
to
f
der”
ir
sk
e
t

ND

dy to
del
CHAPTER1 STARTING POINTS

Our goal: The purpose of this chapter is to help you find out what you need
read first about ASCEND IV in order to accomplish some portion o
your mathematical modeling tasks. Since there is no single “best or
to learn in for all people, we list the introductory documents and the
“sound bytes” concisely, in the hope that this makes your search ta
less difficult. If ASCEND IV is new to you, work through the first thre
listed in sequence, then branch to the special topics you need mos1.
Without further ado, your goals.

1. If you last used ASCEND as ASCEND III running on an HP or Apollo, ASCEND IV is new to you.

1.1 PRIMAL SUBJECTS

Chapter 2 Building and solving a small mathematical model from a “simple”
problem description of a water tank. This is basic mathematical
modeling of a physical system. If you have never, ever used ASCE
IV, you should probably start here to build and solve a model.

Chapter 3 Making any model easier to share with others by adding basic
methods, scripts, and model interfaces.

Chapter 4 Reusing a model for plotting and case studies with an introduction to
type refinement and inheritance. Defining and executing a case stu
generate data and plots which indicate how your mathematical mo
responds to alternative input values.

Chapter 5 Managing modeling project files with REQUIRE and PROVIDE.
ASCEND will automatically load the other type definition files you
need when working on a model if you follow some simple rules.

2 STARTING POINTS

en
e

he

ese

 not
eek,
Chapter 6 Defining a plot which gathers scattered data from your models into a
plt_plot that can be viewed from the Browser window.

howto-specify
(Art,Ben, in progress)

Defining a “square” or “well-posed” problem when your model gets
big. Writing a “specify” method is the only reliable way to go, and ev
this is not simple unless you plan ahead. Degrees of freedom can b
tricky.

Chapter 7 Defining new types of variables or constants when the standard
library does not have what you want.

Chapter 8 Entering correlation equations with units and how we support
degrees Farenheit.

Chapter 9 Defining new units of measure based on SI or other existing units.

howto-library1
(NOTES, check
methods, etc)

Getting it right the first time. Modeling reliably in teams requires
communicating all problem aspects including the goals to be met, t
mathematical problem to be solved, the solution process, and the
testing criteria that define an acceptable solution. You can do all th
in ASCEND IV.

Chapter 10 Making basic models easy to use later by adding METHODS.
Defining more standard methods and your own methods so you do
have to remember how you made the model work yesterday, last w
last year, or in your last incarnation. It’s almost automatic.

1.2 ENGINEERING SUBJECTS

Chapter 11 Defining a chemical mixture and physical property calculations for
use in process simulation. Equilibrium thermodynamics, phases,
species, and all that jazz. Adding species and correlations to the
database.

howto-column1
(Art, in progress)

Defining a steady-state distillation column in a flowsheet using the
column library that comes with ASCEND IV.

howto-reactor
(Duncan, in progress)

Defining a chemical reactor model in a flowsheet. Not a task for the
faint of heart, but probably far easier than defining a new reactor in
almost any commercial simulator.

Chapter 12 Defining a simple dynamic model (initial value problem) and
watching it respond. Water level in a tank.
Last modified: June 20, 1998 8:51 pm

ENGINEERINGSUBJECTS 3
howto-dynamic2
(Duncan, in progress)

Defining a complex dynamic model using dynamic libraries.
Dynamic vapor-liquid flash tank.

howto-column2
(Duncan, in progress)

Simulating a dynamic distillation column in a flowsheet using
ASCEND.

howto-control
(Duncan, in progress)

Controlling dynamic systems, disturbances, and all those pesky
graphing tools using the Script window and Tcl.

Chapter 13 Writing a conditional model where which equations apply is
determined by variable values or boundary expressions.

Chapter 14 (Ben, in
progress)

Defining a dynamic model with end-point conditions (boundary
value problem) using our collocation (bvp) library.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-overview.fm5

4 STARTING POINTS
Last modified: June 20, 1998 8:51 pm

5

said
n
ing
olve
once
.

d it.
till

 for

you

nd

4)
use
ting

ns

nt if
CHAPTER2 A DETAILED ASCEND EXAMPLE

FORBEGINNERS: THE MODELING OF

A VESSEL

the purpose for this
chapter

You read our propaganda about the ASCEND system in which we
it was to help technical people create hard models. We said you ca
tackle really large models -- 100,000 equations, compiling and solv
them in minutes on a PC. We also pointed out that you can readily s
the small problems many currently solve using a spreadsheet, only
posed you can solve them inside out, upside down and backwards

This sounded intriguing so you downloaded the system and installe
Aside from getting the load module to transfer without error (there s
are network problems), this step proved quite straight forward. You
double clicked the ASCEND icon on your desktop and started it up
the first time. Four windows opened up. You panicked.

Who wouldn’t?

To use this system properly requires that you learn how to use it. If
pay the price to do so - and we hope it is not a large price, then we
believe you will find the tools we have provided to help you create a
debug models will pay you back handsomely.

This (Chapter 2)and the next two chapters (Chapter 3 and Chapter
are meant to be a good first step along the path to learning how to
ASCEND. We shall lead you through the steps for creating and tes
a simple model. You will also learn how to improve this model so it
may be more readily shared with others. We will present our reaso
for the steps we take. We shall show you all the buttons you should
push as you proceed.

We strongly suggest you put time aside and go through all three of
these chapters to introduce yourself to ASCEND. It should take you
about two to three hours. The second chapter is particularly importa
you wish to understand our approach to good modeling practices.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

6 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

ute,

t

hods

l.
the problem Step 1:We are going to create and test an ASCEND model to comp
the mass of the metal in the sides and ends of the thin-walled
cylindrical vessel shown in Figure 2-1.

Figure 2-1 A thin-walled cylindrical vessel with flat ends

Step 2:This model is to become a part of a library of models which
others can use in the future. You must document it. You must add
methods to it to make it easy for others to make it well-posed. You
should probably parameterize it, and finally you must create a scrip
which anyone can easily run that solves an example problem to
illustrate its use.

topics covered Topics covered in this and the following two chapters are:

Chapter 2 (this
chapter)

• Converting the word description to an ASCEND model.

• Loading the model into ASCEND, dealing with the error
messages.

• Compiling the model.

• Browsing the model to see if it looks right

• Solving the model.

• Examining the results.

• More thoroughly testing the model.

Chapter 3 • Converting the model to a more reusable form by adding met
to it and by parameterizing it.

• Creating a script to load and execute an instance of the mode

Chapter 4 • Creating an array of models.

D

H

Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 7

as

l,”
 start

 that

umn

 in

ll
d

• Using an existing library model for plotting.

• Creating a case study using the model.

We shall introduce many of the features of the modeling language
well as the use of the interactive interface you use when compiling,
debugging, solving and exploring your model. Language features
include units conversion, arrays and sets.

2.1 CONVERTING THE WORD DESCRIPTION INTO

AN ASCEND MODEL

an ASCEND model
is a type definition

Every ASCEND model is, in fact, a type definition. To “solve a mode
we make an instance of a type and solve the instance. So we shall
by creating a vesseltype definition. We will have to create our type
definition as a text file using a text editor. (Possible text editors are
Word, Framemaker, Emacs, and Notepad. We shall discuss editors
shortly.)

We need first to decide the parts to our model. In this case we know
we need the variables listed in Table 2-1. We readily fill in the first
three columns in this table. We shall discuss the entry in the last col
in a moment.

We will be computing the masses for the metal in the side wall and
the ends for this vessel. As this is a thin-walled vessel, we shall
compute the volume of metal as the area of the walls times the wa
thickness. The following equations allow us to compute the require
areas

(2.1)

(2.2)

Table 2-1 Variables required for model

Symbol Meaning Typical Units
ASCEND
variable type

D vessel diameter m, ft length

H vessel height m, ft length

wall_thickness wall thickness mm, in length

metal_density metal density kg/m3, lbm/ft3 mass_density

side wall area πDH=

single end area πD
2

4
----------=
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

8 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

pute

 it.
here
ant

s

that
one

 in

r

ns,
We should be interested in the volume of the vessel, which we com
as:

(2.3)

We add the variables in Table 2-2 to our list.

We believe that no one should create a model of any consequence
without worrying about the units for expressing the variables within
We consider that to be a commandment handed down from somew
on high; however, we know that others do not believe as we do. Gr
us our beliefs. We have created in the ASCEND system a library of
variable and constant types called

atoms.a4l.

The file type “.a4l” designates it to be an “ASCEND IV library” file.
Double click on this link to see the approximately 150 different type
ranging from universal constants such asπ (=3.14159...) and e
(=2.718...) to length, mass and angles. If we have not created one
you need, you can use this library of types to see how to construct
for yourself and add it to your file of type definitions. You will find
detailed instructions for how to make your own variable type library
Chapter 7, “How to Define Variables and Scaling Values in an
ASCEND Model,” on page 73.

type definition library
for variables and
constants

ASCEND considers variable and constant types to be elementary o
“atomic” to the system. These type definitions can contain only
attributes for variables and constants. They cannot contain equatio

Table 2-2 Some more variables required for vessel model

Symbol Meaning Typical Units
ASCEND
variable type

side_area area in the side
wall of the vessel

m2, ft2 area

end_area total area in the
ends of the vessel

m2, ft2 area

vessel_volume volume of the
vessel

m3, ft3 volume

metal_volume total volume of
metal in walls

m3, ft3 volume

metal_mass total mass of the
metal in the
walls of the ves-
sel

kg, lbm mass

vessel volume end areaH×=
Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 9

tion
nd so

 of

e

l
ft

lues

 For
 in

ype
, we

e

for example. Thus ASCEND calls such a type definition anatom rather
than amodel. Figure 2-2 illustrates the definition for the typevolume.

ATOM volume REFINES solver_var

DIMENSION L^3

DEFAULT 100.0{ft^3};

lower_bound := 0.0{ft^3};

upper_bound := 1e50{ft^3};

nominal := 100.0{ft^3};

END volume;

Figure 2-2 A typical type definition called an atom used to
define variable and constant types. Here we illustrate
the type that defines volume.

The definition starts by stating that volume is a specialization of
solver_var. The typesolver_var refines a base type in the system
known asreal and adds several attributes to it that a nonlinear equa
solver may need, such as a lower and upper bounds, a fixed flag, a
forth.

dimensions and units
in ASCEND.

The type definition for volume states that volume has dimensionality
length to the power 3 (L^3) where L is one of the 10 dimensions
supported by ASCEND (see “Dimensionality:” on page 161 in
ASCEND Syntax document for the 10 dimensions defined within th
ASCEND language).

One may express the value for a volume using any units which are
consistent with the dimensionality of L^3, such as {ft^3}, {m^3},
{gal}, or even {mile^4/mm}. Setting the lower bound to 0 {ft^3} says
volume must be a nonnegative number. ASCEND used the nomina
value for scaling a variable of type volume when solving, here 100 3.

One may change the values for the bounds, default and nominal va
at any time.

We now can understand the last column in Table 2-1 and Table 2-2.
each variable or constant in the system, we have identified its type
the fileatoms.a4l. That is, we looked in this file for the type definition
that corresponded to the variable we were defining and listed that t
here. This task is not as onerous as it seems. As we shall see later
provide a tool to find for you all atom types that correspond to a
particular set of units, e.g, ft^3 -- i.e., the computer will do the
searching for you.

In Figure 2-3 we see the definition of one of the universal constants
contained in atoms.a4l. This definition is very short; it gives the nam
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

10 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

dd
re

n
PI}

e
).

)

airs,
of the typecircle_constant, that it refinesreal_constant and that it has
the value 1 {PI} where the internal conversion needed for {PI} is
defined in the file defining the built-in units in ASCEND. One can a
more units if desired at any time to ASCEND by defining one or mo
personal units files (Chapter 9 tells you how to do this).

universal constant
definition

UNIVERSAL CONSTANT circle_constant

 REFINES real_constant :== 1{PI};

Figure 2-3 The type definition for circle_constant which has the
value of 1 {PI} (equals 3.1415926536)

We shall in fact find this constant useful in our program, and we ca
either introduce a constant with this value or simply use the value 1{
in our program. We shall choose to do the latter.

It is time to write our first version for the model, which we do in
Figure 2-4. We first list any other files containing type definitions
which this model will use; here we list “atoms.a4l” following the
keywordREQUIRE. ASCEND is sensitive to case so pay attention to
where we use and do not use capital letters. Keywords are always
capitalized. Often for clarification we use capital letters in a name w
use for a variable or label (e.g., we use D for diameter rather than d
Note that all ASCEND statements end with a semicolon (i.e., with ;
and not at the end of a line and that blank lines have no impact.
Comments are between opening and closing parenthesis/asterisk p
i.e., ‘(*’ and ‘*)’ .

the first version of the
code for vessel

REQUIRE "atoms.a4l";

MODEL vessel;

(* variables *)

side_area, end_area IS_A area;

vessel_vol, wall_vol IS_A volume;

wall_thickness, H, D IS_A distance;

H_to_D_ratio IS_A factor;

metal_density IS_A mass_density;

metal_mass IS_A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;

Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) *

wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

END vessel;
Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCENDMODEL 11

d
me

ND

r,

ted.

d to
 any
 we

ere
w
uld

e

unt
n

Figure 2-4 First version of the type definition forvessel.
(Available asvesselPlain.a4c in the ASCEND
model library)

Our model definition has the following structure for it so far:

• MODEL statement

• list of variable we intend to use in the type definition

• equations

• END statement

While we have put the statements in this order, we could mix up an
intermix the middle two types of statements, even going to the extre
of defining the variables after we first use them. The MODEL and E
statements begin and end the type definition.

You should see little that surprises you in the syntax here. Howeve
you may have noted that we have created a definition that says
absolutely nothing about how to use the variables and equations lis
There is no solution procedure buried in this type definition. In
ASCEND the idea of solving is separate from saying what we inten
solve. Also note that we have not said anything about the values for
of the variables nor what we intend to calculate and what variables
intend to treat as fixed input.

2.2 EDITING , COMPILING AND BROWSING AN

ASCEND MODEL

Could we compile an instance of a vessel given this definition? If th
had been some arrays in our definition for which we did not say ho
many items were in the arrays, we could not. However, here we co
compile an instance, putting aside storage space for each of the
variables and somehow capturing the equations relating them.

please do not alter the
models subdirectory

When we compile new models, we need a place to store them. On
possibility would be to put them into themodels subdirectory of the
ASCEND installation (e.g., in .../ASCEND/ascend4/models/).
However, you really should leave the contents of this subdirectory
untouched—always. You might think of it as being read only. We co
on being able to replace it totally every time you install a new versio
of ASCEND. Whenever we add new model libraries or corrected
versions of previously existing model libraries, we put them in this
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

12 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

un

e.

D
U

ut

t

im,
e
l

do
k in

n a

e
e

gh
subdirectory. ASCEND does nothing to enforce this rule while you r
it, but please do not blame us if an upgrade wipes out changes you
made in ascend4/models/; we warned you.

rather put your things
into theascdata
subdirectory (you own
it)

To avoid this problem, ASCEND also creates a subdirectory called
ascdata that it will not touch when you install a new version of
ASCEND. It will look in this subdirectory first when looking for a file
to load when you have not given a full path name for finding that fil
The install process for ASCEND will placeascdata into your home
directory1. ASCEND tells you where it has placed this subdirectory
when you start it. If you forget where it is, press the “About ASCEN
IV” button on the Script window Help menu and look below the GN
ASCEND picture. It should say something like:

USER DATA DIRECTORY /usr0/ballan/ascdata

It is within the folderascdata that you should place any ASCEND
models you create. When running a script (which we shall talk abo
later), ASCEND first looks in this subdirectory for files, and then it
looks in themodels subdirectory. It stops looking when it finds the firs
available version of the file. For further details on this search, see
Chapter 5.

1. On Windows 95, you can identify a subdirectory to be your home directory by adding a line of the form
“SET HOME=FullPathNameToSubdirectory” to the file c:\autoexec.bat. Add it without the quotes,
replacing the right hand side with the full path name to the desired home directory - e.g., SET
HOME=c:\mydocu~1\1998\. On UNIX and NT systems, your home directory is likely pretty obvious.

create a text file
containing the model
definition

Next open an editor, such as Word, FrameMaker, emacs, pico, vi, v
Notepad or Wordpad. Now type in or, better yet, cut and paste in th
statements in Figure 2-4. Be very careful to match the use of capita
and small letters. Do not worry about blanks between symbols but
not embed blanks within symbols. In other words, do not put a blan
the middle of the symbolside_wall but do not worry about putting zero
or more blanks betweenside_wall and= in an equation.

When you are finished, be sure to save the file as a text file (e.g., o
PC as a .txt file). Call it vesselPlain.a4c. The “.a4c” stands for
“ASCEND IV code.” Editors such as Word and FrameMaker require
you to use theSave As method to save and then to choose the file typ
to betext. Microsoft editors will append “.txt” to the file name. Remov
the .txt ending off the file name -- do not let Microsoft bully you into
thinking you should not -- and change it to “.a4c”.

(This model is also available asvesselPlain.a4c in the ASCEND
models library, but we suggest it would be better for you to go throu
Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCENDMODEL 13

e

ital

 if
ing a
e

ry

 is

se

e
For
o

se

e

the exercise of creating your own version here. At the least copy th
library file to your ASCEND space so you can play with your own
version at this time.)

