide how to model equilibrium, as we have discussed above. A
holdup is equally as easy to model.

FLASH UNITS AND VARIANTS THEREOF

From streams and holdups, we can move on to unit operation models.
The library flash.a4l provide us with a flash model. The parameter list
for the flash model is:

MODEL vapor_liquid_flash(
Qin WILL_BE energy_rate;
equilibrated WILL_BE boolean;
feed WILL_BE stream;
vapout WILL_BE stream;
liqgout WILL_BE stream;
) WHERE (
feed, vapout, liqout WILL_NOT_BE_THE_SAME;
feed.cd, vapout.cd, ligout.cd WILL_BE_THE_SAME;
vapout.pd.phase_indicator == 'V",

Last modified: June 20, 1998 8:51 pm

USING THE THERMODYNAMICS MODELS 115

ligout.pd.phase_indicator =="L";
(feed.pd.phase_indicator IN ['V','L','VL','VLLY) ==
TRUE;
) REFINES flash_base;

Again we see that to creatélashunit, we need to create the variable
Qin for the heat input to the unit, a boolesquilibratedand three
streamsfeed vapoutandligout. The three streams must all be different
streams. They must have the same components in them. The stream
vapoutmust be a vapor stream and the strégout a liquid stream.

The feed stream can be of any kind.

Hopefully with the above information, creating a flash unit should not
now seem particularly difficult.

If you examine this library further, you will see it contains models
which are variations of the flash unit fdetailed_traytray, feed_tray
total_condenseandsimple_reboiler

11.2.3 DSTILLATION COLUMNS

We provide two libraries that allow you to model distillation columns:
column.adlandcollocation.a4l The librarycolumn.a4ffirst models a
tray stack and then a simple column using that model. A third model
extracts the profiles for pressure, temperature, a parameter that
indicates the deviation from constant molar overflow conditions, total
vapor and liquid flows and component compositions against tray
number. This information may then be used for plotting these profiles
using the ASCEND plotting capability.

The librarycollocation.a4lprovides collocation models for simple
columns. With collocation models, one models composition profiles as
smooth functions of tray number in a column section. Columns with a
large number of trays are modeled with relatively small collocation
models. Also the number of trays becomes a continuous variable,
aiding in optimization studies where the number of trays in each
section is to be computed.

11.2.4 DrNAMIC UNIT MODELS

ASCEND contains models for simulating the dynamic behavior of
units. Their use is described@hapter xxxx

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

116 THE MODEL LIBRARIES FOR MULTFCOMPONENT, MULTI -

11.3 DSCUSSION

We have presented a description of the libraries that allow one to model
the equations providing thermodynamic properties for multi-
component, multi-phase mixtures when one assume equilibrium exists
among co-existing phases. With this description, we hope that these
models become much less difficult to use. We end this chapter by
describing other libraries that build on the property estimation libraries,
models for streams and holdups, for flash units and variations thereof,
and for columns.

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCEND MODEL 117

CHAPTER 12 A DETAILED ASCEND EXAMPLE

the purpose for this
chapter

topics covered

OF A DYNAMIC SIMULATION : THE
MODELING OF A SIMPLE DYNAMIC
TANK

This chapter assumes you have read Chapter 2, “A Detailed ASCEND
Example for Beginners: the modeling of a vessel,” on page 5 and
Chapter 3, “Preparing a model for reuse,” on page 25.

The purpose of this chapter is to be a good first step along the path to
learning how to use ASCEND for dynamic simulations. We shall lead
you through the steps for creating a simple model. You will also learn
the standard methods that we employ for our dynamic libraries. We will
present our reasons for the steps we take.

The problem
Step 1:We would like to create a dynamic model of a simple tank.
Topics covered in this chapter are:

» Converting the word description to an ASCEND model.

* Solving the model.

» Creating a script to load and execute an instance of the model.
* Integrating the model.

* View Integration Results.

12.1 GONVERTING THE WORD DESCRIPTION INTO

an ASCEND model
is a type definition

AN ASCEND MODEL

As stated in Section 2.1, "Converting the word description into an
ASCEND model,” on page, e need to make an instance of a type
and solve the instance. So we shall start by creating dygp@k
definition. We will have to create our type definition as a text file using

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

118

A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

a text editor. (Possible text editors are Word, Framemaker, Emacs, and
Notepad, pico, vi, et c. We shall discuss editors shortly.)

We need first to decide the parts to our model. In this case we know that
we need the variables listed in Table 12-1. We readily fill in the first
three columns in this table, and we can also fill out the fourth column if
we know the units that are associated with each of the parts. To find the

Table 12-1Variables required for model

. . .. |ASCEND
Symbol Meaning Typical Units .
variable type
M Moles in Tank mol, kmol mole
dM_dt Rate of change | mol/sec, kmol/sepmolar_rate
of Moles in tank
(derivative)
input Feed flow rate mol/sec, kmol/qeunolar_rate
output output flow rate | mol/sec, kmol/senolar_rate
Volume Volume of liquid | m3 3 volume
in the tank
density molar density of| mol/m3,mol/ft3 | molar_densi
tank fluid ty
dynamic Boolean for N/A boolean
switching
between
dynamic and
steady state simuy-
lations T

ASCEND variable type needed for the fourth column use the find menu
on the library window and select ATOM by units. The result of this
search will be all the ASCEND variable type that have the units you
entered.

We would like to be able to compute the number of moles in the tank
for a given volume assuming steady state (dM_dt = 0). We would also
like to be able to calculate how the volume changes if we are not at
steady state. The following equations describe the simple tank system.
dM_dt = input— output (12.1)

Volume=

density (12.2)

The first equation is the differential equation that relates the input and
output flows to the accumulation in the tank. The second equation is the
relation of the moles in the tank to the volume of liquid and should be

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCEND MODEL 119

rearranged to avoid division. These equations are all that is need for a
simple tank.

the first version of the REQUIRE "ivpsystem.a4l";
code for tank REQUIRE "atoms.a4l";

MODEL tank;
(* List of Variables *)
dM_dt IS_A molar_rate;
M IS_A mole;
input IS_A molar_rate;
output IS_A molar_rate;
Volume IS_A volume;
density IS_A real_constant;
dynamic IS_A boolean;
tIS_Atime;

(* Equations *)
dM_dt = input - output;
M = Volume * density;

(* Assignment of values to Constants *)
density :==10 {mol/m"3};

METHODS

METHOD check_self;
IF (input < 1e-4 {mole/s}) THEN
STOP {Input dried up in tank};
END IF;
IF (output < 1e-4 {mole/s}) THEN
STOP {Output dried up in tank};
END IF;

END check_self;

METHOD check_all;
RUN check_self;
END check_all;