When you are done, you should have a text file calledvesselPlain.a4c
stored in yourascdata subdirectory. It should contain precisely the
statements in Figure 2-4 with care having been taken to match cap
and lower case letters as shown there.

start the ASCEND
system. Move and
resize the windows to
make yourself
comfortable.

Start the ASCEND system by double clicking on the ASCEND icon
you are on a PC or typing ascend at the command line if you are us
UNIX machine. Four windows2 will appear, three smaller ones and on
larger one that tells you about ASCEND. You can close this larger
window by pressing itsdismiss button. Move the three smaller ones
around on your screen so they do not overlap or so they overlap ve
little. Resize them if you want to. You might start by putting the one
calledScript in the upper left, the one calledLibrary in the upper right
and the one calledConsole in the lower right. We shall assume you
have placed them in these positions in the following so, even if that
not your favorite placement, it might be useful to use it for now.

The Script window shows the license and warranty information for
ASCEND: ASCEND is protected by the GNU General Public Licen
Version 2 and comes with absolutely no warranty.

2. UNIX users of ASCEND will only see three windows appear. The xterm where you started ASCEND
replaces theConsole window.

note that each window
by itself looks pretty
nonthreatening

As you can see, each window by itself looks like a pretty normal
window. Each has buttons across the top under which one will find
different tools to run. Each also has one to three subwindows for
displaying things. Each has aHelp button that you can push at any tim
that you want to read all kinds of detailed things about the window.
the moment we will provide you with the “just in time” details here s
you do not need to be sidetracked just yet by pushing theseHelp
buttons.

hey, where did that
window go? I want it
back NOW!

If you ever lose a window, open theScript window and under theTools
button, select the window you wish to open. You cannot lose theScript
window unless you shut down ASCEND. In the upper right of each
window are Window 95/NT like buttons that iconify, enlarge and clo
the windows (underscore, box and X respectively). Picking X will
remove the window from your screen. You get it back by going to th
Script as described above or, as you will discover, by exporting
something to it.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

14 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

ou
ow
e

to
oes

r
ing

will

’t

ints
nce,
.

I want to go to dinner
(or I just panicked
when I saw four
windows).How do I
quit ASCEND?

Picking the small X box in the upper right for theScript window is a
first step in exiting ASCEND. Try it but hit the cancel button when y
are asked to confirm your desire to leave. It always pays to know h
(not just when) to quit. If you want to get the Script window out of th
way, iconify it (pick the underscore button at the top right of the
window). You will have to know how to recover an iconified window
retrieve it later - usually a simple single or double click on the icon d
the trick.

saving window
positions

If you like where you have placed the windows for ASCEND on you
display, you can get ASCEND to remember all their locations by go
to theScript window and selectingSave all appearances under the
View button. A similar tool exists for each window for saving only its
position.

start by loading and
compiling using tools
in the Library window

We shall start with theLibrary window in the upper right. This
window provides you with the tools to load and compile files
containing type definitions. You can also display the code for the
different types you have loaded.

use theleft mouse
button unless we tell
you otherwise
(however, on you
own explore using the
right mouse button in
any of the windows)

Let’s load your file. Under theFile button select theRead types from
file tool. You select this tool by clicking on it using theleft mouse
button - i.e., the button you should have expected to use. A window
appear asking you to find the file you want to read into ASCEND.
Navigate to where you storedvesselPlain.a4c (in the subdirectory
ascdata) and select that file. If you have the wrong ending on the file
(you left .txt or you forgot to put.a4c as the ending), tell the system to
list all files and pick the one you want. The.a4c is used by the system
to list only the files it thinks you might want to load, but ASCEND isn
fussy. It will attempt to load any file you pick.

Look in the Console window at the lower right, and, if the file loads
without any errors being listed there, you should see

AscendIV% REQUIREing file “atoms.a4l”

REQUIREing file “system.a4l”

REQUIREing file “basemodel.a4l”

REQUIREing file “measures.a4l”

If this is what you see, you can skip past the next bit to where you
should start to compile an instance. The next bit has some useful h
on how to debug your models. If you want some debugging experie
put a known error into yourvesselPlain.a4c file and see what happens
This move will give you a reason to read the following section.
Last modified: June 20, 1998 8:51 pm

EDITING, COMPILING AND BROWSING ANASCENDMODEL 15

ns

nt,
ur

 a

ry
ges

eed
D

ore
 are
ill
an
he

le
ted

ind
ge

 to
ied
 or
how
ood
DO NOT ignore the
diagnostics that
might appear in the
Console window

If the Console window in the lower right starts filling with several te
of lines of diagnostics, look to see if you included the REQUIRE
statement at the beginning of your model file. Without that stateme
ASCEND is missing all the definitions for the types of variables in yo
model, and it will go wild telling you so. It might also be choking on
Word document because you forgot to save it as a text file.

While loading the files containing these types, ASCEND will look ve
closely at the syntax and will give you all kinds of diagnostic messa
in the Console window (lower right) if you have done something
wrong. It will also at times spew out some warning messages if you
have done something thought to be poor modeling style. You must h
the error messages as the file will not load if there are any. ASCEN
will tell you if it did not load the file.

You should consider heeding the warnings if you get any. If you ign
them now, they may come back and haunt you later. However, there
times when we issue a warning but everything will work, and you w
think we were not too clever. Our response: better modeling style c
eliminate these warnings. (It’s been our system so we get to have t
last word.)

how do I jump to line
100 of a file when
using some of the
standard editors?

The error and warning messages will contain a line number in the fi
where the error has occurred. This will be the line number as coun
by an editor with the first line being line 1 in the file. Editors always
provide you with a means to get directly to a line number in a file. F
out how to do that or you will not be too happy with debugging a lar
file. For example, in emacs, type aCtrl-c (type the letterc while
holding down theCtrl key) followed by the letterg, then a line number
and a carriage return. In Word and FrameMaker on the PC, typeCtrl-g
and follow the instructions. For FrameMaker on UNIX, find theGo to
Page tool and open it (Esc-v p or look underView).

You will be in the debug mode for a new system so do not expect it
be totally obvious the first few times you make an error. We have tr
to use language that should be meaningful, but we may have failed
the error may be pretty subtle and not possible for us to anticipate
to describe it in your terms. (Send us a bug report if you have any g
ideas on language.)

reloading a file
overwrites the
previous version

You can reload any file your have corrected using theRead types from
file tool under theFile button. It will overwrite the previous version of
the file only if the file has changed since it was last loaded (pretty
clever, right -- we do not reload those big files unless you make a
change even if you tell us to).
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

16 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

el in
e
he

u

“

 will

ing
er

ent
 of

l.
displaying the code You can display the code you have written. Select the model vess
the right window of the Library. Then under the Display button at th
top, select the tool Code. The Display window will open displaying t
code for this model.

now compile as “v” Okay, you have your file loaded without getting any diagnostics. Yo
are ready to compile. In theLibrary window, look in the left window
and select the filevesselPlain.a4c. It contains the type definition you
wish to compile. You should see the typevessel appear in the right
window. Selectvessel. Under theEdit button, selectCreate simulation.
A small window opens and asks you to name the simulation. Call it v”
-- yes, just the letter “v” and select “OK.” Short names for instances
often seem to be preferable.

Look again in theConsole window for diagnostics. If everything
worked without error, you will see some statistics telling you how
many models, relations and so forth you have created during the
compile step.

You may see the following message in theConsole window:

Found STOP statement in METHOD basemodel.a4l:239

 STOP {Error! Standard method “default_self” called but

not written in MODEL.};

 In call to METHOD default_self (depth 1) in instance v

 Line 239, File: basemodel.a4l.

You can safely ignore this message for now. In the next chapter, we
discuss writing methods and the meaning of this message.

and pass the instance
to theBrowser

Selectv is a vessel in the bottom of theLibrary window. Then under
theExport button, selectSimulation to Browser to exportv to the
Browser tool set. TheBrowser window will open and containv. It
might be useful to enlarge this window and move it down a bit, plac
it a bit to the right of the center of your computer display. (Rememb
you can save this positioning and sizing of theBrowser window by
going under theView button and pickingSave appearance.)

examinev by playing
with it in theBrowser

In the left upper window of theBrowser, you will findv to be the
current object. Listed in the right window are all the parts of the curr
object. You will see the variables listed here along with an indication
their type. For example, you will findCylinder IS A relation andD IS A
distance listed, among many others.Cylinder is one of the equations
you wrote describing the model whileD was the diameter of the vesse
Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCENDINSTANCE 17

es
ple,

D

stant

ype

d see
ot

 left
.

nts.

n
r
ow
r
t

ing
included flags for
relations

If you pick any of the parts in the right or bottom windows, it becom
the current object; its parts then show in the right window. For exam
a relation has aboolean part (a flag that takes the value TRUE or
FALSE) indicating whether or not it is to be included when ASCEN
solves the equations you defined for the model.

If you wish to display the current value for this flag, pick the tool
Display Atom Values under theView button. This tool toggles a switch
that causes either the value or the type to show for a variable, a con
or a relation in the upper right window of theBrowser. Try toggling it
back and forth and looking at different things in theBrowser.

Pick each of the tools underView and note what happens to the
displaying of things in theBrowser.

Across the bottom of theBrowser window note the buttons you can
select labeledRV, DV and so forth. If you have made theBrowser
window large enough, you will see to the right of these buttons the t
of objects whose value you want to appear or not in the lowerBrowser
window as you toggle each button. Toggle each of these buttons an
if the lower display changes. If it does not, then this type of part is n
in the current object.

2.3 SOLVING AN ASCEND INSTANCE

Well, you have been patient. While there are lots of interesting tools
to explore in theBrowser, perhaps it is time to try to solve this model
To solvev, make it the current object (it alone should be listed in the
upper left window of theBrowser). Then, under theExport button,
selectto Solver. TheSolver window will open, along with a smaller
window labeledEligible. Move theEligible window up a bit so it does
not cover any or very little of theSolver window. Move theSolver
window to the lower left and enlarge it so you can see all of its conte

if ASCEND stops
responding, hunt
down one of those
“nasty” windows
with a “yellow lock”
and close it properly

This Eligible window is one of the “nasty” ones. If it is open and you
do not do something to make it happy and go away, it will stop you
from doing anything else in the ASCEND system. Such windows
appear with a black lock icon in a yellow field -- we shall call it a
“yellow lock.” They demand you attend to them NOW. A good solutio
would be for such a window to stay open and on top of all the othe
open windows. Unfortunately we have not been able under all wind
managers to stop it from ducking under another window. If you eve
find ASCEND unwilling to respond, iconify the other windows to ge
them out of the way, until you find one of these windows. On the PC
you can go to the icon bar at the bottom of your screen and, by click
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

18 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

e it

in

ties.
free

re).
s

You
n
s
00
ere.

000

ed

es
e
t

t

on the window, bring it to the top. Then do whatever it takes to mak
happy and close properly -- such as cancel it. If you are not careful
here, for example, this window will hide under theSolver window
before you are through with it.

is our problem well
posed?

TheSolver window contains the information we need to see to expla
why theEligible window opened in the first place. Examine the
information theSolver displays. It tells you thatv has 6 relations
defining it and that all are equalities and included. It has no inequali
On the right side we see there are 10 variables and all are “free.” A
variable is one for which you want the system to compute a value.
Hmm, 6 equations in 10 variables. Something is wrong here. For a
well-posed problem, you want 6 equations in 6 variables (i.e., squa
ASCEND reports that the system is underspecified by 4. This mean
you need to pick four of the variables and declare them to be fixed.
will also have to pick values for these fixed variables before you ca
solve for the remaining 6. For such a small problem as this one, thi
task is not formidable. For a model with 50,000 equations and 60,0
variables, one would quit and go home. We have exposed a need h
We certainly would like ASCEND to help us here for this small
problem. But we insist that it help us in major ways to make the 50,
equation, 60,000 variable problem possible.

picking variables we
are going to fix

Okay, the small help such as needed here is why theEligible window
opened. Let’s return to it. It lists all the variables of those not yet fix
that are eligible to be fixed and still leave us a calculation that has a
chance to solve. The very fast algorithm to find eligible variables do
an analysis of the structure of the equations. It cannot guarantee th
resulting problem is numerically well-posed, but picking a variable i
does not list as one to fix will guarantee the problem is numerically
singular. Good luck on solving it if it is. We will go for coffee rather
than wait for you to succeed.

So look at the list and decide what you would like to fix for your firs
calculation with this model. Diameter (v.D) seems a good choice. Now
you can see why we called the instance just plain oldv. A longer name
would get tiring here. Anyway, pickv.D. Immediately the list reappears
with v.D no longer on it. (ASCEND has just repeated the eligibility
analysis.)

We have three more to pick. On the list are both vessel height,v.H, and
v.H_to_D_ratio. We certainly cannot pick both of these. One implies
the other if we know a value forv.D. Pickv.H_to_D_ratio. Note that
v.H is no longer eligible. Good. We would be worried if it were still
there.
Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCENDINSTANCE 19

ed
,

3

nd,
lved
in
d a

ce -

this
gh
e
e
 we

 (we

he

e

odel

iven
We seev.metal_density. Pick it. Strange. Metal mass and volume stay
eligible. Well, okay. If we pick metal mass, wall thickness is implied
and the same is true if we were to pick metal volume. However, it
seems much more natural to pickwall_thickness so make that the last
variable picked. TheSolver window now says this problem is square
(i.e., it has 6 equations in the same number of unknowns). Table 2-
summarizes the four variables we have elected here to fix.

ASCEND partitions
the problem into
smaller problems for
solving

Toward the bottom right of theSolver window, we see there are 6
“blocks.” What are blocks? ASCEND has examined the equations a
in this case, has discovered that not all the equations have to be so
simultaneously. There are 6 blocks of equations which it can solve
sequence. 6 blocks and 6 equations means that ASCEND has foun
way to solve the model by solving 6 individual equations in sequen
- i.e., one at a time. That is great.

But ASCEND is going to be even smarter than this about solving in
case. If an equation is being solved by itself and if it is simple enou
algebraically, ASCEND will rearrange it and solve directly for the on
variable that is not yet calculated in it -- without iteration. Here all th
equations are in fact that simple. This problem, with the 4 variables
selected to be fixed, can be solved entirely without iteration.

displaying the
incidence matrix

Can we see what ASCEND has just discovered? It turns out we can
would not have asked if we could not). Under theDisplay button on the
Solver, select theIncidence matrix tool. A window pops open showing
us the incidence of variables in the equations and display them in t
order that ASCEND has found to solve them. The dark squares are
incidences under the variables for which we are solving; the lighter
looking X’s to the right side are incidences for the variables we hav
fixed. Click on the incidence in the upper left corner. ASCEND
immediately identifies it for us as the end_area. It identifies the
equation as the one we labeled FlatEnds. We can go back to our m
and find the equation ASCEND will solve first. The other variable in
this equation is in the set we fixed; pick it and discover it is D, the
vessel diameter. Of course we can compute the area of the ends g
the diameter. The end_area isπ∗D2/4.

Table 2-3 Variables we have fixed

variable

D

H_to_D_ratio

metal_density

wall_thickness
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

20 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

are

es
 we
 not

me

 the

 the
he
 of
Play with the other incidences here. See what the other equations
and the order ASCEND will use to solve them.

Okay, we return to our task of solving. We need next to supply valu
for the variables we have selected to be fixed. Again, the approach
are going to take is acceptable for this small problem, but we would
want to have to do what we are about to do for a large problem.
Fortunately, we really have thought about these issues and have so
nice approaches that work even for extremely large problem -- like
100,000 equations.

which variables are
currently fixed for this
problem?

Let’s see. Do you remember the variables we fixed? What if you do
not? Well, we go back to theBrowser. Be surev remains the current
object (it alone is in the upper left window). Under the buttonFind pick
theBy type tool. A small window opens with default information in it
saying it will find for us all objects contained in the current objectv of
typesolver_var whose fixed flags are set toTRUE. These are precisely
the attributes for the variables we have fixed. SelectOK and a list of the
four variables we fixed earlier appears.

specifying values for
the fixed variables -
this approach is useful
for small problems

For each variable on this list, we should supply a value. Select D in
lower window of theBrowser using the right (theright, not the left --
makev the current object and do it again) mouse button. A window
opens in which we input a value forD. Put in the value4 in the left
window andft in the right. Continue by putting in the values for the
variables as listed in Table 2-4. These values immediately appear in
Browser window as you enter them. If you did not fully appreciate t
proper handling of dimension and units before, you just got a taste
its advantages. YOU did not have to worry about specifying these

things in consistent preselected units.

You can now solve this model. Go theSolver window and, under the
Execute button, pickSolve. You will get a message telling you the
model solved. Dismiss that message and return to theBrowser window
to examine the results. You should see the following results

Table 2-4 Values to use for fixed variables

variable value units

D 4 ft

H_to_D_ratio 3

metal_density 5000 kg/m^3

wall_thickness 5 mm
Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCENDINSTANCE 21

our

y to

e

the

. If
ell
,
e

h as

ad a
ke
D = 1.21922 meter

H = 3.65765 meter

H_to_D_ratio = 3

end_area = 1.16748 meter^2

metal_density = 5000 kilogram/meter^3

metal_mass = 408.62 kilogram

side_area = 14.0098 meter^2

vessel_vol = 4.27025 meter^3

wall_thickness = 0.005 meter

wall_vol = 0.0817239 meter^3

alter the units used for
displaying values

You may wish to alter the units used to display these results. For
example, you enter the diameterD in ft. You may wish to reassure
yourself the 1.21922 meter is 4 ft. Go to theScript window and under
theTools button selectMeasuring units. TheUnits window will open.
Enlarge it appropriately and then place it to the top and far right of y
display.

Since length is a basic dimension in ASCEND, there is only one wa
change the units for displaying length: under theEdit button selectSet
basic units; a cascading menu will appear, selectLength. Another
cascading menu will open with all the alternate units supported in
ASCEND for length. Selectft. The units for all length variables will
switch toft. Look at the values in theBrowser window.

The left upper window of theUnits window contains many variable
types that have composite dimensions. For example, you will find
volume there. Pick it and the right window fills with all the alternativ
units in which you can express volume.

Play with changing the units for displaying the various variables in
vessel instancev.

One point - the left window displaying types having composite
dimensions will display only one type for each composite dimension
the atom types you have loaded were to include volume_scale as w
as volume, then only one of the two types, volume or volume_scale
will be listed here. Changing the units to express either changes th
units for both.

returning to a
consistent set of units

When you are done, you may wish to return to a consistent set, suc
SI. Under theView button are different sets; pickSI (MKS) set.

now we can solve the
model in other ways

We can now resolve our vessel instance in any number of different
ways. For example we can ask what the diameter would be if we h
volume of250 ft3. To accomplish this calculation, we need first to ma
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

22 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE

is
to

f

f

s

of

d to
vessel_volume a variable whose value we wish to fix. When we do th
the model will be overspecified. ASCEND will indicate this problem
us and offer us a list of variables - including the vessel diameterD, one
of which we will have to “unfix.” Finally we need to alter the value o
vessel_volume to the desired value and solve. Explicit instructions to
accomplish these steps are as follows.

• In theBrowser window, makevessel_volume the current object
(select it using the left mouse button). The right window of the
Browser display the parts of thevessel_volume, among them is
thefixed flag with a value ofFALSE.

• (If you do not see the value forfixed but rather its type as a
boolean, under theView button at the top, selectDisplay Atom
Values.)

• Pick fixed with theright mouse button, and, in the small window
that opens, delete the value FALSE, enter the valueTRUE and
select OK.

• Now makev the current object by picking it in the left window o
theBrowser.

• Exportv to theSolver again by selectingto Solver under the
Export button. A window entitledOverspecified will appear
listing the variablesv.D, v.H_to_D_ratio andv.vessel_volume.
Pick v.D and hit theOK button; ASCEND will reset its fixed flag
to FALSE.

• Finally, return to theBrowser window and selectvessel_volume
with theright mouse button. In the small window that appears
type250 in the left window,ft^3 in the right, and hit theOK
button.

• Under theExecute button in the Solver window, select Solve.

Note theSolver reports only 4 blocks for 6 equations. This time it ha
to solve some equations simultaneously. In theSolver window, under
theDisplay button, select theIncidence matrix tool. You will see that
the first three equations must be solved together as a single block
equations.

clearing all thefixed
flags

For a more complicated model you may wish to start over on the
process of selecting which variables are fixed. You can set thefixed
flags for all the variables in a problem toFALSE all at once -- without
knowing which are currently set toTRUE. In theBrowser window,
under theEdit button, select theRun method tool. A window will open
that displays a list of default methods that are automatically attache
every model in ASCEND. One is calledClearAll. Pick it and hitOK.
Last modified: June 20, 1998 8:51 pm

DISCUSSION 23

o
ou

.

del
ng
e
., a

?
o
e.
r.

n to
All the fixed flags for the entire model will now be reset toFALSE. Can
you think of a way to check if this is true? (Do you remember how t
check which variables are currently fixed? Repeat that check and y
should find no variables are on the list.)

You might now want to play by changing what you calculate and fix

2.4 DISCUSSION

You have just completed the creation and solving of a very small mo
in ASCEND. In doing so, you have been exposed to some interesti
issues. How can we separate the concept of the model from how w
intend to solve it? How do we make a model to be well-posed -- i.e
model involvingn equations inn unknowns -- so we can solve it? How
should one handle the units for the variables in a modeling system
What we have shown you here is for a small model. We still need t
show you how one can make a large model well-posed, for exampl
You will start to understand how one can do this in the next chapte

The next chapter is crucial for you to understand if you want to begi
understand how we approach good modeling practice. Please do
continue with it. As it uses the vessel model, it would, of course, be
best to continue with that chapter now.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model1.fm5

24 A DETAILED ASCEND EXAMPLE FORBEGINNERS: THE
Last modified: June 20, 1998 8:51 pm

ADDING COMMENTS AND NOTES 25

s to a
 an

hich
d
ve a
der

,
tand
 *).

en

ger
d
is
tion
g

l —
t on
ate
CHAPTER3 PREPARING A MODEL FOR REUSE

There are four major ways to prepare a model for reuse. First, you
should add comments to a model. Second, you should add method
model definition to pass to a future user your experience in creating
instance of this type which is well-posed. Third, you should
parameterize the model type definition to alert a future user as to w
parts of this model you deem to be the most likely to be shared. An
fourth, you should prepare a script that a future user can run to sol
sample problem involving an instance of the model. We shall consi
each of these items in turn in what follows.

3.1 ADDING COMMENTS AND NOTES

In ASCEND we can create traditional comments for a model — i.e.
add text to the code that aids anyone looking at the code to unders
what is there. We do this by enclosing text with the delimiters (* and
Thus the line

(* This is a comment *)

is a comment in ASCEND. Traditional comments are only visible wh
we display the code using theDisplay code tool in theLibrary window
or when we view the code in the text editor we used to create it.

We suggest we can do more for the modeler with the concept ofNotes,
a form of “active” comments available in ASCEND. ASCEND has
tools to extract notes and display them in searchable form.

notes are active
comments

In Figure 3-1 we show two types of notes the modeler can add. Lon
notes are set off in block style starting with the keyword NOTES an
ending with END NOTES. In this model, we declare two notes in th
manner: (1) to indicate who the author is and (2) to indicate the crea
date for this model. Note that the notes are directed to documentin
SELF which is the model itself — i.e., the vessel model as a whole
object. The object one documents can be any instance in the mode
any variable, equation or part. The tools for handling notes can sor
the terms enclosed in single quotes so one could, for example, isol
theauthor notes for all the models.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

26 PREPARING A MODEL FOR REUSE
REQUIRE "atoms.a4l";

MODEL vessel;

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

vessel_vol "the volume contained within the cylindrical vessel",

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

wall_thickness "the thickness of all of the vessel walls",

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

H_to_D_ratio "the ratio of vessel height to diameter"

 IS_A factor;

metal_density "density of the metal from which the vessel

 is constructed"

 IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"

 IS_A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;

Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-1 Vessel model with Notes added (model
vesselNotes.a4c)
Last modified: June 20, 1998 8:50 pm

ADDING METHODS 27

t
 yet
ust a

odel.
s

er

l
ent
use
s

ode.

del

s to
t be
ll
gs

ady

r

A user may use any term desired in the single quotes. We have no
decided yet what the better set of terms should be so we do not as
suggest any. With time we expect the terms used to settle down to j
few that are repeated for all the models in a library.

there are short notes,
long notes and
separate notes

There are also short notes we can attach to every variable in the m
A “one liner” in double quotes just following the variable name allow
the automatic annotation of variables in reports.

The last few lines of Figure 3-1 shows adding notes we write in a
separateADD NOTES IN object. This object can appear before or aft
or in a different file from the object it describes. This style of note
writing is useful as it allows another person to add notes to a mode
without changing the code for a model. Thus it allows several differ
sets of notes to exist for a single model, with the choice of which to
being up to the person maintaining the model library. Finally, it allow
one to eliminate the “clutter” the documentation often adds to the c

3.2 ADDING METHODS

We would next like to pass along our experiences in getting this mo
to be well-posed—i.e., we would like to tell future users which
variables we decided to fix and which we decided to calculate. We
would also like to provide some typical values for the variables we
decided to fix. ASCEND allows us to attach any number of method
a type definition. Methods are procedural code that we can reques
run through the interface while browsing a model instance. We sha
include methods as described Table 3-1 to set just the right fixed fla
and variable values for an instance of our vessel model to be well-
posed.

The system has defaults definitions for all these methods. You alre
saw that to be true if you went through the process of setting all the
fixed flags toFALSE in the previous chapter. In case you did not, load
and compile thevesselPlain.a4c model in ASCEND. Export the
compiled instance to theBrowser. Then in theBrowser, under theEdit
button, selectRun method. You will see a list containing these and othe
methods we shall be describing shortly. Selectspecifyand hit theOK
button. Then look in the Console window. A message similar to the
following will appear, with all but the first line being in red to signify
you should pay attention to the message:

Running method specify in v

Found STOP statement in METHOD

C:\PROGRAM FILES\ASCEND\ASCEND4\models\basemodel.a4l:307
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

28 PREPARING A MODEL FOR REUSE

at

lert

se

 an
 STOP {Error! Standard method "specify" called but not written in MODEL.};

This message is telling you that you have just run the defaultspecify
method. We have to hand-craft everyspecify method so the default
method is not appropriate. This message is alerting us to the fact th
we did not yet write a specialspecify method for this model type.

Try running theClearAll method. The defaultClearAll method is
always the one you will want so it does not put out a message to a
you that it is the default. d

writing thespecify
andvalues methods

To write thespecify andvalues methods for our vessel model, we note
that we have successfully solved the vessel model in at least two
different ways above. Thus both variations are examples of being
“well-posed.” We can choose which variation we shall use when
creating thespecify method for our vessel type definition. Let us choo
the alternative where we fixedvessel_volume, H_to_D_ratio,
metal_density andwall_thicknesand provided them with the values of
250 ft^3, 3, 5000 kg/m^3 and5 mm respectively to be our “standard”
specification.

Table 3-1 Some of the methods we require for putting a model into
ASCEND library

method description

ClearAll a method to set all the .fixed flags for variables in the type to
FALSE. This puts these flags into a known standard state —
i.e., all areFALSE. All models inherit this method from the
base model and the need to rewrite it is very, very rare.

specify a method which assumes all the fixed flags are currently
FALSE and which then sets a suitable set offixed flags to
TRUE to make an instance of this type of model well-posed.
A well-posed model is one that is square (n equations inn
unknowns) and solvable.

reset a method which first runs the ClearAll method and then the
specify method. We include this method because it is very
convenient. We only have to run one method to make any
simulation well-posed, no matter how its fixed flags are cur-
rently set. All models inherit this method from the base
model, as withClearAll. It should only rarely have to be
rewritten for a model.

values a method to establish typical values for the variables we have
fixed in an application or test model. We may also supply val-
ues for some of the variables we will be computing to aid in
solving a model instance of this type. These values reflective-
ness that we have tested for a simulation of this type and
found to work.
Last modified: June 20, 1998 8:50 pm

ADDING METHODS 29

se

lly

d
at
e

default methods
ClearAll andreset are
appropriate

As already noted, the purpose ofClearAll is to set all the fixed flags to
FALSE, a well-defined state from which we can start over to set the
flags as we wish them set.Reset simply runsClearAll and thenspecify
for a model. The default versions for these two methods are genera
exactly what one wants so one need not write these.

Figure 3-2 illustrates our vessel model with our local versions adde
for specify andvalues. Look only at these for the moment and note th
they do what we described above. We show some other methods w
shall explain in a moment.

REQUIRE "atoms.a4l";

MODEL vessel;

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

vessel_vol "the volume contained within the cylindrical vessel",

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

wall_thickness "the thickness of all of the vessel walls",

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

H_to_D_ratio "the ratio of vessel height to diameter"

 IS_A factor;

metal_density "density of the metal from which the vessel

 is constructed"

 IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"

 IS_A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;

Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

30 PREPARING A MODEL FOR REUSE

will
s,
 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD scale_self;

END scale_self;

METHOD default_self;

D := 1 {m};

H := 1 {m};

H_to_D_ratio := 1;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END default_self;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-2 Version of vessel with methods added
(vesselMethods.a4c)

In Table 3-2 we describe additional methods we require before we
put a model into one of our libraries. Each of these had two version
both of which we require. The designation_self is for a method to do
Last modified: June 20, 1998 8:50 pm

ADDING METHODS 31

ter”

3.3.
in

g
 in
d;

el in
or
something for all the variables and/or parts we have defined locally
within the current model with anIS_A statement. The designation_all
is for a method to do something for parts that are defined within an
“outer” model that has an instance of this model as a part. The “ou
model is at a higher scope. It can share its parts with this model by
passing them in as parameters, a topic we cover shortly in Section
Only the_self versions of these methods are relevant here and are
Figure 3-2.

adding our remaining
standard methods to
a model definition

Thebound_self andscale_self, methods we have written are both
empty. We anticipate no difficulties with variable scaling or boundin
for this small model. Larger models can often give difficult problems
solving if the variables in them are not properly scaled and bounde
these issues must be taken very seriously for such models.

We have included the variables that define the geometry of the vess
defaults_selfmethod to avoid such things as negative initial values f

Table 3-2 Additional methods required for model in ASCEND
libraries

method

description
(The_self versions of each of these methods should run the
_self versions for the same method for all of its parts that are
instances of models created with anIS_A statement. The_all
version should first run the _self version of the same method
and then the_all version for all of its parts passed in as
parameters with aWILL_BE statement.)

default_self
default_all

a method called automatically when any simulation is com-
piled to provide default values and adjust bounds for any vari-
ables which may have unsuitable defaults in their ATOM
definitions. Usually the variables selected are those for which
the model becomes ill-behaved if given poor initial guesses or
bounds (e.g., zero).

bound_self
bound_all

a method to update the .upper_bound and .lower_bound value
for each of the variables. ASCEND solvers use these bound
values to help solve the model equations.

scale_self
scale_all

a method to update the .nominal value for each of the vari-
ables. ASCEND solvers will use these nominal values to
rescale the variable to have a value of about one in magnitude
to help solve the model equations.

check_self
check_all

a method to check that the computations make sense. At first
this method may be empty, but, with experience, one can add
statements that detect answers that appear to be wrong. As
ASCEND already does bounds checking, one should not
check for going past bounds here. However, there could be a
rule of thumb available that suggests one computed variable
should be about an order of magnitude larger than another.
This check could be done in this method.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

32 PREPARING A MODEL FOR REUSE

as
here

pile

es

del
 for
it

 an
vessel_volume. The compiler for ASCEND runs this method as soon
the model is compiled into an instance so the variables mentioned
start with their default values.

using methods when
solving

Exit ASCEND and repeat all the steps above to edit, load and com
this new vessel type definition. Then proceed as follows.

• In theBrowser window, examine the values for those variables
mentioned in thedefault_selfmethod. Note they already have
their default values.

• To place the new instancev in a solvable state, go to theBrowser
window. Pick the commandRun method under theEdit button.
Select first the methodvalues and hitOK.

• Repeat the last step but this time select the methodreset.

In theBrowser, examine the values for the variables listed in the
methodvalues in Figure 3-2. They should be set to those stated
(remember you can alter the units ASCEND uses to report the valu
by using the tools in theUnits window).Also examine thefixed flags
for these variables; they should all beTRUE (remember that you can
find which variables are fixed all at once by using theBy type command
under theFind button).

• Finally exportv to theSolver. TheEligible window should NOT
appear; rather thatSolver should report the model to besquare.

• Solve by selectingSolve under theExecute button.

The inclusion of methods has made the process of making this mo
much easier to get well-posed. This approach is the one that works
really large, complex models. For chemical engineering process un
models there are one or two additional tips covered in Chapter 10.

3.3 PARAMETERIZING THE VESSEL MODEL

let’s compute
metal_mass vs.
H_to_D_ratio

Reuse generally implies creating a model which will have as a part
instance of a previously defined type. For example, let us compute
metal_mass as a function of theH_to_D_ratio for a vessel for a fixed
vessel_volume. We would like to see if there is a value for the
H_to_D_ratio for which themetal_mass is minimum for a vessel with a
givenvessel_volume. We might wonder ifmetal_mass goes to infinity
as this ratio goes either to zero or infinity.
Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL 33

he
rent
es

e

el
3.3.1 CREATING A PARAMETERIZED VERSION OF VESSEL

parameters indicate
likely object sharing

To use instances of our model as parts in another model, we can
parameterize it. We use parameterization to tell a future user that t
parameters are objects he or she is likely to share among many diffe
parts of a model. We wish to create a table containing different valu
of H_to_D_ratio vs.metal_mass. We can accomplish this by
computing simultaneously several different vessels having the sam
vessel_volume, wall_thicknessandmetal_density. The objects we want
to see and/or share for each instance of a vessel should include,
therefore:H_to_D_ratio, metal_mass, metal_density, vessel_volume
andwall_thickness.

The code in Figure 3-3 indicates the changes we make to the mod
declaration statement and the statements defining the variables to
parameterize our model.

REQUIRE "atoms.a4l";

MODEL vessel(

vessel_vol "the volume contained within the cylindrical vessel"

WILL_BE volume;

wall_thickness "the thickness of all of the vessel walls"

WILL_BE distance;

metal_density "density of the metal from which the vessel is constructed"

WILL_BE mass_density;

H_to_D_ratio "the ratio of vessel height to diameter"

WILL_BE factor;

metal_mass "the mass of the metal in the walls of the vessel"

WILL_BE mass;

);

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

34 PREPARING A MODEL FOR REUSE
Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;

 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD bound_all;

RUN bound_self;

END bound_all;

METHOD scale_self;

END scale_self;

METHOD scale_all;

RUN scale_self;

END scale_all;

METHOD default_self;

D := 1 {m};

H := 1 {m};

END default_self;

METHOD default_all;

RUN default_self;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

H_to_D_ratio := 1;

END default_all;
Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL 35

pes

ssel.

y
ays
The
END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-3 The parameterized version of vessel model
(vesselParams.a4c)

Substitute the statements in Figure 3-3 for lines 2 through 9 in
Figure 3-2. Save the result in the filevesselParam.a4c.