METHOD default_self;
dynamic := FALSE;
t :=0 {sec};
dM_dt :=0 {mol/sec};
dM_dt.lower_bound := -1e49 {mol/sec};
END default_self;

METHOD default_all;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

120 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

RUN default_self;
END default_all;

METHOD bound_self;
END bound_self;

METHOD bound_all;
RUN bound_self;
END bound_all;

METHOD scale_self;
END scale_self;

METHOD scale_all;
RUN scale_self;
END scale_all;

METHOD segmod;
dM_dt.fixed :=TRUE;
M.fixed :=FALSE;
Volume.fixed :=TRUE;
input.fixed :=TRUE;
output.fixed :=FALSE;
IF dynamic THEN
dM_dt.fixed :=FALSE;
M.fixed :=TRUE;
Volume.fixed :=FALSE;
output.fixed :=TRUE;
END IF;

END segmod;

METHOD specify;
input.fixed :=TRUE;
RUN segmod;

END specify;

METHOD set_ode;
(* set ODE_TYPE -1=independent variable,
O=algebraic variable, 1=state variable,
2=derivative *)

t.ode_type :=-1;
dM_dt.ode_type :=2;
M.ode_type :=1;

(* Set ODE_ID *)
dM_dt.ode_id :=1;
M.ode_id :=1;

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCEND MODEL 121

END set_ode;

METHOD set_obs;
(* Set OBS_ID to any integer value greater
than 0, the variable will be recorded
(i.e., observed) *)
M.obs_id :=1;
Volume.obs _id :=2;
input.obs_id :=3;
output.obs_id :=4;
END set_obs;

METHOD values;
Volume :=5 {m"3};
input :=100 {mole/s};
END values;
END tank;

Figure 12-1 First version of the type definition fank
Our model definition has the following structure for it so far:

 MODEL statement

« list of variables we intend to use in the type definition
e equations

« METHODS

* END statement

While we have put the statements in this order, we could mix them up
and intermix the middle two types of statements, even going to the
extreme of defining the variables after we first use them. Once the
METHODS section is started no new equations or variables can be
declared. The MODEL and END statements begin and end the type
definition.

There are two new methods added to a dynamic model that you would
not see in a steady state model, and they arsethedeandset_obs
methods. Theet_odemethod is used to setup the model for

integration. Theset_obsnethod is used to tell ASCEND which

variables you would like to observe in the output of the integration.

Now we need to discuss the how and why of the two new methods. The

set_odanethod is used to set up the equations and variables described
in the model for integration by LSODE. In order for LSODE to be able

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

122

A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

to integrate the model, it needs to know which variable is the
independent variable — in this case t (time), which variables are the
derivatives, and which are the states. The way we do this is we have to
add a few extra attributes to each variable. In Section 2.1, the idea of an
atom was discussed with its units, default value, bounds etc. We need to
add 5 more of this type of parameter. These attributesdaretype,

ode_id, obs_id, ode_rtaindode_atol

This now brings us to the reason there is a system.a4l and an
ivpsystem.a4l. For a steady state model the new attributes discussed
above are not needed, and would take up memory and introduce
confusion; therefore, they are excluded for the system library. If a
dynamic simulations is to be loaded and solved, the ivpsystem library
needs to be loaded instead of the system library so the extra attributes
will be present with each part.

We will now go through the purpose of each of these attributes. First
ode_typas to tell the system what type of variable it is. A value of -1
for ode_typameans the variable is the independent variable, 0 means it
is an algebraic variable (default), 1 means it is a state variable, and
finally 2 means it is a derivative.

The attributende _idis used to match the state variables with their
derivatives and only needs to be used if the variable is a state or
derivative. In the examplé is a state andM_dtis the derivative.
Therefore they both need to have the sade idso ASCEND will

know that they belong together. Each state and derivative pair needs to
have a different ode_id; however, it does not matter what the number is
as long as it is a positive integer and no other state and derivative pair
has the same number.

Nextobs_idis used by the user to flag a variable for observation while
integrating. For any integer valueabs_idgreater then O the variable
will be observed. The result of flagging a variable for observation is
that its values will be in a data column in one of two output files. One of
the files of data produced with each integration contains the values of
the states and the second the values of the variables flagged for
observation. The default file names are y.dat and obs.dat respectfully;
however, they can be changed in the solver options general menu.

Last, but not least, are the error control attributes for LSQIDE: rtol
andode_atol Both of these come directly from the LSODE attributes
rtol and atol which are the local relative and absolute error tolerances
for the variable respectively.

Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCEND INSTANCE 123

script code

There is one other thing about methods that we need to discuss before
moving on and that is treeqgmodnethod. If you have not already
noticed, it is a little different from the other examples as it has an IF
statement in it. This is an important part of the dynamic simulation. It
switches the degrees of freedom depending on if we are computing an
initial condition or performing an integration step. We use the boolean
dynamicto control whether we are going to solve the model as a steady
state modeldynamic:= FALSE;) or as a dynamic modelyhamic:=
TRUE;). For the current example, we have a simple tank and, for steady
state, we would like to calculate the number of moles and output flow
rate for a fixed tank volume and input flow rate. Also, for the model to
be at steady state, we have to fix the derivative and set it equal to zero,
(dM_dt.fixed=TRUE;dM_dt:=0 {mole/s}; The derivative is normally

set to zero in the default_self method to prepare the model to solve for
initial steady-state conditions.) If we then want to integrate this model
for a fixed output flow (as when pumping the liquid out under flow
control), we would free up the volume and fix the output flow rate. The
model will then compute how the liquid volume will change with time.

In dynamic simulation, an initial value integration package, such as
LSODE, repeatedly asks the model to compute the time derivatives for
the state variables, given fixed values for the states. Using values for
dM_dtcomputed by the model, the integration package will then
update the state variabl, to its new value. To accommodate this
calculation, we therefore fix the state variabeand free up the
derivative,dM_dt

12.2 DLVING AN ASCEND INSTANCE

We are now ready to read in and compile an instance of our tank model.
We are assuming that you understand how to use the scripting window,
and we will show how to go about reading, compiling, solving and
integrating a dynamic model using the script in Figure 12-2.

DELETE TYPES;
READ FILE "example.a4c";

COMPILE ex OF tank;
BROWSE ex;

RUN {ex.default_self};

RUN {ex.reset};

RUN {ex.values};

SOLVE ex WITH QRSly;
RUN {ex.check_all};

ASSIGN {ex.dynamic} TRUE;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

124 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

RUN {ex.reset};

RUN {ex.set_ode};

RUN {ex.set_obs};

User will need to edit the next line to correct path

to the models directory

source "$env(ASCENDDIST)/models/set_intervals.tcl";
set_int 500 10 {s};

INTEGRATE ex FROM 0 TO 50 WITH BLSODE;

ASSIGN {ex.input} 120 {mole/s};
INTEGRATE ex FROM 50 TO 499 WITH BLSODE;

In order to view integration results for both the

integrations the user will have to go to the solver

window, select options, general and turn off the

overwrite integrator logs toggle.