Note the use of the WILL_BE statement in the parameter list. By
declaring that the type of a parameter will be compatible with the ty
shown, the compiler can tell immediately if a user of this model is
passing the wrong type of object when defining an instance of a ve

3.3.2 USING THE PARAMETERIZED VESSEL MODEL

Creating a table of
metal_mass values
vs. H_to_D_ratio

We next need to create a type definition that will set up our table of
H_to_D_ratio values vs.metal_mass so we can observe approximatel
where it attains a minimum value. ASCEND allows us to create arr
of instances of any type. Here we shall create an array of vessels.
type definition is shown in Figure 3-4.

REQUIRE "atoms.a4l";

MODEL vessel(

vessel_vol "the volume contained within the cylindrical vessel"

WILL_BE volume;

wall_thickness "the thickness of all of the vessel walls"

WILL_BE distance;

metal_density "density of the metal from which the vessel is constructed"

WILL_BE mass_density;

H_to_D_ratio "the ratio of vessel height to diameter"

WILL_BE factor;

metal_mass "the mass of the metal in the walls of the vessel"

WILL_BE mass;

);

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

36 PREPARING A MODEL FOR REUSE
(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

IS_A area;

wall_vol "the volume of the walls for the vessel"

IS_A volume;

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

IS_A distance;

(* equations *)

FlatEnds:end_area = 1{PI} * D^2 / 4;

Sides:side_area = 1{PI} * D * H;

Cylinder:vessel_vol = end_area * H;

Metal_volume:(side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition:D * H_to_D_ratio = H;

VesselMass:metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;

 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD bound_all;

RUN bound_self;

END bound_all;

METHOD scale_self;

END scale_self;

METHOD scale_all;

RUN scale_self;

END scale_all;
Last modified: June 20, 1998 8:50 pm

PARAMETERIZING THE VESSEL MODEL 37
METHOD default_self;

D := 1 {m};

H := 1 {m};

END default_self;

METHOD default_all;

RUN default_self;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

H_to_D_ratio := 1;

END default_all;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

MODEL tabulated_vessel_values;

 vessel_volume "volume of all the tabulated vessels"

IS_A volume;

 wall_thickness "thickness of all the walls for all the vessels"

IS_A distance;

 metal_density "density of metal used for all vessels"

IS_A mass_density;

 n_entries "number of vessels to simulate"

IS_A integer_constant;

 n_entries :== 20;

 H_to_D_ratio[1..n_entries] "set of H to D ratios for which we are

 computing metal mass"

IS_A factor;

 metal_mass[1..n_entries] "mass of metal in walls of vessels"

IS_A mass;

 FOR i IN [1..n_entries] CREATE

v[i] "the i-th vessel model"

IS_A vessel(vessel_volume, wall_thickness,

metal_density, H_to_D_ratio[i], metal_mass[i]);

 END FOR;

METHODS

METHOD default_self;

END default_self;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

38 PREPARING A MODEL FOR REUSE

e it
METHOD specify;

RUN v[1..n_entries].specify;

END specify;

METHOD values;

 NOTES 'purpose' SELF {to set up 20 vessel models having H to D ratios

 ranging from 0.1 to 2.}

 END NOTES;

vessel_volume := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

FOR i IN [1..n_entries] DO

H_to_D_ratio[i] := i/10.0;

END FOR;

END values;

METHOD scale_self;

END scale_self;

END tabulated_vessel_values;

ADD NOTES IN tabulated_vessel_values;

'description' SELF {This model sets up an array of vessels to

 compute a range of metal_mass values for different values

 of H_to_D_ratio.}

'purpose' SELF {to illustrate the use of arrays in ASCEND}

END NOTES;

Figure 3-4 The code for thetabulated_vessel_values model
(vesselTabulated.a4c)

Add this model to the end of the filevesselParam.a4c (after the vessel
model) and save the file asvesselTabulated.a4c. Compile an instance of
tabulated_vessel_values (call it tvv), run thevalues andspecify
methods for it, and then solve it. You will discover that the tenth
element of themetal_mass array, corresponding to anH_to_D_ratio of
1 has the minimum value of510.257 kilograms.

3.4 CREATING A SCRIPT TO DEMONSTRATE THIS

MODEL

The last step to make the model reusable is to create a script that
anyone can easily run. Running the model successfully will allow a
user to demonstrate the use of the model and to explore an instanc
by browsing it.
Last modified: June 20, 1998 8:50 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 39

r the

us

e

e

ASCEND allows one to create such a script using either an editor o
tools in theScript window.

Restart the ASCEND system. You will have three windows open pl
the large one which you can close by pressing itsdismiss button. The
Script, theLibrary and theConsole1 windows remain

In theScript window you will see the license agreement information
for ASCEND. First get a new script buffer by selecting theNew file tool
under theFile button.

Select the toolRecord actions under theEdit button to start recording
the steps you are about to undertake.

• In theLibrary window, under theEdit button, selectDelete all
types. Hit Delete all on the small confirmation window that
appears.

• Load the filevesselTabulated.a4c, the file containing the model
calledtabulated_vessel_values. Do this by selecting theRead
types from file tool under theFile button and browsing the file
system to find it. If you have trouble finding it, be sure to set th
Files of type window at the bottom of the file browsing window to
allow all types of files to be seen.

• Select the typetabulated_vessel_values in the rightLibrary
window and compile an instance of it by selecting theCreate
simulation tool under theEdit button. In the small window that
appears, enter the nametvv and hitOK.

• Export the instance to theBrowser by selecting theSimulation to
Browser tool under theExport button.

• Initialize the variable values by running thevalues method. Do
this by selecting theRun method tool under theEdit button. Select
thevalues method and hitOK.

• Set the fixed flags to get a well-posed problem by repeating th
last step but this time select thereset method.

• Export the instancetvv to theSolver by selecting theto Solver
tool under theExport button.

• Solve tvv by selecting theSolve tool under theExecute button in
theSolver window.

• Return to theScript window and turn off the recording by
selecting theRecord actions tool under theEdit button.

1. UNIX users should treat the xterm where they started ASCEND as theirConsole window.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

40 PREPARING A MODEL FOR REUSE

e

u
y
e

ter.

rary,

ded
• Save the script you have just created by selecting theSave tool
under theFile button of theScript window. Name the file
vesselTabulated.a4s (note the ‘s’ ending) to indicate it is the script
to run an example problem for models in thevesselTabulated.a4c
(note the ‘c’ ending) file.

• Exit ASCEND by selecting theExit ASCEND tool under theFile
button on theScript window. The contents of theScript window
will be similar to that in Figure 3-5 (the path to the file may
differ).

• Restart ASCEND.

• Open the script you just created by selecting theRead file tool
under theFile button on theScript window. (Be sure you are
allowing the system to see files with the endinga4s by setting the
Files of type window at the bottom of the file browsing window.)

• Highlight all the instructions in this script and then execute the
highlighted instructions by selecting theStatements selected tool
under theExecute button.

You will run the same sequence of instructions you ran to create th
script.

DELETE TYPES;

READ FILE "vesselTabulated.a4c";

COMPILE tvv OF tabulated_vessel_values;

BROWSE {tvv};

RUN {tvv.reset};

RUN {tvv.values};

SOLVE {tvv} WITH QRSlv;

Figure 3-5 Script to run vesselTabulated.a4c (this is the
contents of the file vesselTabulated.a4s)

3.4.1 DISCUSSION

In this chapter we converted the vessel model into a form where yo
and others in the future will have a chance to reuse it. We did this b
first adding methods to make the problem well-posed and to provid
values for the fixed variables for which we readily found a solution
when playing with our original model as we did in the previous chap
We then thought of a typical use for this model and developed a
parameterized version based on that use. If this model were in a lib
a future user of it would most often simply have to understand the
parameters to create an instance of this type of model. We next ad
Last modified: June 20, 1998 8:50 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 41

s that
a
te
e
e

d in
eone

s
m
del
NOTES, a form of active comments, to the model. We suggest that
notes are much more useful than comments as we can provide tool
can extract them and allow us to search them, for example, to find
model with a given functionality. Finally, we showed you how to crea
a script by turning on a “phone” session where ASCEND records th
actions one takes when loading, compiling and solving a model. On
can save and play this script in the future to see a typical use of the
model.

In the next chapter, we look at how we can plot the results we create
the model vesselTabulated.a4c. We will have to reuse a model som
else has put into the library of available models. In other words, the
“shoe is on the other foot,” and we quickly experience the difficultie
with reuse first hand. We will also learn how to run a case study fro
which we can extract the same information with a single vessel mo
run multiple times.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

42 PREPARING A MODEL FOR REUSE
Last modified: June 20, 1998 8:50 pm

CREATING A PLOT 43

t
tand
l
plot
if
t

 to

ND.
now

el
ge
is

ing

pe

s
th
CHAPTER4 CREATING A PLOT (USING A

LIBRARY MODEL)

In this chapter we are going to produce a plot by using a model tha
someone else has created. We gain two lessons: (1) you will unders
first hand the difficulties one encounters when trying to use a mode
someone else has created and (2) you will learn how to produce a
in ASCEND. The approach we take is not the one you should take
your goal is simply to produce this plot. Our goal is pedagogical, no
efficiency. In the last chapter we created an array of vessel models
produce the data that we now about to plot. We approached this
problem this way so you could see how one creates arrays in ASCE
Having this model, we have the data. The easiest thing we can do
it use it to produce a plot.

We also have in ASCEND the ability to do case studies over a mod
instance, varying one or more of the fixed variables for it over a ran
of values and capturing the values of other variables that result. Th
powerful case study tool is the proper way to produce this plot as
ASCEND only has to compile one instance and solve it repeatedly
rather than produce an array of models. We finish this chapter show
you how to use this case study tool.

4.1 CREATING A PLOT

We want a plot ofmetal_mass values vs.H_to_D_ratio. If we look
around at the available tools, we find there is aPlot tool under the
Display button in theBrowser window. While not obvious, it turns out
we can plot the arrays we produce when we include instances of ty
plt_plot_integer andplt_plot_symbol in our model. We find these types
in the fileplot.a4l located in the ASCEND4 models directory which i
distributed with ASCEND. Figure 4-1 is a print out of that file (but wi
line numbers added so we can reference them here).

REQUIRE "system.a4l"; 1

PROVIDE "plot.a4l"; 2

(***\ 3

plot.a4l 4

by Ben Allan 5
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

44 CREATING A PLOT (USING A LIBRARY MODEL)
Part of the Ascend Library 6

This file is part of the Ascend modeling library. 7

Copyright (C) 1997 Benjamin Andrew Allan 8

The Ascend modeling library is free software; you can redistribute 9

it and/or modify it under the terms of the GNU General Public License as 10

published by the Free Software Foundation; either version 2 of the 11

License, or (at your option) any later version. 12

The Ascend Language Interpreter is distributed in hope that it will be 13

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 14

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15

General Public License for more details. 16

You should have received a copy of the GNU General Public License along with17

the program; if not, write to the Free Software Foundation, Inc., 675 18

Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 19

***) 20

(***\ 21

 $Date: 97/08/04 15:22:21 $ 22

 $Revision: 1.1 $ 23

 $Author: ballan $ 24

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/plot.a4l,v $ 25

***) 26

(*===

==* 27

 P L O T . A 4 L 28

 --------------- 29

AUTHOR:Ben Allan 30

provoked by plot.lib by Peter Piela and Kirk A. Abbott 31

DATES:03/97 - Original code. 32

CONTENTS: 33

A parameterized plot library mostly compatible 34

with plot.lib, but with variable graph titles. 35

*) 36

MODEL pltmodel() REFINES cmumodel(); 37

END pltmodel; 38

MODEL plt_point(39

x WILL_BE real; 40

y WILL_BE real; 41

) REFINES pltmodel(); 42

END plt_point; 43

(***) 44

MODEL plt_curve(45

npnts IS_A set OF integer_constant; 46

y_data[npnts] WILL_BE real; 47

x_data[npnts] WILL_BE real; 48

) REFINES pltmodel(); 49

(* points of matching subscript will be plotted in order of 50
Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 45

n
e do
d of
an

o

 * increasing subscript value. 51

 *) 52

legend IS_A symbol; (* mutable now! *) 53

FOR i IN [npnts] CREATE 54

pnt[i]IS_A plt_point(x_data[i],y_data[i]); 55

END FOR; 56

END plt_curve; 57

(***) 58

MODEL plt_plot_integer(59

curve_set IS_A set OF integer_constant; 60

curve[curve_set] WILL_BE plt_curve; 61

) REFINES pltmodel(); 62

title, XLabel, YLabel IS_A symbol; (* mutable now! *) 63

Xlow IS_A real; 64

Ylow IS_A real; 65

Xhigh IS_A real; 66

Yhigh IS_A real; 67

Xlog IS_A boolean; 68

Ylog IS_A boolean; 69

END plt_plot_integer; 70

(***) 71

MODEL plt_plot_symbol(72

curve_set IS_A set OF symbol_constant; 73

curve[curve_set] WILL_BE plt_curve; 74

) REFINES pltmodel(); 75

title, XLabel, YLabel IS_A symbol; (* mutable now! *) 76

Xlow IS_A real; 77

Ylow IS_A real; 78

Xhigh IS_A real; 79

Yhigh IS_A real; 80

Xlog IS_A boolean; 81

Ylog IS_A boolean; 82

END plt_plot_symbol; 83

Figure 4-1 The file plot.a4l

As you can see, this file contains the two types we seek—starting i
lines 59 and 72, respectively. However, before we can use them, w
need to understand them. We are, so to speak, on the receiving en
the reusability issue. If you spend some time, you will find that you c
decipher these model definitions. To make that less painful, we will
help you do so here. If these models were better documented, they
would be much less difficult to interpret. In time we will add Notes t
them to remedy this deficiency.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

46 CREATING A PLOT (USING A LIBRARY MODEL)

 the

of
r

e

e

nd

tions
s

 run
, a

e
 the
4.1.1 MODEL REFINEMENT

please, explain
“refines”

The first model, pltmodel, is two lines long, having aMODEL
statement indicating it “refines”cmumodel and anEND statement. We
have not encountered the concept of refinement as yet. In ASCEND
“refines” means the modelpltmodel inherits all the statements of
cmumodel, a model which has been defined at the end of the file
system.a4l. We show the code forcmumodel in Figure 4-2, and we note
that it too is an empty model. It is, as it says, a root for a collection
loosely related models. You will note (and forgive) a bit of dry humo
by its author, Ben Allan. So far as we know, this model neither
provokes nor hides any bugs.

MODEL cmumodel();

(* This MODEL does nothing except provide a root

 * for a collection of loosely related models.

 * If it happens to reveal a few bugs in the software,

 * and perhaps masks others, well, what me worry?

 * BAA, 8/97.

 *)

END cmumodel;

Figure 4-2 The code for cmumodel

We need to introduce the concept of type refinement to understand
these models. We divert for a moment to do just that.

parents and children
in a refinement
hierarchy

Suppose modelB refines modelA. We callA the parent model andB
the child. The child modelB inherits all the code defining the parent
modelA. In writing the code for modelB, we do not write the code it
inherits fromA; we simply understand it is there already. The code w
write for modelB will be only those statements that we wish to add
beyond the code defining its parent. ASCEND supports only single
inheritance; thus a child may have only one parent. A parent, on th
other hand, may have many children, each inheriting its code.

order does not matter
in declarative code

We are dealing in ASCEND with models defined by their variables a
equations. As we have noted above, the order for the statements
defining each of these does not matter—i.e., the variables and equa
may be defined in any order. So adding new variables and equation
through refinement may be done quite easily.

but it does in the
procedural code for
methods

In contrast, the methods are bits of procedural code—i.e., they are
as a sequence of statements where order does matter. In ASCEND
child model will inherit all the methods of the parent. If you wish to
alter the code for a method, you must replace it entirely, giving it th
same name as the method to be replaced. (However, if you look into
Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 47

dd

e

eing

f
ew

ent
nted

the
documentation on the methods (syntax.pdf), you will find that the
original method is still available for execution. You simply have to a
a qualifier to its name to point to it.)

If we look into this file we see the refinement hierarchy shown in
Figure 4-3.cmumodel is the parent model for all these models.
pltmodel is its child. The remaining three models are children of
pltmodel.

Figure 4-3 The refinement hierarchy in the file plot.a4l

(We can have ASCEND show us the refinement hierarchy. From th
Library window, selectRead types from file from theFile button, and
click onplot.a4l (you may need to change the filter to see the.a4l files).
Selectplot.a4l from the left hand-pane of theLibrary , and then
plt_plot_symbol from the right-hand pane. Finally, choose theAncestry
tool from theDisplay button.)

There are three reasons to support model refinement, with the last b
the most important one.

reasons for refinement •We write more compact code: The first reason is compactness o
coding. One can inherit a lot of code from a parent. Only the n
statements belonging to the child are then written to define it.
This is not a very important reason for having refinement.