(NOTE: If you were then to run a different model or this
same simulation again it would still write to the same
files)

In order to see both sets of data at the same time on
one plot you will have to merge the two sets of data in
the file. This is done with following command.

asc_merge_data_file ascend new_obs.dat obs.dat;

This command can also be used to convert data into a
format that can be loaded into matlab for further work.

asc_merge_data_file matlab matlab_obs.m obs.dat;

This command can also be used to convert data into a
format that can be loaded into excel as a tab delimited
text file.

asc_merge_data_file excel excel_obs.txt obs.dat;
Figure 12-2 Script Code.

First of all reading and compiling an instance of a dynamic model is the
same as a steady state model except, as stated earlier, we must load
ivpsystem.adinstead okystem.a4IThe file containingxample.a4c

(see Figure 12-1) h&®EQUIREstatements to load the right system file
and the fileatoms.a4l

Now it is time to solve the model, and this is where things start to
change. We must first solve the model for its initial conditions. We set

Last modified: June 20, 1998 8:51 pm

VIEWING SIMULATION RESULTS 125

Syntax for set_int

Syntax for
INTEGRATE

the boolean variabldynamicto FALSE(in thedefault_selimethod)

and run theesetmethod to get a well-posed steady-state model. We
also need to run thealuesmethod to set the fixed values of the initial
conditions. Finally we are solve, getting as the solution the initial
conditions for our model.

After solving for the initial conditions, we set things up for the dynamic
simulation. We set the boolean variatigmamicto TRUEand then run
thesegmodnethod to give a well-posed dynamic model. We now have
to establish which variables are the independent variables, the state
variables and their corresponding derivatives, and tell which variables
we would like to observe; we riget_odeandset obsnethods

described above.

In order for ASCEND and LSODE to know what step size and how
many steps we want to observe, we must load a Tcl file that defines a
new script command. The file we need to load is called
set_intervals.tcland it is found in the models subdirectory of the
ASCEND distribution. The commarsdburcecomes from Tcl and is

used to read and execute the a set of commands in a file. The file in this
case iset_intervals.tcand the commands within it setup a new script
commandset_int Once we have loaded this file, we can use the new
commandset_int to set up the number of possible steps and their
maximum size. Now we are ready to integrate. The way we do this is to
use thdNTEGRATEcommand in the script. The syntax for these
command is as follows.

set_int number_of steps step_size { units of step
size(time) };

INTGRATE compiled_model name FROM initial_step TO
final_step WITH BLSODE;

The command is set up with the initial and final step so that you can
integrate for a number of steps, then make step changes, and then
continue to integrate another number of steps.

12.3 MIEWING SIMULATION RESULTS

To view the simulation results, open tR8 CPLOT window using the
Toolsmenu on thé&cript window. To view a plot, first use the file
menu to load the data usihgad data setDepending on what you

1. set_lagrangeint is also definedsiat_intervals.t¢land you can write other Tcl functions in this style if
you want to create a customized sampling schedule.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

126

Graphing options

Graphing in Windows

Syntax for
asc_merge_data file
command

A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

want to look at, you can load the file containing the states or the file
containing the variables you flagged for observation. Once the data file
is loaded, you can double click on the file name in the top window to
get a list of the variables in the file. This list will appear in the left
window namedJnused variablebelow where you just double clicked.
As you will notice on the line below, the independent variable has
already been set to time. The way we select the variables we want to
plot vs. time is to highlight them from the list in the left window and,
using the top arrow button, move them over to the plotted variables
window on the right. We then use tifew plot filecommand from the
Executemenu to view the plot.

If we now want to plot something else, we simply highlight those
variables that we do not want to plot in the plotted variables window,
use the other arrow to move them back to the unused variable window
and then move new variables to the plotted variables window.

If we want to change the independent variable, we select the variable
we want to be the new independent variable from the list in either the
unused variable window or the plotted variable window and then use
the appropriate down arrow to move that variable down to become the
independent variable.

Now that you are able to view a plot, you might want to add titles or
change the axis scale, line colors, and so forth. Adding titles can be
done by selectinget titlesunder theDisplay menua new window will
open in which you will have the option to add a plot title and axis
labels. To change the axis scale, line color and many other features
selectsee optiongrom theOptions menu

Under MS Windows the default graph program Tkxgraph gives you full
control of the options without having to go through the ASCPLOT
Options menu. Tkxgraph is also available for UNIX, but xgraph does a
much better job drawing dashed lines with X11 than Tkxgraph does.

If you decide you don't like the plotting tools described above you have
two more options and they are to convert the ASCEND output data files
so that they can be loaded by Matlab or a spreadsheet. To convert the
data files a new script command needs to be introduced and the
command iasc_merge_data_file.

asc_merge_data_fileonvert_to ouput_file_name input_file_names
The syntax for thasc_merge_data_fikommand is as follows. First of

all theconvert_tais the format you want the data converted to. There
are three optionsiatlab, excebr ascend Theoutput_file_namés

Last modified: June 20, 1998 8:51 pm

VIEWING SIMULATION RESULTS 127

matlab conversion

excel conversion

ascend conversion

exactly that, the name of the file in which you want the converted data
to be put. Thénput_file_namess also exactly that, the file name or
names that you want converted. If more than one input file is given the
data is combined into one output file.

If the matlaboption is used the output file extension should be m, if
excelis used the extension should be txt as it is a tab delimited text file
and forascendhe extension should be dat for use VABICPLOT

You maybe wondering what exactly is thisc_merge_data_file
command doing. In the next three paragraphs we will give a brief
explanation of each of the options.

When the data is converted to be used in matlab the first thing that is
done is the header of the ascend data file is placed in the output file but
is commented out. This is so the user can still tell when the data was
created. The next thing is does is put all the data into a matrix that has
the same name as the output file with var added to the end. All variable
names from the ascend data file are then converted to matlab legal
names by replacing the all dots and brackets with underscores(). The
new variable names are then set equal to there corresponding column of
data in the matrix. Each variable then becomes a vector. When the file
is run all the data is loaded and set equal to the new variable names and
can easily be plotted using matlab commands.

When the data is converted to be used in Excel the only thing that
happens is instead of the list of variables and units being a column it is
turn into rows. When the data is loaded into Excel as a tab delimited
text file all the data will be in columns with the first row being the units
of the data and the second being the ascend variable name. The data is
then easily plotted using the Excel graphing package.