• Changes we make to the parent propagate: A second reason is
that one can edit changes into the parent and know that the
children will inherit those changes without having to alter the
code written for the child. (Of course, one can change the par
in such a way that the changes to the child are not what is wa
for the child, introducing what will likely become some
interesting debugging problems.)

with the most
important being we
know what can
substitute for what

• We know what can substitute for what: The most important
reason is that inheritance tells us what kinds of parts may be
substituted for a particular part in a model. Because a child
inherits all the code from its parent, we know the child has all

cmumodel

pltmodel

plt_curve plt_plot_integer plt_plot_symbol
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

48 CREATING A PLOT (USING A LIBRARY MODEL)

nd

es

 of

e

gers
variables and equations defined for it that the parent does—a
typically more.We can use an instance of the child as a
replacement for an instance of the parent. Thus if you were to
write a model with the partA1 of typeA in it, someone else can
create an instance of your model and substitute a partB1 which is
of typeB. This substituted part will have all the needed variabl
in it that you assumed would be there.

This third reason says that when a object passed as a parameter
WILL_BE of typeA, we know that a part of either typeA or typeB will
work.

4.1.2 CONTINUING WITH CREATING A PLOT

We are going to include in our model a part of typeplt_plot_integer or
plt_plot_symbol that ASCEND can plot. We need to look at the types
parameters required by whichever of these two we select to include
here. Tracing back to its parents, we see them to be empty so all th
code for these types is right here.

The first parameter we need is acurve_set which is defined to be a set
of integer_constant or ofsymbol_constant. We have to guess at this
time at the purpose forcurve_set. It would really help to have notes
defining the intention here and to have a piece of code that would
demonstrate the use of these models. At present, we do not. We
proceed, admitting we will appear to “know” more than we should
about this model. It turns out thatcurve_set allows us to identify each
of the curves we are going to plot. These models assume we are
plotting several variables (let’s call them y[1], y[2] , ...) against the
same independent variablex. The values for curve_set are the ‘1’, ‘2’,
etc. identifying these curves.

Here we wish to plot only one curve presentingmetal_mass vs.
H_to_D_ratio. We can elect to useplt_plot_symbol and label this curve
‘5 mm’. The label ‘5 mm’ is asymbol so we will create a set of type
symbol with this single member.

The second object has to be a object of typeplt_curve.

Looking at line 45, we see how to include an object of typeplt_curve. It
must be passed three objects: a set of integers (e.g., the set of inte
from 1 to 20) and two lists of data giving they-values vs. thex-values
for the curve. In the modeltabulated_vessel_values, we have just these
two lists, and they are namedmetal_mass andH_to_D_ratio.
Last modified: June 20, 1998 8:51 pm

CREATING A PLOT 49

e
 the

ill
In Figure 4-4, we show the code you need to add to the model
tabulated_vessel_values. It contains a part calledmassVSratio of type
plt_plot_symbol that ASCEND can plot. This code is at the end of th
declarative statements in tabulated_vessel_values. It also replaces
first method, METHOD default_self.

 CurveSet "the index set for all the curves to be plotted"

 IS_A set OF symbol_constant;

 CurveSet :== ['5 mm'];

 Curves['5 mm'] "the one curve of 20 points for metal_mass vs. H_to_D_ratio"

 IS_A plt_curve([1..n_entries], metal_mass, H_to_D_ratio);

 massVSratio "the object ASCEND can plot"

 IS_A plt_plot_symbol(CurveSet, Curves);

METHODS

METHOD default_self;

(* set the title for the plot and the labels for the ordinate and abscissa *)

 massVSratio.title :=

 'Metal mass of the walls vs H to D ratio for a thin-walled cylindrical

vessel';

 massVSratio.XLabel := 'H to D ratio';

 massVSratio.YLabel := 'metal mass IN kg/m^3';

END default_self;

Figure 4-4 The last bit of new code to include a plot in the
modeltabulated_vessel_values (save as
vesselPlot.a4c)

Also just after the first line in this file—which reads

REQUIRE “atoms.a4l”;

place the instruction

REQUIRE “plot.a4l”;

When you solve this new instance and makemassSVratio the current
object, you will find thePlot tool under theDisplay button in the
Browser window lights up and can be selected. If you do this, you w
get a plot ofmetal_mass vs.H_to_D_ratio. A clear minimum is
apparent on this plot atH_to_D_ratio equal to approximately one.

You should create a script to run this model just as you did for
vesselTabulated.a4c in the previous chapter. Save it asvesselPlot.a4s.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

50 CREATING A PLOT (USING A LIBRARY MODEL)

ct

h

he
nd

c

e

Use the

er

ot
ant

r
he

a

4.2 CREATING A CASE STUDY FROM A SINGLE

VESSEL

You may think creating an array of vessels and a complex plot obje
just to generate a graph is either an awful lot of work or a method
which will not work for very large models. You think correctly on bot
points. The plt_plot models are primarily useful for sampling values
from an array of inter-related models that represent a spatially
distributed system such as the pillars in a bridge or the trays in a
distillation column. You can conduct a case study, solving a single
model over a range of values for some specified variable, using the
Script command STUDY.

We will step through creating a base case and a case study using t
vessel model. Start by opening a new buffer in the Script window a
turning on the record button of the Script’s edit menu. In the Library
window run the “Delete all types” button to clear out any previous
simulations. Load the vessel model from the file vesselMethods.a4
you created in Section 3.2.

4.2.1 THE BASE CASE

compile a vessel. Select and compile the vessel model. Give the simulation the namV.
Select the simulationV in the bottom pane of the Library window and
use the right mouse button (or Alt-x b) to send the simulation to the
Browser.

solving the base case. In the Browser, place the mouse cursor over the upper left pane.
right mouse button to run methodsreset andvalues , then send the
model to the Solver by typing “Alt-x s”. Move the mouse to the Solv
window and hit the F5 key to solve the model.

graphical case study
optimization

We now know that it takes 535.7 kg of metal to make a 250 cubic fo
vessel which is twice as high as it is broad. Suppose that now we w
to know the largest volume that this amount of metal can contain
assuming the same wall thickness is required. Perhaps a skinnier o
fatter vessel can hold more, so we need to do a case study using t
aspect ratio (H_to_D_ratio) as the independent variable. Use the
Browser to changeV.metal_mass.fixed to TRUE, since we are
using a constant amount of metal. The solver will want you to free
variable now, so selectV.vessel_vol to be freed, since volume is
what we want to study.
Last modified: June 20, 1998 8:51 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 51

r

 all

g an
 as

 of
 in

udy.

ing
se
script recorded so far Turn off the recording button on the Script window. The recording
should look something like

DELETE TYPES;

READ FILE {vesselMethods.a4c};

COMPILE V OF vessel;

BROWSE {V};

RUN {V.reset};

SOLVE {V} WITH QRSlv;

ASSIGN {V.metal_mass.fixed} TRUE {};

you must type the next line in the script yourself.

ASSIGN {V.vessel_vol.fixed} FALSE {};

The file ascend4/models/vesselStudy.a4s was recorded in a simila
manner.

4.2.2 CASE STUDY EXAMPLES

configuring a case
study

The STUDY command takes a lot of arguments. We’ll explain them
momentarily, but should you forget them simply enter the command
STUDY without arguments in the ASCEND Console window or xterm
window to see an error message explaining the arguments and givin
example. Enter the following command in the Script window exactly
shown except for the file name followingOUTFILE. Specify a file to
be created inyour ascdata directory.

STUDY {vessel_vol} \

IN {V} \

VARYING {{H_to_D_ratio} {0.1} {0.5} {0.8} {1} {1.5} {2} \

{3} {4} {8}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

This is the simplest form of case study; the backslashes at the end
each line mean that it is all one big statement. Select all these lines
the Script at once with the mouse and then hit F5 to execute the st
The solver will solve all the cases and produce the output file
vvstudy.dat. The quickest way to see the result is to enter the follow
command in the Script, then select and execute it. (Remember to u
the name of your file and not the name shown).

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

ASCPLOT CLOSE; #omit if you want to see data table
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

52 CREATING A PLOT (USING A LIBRARY MODEL)

 can
You should get a graph that looks something like Figure 4-5. The
largest volume is in the neighborhood of anH_to_D_ratio of 1.

4.2.2.1 MULTI -VARIABLE STUDIES

We now have an idea where the solution is most interesting, so we
do a detailed study where we also monitor other variables such as
surface areas. Additional variables to watch can be added to the
STUDY clause of the statement.

STUDY {vessel_vol} {end_area} {side_area} \

IN {V} \

VARYING {{H_to_D_ratio} {0.5} {0.6} {0.7} {0.8) {0.9} \

{1} {1.1} {1.2} {1.3}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

Figure 4-5 Study of volume as a function of H/D.

AscPlot

V.vessel_vol meter^3

Y

X

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50
Last modified: June 20, 1998 8:51 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 53

he
s
ely
ps

s.
 2 in
est
ust

re
oes

e

ERROR STOP;

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

ASCPLOT CLOSE; #omit if you want to see data table

4.2.2.2 MULTI -PARAMETER STUDIES

We can also do a multi-parameter study, for example also varying t
wall thickness allowed. In general, any number of the fixed variable
can be varied in a single study, but be aware that ASCEND’s relativ
simple plotting capabilities do not yet include surface or contour ma
so you will need another graphic tool to view really pretty pictures.

STUDY {vessel_vol} \

IN {V} \

VARYING \

{{H_to_D_ratio} {0.8) {0.9} {1} {1.1} {1.2} {1.3}} \

{{wall_thickness} {4 {mm}} {5 {mm}} {6 {mm}} {7 {mm}}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

In this study the peak volume occurs at the sameH_to_D_ratio for
any wall thickness but the vessel volume increases for thinner wall
This may be hard to see with the default graph settings, but column
rows 8-11 (H_to_D = 1.0) of the ASCPLOT data table have the larg
volumes for any given thickness in column 1. Notice that the units m
be specified for thewall_thickness values in the VARYING
clause.

4.2.2.3 PLOTTING OUTPUT WITH OTHER TOOLS

To convert the study results from the ASCPLOT format to a file mo
suitable for importing into a spreadsheet, the following command d
the trick. As usual, change the names to match yourascdata
directory.

asc_merge_data_files excel \

{/usr0/ballan/ascdata/vvs.txt} \

{/usr0/ballan/ascdata/vvstudy.dat}

If you prefer Matlab style text, substitute ‘matlab’ for ‘excel’ in the lin
above and change the output name from ‘vvs.txt’ to ‘vvs.m’.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

54 CREATING A PLOT (USING A LIBRARY MODEL)

 the

the
o

his

me

ter
g to

The

is
.

DY
n

d go

se

d
t the
from
back
ore
4.2.3 STUDYBEHAVIOR DETAILS

variable list We now turn to the details of the STUDY statement. As we saw in
Section 4.2.2.1, any number of variables to be monitored can follow
STUDY keyword.

IN clause The IN clause specifies which part of a simulation is to be sent to
Solver; a small part of a much larger model can be studied if you s
desire. All the variable and parameter names that follow the STUDY
keyword and that appear in the VARYING clause must be found in t
part of the simulation.

parameter list The VARYING clauses is a list of lists. Each inner list gives the na
of the parameter to vary followed by its list of values. Each possible
combination of parameter values will be attempted in multi-parame
studies. If a case fails to solve, then the study will behave accordin
the option set in the ERROR clause.

solver name The solver named in the USING clause is invoked on each case.
solver may be any of the algebraic solvers or optimizers, but the
integrators (e.g. LSODE) are not allowed.

data file name The case data are stored in the file name which appears in the
OUTFILE clause. By default, this file is overwritten when a STUDY
started, so if you want multiple result files, use separate file names

error handling When the solver fails to converge or encounters an error, the STU
can either ignore it (ERROR IGNORE) and go on to the next case, war
you (ERROR WARN) and go on to the next case, or stop (ERROR
STOP). The ERROR option makes it possible start a case study an
to lunch. Cases which fail to solve will not appear in the output data
file.

Note that if the model is numerically ill-behaved it is possible for a ca
to fail when there is in fact a solution for that combination of
parameters. STUDY uses the solution of the last successfully solve
case as the initial guess for the next case, but sometimes this is no
best strategy. STUDY also does not attempt to rescale the problem
case to case. When a case that you think should succeed fails, go
and investigate that region of the model again manually or with a m
narrowly defined study.
Last modified: June 20, 1998 8:51 pm

DISCUSSION 55

ou
nd
ce

n
truct

k at
l

odel
side
se
4.3 DISCUSSION

We have just led you step by step through the process of creating,
debugging and solving a small ASCEND model. We then showed y
how to make this model more reusable, first by adding comments a
methods. Methods capture the “how you got it well-posed” experien
you had when first solving an instance of the vessel model. We the
showed you how to parameterize this model and then use it to cons
a table ofmetal_mass values vs.H_to_D_ratio values. Finally we
showed you how to add a plot of these results. You should next loo
the chapter in the documentation where you create two more smal
ASCEND models. This chapter gives you much less detail on the
buttons to push. Finally, if you are a chemical engineer, you should
look at the chapter on the script and model for a simple flowsheet
(simple_fs.a4s and simple_fs.a4c respectively).

With this experience you should be ready to write your own simple
ASCEND models to solve problems that you might now think of
solving using a spreadsheet. Remember that once you have the m
debugged in ASCEND, you can solve inside out, backwards and up
down and NOT just the way you first posed it—unlike your typical u
of a spreadsheet model.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

56 CREATING A PLOT (USING A LIBRARY MODEL)
Last modified: June 20, 1998 8:51 pm

USING REQUIREAND PROVIDE 57

In
del

he
it to

l and
any

n
el

d

 of
ry
CHAPTER5 MANAGING MODEL DEFINITIONS,
LIBRARIES, AND PROJECTS

Most complex models are built from parts in one or more libraries.
this chapter we show typical examples of how to make sure your mo
gets the libraries it needs. We then explain in more general terms t
ASCEND mechanism which makes this work and how you can use
manage multiple modeling projects simultaneously.

5.1 USING REQUIRE AND PROVIDE

5.1.1 REQUIREING SYSTEM.A4L

Suppose you are in a great hurry and want to create a simple mode
solve it without concern for good style, dimensional consistency, or
of the other hobgoblins we preach about elsewhere. You will write
equations using onlygeneric_real variables as defined in system.a4l.
The equations in this example do not necessarily have a solution. I
your ascdata (see howto1) directory you create an application mod
definition file “myfile.a4c” which looks like:

REQUIRE “system.a4l”;

MODEL quick_n_dirty;

x = y^2;

y = x + 2*z;

z = cos(x+y);

x,y,z IS_A generic_real;

(* homework problem 3, due May 21. *)

END quick_n_dirty;

The very first line ‘REQUIRE “system.a4l”; tells ASCEND to find an
load a file named “system.a4l” if it has not already been loaded or
provided in some other way. This REQUIRE statement must come
before the MODEL which uses thegeneric_real ATOM that system.a4l
defines.

The REQUIRE statements in a file should all come at the beginning
the file before any other text, including comments. This makes it ve
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

58 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

any,

r
t

out
o

. To

first

s
alent

d to
one
ct
easy for other users or automated tools to determine which files, if
your models require.

On the ASCEND command line (in the Console window or xterm) o
in the Script window, you can then enter and execute the statemen

READ FILE “myfile.a4c”;

to cause system.a4l and then myfile.a4c to be loaded.

5.1.2 CHAINING REQUIRED FILES

Notice when you read myfile.a4c that ASCEND prints messages ab
the files being loaded. You will see that a file “basemodel.a4l” is als
loaded. In system.a4l you will find at the beginning the statements

REQUIRE “basemodel.a4l”;

PROVIDE “system.a4l”;

The basemodel library is loaded in turn because of the REQUIRE
statement in system.a4l. We will come back to what the PROVIDE
statement does in a moment. This chaining can be many files deep
see a more complicated example, enter

READ FILE column.a4l;

and watch the long list of files that gets loaded. If you examine the
few lines of each file in the output list, you will see that each file
REQUIRES only the next lower level of libraries. This style minimize
redundant loading messages and makes it easy to substitute equiv
libraries in the nested lower levels without editing too many higher
level libraries. The term “equivalent libraries” is defined better in the
later section on PROVIDE.

5.1.3 BETTER APPLICATION MODELING PRACTICE

never require
system.a4l in an
application model.

It is generally a bad idea to create a model using only generic_real
variables. The normal practice is to use correct units in equations an
use dimensional variables. In the following file we see that this is d
by requiring “atoms.a4l” instead of “system.a4l” and by using corre
units on the coefficients in the equations.

REQUIRE “atoms.a4l”; MODEL quick_n_clean;

x = y^2/1{PI*radian};

y = x + 2{PI*radian}*z;
Last modified: June 20, 1998 8:51 pm

USING REQUIREAND PROVIDE 59

s

ys
4l

 is
f
ht
en
one.

s
ne.
re
e

s not

,
ally
s
ent
z = cos(x+y);

x, y IS_A angle;

z IS_A dimensionless;

(* homework problem 3, due May 21. *)

END quick_n_clean;

5.1.4 SUBSTITUTE LIBRARIES AND PROVIDE

ASCEND keeps a list of the already loaded files, as we hinted at in
Section 5.1.1. A library file should contain a PROVIDE statement, a
system.a4l does, telling what library it supplies. Normally the
PROVIDE statement just repeats the file name, but this is not alwa
the case. For example, see the first few lines of the file ivpsystem.a
which include the statement

PROVIDE “system.a4l”;

indicating that ivpsystem.a4l is intended to be equivalent to file
system.a4l while also supplying new features. When ivpsystem.a4l
loaded both “system.a4l” and “ivpsystem.a4l” get added to the list o
already loaded files. For one explanation of when this behavior mig
be desirable, see Section 12.1. Another use for this behavior is wh
creating and testing a second library to eventually replace the first

When a second library provides compatible but extended definition
similar to a first library, the second can be substituted for the first o
The second library will obviously have a different file name, but the
is no need to load the first library if we already have the second on
loaded. ivpsystem.a4l is a second library substitutable for the first
library system.a4l. Note that the reverse is not true: system.a4l doe

PROVIDE “ivpsystem.a4l”;

so system is not a valid substitute for ivpsystem.