This is not so much a conversion as a merge and is the origin of the
command. It is only useful if there are multiple headers in a file or more
than one input file is given. Multiple headers in the file occur when
stopping and starting integrations with the overwrite option turned off.
This conversion removes all subsequent headers that are the same as the
first, whether in one file or multiple, to leave one output file with what
looks like one data set for plotting. If the headers are different the data
will just be combined into one file and when loaded in ASCPLOT will
still look like different data sets.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

128 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

12.4 BREPARING A MODEL FOR REUSE

There are four major ways to prepare a model for reuse as described in
Chapter 3, “Preparing a model for reuse,” on pagedi®f what is

said there about reusable models applies to dynamic models. However,
there is one thing that we think should be repeated to make clear for
dynamic models, and that is parameterizing a model.

12.4.1 RARAMETERIZING THE TANK MODEL

As stated in Section 3.3 on page 32, parameterizing a model type
definition alerts a future user as to which parts of this model you deem
to be the most likely to be shared. An instance of a parameterized
model is then created from previously defined types.

The new thing that needs to be repeated is thaidbeids of

derivative and state pairs must be different even if they are in different
part of a larger model. If for instance we wanted to have two tanks in
series we could parameterize the tank model and connect the two tanks
together with the outlet of the first tank being the feed to the second
tank. However, with theet_odemethod, as we have currently written

it, the derivative and state pairs for both tanks would have the same
ode_ids. Our way around this is to introduce @te_countethat is

used to set thede_ids and is incremented after each derivative and
state pair is set. The ode counter becomes one of the model parameters
and is, therefore, the same in all models. We will now give an example
of this to help explain.

parameterized tank METHOD set_ode;

model set_ode (* set ODE_TYPE -1=independent variable,
method O=algebraic variable, 1=state variable,
2=derivative *)
t.ode_type :=-1;
dM_dt.ode_type :=2;
M.ode_type :=1;

(* Set ODE_ID *)

dM_dt.ode_id := ode_offset;

M.ode_id := ode_offset;

ode_offset := ode_offset+1;
END set_ode;

Larger model with METHOD set_ode;

two tank models being RUN tank_1.set_ode;
used as parts. set_ode RUN tank_2.set_ode;
method

Last modified: June 20, 1998 8:51 pm

IN CONCLUSION

129

END set_ode;
Figure 12-3 Parameterized set_ode methods.

The parameterized tank set_ode method is almost the same as the
original one we wrote except it now useie offsetan ode_counter, to

set theode _ids. It may be obvious but this is how it works. When the
larger modebet_odas run, theset_oddor tank_1 is run, thede_ids

are set to the current valuearfe offsetthe counter is then

incremented andet_odas run for tank_2 which then gets the
incrementedde_offseso the values are now different. You can now
hopefully see that we can string as may tanks together as we like, and
all the derivative and state paode_idwill be different.

This same idea can be applies to setting the observed variables. The
reason this is a good idea is that the variables are placed in the output
files in order of therebs_idvalue. This way we can keep all variables
flagged for observation from one part of a model together.

The important thing that needs to be stressed for a dynamic system is
that the time variable, dynamic boolean, and ode and obs counters must
be in the parameter list. All these variable need to be the same in each
model to be consistent and to make sure the model gets setup correctly
when theset_odamethod is executed.

12.5 IN CONCLUSION

We have just led you step by step through the process of creating a
small dynamic ASCEND model and the basics on how to view the
results.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

130 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

Last modified: June 20, 1998 8:51 pm

THE WHEN STATEMENT: CONDITIONAL CONFIGURATION OF THEMODEL STRUCTURE 131

CHAPTER 13 CREATING CONDITIONAL MODELS

what is a conditional
model ?

IN ASCEND

In this chapter, we describe how one can create conditional models in
the ASCEND environment.

Formally, we consider as a conditional model any problem in which the
domain of validity of alternatives sets of equations depends on one or
more discrete conditions; conditions can be expressed in terms of any
logical, integer, or binary variables or constants. For instance, think of
a case in which you need to solve a system of equations including some
sort of numerical correlation (correlation data for physical properties,
for instance). You realize that the coefficients of your correlation
change with the value of some other variables of the problem
(temperature, pressure, etc.). You have a conditional model.

ASCEND support three modeling capabilities for the efficient
development of conditional models:

» Conditional configuration of the model structure.

» Conditional compilation.

« Conditional execution of the procedural code of methods.
In the following sections we describe the modeling tools for the
performance of each of these tasks: the WHEN statements for the
conditional configuration of a model structure, the SELECT statement

for conditional compilation, and the SWITCH statement for conditional
execution of procedural statements.

13.1 THE WHEN STATEMENT : CONDITIONAL

CONFIGURATION OF THE M ODEL
STRUCTURE

We start by defining the syntax for theiEN statement:

eqgl_identifier: definition_of equation_1;
modell_identifier: definition_of model_1;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

132

(REATING CONDITIONAL MODELS IN ASCEND

modéln_identifier: definition_of_model_n;

WHEN (list_of variables)
CASE list_of values_1:
USE eql_identifier;
CASE list_of values_2:
USE modell_identifier;

OTHERWISE:
USE modeln_identifier;
END WHEN:

observations about the The following are important observations about the WHEN statement:

WHEN statement

select among
alternatives

conditional program

1 Alist of variables is used to define the applicability of each of the

alternative configuration. The variables in this list can be of any
type among boolean, integer or symbol or any combination of them.
Note that the list is surrounded by rounded parentheses: (). We do
that to emphasize that order matter in such a list — consistent with
the use of rounded parentheses throughout ASCEND.

The values in this list for each of the cases are in one to one
correspondence with the variables in the list.

Names of arrays of models or equations are allowed inside the
scope of eacBASE.

All the objects and equations used in the different CASEs of a
WHEN statement are compiled. However, the objects (the variables
and relations defined in it) of a particular CASE will only become
part of our mathematical problem if the values in the list of values
of that CASE match the current values of the variables in the list of
variables. Practically speaking, toSE’ an object (model) means

that the variables and equations contained in that object will
become an active part of the system of nonlinear equations
representing the current configuration of the problem.

There are two different ways in which theHEN statement can be
used.:

» First, the WHEN statement can be used to select a configuration
of a problem among several alternative configurations. This
chapter is mainly concerned with this type of simpler and more
common application.

» Second, in combination with logical relationsyteN
statement can be used for conditional programming — that is, a

Last modified: June 20, 1998 8:50 pm

THE WHEN STATEMENT: CONDITIONAL CONFIGURATION OF THEMODEL STRUCTURE 133

problem in which the system of equations to be solved depends
on the solution of the problem.

13.1.1 THE SIMPLEST EXAMPLE

Assume that you want to solve a system of equations in which two
correlations are possible for the calculation of a variable. Of course,
you could create two simple models, each of them including one of the
alternative equations. You could also use the WHEN statement to
create only one model, in which you could include both alternatives. In
this latter case you will be able to switch readily from one alternative to
the other without recompiling. Look at the following simple case:

laminar IS_A boolean;
Re,f IS_A factor;

invariant: sqrt(f) * Re = 0.00034576;
low_flow: Re = 64/f;
high_flow: Re = (0.206307/f)"4;

WHEN (laminar)
CASE TRUE:
USE low_flow;
CASE FALSE:
USE high_flow;
END WHEN;

The model contains three equations, all of which are compiled. There is
one equation (namedvariant) which is not used in any of the
CASEs of the WHEN statement. Such an equation is always part of the
mathematical problem that we are trying to represent. On the other
hand, the equationew_flow andhigh_flow are conditional
equations because they are used in a CASE of the WHEN statement.
The equationtow_flow andhigh_flow are part of the

mathematical problem only when the value of the boolean variable
laminar matches the value of the list of values of the CASE in which
they are defined. If we decide that we need to use the equation
low_flow , then we have to give the value of TRUE to the boolean
variablelaminar . if we decide to use the equatioigh_flow , then

we have to give the value of FALSE to the boolean variabhnar

Note that the value of the varialléenminar can be modified as many
times as the user wishes. In this way, the user may readily switch from
one configuration to the other. In either of the CASEs, the resulting
system of equations contains two equatiomgafiant and either
low_flow orhigh_flow) intwo variables (Re and f).

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

134

(REATING CONDITIONAL MODELS IN ASCEND

We could have used another kind of variable in the list of variables with
exactly the same result. In the following example, an integer is used
instead of a boolean. With an integer variable, we can have as many
distinct CASEs as we wish inside a WHEN statement.

laminar IS_A integer;
Re,f IS_A factor;

invariant: sqrt(f) * Re = 0.00034576;
low_flow: Re = 64/f;
high_flow: Re = (0.206307//)"4;

WHEN (laminar)
CASE 1:
USE low_flow;
CASE 2:
USE high_flow;
END WHEN;

13.1.2 A SCOND EXAMPLE

method IS_A symbol;
simplified_flash IS_A VLE_flash;
rigorous_flash IS_Atd_VLE_flash;

WHEN (method)
CASE ‘rigorous’:
USE rigorous_flash;
CASE ‘simplified’:
USE simplified_flash;
END WHEN;

For this example, we have exactly the same capability as in our
previous simplest example; however, here the objects named inside the
WHEN statement are models and not relations. Also, the decision is
based in the value of a symbol varialstethod . As mentioned

before, practically speaking, toSE’ an object (model) means that the
variables and equations contained in that object will become an active
part of the system of nonlinear equations representing the current
configuration of the problem.

13.2 THE SELECT STATEMENT : CONDITIONAL

Last modified: June 20, 1998 8:50 pm

THE SELECT SATEMENT: CONDITIONAL COMPILATION 135

COMPILATION

Aside from the flexibility that conditional statements (such as the

WHEN statement) gives to the configuration of a model structure,
another application of conditional tools is the economy of
programming. An example commonly occurring in engineering is the
selection of the thermodynamic model to be used for equilibrium
calculations. In general, it is convenient to code all of the alternative
methods so that, depending on the species appearing in the equilibrium
system, we can select the most appropriate method.

In this kind of problem, the decision as to which configuration we are
going to use can be made before we compile the model. We would like
to compile only the configuration appropriate for the problem rather
than compiling all available configurations.

The SELECT statement incorporates conditional compilation into the
ASCEND system. While this conditional tool is flexible enough to
represent all of the alternatives, its presence will indicate that only
those alternatives consistent with the model data will be available after
compilation.

Even though the syntax for tis€LECT statement is similar to that
described for th&vHEN statement, we nned to highlight some
important differences:

* In theWHEN statement the declaration of the object is external to
the conditional statement since of all the alternatives are going to
be created anyway. In tl®ELECT statement, the actual
declaration of an object (or any other declarative statement
affecting objects) is done within eachsE of the conditional
statement, explicitly discriminating among the alternative
statements. Thus parts of a particular kind can exist in only one
case within a select statement.

» The selection among alternatives in & ECT statement
depends on constant boolean variables, constant integer variables
or constant symbols. Since these values imply a one time
structural decision, they must not be modified during the solution
of the problem. That is why they have to be constants.

The following is the syntax used for the conditional compilation tool:

defintion_of constants;
assignment_of constant_values;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

136

13.2.1

13.3

(REATING CONDITIONAL MODELS IN ASCEND

SELECT (list_of _constants)

CASE list_of values_1:
listl of declarative_statements;

CASE list_of values_2:
list2_of_declarative_statements;

OTHERWISE:
listn_of_declarative_statements;
END SELECT;

Summarizing, the&ELECT statement provides the capability of
conditional compilation. It allows the representation of structural
alternatives pursuing economy in programming, but, since only the
desired data structure is created, it does not affect the computational
requirements of the model.

A SMPLE EXAMPLE

The following example shows asCEND model which is similar to

that shown in the previous section. The difference is that we use the
SELECT statement rather than tieHEN statement. This time, the
symbolmethod is a constant, and, once it is defined, its value will not
change. That value will always be a user decision. Also, note that the
definition of the objects is done inside the SELECT statement. For this
example, since the value of the symima@thod is ‘rigorous’, the

system will compile only the list of statements in the firs$E

method IS_A symbol_constant;
method :== ‘rigorous’;

SELECT (method)
CASE ‘rigorous’:
rigorous_flash IS _Atd VLE_flash;
CASE ‘simplified’:
simplified_flashlS_A VLE_flash;
END SELECT;

THE SWITCH STATEMENT : CONDITIONAL
EXECUTION OF PROCEDURAL CODE

Because of the use of conditional statements in the declarative
description of a model, a similar feature must also exist to give the user

the ability to program the conditional execution of methods. For
instance, each alternative configuration of a model may require

Last modified: June 20, 1998 8:50 pm

THE SWITCH SrATEMENT: CONDITIONAL EXECUTION OF PROCEDURAL CODE 137

different initialization and a different selection of the independent
variables for the solution process. Hence, ASCEND has the following
conditional procedurawITCH statement:

SWITCH (list_of_variables)

CASE list_of values 1:
listl_of_procedural_statements;

CASE list_of values_2:
list2_of procedural_statements;

OTHERWISE:

listh_of _procedural_statements;
END SWITCH;

This statement has the same meaning as conditional statements that
exist in procedural modeling languages such as C and FORTRAN. The
procedural statements in each of these cases do not involve new object
definitions, they are only useful for the numerical processing of objects
already created.