5.1.5 REQUIRE AND COMBINING MODELING PACKAGES

Model libraries frequently come in interrelated groups. For example
the models referred to in Ben Allan’s thesis are published electronic
as a package models/ben/ in ASCEND IV release 0.9. To use Ben’
distillation libraries, which require rather less memory than the curr
set of more flexible models, your application model should have the
statement

REQUIRE “ben/bencolumn.a4l”;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

60 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

es
ory

E

e
We

e
for

re
ies

tory.

D

t

D

e

at the beginning.

Combining models from different packages may be tricky if the
package authors have not documented them well. Since all packag
are open source code which you can copy into your ascdata direct
and modify to suit your needs, the process of combining libraries
usually amounts to changing the names of the conflicting model
definitions in your copy.

Do NOT use \ instead of / in the package name given to a REQUIR
statement even if you are forced to use Microsoft Windows.

5.2 HOW REQUIRE FINDS THE FILES IT LOADS

The file loading mechanism of REQUIRE makes it simple to manag
several independent sets of models in simultaneous development.
must explain this mechanism or the model management may seem
somewhat confusing. When a REQUIRE statement is processed,
ASCEND checks in a number of locations for a file with that name:
ascdata, the current directory, and the ascend4/models directory. W
will describe how you can extend this list later. ASCEND also looks
model packages in each of these same locations.

5.2.1 ASCDATA

If your ascdata directory exists and is readable, ASCEND looks the
first for required files. Thus you can copy one of our standard librar
from the directory ascend4/models to your ascdata directory and
modify it as you like. Your modification will be loaded instead of our
standard library. See Section 2.2 for how to find your ascdata direc

5.2.2 THE CURRENT DIRECTORY

The current directory is what you get if you type ‘pwd’ at the ASCEN
Console or xterm prompt. Under Microsoft Windows, the current
directory is usually some useless location. Under UNIX, the curren
directory is usually the directory from which you started ASCEND.

5.2.3 ASCEND4/MODELS/

The standard (CMU) models and packages distributed with ASCEN
are found in the ascend4/models/ subdirectory where ASCEND is
installed. This directory sits next to the directory ascend4/bin/ wher
the ascend4 or ascend4.exe executable is located.
Last modified: June 20, 1998 8:51 pm

HOW REQUIREFINDS THE FILES IT LOADS 61

les

 in

ge

/

d
ou

ay
5.2.4 MULTIPLE MODELING PROJECTS

If you dislike navigating multi-level directories while working on a
single modeling project, you can separate projects by keeping all fi
related to your current project in one directory and changing to that
directory before starting ASCEND. If you have files that are required
all your projects, keep those files in your ascdata directory. Under
Windows, cd to the directory containing the current project from the
Console window after starting ASCEND.

5.2.5 EXAMPLE : FINDING “ BEN/BENCOLUMN .A4L”

Suppose an application model requires bencolumn.a4l from packa
ben as shown in Section 5.1.5. Normally ASCEND will execute this
statement by searching for:

~/ascdata/ben/bencolumn.a4l

./ben/bencolumn.a4l

$ASCENDDIST/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from directory /usr1/ballan/projects
test1 under UNIX, the full names of these might be

/usr0/ballan/ascdata/ben/bencolumn.a4l

/usr1/ballan/projects/test1/ben/bencolumn.a4l

/usr/local/lib/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from some shortcut on a Windows
desktop, the full names of these locations might be

C:\winnt\profiles\ballan\ascdata\ben\bencolumn.a4l

C:\Program Files\netscape\ben\bencolumn.a4l

C:\ASCEND\ascend4\models\ben\bencolumn.a4l

The first of these three which actually exists on your disk will be the
file that is loaded.

5.2.6 HOW REQUIRE HANDLES FILE AND DEFINITION

CONFLICTS

Normally you simply delete all types before loading a new or revise
set of ASCEND models and thus you avoid most conflicts. When y
are working with a large simulation and several smaller ones, you m
not want to delete all the types, however. We decided to make
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

62 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

t

nd
hat
 has

ere

ot
ove.

nt

can
ur
les
REQUIRE handle this situation and the almost inevitable redundan
REQUIRE statements that occur in the following reasonable way.

When a file is REQUIREd, ASCEND first checks the list of loaded a
provided files for a name that matches. If the name is found, then t
file is checked to see if it has changed since it was loaded. If the file
changed, then any definition that was changed is loaded in the
ASCEND Library and the new definition is used in building any
subsequently compiled simulations. Old simulations remain
undisturbed and are not updated to use the new definitions since th
may be conflicts that cannot be automatically resolved.

5.2.7 EXTENDING THE LIST OF SEARCHED DIRECTORIES

ASCEND uses the environment variable ASCENDLIBRARY as the
list of directory paths to search for required files. Normally you do n
set this environment variable, and ASCEND works as described ab

To see or change the value of ASCENDLIBRARY that ASCEND is
using, examine ASCENDLIBRARY in the System utilities window
available from the Script Tools menu. Changes made to environme
variables in the utilities window are NOT saved. If you are clever
enough to set environment variables before running ASCEND, you
make it look anywhere you want to put your model files. Consult yo
operating system guru for information on setting environment variab
if you do not already know how.
Last modified: June 20, 1998 8:51 pm

THE GRAPH WE WANT 63

r.
d

cal
g

on

it

ing

h2,
r,

ock

lso
CHAPTER6 PLOTTING DATA SAMPLED FROM

COMPLEX MODELS

Often you need a plot of data sampled from arbitrary locations in a
model that are not naturally grouped in a single easily plotted vecto
The plot.a4l library provides models (plt_curve, plt_plot_symbol, an
plt_plot_integer) that can be used with the Browser’s Display Plot
button. In this chapter we see how to create such a plot using the
ASCEND statement ALIASES/IS_A to sample data from a mechani
system of stretched springs, masses, anchors, and fingers. Creatin
plots of time series data output from ASCEND’s initial value solver
LSODE is discussed in Section 12.3, ”Viewing Simulation Results,”
page 125.

Chemical engineers who can tolerate distillation models should vis
the file plotcol.a4c in the models library for more complicated
examples of plotting and visit the modelsimple_column_profiles in
column.a4l for more complicated examples of sampling data. Read
this chapter first may be of help in interpreting those models.

6.1 THE GRAPH WE WANT

We want to plot the positions X1 to X3 of the connecting hooks h1,
and h3 in a mechanical system as shown in Figure 6-1. The ancho

hooks, springs, and finger (we could replace either spring with a bl
mass, also) are all separate objects which we have modeled very
simply. These models are given at the end of the chapter and can a
be found (with improvements) in force1d.a4c, a model file in the
distributed ASCEND libraries.

Figure 6-1 Spring test model system, st.

h1 h2 h3

F

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

64 PLOTTING DATA SAMPLED FROM COMPLEX MODELS

not
tem

ew

f

of

th
, it

o we

 it

m:
Plotting is usually a post-solution analysis tool, so our plots should
be entangled with the basic models or with the total mechanical sys
model,st. We might want to explain the systemst to someone and this
could be hard to do if the code is cluttered up with plot information.

6.2 CONSTRUCTING A PLOT CURVE

The plot library models follow object-oriented thinking carefully,
perhaps a little too carefully. A plt_plot_integer is a plottable model
built out of plt_curves which are in turn built out of arrays of data
points from the user. Constructing these data arrays is the only
significant challenge in using the plot models. Begin by building a n
model with the systemst as a part:

MODEL plot_spring_test;

st IS_A spring_test;

Plot_X IS_A plt_plot_integer(curve_set,curves);

END plot_spring_test;

We want to create a plt_curve from the array of hook numbers
y_data[1..3] plotted against horizontal hook position x_data[1..3].
There are obvious problems with the model above:curves and
curve_set are used without being defined and there is no mention o
x_data or y_data.

Begin by using an ALIASES/IS_A statement to construct the array
positions x_data from the variables X stored in the hooks of modelst.

x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X) WHERE Xset

IS_A set OF integer_constant;

This statement creates a set, Xset, indexing a new array x_data wi
elements collected from st. Since the value of Xset is not specified
becomes by default the set [1,2,3].

Now we need the hook numbers, y_data. These do not exist in st, s
create them. We will set the numeric values of these in thedefault_self
method. We will include method in the final model, but do not show
here.

y_data[Xset] IS_A real;

Having both y_data and x_data, we can construct a curve from the

X_curve IS_A plt_curve(Xset,y_data,x_data);
Last modified: June 20, 1998 8:51 pm

CONSTRUCTING THE ARRAY OF CURVES 65

rray
th
nt.
6.3 CONSTRUCTING THE ARRAY OF CURVES

We have a curve, but the plt_plot_integer model Plot_x expects an a
of curves and the set indexing this array as input. We can make bo
from X_curve easily using, once again, an ALIASES/IS_A stateme

curves[curve_set] ALIASES (X_curve) WHERE curve_set IS_A

set OF integer_constant;

All the pieces are now in place, so we have the final model:

MODEL plot_spring_test;

(* create our system model and plot. *)

st IS_A spring_test;

Plot_X IS_A plt_plot_integer(curve_set,curves);

(* Gather the sampled data into an array *)

x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X)

WHERE Xset IS_A set OF integer_constant;

(* Create the Y coordinates *)

y_data[Xset] IS_A real;

(* create the curve *)

X_curve IS_A plt_curve(Xset,y_data,x_data);

(* Make X_curve into the array for plt_plot_integer *)

curves[curve_set] ALIASES (X_curve) WHERE

curve_set IS_A set OF integer_constant;

METHOD default_self;

RUN st.default_self;

st.s1.L0 := 0.2{m}; (* make st more interesting *)

RUN Plot_X.default_self;

RUN X_curve.default_self;

FOR i IN Xset DO

y_data[i] := i;

END FOR;

X_curve.legend := ‘meter’;

Plot_X.title := ‘Hook locations’;

Plot_X.XLabel := ‘location’;

Plot_X.YLabel := ‘hook #’;

END default_self;

END plot_spring_test;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

66 PLOTTING DATA SAMPLED FROM COMPLEX MODELS

.
.

6.4 RESULTING POSITION PLOT

We can compile the plot model and obtain the graph in with the
following short script.

READ FILE force1d.a4c;

COMPILE pst OF plot_spring_test;

BROWSE {pst};

RUN {pst.st.reset};

SOLVE {pst.st} WITH QRSlv;

PLOT {pst.Plot_X} ;

SHOW LAST;

We can also obtain the plot by moving to pst.Plot_X in the Browser
window and then pushing the Display->Plot button or then typing
“Alt-d p”. We see the hooks are positioned near 0, 230, and 370 mm
We also see that xgraph sometimes makes less than pretty graphs

Hook locations

meter

hook #

-3location {m} x 100.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

2.90

3.00

0.00 100.00 200.00 300.00

Figure 6-2 Plot_X in plot_spring_test
Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING, MASS, ANCHOR, AND FINGER MODELS 67

s and

ry for
al
 in

m,
 the

ND
6.5 1-DMECHANICAL HOOK , SPRING, MASS,
ANCHOR, AND FINGER MODELS

The models used in this chapter are very simple versions of masse
springs horizontally at rest, but possibly under tension, stretched
between an anchor and a finger. Only the code absolutely necessa
this example is given here; the full code with methods and addition
comments is given in force1d.a4c, an ASCEND modeling example
the library.

These models could easily be extended to include mass, momentu
and acceleration in two or three dimensions. Most of the methods in
force1d.a4c models are unedited from the code generated by the
ASCEND Library button Edit->Suggest method. If you improve on
these models, please share them with us and the rest of the ASCE
community.

REQUIRE “atoms.a4l”;

CONSTANT spring_constant REFINES real_constant DIMENSION M/T^2;

CONSTANT position_constant REFINES real_constant DIMENSION L;

ATOM position REFINES distance DEFAULT 0{m};

END position;

MODEL hook;

F_left, F_right IS_A force;

F_left = F_right;

X IS_A position;

METHODS

METHOD default_self;

(* ATOM defaults are fine *)

END default_self;

METHOD specify;

F_right.fixed := TRUE;

END specify;

METHOD specify_float;

END specify_float;

END hook;

MODEL massless_spring(

k IS_A spring_constant;

h_left WILL_BE hook;

h_right WILL_BE hook;

) WHERE (

h_left, h_right WILL_NOT_BE_THE_SAME;

);
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

68 PLOTTING DATA SAMPLED FROM COMPLEX MODELS
L0, dx IS_A distance;

h_right.X = h_left.X + L0 + dx;

F = k * dx;

h_left.F_right = F;

h_right.F_left = F;

F IS_A force;

METHODS

METHOD default_self;

dx := 1{cm};

L0 := 10{cm};

END default_self;

METHOD specify;

L0.fixed := TRUE;

RUN h_left.reset;

RUN h_right.reset;

h_left.F_right.fixed := FALSE;

h_left.X.fixed := TRUE;

END specify;

METHOD specify_float;

L0.fixed := TRUE;

RUN h_left.specify_float;

RUN h_right.specify_float;

END specify_float;

END massless_spring;

MODEL massless_block(

h_left WILL_BE hook;

h_right WILL_BE hook;

) WHERE (

h_left, h_right WILL_NOT_BE_THE_SAME;

);

width IS_A distance;

h_left.F_right = h_right.F_left;

h_right.X = h_left.X + width;

X “center of the block” IS_A position;

X = width/2 + h_left.X;

METHODS

METHOD default_self;

width := 3{cm};

END default_self;

METHOD specify;

width.fixed := TRUE;

RUN h_left.reset;

h_left.F_right.fixed := FALSE;

h_left.X.fixed := TRUE;

RUN h_right.reset;
Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING, MASS, ANCHOR, AND FINGER MODELS 69
END specify;

METHOD specify_float;

width.fixed := TRUE;

RUN h_left.specify_float;

RUN h_right.specify_float;

END specify_float;

END massless_block;

MODEL anchor(

x IS_A position_constant;

h_right WILL_BE hook;

);

h_right.X = x;

F = h_right.F_left;

F IS_A force;

METHODS

METHOD default_self;

END default_self;

METHOD specify;

RUN h_right.reset;

END specify;

METHOD specify_float;

END specify_float;

END anchor;

MODEL finger(

h1 WILL_BE hook;

);

pull IS_A force;

h1.F_right = pull;

METHODS

METHOD default_self;

pull := 3{N};

END default_self;

END finger;

MODEL finger_test;

NOTES ‘ascii-picture’ SELF {

 ___ __

\\--O--/\/\/\/\/\/--O--| |--O(_ \

 |___| \ \

(reference)-h1-(s1)-h2-(m1)-h3-(pinky)

}

END NOTES;

reference IS_A anchor(0.0{m},h1);

h1 IS_A hook;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

70 PLOTTING DATA SAMPLED FROM COMPLEX MODELS
s1 IS_A massless_spring(100{kg/s^2},h1,h2);

h2 IS_A hook;

m1 IS_A massless_block(h2,h3);

h3 IS_A hook;

pinky IS_A finger(h3);

METHODS

METHOD default_self;

RUN h1.default_self;

RUN h2.default_self;

RUN h3.default_self;

RUN m1.default_self;

RUN pinky.default_self;

RUN reference.default_self;

RUN s1.default_self;

END default_self;

METHOD specify;

RUN m1.specify_float;

RUN pinky.reset;

RUN reference.specify_float;

RUN s1.specify_float;

END specify;

END finger_test;

MODEL spring_test;

NOTES ‘ascii-picture’ SELF {

\\--O--/\/\/\/\/\/--O--\/\/\--O(\

(reference)-h1-(s1)-h2-(s2)-h3-(pinky)

}

END NOTES;

reference IS_A anchor(0.0{m},h1);

h1 IS_A hook;

s1 IS_A massless_spring(100{kg/s^2},h1,h2);

h2 IS_A hook;

s2 IS_A massless_spring(75{kg/s^2},h2,h3);

h3 IS_A hook;

pinky IS_A finger(h3);

METHODS

METHOD default_self;

RUN h1.default_self;

RUN h2.default_self;

RUN h3.default_self;

RUN s2.default_self;

RUN pinky.default_self;

RUN reference.default_self;

RUN s1.default_self;

END default_self;
Last modified: June 20, 1998 8:51 pm

1-D MECHANICAL HOOK, SPRING, MASS, ANCHOR, AND FINGER MODELS 71
METHOD specify;

RUN pinky.reset;

RUN reference.specify_float;

RUN s1.specify_float;

RUN s2.specify_float;

END specify;

END spring_test;

REQUIRE “plot.a4l”;

MODEL plot_spring_test;

(* create our model *)

st IS_A spring_test;

(* Now gather the sampled data into an array for plotting *)

x_data[Xset] ALIASES (st.h1.X,st.h2.X,st.h3.X)

WHERE Xset IS_A set OF integer_constant;

(* Now create the Y coordinates of the plot since there is no

 * natural Y coordinate in our MODEL.