13.3.1 A SMPLE EXAMPLE

The use of the SWITCH statement for the conditional execution of
procedural code is illustrated below. In this example, the value of the
variableave_alpha is setto 1.5 only if the value of the symbol
method is ‘simplified’. If the value of the symbahethod is

‘rigorous’, then a procedure callediabatic is executed instead.

METHODS
METHOD values;
RUN reset;
SWITCH (method)
CASE ‘rigorous’:
RUN adiabatic;
CASE ‘simplified’:
ave_alpha :=1.5;
END SWITCH;
END values;

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

138 (REATING CONDITIONAL MODELS IN ASCEND

Last modified: June 20, 1998 8:50 pm

BVP.A4L 139

CHAPTER 14 BOUNDARY VALUE PROBLEMS

The subject of formulating and solving boundary value problems

(BVP) is very large. In this chapter we demonstrate how to model and
solve the boundary value formulation of any number of differential
equations in one independent variable and possibly subject to algebraic
constraints. In physical systems, the independent variable is typically
time or distance. This chapter does not cover problems involving two or
more independent variables.

We begin with a very simple ode and compare a number of numerical
methods. We then investigate a nonlinear model of water in a tank. We
shall see in the end that a single model of the physical system can be
used for the initial value problem (IVP) as well as the BVP. This is a
very important result because hard, algebraically constrained BVPs
from engineering problems often cannot be solved without
initialization from an approximate solution obtained with an IVP
method.

14.1 BVP.A4L

A basic example is found in ascend4/models/plotbvp.a4s which shows
how to define, solve, and plot a model. We will explain it in some detail
here in the near future.

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-bvp.fm5

140 BOUNDARY VALUE PROBLEMS

Last modified: June 20, 1998 8:50 pm

Index

Symbols
_all 31, 94
_self 30, 94
A

ad4c 12, 14
a4l 8
accentric factor 105
active comments 25
ADD NOTE IN, see keyword
adding components 108
adding methods 27
ALIASES
treating in methods 94
ALIASES/IS_A 63
example
simple 64
all 31
anchor 63
Antoine 83
asc_merge_data_files 53
ascdata 78
ascdata, subdirectory 12
ASCEND 1V library 8
ascii-picture
finger_test 69
spring_test 70
ASCPLOT 51
ATOM 74
atom 8, 9
atoms 106
atoms.a4l 8, 78
B

base case 50
blocks of equations 19
boolean 17
bound, see method
bound_all

defined 100
bound_self

defined 98
boundwidth 98
Browser, see window
bvp

libraries 3
By type, see tool
C

case study 1, 50
check, see method
check_all

defined 99
check_self

defined 97
chemical potential 106
children 46
circle_constant 10
ClearAll

global method 96
ClearAll, see method
close 13
cmumodel (code) 46
collocation

boundary value problem 3
collocation.a4l 115
column.a4l 115
comments 25
compact code 47
complementarity formulation 113
components.a4l 105, 107
components_data 107
conditiional models 131
conditional compilation 131
conditional configuration 131
conditional execution 131
Console, see window
CONSTANT 75

naming convention 79
constant molar overflow 115
constants 8

new types 2
control

discrete 3
conversion factor 89
cooks 94
correlation

equations with units 2
currency 91
curve_set 48
D

data

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendlX.doc

141

142

gathering into an array 2
default

for scaling atoms 81
default, see method
default_all

defined 99
default_self

defined 97

run automatically at end of compile 98
Delete all types, see tool
delimiter

(*25

*) 25
derivatives 122
diagnostics 15
differential equation 118
dimensions 7, 9
dimensions, composite 21
disappearing phases 113
discussion 23, 40, 55, 116
display 14
Display Atom Values, see tool
Display, see window
displaying 16
distillation

dynamic

cstr approximation 3

steady-state 2
distillation column 115
division by zero

avoiding 90
dynamic model 2, 117

using libraries 3
dynamic models 115
Dynamic Simulation 117
E

eligible 17
Emacs, see text editor
END NOTES, see keyword
END statement 11
endpoint
boundary value problem 3
engineering
mechanical 63
enlarge 13
equalities 75

equation
writing with correct units 73
equilibrated (the boolean parameter) 113
equilibrium 101, 105
error 28
error messages 15
excel 53, 126
export 16, 17
F

Farenheit

offset conversions 2
finger 63
fixed flags 20, 27
fixed variables 19
flash units 114
flash.a4l 106, 107
forceld.a4c 63
fortnight 90
Framemaker, see text editor
free variables 18
furlong 90
G
GAS_C

unit corresponding to R=8.314{J/mol/K} 80
generation

method 93
go to line number, see text editor
graphing 3
H
handbook

equations 83
heat capacity 105
heat of vaporization 105
holdup 106, 114
HOME directory

Windows 95 12
hook 63
I
iconify 13
ideal gas 80, 105
ideal_vapor_mixture 110
incidence matrix, displaying 19
included flags for relations 17
independent variable 122
inequalities 75

Last modified: June 20, 1998 8:50 pm

inherits 46
instance 7
interface
model 1
IS A
treatment in methods 95
ivpsystem.adl 122
K

keyword
ADD NOTES IN 27
asc_merge_data_file 126
END NOTES 25
INTEGRATE 125
NOTES 25
REFINES 44
SELECT 113
SELECT statement example 136
SELECT syntax 134
set_int 125
SWITCH example 137
SWITCH statement syntax 136
WHEN statement example 133, 134
WHEN statement syntax 131
WILL_BE 35, 48

L

left mouse button 14
library
personal 78
substitution of 59
library model 43
Library, see window
LSODE 121
M

Matlab 53
matlab 126
McGraw-Hill 107
method
bound 31
check 31
ClearAll 22, 28
default 31
list of standard methods 28
reset 28
scale 31
Set_obs 121, 129

Set_ode 121, 128

specify 28

values 28
methods

adding 27

standard 2

tabulated 28
methods, using 32
mock_turtle 90
MODEL 76
model instance 7
MODEL statement 11
modeling

introduction 1
modeling style 15
models 106

mechanical 67
models subdirectory 11
multi-component 105
multi-phase 105
myunits.a4l 91
N

nasty windows, see window
new components 108
non-existent phase 107
nonprocedural code 46
Norway 91
Notepad, see text editor
Notes

one liner 27
notes 25
NOTES, see keyword
O
obs id 122, 129
ODE 117
ode_atol 122
ode id 122, 128
ode_rtol 122
ode_type 122
one liner (Notes) 27
Overspecified, see window
P

parameterizing 32
parents 46
partitions 19

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendlX.doc

143

144

pedagogical 43
phase option 107
phase, non-existent 107
phase_partials 110
phase_partials array 112
phases.a4l 105, 106
phases_data 106
PI 10, 80
pico, see text editor
pinky

instance of finger 70
Pitzer 105, 110
Pitzer_vapor_mixture 110
plot 43
Plot, see tool
plot.a4l 63
plot.a4l (code) 45
plotting 115
plt_curve 63
plt_plot 2
plt_plot_integer 43, 63
plt_plot_symbol 43, 48, 63
Poling 107
Prausnitz 107
procedural 136
procedural code for methods 46
process model 101
projects 57
propagate 47
properties

physical 2

REFINES, see keyword
Reid 107
relations
logical 76
real 75
relationships 75
relative volatility 105
reloading a file 15
REQUIRE 57
keyword 10, 15
reset
global method 96
see method
reuse 25
right mouse button 20
Run method, see tool
S