 *)

y_data[Xset] IS_A real; (* all will be assigned to 1.0 *)

X_curve IS_A plt_curve(Xset,y_data,x_data);

(* Make X_curve into the expected array for plt_plot *)

curves[curve_set] ALIASES (X_curve) WHERE

curve_set IS_A set OF integer_constant;

Plot_X IS_A plt_plot_integer(curve_set,curves);

METHODS

METHOD default_self;

RUN st.default_self;

st.s1.L0 := 0.2{m};

RUN X_curve.default_self;

RUN Plot_X.default_self;

FOR i IN Xset DO

y_data[i] := i;

END FOR;

X_curve.legend := ‘meter’;

Plot_X.title := ‘Hook locations’;

Plot_X.XLabel := ‘location {m}’;

Plot_X.YLabel := ‘hook #’;

END default_self;

END plot_spring_test;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-plot.fm5

72 PLOTTING DATA SAMPLED FROM COMPLEX MODELS
Last modified: June 20, 1998 8:51 pm

73

een
in

nd in
ow
 so

es
s in
s

d to
r
ng

ep

ies

ry
n

CHAPTER7 HOW TO DEFINE VARIABLES AND

SCALING VALUES IN AN ASCEND
MODEL

the purpose of this
chapter

By now you have probably read Section 2, ”A Detailed ASCEND
Example for Beginners: the modeling of a vessel,” on page 5 and s
an example of how to create a model using existing variable types
ASCEND. You found that variables of types area, length, mass,
mass_density, and volume were needed and that they could be fou
the library atoms.a4l. You want to know how to generalize on that; h
to use variables, constants, and scaling values in your own models
that the models will be easier to solve.

This chapter is meant to explain the following things:

• The “Big Picture” of how variables, constants, and scaling valu
relate to the rest of the ASCEND IV language and to equation
particular. We’ll keep it simple here. More precise explanation
for the language purist can be found in “The ASCEND IV
language syntax and semantics” (syntax.pdf). You do not nee
read about the “Big Picture” in order to read and use the othe
parts of this chapter, but you may find it helpful if you are havi
trouble writing an equation so that ASCEND will accept it.

• How to find the type of variable (or constant) you want. We ke
a mess of interesting ATOM and CONSTANT definitions in
atoms.a4l. We provide tools to search in already loaded librar
to locate the type you need.

• How to define a new type of variable when we do not have a
predefined ATOM or CONSTANT that suits your needs. It is ve
easy to define your own variable types by copying code into a
atoms library of your own from atoms.a4l and then editing the
copied definition.

• How to define a scaling variable to make your equations much
easier to solve.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

74 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

5,

.
 see

ng
 also

s.
s”
ost

m.
f

sual
Not

y

r,
7.1 THE BIG PICTURE : A TAXONOMY

As you read in Section 3, ”Preparing a model for reuse,” on page 2
simulations are built from MODEL and ATOM definitions, and
MODEL and ATOM definitions are defined by creating types in an
ASCEND language text file that you load into the ASCEND system
Figure 7-1 shows the types of objects that can be defined. You can

there are many more types than simply real variables used for writi
equations. Some of these types can also be used in equations. You
see that there are three kinds of equations, not simply real relation
Throughout our documentation we call real relations simply “relation
because that is the kind of equation most people are interested in m
of the time. Notice that “scaling values” do not appear in this diagra
We will cover scaling values at the end of this The major features o
this diagram are:

ATOM • Any variable quantity for use in relations, logical relations, or
when statements or other computations. These come in the u
programming language flavors real, boolean, symbol, integer.
all kinds of atoms can be used in all kinds of equations, as we
shall explain when describing relations in a little bit. Atoms ma
be assigned values many times interactively, with the Script
ASSIGN statement, with the METHOD := assignment operato

Figure 7-1 The Big Picture: How to think about variables

(TYPE) ATOM

real relation
logical relation
WHEN relationship

CONSTANT

set

MODEL

real
boolean
integer
symbol

real_constant
boolean_constant
integer_constant
symbol_constant

integer_constant
symbol_constant

OF

solver_var
Last modified: June 20, 1998 8:51 pm

THE BIG PICTURE: A TAXONOMY 75

nce
om
e

or it.

nce.
t

ms.

in
ts

with

s
 used

r

 A
ys
Sets

d
.

s in
ical

teger
ms,
or by an ASCEND client such as a solver.

An ATOM may have attributes other than its value, such as .fixed in
solver_var, but these attributes are not atoms. They are subatomic
particles and cannot be used in equations. These attributes are
interpretable by ASCEND clients, and assignable by the user in the
same ways that the user assigns atom values.

Each subatomic particle instance belongs to exactly one atom insta
(one variable in your compiled simulation). This contrasts with an at
instance which can be shared among several models by passing th
atom instance from one model into another or by creating aliases f

CONSTANT • Constants are “variables” that can be assigned no more than o
By convention, all constant types in atoms.a4l have names tha
end in _constant so that they are not easily confused with ato
A constant gets a values from the DEFAULT portion of its type
definition, by an interactive assignment, or by an assignment
the a model which uses the :== assignment operator. Constan
cannot be assigned in a METHOD, nor can they be assigned
the := operator.

Integer and symbol constants can appear as members of sets or a
subscripts of arrays. Integer, boolean, and symbol constants can be
to control SELECT statements which determine your simulation’s
structure at compile-time or to control SWITCH and WHEN behavio
during problem solving .

set • Sets are unordered lists of either integer or symbol constants.
set is assigned its value exactly once. The user interface alwa
presents a set in sorted order, but this is for convenience only.
are useful for defining an array range or for writing indexed
relations. More about sets and their use can be found in
syntax.pdf.

relationships • Relations and logical relations allow you to state equalities an
inequalities among the variables and constants in you models
WHEN statements allow you to state relationships among the
models and equations which depend on the values of variable
those models. Sets and symbols are not allowed in real or log
relations except when used as array subscripts.

Real relations relate the values of real atoms, real constants, and in
constants. Real relations cannot contain boolean constants and ato
nor can they contain integer atoms.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

76 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

al
or

ly

kind

as a

ical
.a4l

ic
tion

e
or

ts,
 of
s

el

ou
f
lue

r
e
ese
al
Logical relations relate the values of boolean atoms and boolean
constants. The SATISFIED operator makes it possible to include re
relations in a logical relation. Neither integer atoms and constants n
real atoms and constants are allowed in logical relations. If you find
yourself trying to write an equation with integer atoms, you are real
creating a conditional model for which you should use the WHEN
statement instead. See Section 13, ”Creating Conditional Models in
Ascend,” on page 131 to learn about how ASCEND represents this
of mathematical model. There are also a real variable types,
solver_integer andsolver_binary, which are used to formulate
equations when the solver is expected to initially treat the variable
real value but drive it to an integer or 0-1 value at the solution. The
integer programming features of ASCEND are described in a techn
report by Craig Schmidt not yet available electronically. See system
for elementary details.

Like atoms, real and logical relations may have attributes, subatom
particles for use by ASCEND clients and users. The name of a rela
can be used in writing logical relations and WHEN statements.

WHEN statements are outside the scope of this chapter; please se
Section 13, ”Creating Conditional Models in Ascend,” on page 131
syntax.pdf for the details.

MODEL • A model is simply a container for a collection of atoms, constan
sets, relations, logical relations, when statements, and arrays
any of these. The container also specifies some of the method
that can be used to manipulate its contents. Compiling a mod
creates an instance of it-- a simulation.

SOLVER_VAR • The real atom typesolver_var is the type from which all real
variables that you want the system to solve for must spring. If y
define a real variable using a type which is not a refinement o
solver_var, all solvers will treat that variable as an a scaling va
or other given constant rather than as a variable.

Solver_vars have a number of subatomic attributes (upper_bound,
lower_bound, and so forth) that help solvers find the solution of you
model. ATOM definitions specify appropriate default values for thes
attributes that depend on the expected applications of the atom. Th
attribute values can (and should) be modified by methods in the fin
application model where the most accurate problem information is
available.

Scaling value • A real which is not a member of thesolver_var family is ignored
by the solver. Numerical solvers for problems with many
Last modified: June 20, 1998 8:51 pm

HOW TO FIND THE RIGHT VARIABLE TYPE 77

for
ly
ew
ror
at

l

 with

tion
es

n its
es
 for

ou
the
th/
h

that

al
eet/

ave

g SI
r

equations in many variables work better if the error computed
each equation (before the system is solved) is of approximate
size 1.0. This is most critical when you are starting to solve a n
problem at values far, far away from the solution. When the er
of one equation is much larger than the errors in the others, th
error will skew the behavior of most numerical solvers and wil
cause poor performance.

This is one of the many reasons that scientists and engineers work
dimensionless models: the process of scaling the equations into
dimensionless form has the effect of making the error of each equa
roughly the same size even far away from the solution. It is sometim
easiest to obtain a dimensionless equation by writing the equation i
dimensional form using natural variables and then dividing both sid
by an appropriate scaling value. We will see how to define an atom
scaling purposes in the last part of this chapter.

7.2 HOW TO FIND THE RIGHT VARIABLE TYPE

The type of real atom you want to use depends first on the
dimensionality (length, mass/time, etc.) needed and then on the
application in which the atom is going to be used. For example, if y
are modeling a moving car and you want an atom type to describe
car’s speed, then you need to find an atom with dimensionality leng
time or in ASCEND terms L/T. There may be two or three types wit
this dimensionality, possibly including real_constants, a real scaling
value, and an atom derived from solver_var.

Load atoms.a4l The first step to finding the variable type needed is to make sure
atoms.a4l is loaded in your Library window from ascend4/models/
atoms.a4l.

Find an ATOM or
CONSTANT by units

The next step is to open the “ATOM by units” dialog found in the
Library window’s Find menu. This dialog asks for the units of the re
variable type you want. For our example, speed, you would enter “f
second,” “furlongs/fortnight,” “meter^3/second/ft^2” or any other
combination of units that corresponds to the dimensionality L/T.

If the system is able to deduce the dimensionality of the units you h
entered, it will return a list of all the currently loaded ATOM and
CONSTANT definitions with matching dimensions. It may fail to
understand the units, in which case you should try the correspondin
units. If it understands the units but there are no matching atoms o
constants, you will be duly informed. If there is no atom that meets
your needs, you should create one as outlined in Section 7.3.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

78 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

the
pe

d

 you

ant
ld

rom
s

and

n
iling

 are
Selecting the right
type

The resulting list of types includes a Code button which will display
definition of any of the types listed once you select (highlight) that ty
with the mouse. Usually you will need to examine several of the
alternatives to see which one is most appropriate to the physics an
mathematics of your problem. Compare the default, bounds, and
nominal values defined to those you need. Check whether the type
are looking at is a CONSTANT or an ATOM.

You now know the name of the variable type you need, or you know
that you must create a new one to suit your needs.

7.3 HOW TO DEFINE A NEW TYPE OF VARIABLE

In this section we will give examples of defining the atom and const
types as well as outline a few exceptional situations when you shou
NOT define a new type. More examples can be found and copied f
atoms.a4l. You should define your new atoms in your personal atom
library.

Saving customized
variable types

The normal location for this personal library is in the user data file
~\ascdata\myatoms.a4l. This file contains the following three lines
then the ATOM and CONSTANT definitions you create.

REQUIRE “atoms.a4l”; (* loads our atoms first *)

PROVIDE “myatoms.a4l”; (* registers your library *)

(* Custom atoms created by <insert your name here> *)

If you develop an interesting set of atoms for some problem domai
outside chemical engineering thermodynamics, please consider ma
it to us through our web page.

The user data directory ~/ascdata may have a different name if you
running under Windows and do not have the environment variable
HOME defined. It may be something like C:\ascdata or
\WINNT\Profiles\Your Name\ascdata. When ASCEND is started, it
prints out the name of this directory.

When you write a MODEL which depends on the definition of your
new atoms, do not forget to add the statement

REQUIRE “myatoms.a4l”;

at the very top of your model file so that your atoms will be loaded
before your model definitions try to use them.
Last modified: June 20, 1998 8:51 pm

HOW TO DEFINE A NEW TYPE OF VARIABLE 79

be
 not
dard

 of

you

 as
 in

s in

your

lue
.

 of
und

t

7.3.1 ANEW REAL VARIABLE FOR SOLVER USE

Suppose you need an atom with units {dollar/ft^2/year} for some
equation relating amortized construction costs to building size. May
this example is a bit far fetched, but it is a safe bet that our library is
going to have an atom or a constant for these units. Here is the stan
incantation for defining a new variable type based on solver_var.
ASCEND allows a few permutations on this incantation, but they are
no practical value. The parts of this incantation that are initalics should
be changed to match your needs. You can skip the comments, but
must include the units of the default on the bounds and nominal.

ATOMamortized_area_cost

REFINES solver_var DEFAULT 3.0 {dollar/ft^2/year} ;

lower_bound := 0 {dollar/ft^2/year} ;

(* minimum value *)

upper_bound := 10000 {dollar/ft^2/year} ;

(* maximum value for any sane application *)

nominal := 10 {dollar/ft^2/year} ;

(* expected size for all reasonable applications*)

END amortized_area_cost ;

In picking the name of your atom, remember that names should be
self-explanatory as possible. Also avoid choosing a name that ends
_constant (as this is conventionally applied only to CONSTANT
definitions) or_parameter. Parameter is an extremely ambiguous and
therefore useless word. Also remember that the role a variable play
solving a set of equations depends on how the solver being applied
interprets .fixed and other attributes of the variable.

Exceptions If an atom type matches all but one of the attributes you need for
problem, say for example the upper_bound is way too high, use the
existing variable type and reassign the bound to a more sensible va
in thedefault_self method of the model where the variable is created
Having a dozen atoms defined for the same units gets confusing in
short order to anyone you might share your models with.

The exception to the exception (yes, there always seems to be one
those) is the case of a lower_bound set at zero. Usually a lower_bo
of zero indicates that there is something inherently positive about
variables of that type. Variables with a bound of this type should no
have these physical bounds expanded in an application. Another
example of this type of bound is the upper_bound 1.0 on the type
fraction.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

80 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

sical

re
ned.
ch

 is

ed
 the

pe is:

ion.

unit
D

he
by
d
C

For example, negative temperature just is not sensible for most phy
systems. ASCEND defines atemperature atom for use in equations
involving the absolute temperature. On the other hand, a temperatu
difference, delta T, is frequently negative so a separate atom is defi
Anyone receiving a model written using the two types of atoms whi
both have units of {Kelvin} can easily tell which variables might
legitimately take on negative values by noting whether the variable
defined as atemperature or adelta_temperature.

7.3.2 ANEW REAL CONSTANT TYPE

Real constants which do not have a default value are usually need
only in libraries of reusable models, such as components.a4l, where
values depend on the end-user’s selection from alternatives in a
database. The standard incantation to define a new real constant ty

CONSTANTcritical_pressure_constant

REFINES real_constant DIMENSION M/L/T^2 ;

Here again, theitalic parts of this incantation should be redefined for
your purpose.

Universal exceptions
and unit conversions

It is wasteful to define a CONSTANT type and a compiled object to
represent auniversal constant. For example, the thermodynamic gas
constant, R = 8.314... {J/mole/K}, is frequently needed in modeling
chemical systems. The SI value of R does not vary with its applicat
Neither does the value ofπ. Numeric constants of this sort are better
represented as a numeric coefficient and an appropriately defined
conversion. Consider the ideal gas law, PV = NRT and the ASCEN
unit conversion {GAS_C} which appears in the library ascend4/
models/measures.a4l. This equation should be written:

P * V = n * 1.0{GAS_C} * T;

Similarly, area = pi*r^2 should be written

area = 1{PI} * r^2;

The coefficient 1 of {GAS_C} and {PI} in these equations takes of t
dimensionality of and is multiplied by the conversion factor implied
the UNITS definition for the units. If we check measures.a4l, we fin
the definition of PI is simply {3.14159...} and the definition of GAS_
is {8.314... J/mole/K} as we ought to expect.
Last modified: June 20, 1998 8:51 pm

HOW TO DEFINE A SCALING VARIABLE 81

 in
ed
date.

t
 you

ill

s to

ing
ing

.

ery
ted
.

 you
In a
on
t the

f

For historical reasons there are a few universal constant definitions
atoms.a4l. New modelers should not use them; they are only provid
to support outdated models that no one has yet taken the time to up

7.3.3 NEW TYPES FOR INTEGERS, SYMBOLS, AND BOOLEANS

The syntax for ATOM and CONSTANT definitions of the non-real
types is the same as for real number types, except that units are no
involved. Take your best guess based on the examples above, and
will get it right. If even that is too hard, more details are given in
syntax.pdf.

7.4 HOW TO DEFINE A SCALING VARIABLE

A scaling variable ATOM is defined with a name that ends in_scale as
follows. Note that this ATOM does not refine solver_var, so solvers w
not try to change variables of this type during the solution process.

ATOM distance_scale REFINES real DEFAULT 1.0{meter};

END distance_scale;

ASCEND cannot do it
all for you

ASCEND uses a combination of symbolic and numerical technique
create and solve mathematical problems. Once you get the problem
close to the solution, ASCEND can internally compute its own scal
values for relations, known elsewhere as “relation nominals”, assum
you have set good values for the .nominal attribute of all the variables.
It does this by computing the largest additive term in each equation
The absolute value of this term is a very good scaling value.

This internal scaling works quite well, but not when the problem is v
far away from the solution so that the largest additive terms compu
are not at all representative of the physical situation being modeled
Thescale_self method, which should be written for every model as
described in Section 10.4.4, should set the equation scaling values
have defined in a MODEL based on the best available information.
chemical engineering flowsheeting problem, for example, informati
about a key process material flow should be propagated throughou
process flowsheet to scale all the other flows, material balance
equations, and energy balance equations.