Save all appearances, see tool
Save appearance, see tool
scale, see method
scale_all

defined 100
scale_self

defined 99

scaling equations 81
scaling

user vs machine heuristics 99
scaling value

for equations 76
scaling variable

defining types 81

Properties of Vapors & Liquids (book title) 1@¢ope 31

PROVIDE 57, 59
pun

methodology 93
Q

quit ASCEND 14
R

reactor

introduction 2
Read types from file, see tool
Record actions, see tool
reference component 108
refinement 46, 106
refinement hierarchy 47
refinement, reasons for 47

script
creating 38
introduction 1
Script, see window
select_mixture_type 112
self 30
set 75
sets. 106
shared objects 106
simple_column_profiles 63
Simulation to Browser, see tool
solution
analysis 64
solve 32

Last modified: June 20, 1998 8:50 pm

solver_var 9

general 76
Solving 17
soup 94
specify, see method
spreadsheet 53
spring 63
square 18

well-posed from specify 100
standard methods 28, 31
state 113
states 122
STOP

use in check methods 97
STOP statement 27
stream 106, 114
stream model 113
stream_holdup.a4l 112
STUDY 54
substitute 47
Suggest method 67
T

table 35
tank 117
taxonomy

kinds of things 74
testflashmodel 106
text editor 7, 12

go to line number 15
thermodynamic properties 105
thermodynamics 2
thermodynamics (the model) 110, 113
thermodynamics.a4l 105, 107, 110
tool

By type 20

Code (display) 16

Delete all types 39

Display Atom Values 17

Display code 25

Incidence matrix 19

Plot 43

Read types from file 14

Record actions 39

Run method 27

Save all appearances 14

Save appearance 16

145

Simulation to Browser 16
Solve 32
to Solver (export) 17
type 7
types
new atoms 2
U

unfix 22
UNIFAC 105, 109, 110
groups 107
unit
first unit of measure definition wins 89
UNITS 89
units 9
define before using 90
defining system-wide 91
groups of 92
SI 21
units of measure
defining 2
Units window, see window
universal
CONSTANTSs bad 80

V

values
displaying 21
method defined 101
see method
values, specifying for fixed variables 20
vapor pressure 83
vapor/liquid 105
vapor_liquid_flash 114
variable
defining new type or class 78
override defaults in default_self method 79
variable type 7
finding by units 77
variables
new types 2
vessel 5, 25, 43
converting word problem to ASCEND model
7
fixed variables 19
the problem in words 6
variables 7, 8
vesselMethods.a4c (code) 30

/afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendlX.doc

146

vesselNotes.a4c (code) 26
vesselParams.a4c (code) 35
vesselPlain.a4c, code 11
vesselPlot.a4c (code) 49
vesselTabulated.a4c (code) 38
vesselTabulated.a4s (code) 40
Vi, see text editor

vim, see text editor

w

warning messages 15
well posed 18
WILL_BE

treatment in methods 95
WILL_BE, see keyword
Wilson 105, 107, 109, 110
window

ASCPLOT 125

Browser 16

close 13

Console 13
Display 16
Eligible 17
eligible 32
enlarge 13
getting back 13
iconify 13
Library 13, 25
nasty ones 17
Overspecified 22
saving positions 14
Script 13, 39
Units 21

Word, see text editor
Wordpad, see text editor

xgraph

bashing 66

Last modified: June 20, 1998 8:50 pm

	Chapter 1 Starting Points
	Our goal:
	1.1 Primal Subjects
	Chapter�2
	Chapter�3
	Chapter�4
	Chapter�5
	Chapter�6
	howto-specify (Art,Ben, in progress)
	Chapter�7
	Chapter�8
	Chapter�9
	howto-library1 (NOTES, check methods, etc)
	Chapter�10

	1.2 Engineering Subjects
	Chapter�11
	howto-column1 (Art, in progress)
	howto-reactor (Duncan, in progress)
	Chapter�12
	howto-dynamic2 (Duncan, in progress)
	howto-column2 (Duncan, in progress)
	howto-control (Duncan, in progress)
	Chapter�13
	Chapter�14 (Ben, in progress)

	Chapter 2 A Detailed ASCEND Example for Beginners:...
	the purpose for this chapter
	the problem
	topics covered
	Chapter�2 (this chapter)
	Chapter�3
	Chapter�4
	2.1 Converting the word description into an ASCEND...
	an ASCEND model is a type definition
	type definition library for variables and constant...
	dimensions and units in ASCEND.
	universal constant definition
	the first version of the code for vessel

	2.2 Editing, compiling and browsing an ASCEND mode...
	please do not alter the models subdirectory
	rather put your things into the ascdata subdirecto...
	create a text file containing the model definition...
	start the ASCEND system. Move and resize the windo...
	note that each window by itself looks pretty nonth...
	hey, where did that window go? I want it back NOW!...
	I want to go to dinner (or I just panicked when I ...
	saving window positions
	start by loading and compiling using tools in the ...
	use the left mouse button unless we tell you other...
	DO NOT ignore the diagnostics that might appear in...
	how do I jump to line 100 of a file when using som...
	reloading a file overwrites the previous version
	displaying the code
	now compile as “v”
	and pass the instance to the Browser
	examine v by playing with it in the Browser
	included flags for relations

	2.3 Solving an ASCEND instance
	if ASCEND stops responding, hunt down one of those...
	is our problem well posed?
	picking variables we are going to fix
	ASCEND partitions the problem into smaller problem...
	displaying the incidence matrix
	which variables are currently fixed for this probl...
	specifying values for the fixed variables - this a...
	alter the units used for displaying values
	returning to a consistent set of units
	now we can solve the model in other ways
	clearing all the fixed flags

	2.4 Discussion

	Chapter 3 Preparing a model for reuse
	3.1 Adding comments and notes
	notes are active comments
	there are short notes, long notes and separate not...

	3.2 Adding methods
	writing the specify and values methods
	default methods ClearAll and reset are appropriate...
	adding our remaining standard methods to a model d...
	using methods when solving

	3.3 Parameterizing the vessel model
	let’s compute metal_mass vs. H_to_D_ratio
	3.3.1 Creating a parameterized version of vessel
	parameters indicate likely object sharing

	3.3.2 Using the parameterized vessel model
	Creating a table of metal_mass values vs. H_to_D_r...

	3.4 Creating a script to demonstrate this model
	3.4.1 Discussion

	Chapter 4 Creating a plot (using a library model)
	4.1 Creating a plot
	4.1.1 Model refinement
	please, explain “refines”
	parents and children in a refinement hierarchy
	order does not matter in declarative code
	but it does in the procedural code for methods
	reasons for refinement
	with the most important being we know what can sub...

	4.1.2 Continuing with creating a plot

	4.2 Creating a case study from a single vessel
	4.2.1 The base case
	compile a vessel.
	solving the base case.
	graphical case study optimization
	script recorded so far

	4.2.2 Case study examples
	configuring a case study
	4.2.2.1 Multi-variable studies
	4.2.2.2 Multi-parameter studies
	4.2.2.3 Plotting output with other tools

	4.2.3 STUDY behavior details
	variable list
	IN clause
	parameter list
	solver name
	data file name
	error handling

	4.3 Discussion

	Chapter 5 Managing model definitions, libraries, a...
	5.1 Using REQUIRE and PROVIDE
	5.1.1 REQUIREing system.a4l
	5.1.2 Chaining required files
	5.1.3 Better application modeling practice
	never require system.a4l in an application model.

	5.1.4 Substitute libraries and PROVIDE
	5.1.5 REQUIRE and combining modeling packages

	5.2 How REQUIRE finds the files it loads
	5.2.1 ascdata
	5.2.2 the current directory
	5.2.3 ascend4/models/
	5.2.4 Multiple modeling projects
	5.2.5 Example: Finding “ben/bencolumn.a4l”
	5.2.6 How REQUIRE handles file and definition conf...
	5.2.7 Extending the list of searched directories

	Chapter 6 Plotting data sampled from complex model...
	6.1 The graph we want
	6.2 Constructing a plot curve
	6.3 Constructing the array of curves
	6.4 Resulting position plot
	6.5 1-D mechanical hook, spring, mass, anchor, and...

	Chapter 7 How to Define Variables and Scaling Valu...
	the purpose of this chapter
	7.1 The Big Picture: a taxonomy
	ATOM
	CONSTANT
	set
	relationships
	MODEL
	SOLVER_VAR
	Scaling value

	7.2 How to find the right variable type
	Load atoms.a4l
	Find an ATOM or CONSTANT by units
	Selecting the right type

	7.3 How to define a new type of variable
	Saving customized variable types
	7.3.1 A new real variable for solver use
	Exceptions

	7.3.2 A new real constant type
	Universal exceptions and unit conversions

	7.3.3 New types for integers, symbols, and boolean...

	7.4 How to define a scaling variable
	ASCEND cannot do it all for you
	Scaling atom default value

	Chapter 8 Entering Dimensional Equations from Hand...
	8.1 Example 1— vapor pressure
	8.1.1 Converting the ln term
	8.1.2 Converting the RHS
	8.1.3 In summary for example 1

	8.2 Fahrenheit— variables with offset
	8.3 example 3— pressure drop
	8.4 The difficulty of handling unit conversions de...
	8.4.1 General offset and difference units

	Chapter 9 Defining new units of measure
	9.1 Caveats
	Order matters!
	Multiplicative unit conversions only!

	9.2 Individualized units
	9.2.1 Units of measure for a specific model
	9.2.2 Units of measure for all your personal model...

	9.3 New system-wide units
	9.4 Send them in

	Chapter 10 How (and why) to write standard methods...
	10.1 Why you should follow our ways
	If debugging is the repair of modeling errors, the...

	10.2 Methods *_self VS *_all
	Too many cooks spoil the soup.
	Use *_self methods on locally created variables an...
	Use *_all methods to manage a troublesome part

	10.3 How to write ClearAll and reset
	10.3.1 ClearAll
	10.3.2 reset

	10.4 The *_self methods
	10.4.1 METHOD check_self
	10.4.2 METHOD default_self
	10.4.3 METHOD bound_self
	10.4.4 METHOD scale_self

	10.5 The *_all methods
	10.5.1 METHOD default_all
	10.5.2 METHOD check_all
	10.5.3 METHOD bound_all
	10.5.4 METHOD scale_all

	10.6 METHOD specify
	10.7 METHOD values
	10.8 Methods and chemical process models
	10.9 Summary
	adding our standard methods to a model definition

	10.10 Method writing automation
	Just hit the button Library.Edit.Suggest methods a...

	Chapter 11 The model libraries for multi- componen...
	11.1 A description of the libraries
	first the phase definitions
	then the components and their data
	and finally the mixture thermodynamic models
	11.1.1 The phases.a4l library
	need to create only instances of phases_data
	the phase indicators and types

	11.1.2 The components.a4l library
	need to create only instances of components_data
	reference component
	adding a new component
	adding UNIFAC group identifiers
	adding Wilson parameters

	11.1.3 The thermodynamics.a4l library
	create instances only of phase_partials and thermo...
	11.1.3.1 Creating an instance of a phase_partials ...
	cannot directly embed SELECT statements in FOR loo...
	disappearing phases

	11.1.3.2 Creating an instance of a thermodynamics ...

	11.2 Using the thermodynamics models
	11.2.1 streams and holdups
	11.2.2 flash units and variants thereof
	11.2.3 Distillation columns
	11.2.4 Dynamic unit models

	11.3 Discussion

	Chapter 12 A Detailed ASCEND Example of a Dynamic ...
	the purpose for this chapter
	topics covered
	12.1 Converting the word description into an ASCEN...
	an ASCEND model is a type definition
	the first version of the code for tank

	12.2 Solving an ASCEND instance
	script code
	Syntax for set_int
	Syntax for INTEGRATE

	12.3 Viewing Simulation Results
	Graphing options
	Graphing in Windows
	Syntax for asc_merge_data_file command
	matlab conversion
	excel conversion
	ascend conversion

	12.4 Preparing a model for reuse
	12.4.1 Parameterizing the tank model
	parameterized tank model set_ode method
	Larger model with two tank models being used as pa...

	12.5 In conclusion

	Chapter 13 Creating Conditional Models in Ascend
	what is a conditional model ?
	13.1 The WHEN Statement: Conditional Configuration...
	observations about the WHEN statement
	select among alternatives
	conditional program
	13.1.1 The Simplest Example
	13.1.2 A Second Example

	13.2 The SELECT Statement: Conditional Compilation...
	13.2.1 A Simple Example

	13.3 The SWITCH Statement: Conditional Execution o...
	13.3.1 A Simple Example

	Chapter 14 Boundary value problems
	14.1 bvp.a4l

	Index