Scaling atom default
value

The default value for any scaling atom should always be 1.0 in
appropriate SI units, so that the scaling will have no effect until you
assign a problem specific value. Multiplying or dividing both sides o
an equation by 1.0 obviously will not change the mathematical
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5

82 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

er--
behavior, but you do not want to change the behavior arbitrarily eith
you want to change it based on problem information that is not
contained in your myatoms.a4l file.
Last modified: June 20, 1998 8:51 pm

EXAMPLE 1— VAPOR PRESSURE 83

on
in

n

d C

s

 A
CHAPTER8 ENTERING DIMENSIONAL

EQUATIONS FROMHANDBOOKS

Often in creating an ASCEND model one needs to enter a correlati
given in a handbook that is written in terms of variables expressed
specific units. In this chapter, we examine how to do this easily and
correctly in a system like ASCEND where all equations must be
dimensionally correct.

8.1 EXAMPLE 1— VAPOR PRESSURE

Our first example is the equation to express vapor pressure using a
Antoine-like equation of the form:

(8.1)

wherePsat is in {atm} andT in {R}. When one encounters this
equation in a handbook, one then finds tabulated values for A, B an
for different chemical species. The question we are addressing is:

How should the modeler enter this equation into ASCEND so he or
she can then enter the constants A, B, and C with the exact values
given in the handbook?

ASCEND uses SI units internally. Therefore, P would have the unit
{kg/m/s^2}, and T would have the units {K}.

Equation 8.1 is, in fact, dimensionally incorrect as written. We know
how to use it, but ASCEND does not as ASCEND requires that we
write dimensionally correct equations. For one thing, we can
legitimately take the natural log(ln) only of unitless quantities. Also,
the handbook will tabulate the values for A, B and C without units. If
is dimensionless, then B and C would require the dimensions of
temperature.

The mindset to enter such equations is to make all quantities that
must be expressed in particular units into dimensionless quantities
which have the correct numerical value.

P
sat()ln A

B
T C+
--------------–=
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimeqns.fm5

84 ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

.

,
g
D

le.

t T

les.
We illustrate in the following subsections just how to do this
conversion. It proves to be very straight forward to do.

8.1.1 CONVERTING THE LN TERM

Convert the quantity within theln() term into a dimensionless number
that has the value of pressure when pressure is expressed in {atm}

Very simply, we write

P_atm = P/1{atm};

Note that P_atm has to be adimensionless quantity here.

We then rewrite the LHS of Equation 8.1 as

ln(P_atm)

Suppose P = 2 {atm}. In SI units P= 202,650 {kg/m/s^2}. In SI units
the dimensional constant 1{atm} is about 101,325 {kg/m/s^2}. Usin
this definition, P_atm has the value 2 and is dimensionless. ASCEN
will not complain with P_atm as the argument of theln () function, as it
can take the natural log of the dimensionless quantity 2 without any
difficulty.

8.1.2 CONVERTING THE RHS

We next convert the RHS of Equation 8.1, and it is equally as simp
Again, convert the temperature used in the RHS into:

T_R = T/1{R};

ASCEND converts the dimensional constant 1{R} into
0.55555555...{K}. Thus T_R is dimensionless but has the value tha
would have if expressed in {R}.

8.1.3 IN SUMMARY FOR EXAMPLE 1

We do not need to introduce the intermediate dimensionless variab
Rather we can write:

ln(P/1{atm}) = A - B/(T/1{R} + C);
Last modified: June 20, 1998 8:51 pm

FAHRENHEIT— VARIABLES WITH OFFSET 85

is

did

ch

nd
d. In

ifth

r by
as a correct form for the dimensional equation. When we do it in th
way, we can enter A, B and C as dimensionless quantities with the
values exactly as tabulated.

8.2 FAHRENHEIT — VARIABLES WITH OFFSET

What if we write Equation 8.1 but the handbook says that T is in
degrees Fahrenheit, i.e., in {F}? The conversion from {K} to {F} is

T{F} = T{K}*1.8 - 459.67

and the 459.67 is anoffset. ASCEND does not support an offset for
units conversion. We shall discuss the reasons for this apparent
limitation in Section 8.4.

You can readily handle temperatures in {F} if you again think as we
above. The rule, even for units requiring an offset for conversion,
remains: convert a dimensional variable into dimensionless one su
that the dimensionless one has the proper value.

Define a new variable

T_degF = T/1{R} - 459.67;

Then code Equation 8.1 as

ln(P/1{atm}) = A - B/(T_degF + C);

when entering it into ASCEND. You will then enter constants A, B, a
C as dimensionless quantities having the values exactly as tabulate
this example wemust create the intermediate variable T_degF.

8.3 EXAMPLE 3— PRESSURE DROP

From the Chemical Engineering Handbook by Perry and Chilton, F
Edition, McGraw-Hill, p10-33, we find the following correlation:

(8.2)

where the pressure drop on the LHS is in psi, y is the fraction vapo
weight (i.e., dimensionless),Vg andVl are the specific volumes of gas
and liquid respectively in ft3/lbm, G is the mass velocity in lbm/hr/ft2

andg is the acceleration by gravity and equal to 4.18x108 ft/hr2.

P'a∆
y Vg Vl–()G2

144g
---------------------------------=
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimeqns.fm5

86 ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

al

e

lue

are

ce
 by
d to
 to
nd

ll
s in

t be
We proceed by making each term dimensionless and with the right
numerical value for the units in which it is to be expressed. The
following is the result. We do this by simply dividing each dimension
variable by the correct unit conversion factor.

delPa/1{psi} = y*(Vg-Vl)/1{ft^3/lbm}*

(G/1{lbm/hr/ft^2})^2/(144*4.18e8);

8.4 THE DIFFICULTY OF HANDLING UNIT

CONVERSIONS DEFINED WITH OFFSET

How do you convert temperature from Kelvin to centigrade? The
ASCEND compiler encounters the following ASCEND statement:

d1T1 = d1T2 + a.Td[4];

and d1T1 is supposed to be reported in centigrade. We know that
ASCEND stores termperatures in Kelvin {K}. We also know that on
converts {K} to {C} with the following relationship

T{C} = T{K} - 273.15.

Now suppose d1T2 has the value 173.15 {K} and a.Td{4} has the va
500 {K}. What is d1T1 in {C}? It would appear to have the value
173.15+500-273.15 = 400 {C}. But what if the three variables here
really temperature differences? Then the conversion should be

T{dC} = T{dK}.

where we use the notation {dC} to be the units for temperature
difference in centigrade and {dK} for differences in Kelvin. Then the
correct answer is 173.15+500=673.15 {dC}.

Suppose d1T2 is a temperature and d1T2 is a temperature differen
(which would indicate an unfortunate but allowable naming scheme
the creator of this statement). It turns out that a.Td[4] is then require
be a temperature and not a temperature difference for this equation
make sense. We discover that an equation that involves the sums a
differences of temperature and temperature difference variables wi
have to have an equal number of positive and negative temperature
it to make sense, with the remaining having to be temperature
differences. Of course if the equation is a correlation, such may no
the case, as the person deriving the correlation is free to create an
Last modified: June 20, 1998 8:51 pm

THE DIFFICULTY OF HANDLING UNIT CONVERSIONS DEFINED WITH OFFSET 87

sure
s.
}

he
t

.g.,

e

the
o

t the

ed
te,
equation that “fits” the data without requiring the equation be
dimensionally (and physically) reasonable.

We could create the above discussion just as easily in terms of pres
where we distinguish absolute from gauge pressures (e.g., {psia} v
{psig}). We would find the need to introduce units {dpisa} and {dpsig
also.

8.4.1 GENERAL OFFSET AND DIFFERENCE UNITS

Unfortunately, we find we have to think much more generally than t
above. Any unit conversion can be introduced both with and withou
offset. Suppose we have an equation which involves the sums and
diffences of terms t1 to t4:

t1 + t2 - (t3 + t4) = 0 (8.3)

where the units for each term is some combination of basic units, e
{ft/s^2/R}. Let us call this combination {X} and add it to our set of
allowable units, i.e., we define

{X} = {ft/s^2/R}.

Suppose we define units {Xoffset} to satisfy:

{Xoffset} = {X} - 10

as another set of units for our system. We will also have to introduc
the concept of {dX} and and should probably introduce also
{dXoffset} to our system, with these two obeying

{dXoffset} = {Xoffset}.

For what we might call a “well-posed” equation, we can argue that
coefficient of variables in units such as {Xoffset} have to add to zer
with the remaining being in units of {dX} and {dXoffset}.
Unfortunately, the authors of correlation equations are not forced to
follow any such rule, so you can find many published correlations
which make the most awful (and often unstated) assumptions abou
units of the variables being correlated.

Will the typical modeler get this right? We suspect not. We would ne
a very large number of unit conversion combinations in both absolu
offset and relative units to accomodate this approach.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-dimeqns.fm5

88 ENTERING DIMENSIONAL EQUATIONS FROMHANDBOOKS

fset

e do

it for
es

able
nits
h

We suggest that our approach to use only absolute units with no of
is the least confusing for a user. Units conversion is then just
multiplication by a factor both for absolute {X} and difference {dX}
units— we do not have to introduce difference variables because w
not introduce offset units.

When users want offset units such as gauge pressure or Fahrenhe
temperature, they can use the conversion to dimensionless variabl
having the right value, using the style we introduced above, i.e.,

T_defF = T/1{R} - 459.67

and

P_psig = P/1{psi} - 14.696

as needed.

Both approaches to handling offset introduce undesirable and desir
characteristics to a modeling system. Neither allow the user to use u
without thinking carefully. We voted for this form because of its muc
lower complexity.
Last modified: June 20, 1998 8:51 pm

CAVEATS 89

ned

o

.

—

the
unit

tors
s
e

s)

 is
CHAPTER9 DEFINING NEW UNITS OF MEASURE

Occasionally units of measure are needed that do not come predefi
in the ASCEND system. You can define a new unit of measure by
defining the conversion factor. In this chapter, we examine how to d
this easily for an individual user and on a system-wide basis.

9.1 CAVEATS

Order matters! Order matters for defining units of measure in three ways.

• a unit of measure must be defined before it is used anywhere

• the first definition ASCEND reads for a unit of measure is the
only definition ASCEND sees.

• new units can be defined only from already defined units.

Measuring units are absolutely global in the ASCEND environment
they are not deleted when the Library of types is deleted. Once you
define a unit’s conversion factor, you are stuck with it until you shut
down and restart ASCEND. For any unit conversion definition, only
first conversion factor seen is accepted. Redefinitions of the same
are ignored.

Multiplicative unit
conversions only!

The various units ASCEND uses are all obtained by conversion fac
(multiplication only) from the SI units. So, for example, temperature
may be in degrees Rankine but not in Fahrenheit. In this chapter w
address creating new conversion factors. For handling non-
multiplicative conversions (such as the Fahrenheit or Celsius offset
see Section 8.2.

9.2 INDIVIDUALIZED UNITS

There are two scenarios for individualized units of measure. One in
which you need a measure defined only for a specific model and
another in which you want to define a measure that you will use
throughout your modeling activities in the future. The syntax for both
the same, but where best to put the UNITS statement differs.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-units.fm5

90 DEFINING NEW UNITS OF MEASURE

 at
its
e

.

s of

D
nits
iven
ole
9.2.1 UNITS OF MEASURE FOR A SPECIFIC MODEL

Units of measure which are used in only one model can be defined
the beginning of the model itself or before the model, but not the un
appear in the model definition. Let us suppose you want to measur
speed in {furlong/fortnight} in a model. ASCEND does not define
furlong, fortnight, or furlong/fortnight. (We cannot find standard
definitions for them!).

MODEL mock_turtle;

d IS_A distance;

delta_t IS_A time;

s IS_A speed

s = d/delta_t;

(* We really should write s * delta_t = d;

 * to avoid division by zero.

 *)

UNITS

furlong = {3.17*kilometer};

fortnight = {10*day};

END UNITS;

METHODS

METHOD default_self;

d := 1 {furlong};

t := 5 {hours};

END default_self;

(* other standard methods omitted *)

END mock_turtle;

In mock_turtle we definefurlong andfortnight conversions before they
are used in the methods and before any equations which use them
Also, notice that even though ASCEND rejects this model
mock_turtle , as it will because of the missing “;” after “speed ” in
the fourth line,furlong andfortnight still get defined. The UNITS
statement can appear in any context and gets processed regardles
any other errors in that context.

9.2.2 UNITS OF MEASURE FOR ALL YOUR PERSONAL MODELS

If you commonly use a set of units that is not in the default ASCEN
library measures.a4l, you can create your own personal library of u
in the user data directory ascdata. The location of this directory is g
by ASCEND at the end of all the start-up spew it prints to the Cons
window (or xterm under UNIX) as shown below. You will see a path
other than/usr0/ballan/ of course.
Last modified: June 20, 1998 8:51 pm

NEW SYSTEM-WIDE UNITS 91

ou
nge

t

his

4l,

h

User data directory is /usr0/ballan/ascdata

Create the library file myunits.a4l in your ascdata directory. This file
should contain a UNITS statement and any comments or NOTES y
wish to make. This file should contain any conversions that you cha
often. For example:

UNITS (* Units for Norway, maybe?*)

euro = {1*currency};

(* currency is the fundamental financial unit *)

kroner = {0.00314*euro};

nk = {kroner};

USdollar = {0.9*euro};

CANdollar = {0.65*USdollar};

END UNITS;

Note that this file contains a definition of USdollar different from tha
given in the standard library measures.a4l. ASCEND will warn you
about the conflict. You must load myunits.a4l into ASCEND before
atoms.a4l or any of our higher level libraries. You can ensure that t
happens by putting the statement

REQUIRE “myunits.a4l”;

on the very first line in all your model definition files.

9.3 NEW SYSTEM-WIDE UNITS

Suppose you are maintaining ASCEND on a network of computers
with many users. You have a standard set of models stored in a
centrally located directory, and you want to define units for use by
everyone on the network. In this case, just edit models/measures.a
the default units of measure library. ASCEND is an open system.

Make the new unit conversion definition statement(s) of the form

newunit = {combination of old units};

as described in Section 9.2. In the file measures.a4l, add your
statement(s) anywhere inside the block of definitions that starts wit
UNITS and ends with “END UNITS.” The existing definitions are
divided up into groups by comment statements. If your conversion
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-units.fm5

92 DEFINING NEW UNITS OF MEASURE

n
er
belongs to one of the groups, it is best to put the conversion in that
group. The groups are given in Table 9-1.

9.4 SEND THEM IN

We are always on the lookout for useful unit conversions to add to
measures.a4l. If you create a myunits.a4l containing unit conversio
definitions of general use (i.e. not currency exchange rates and oth
time-varying conversions), please mail us a copy and include your
name in a comment. Thank you very much.

Table 9-1 Groups of units in the current measures library

distance

mass

time

molecular quantities

money

reciprocal time (frequency)

area

volume

force

pressure

energy

power

absolute viscosity

electric charge

miscellaneous electromagnetic

swiped from C math.h

constant based conversions

subtly dimensionless measures

light quantities

miscellaneous rates

time variant conversions
Last modified: June 20, 1998 8:51 pm

WHY YOU SHOULD FOLLOW OUR WAYS 93

n
tical
d to
ter

lude
,” on

ds

u

is
,
e
d

h

fy,

 they
f
t

ng

ize
CHAPTER10 HOW (AND WHY) TO WRITE

STANDARD METHODS

In this chapter we describe a methodology (pun intended) which ca
help make anyone who can solve a quadratic equation a mathema
modeling expert. This methodology helps you to avoid mistakes an
find mistakes quickly when you make them. Finding bugs weeks af
creating a model is annoying, inefficient, and (frequently)
embarrassing. Because METHOD code can be large, we do not inc
many examples here. See Chapter 3, “Preparing a model for reuse
page 25 for detailed examples. One of the advantages of this
methodology is that it allows almost automatic generation of metho
for a model based on the declarative structure (defined parts and
variables) in the model, as we shall see in Section 10.10. Even if yo
skip much of this chapter, read Section 10.10

We divide methods into _self and _all categories. The premise of th
method design is that we can write the _self methods incrementally
building on the already tested methods of previous MODEL parts w
are reusing. In this way we never have to write a single huge metho
that directly manipulates 100s of variables in a hierarchy. The _all
methods are methods which simply “top off” the _self methods. Wit
an _all method, you can treat just apart of a larger simulation already
built as a self-contained simulation.

Usually discovery of the information you need to write the methods
proceeds in the order that they appear below: check, default, speci
bound, scale.

10.1 WHY YOU SHOULD FOLLOW OUR WAYS

If debugging is the
repair of modeling
errors, then modeling
must be the process of
creating those errors.1

1. Somebody famous said something like this about programming computers. The principle holds.

Some geniuses make more mistakes than anyone else -- because
try more things that anyone else. Part (perhaps a very large part) o
what makes such a genius different from the rest of humanity is tha
they quickly recognize their own mistakes and move on to somethi
else before anyone notices that they have screwed up! Solving a
problem as far and as fast as you can, and then going back to critic
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

94 HOW (AND WHY) TO WRITE STANDARD METHODS

that
g

t (or

ur
Ls

ort

e

_all,
u
y
and
t

s in
ese

ist),
y
n a

r
uld

hese
icts
every aspect of the solution with an eye to improving it is how you
usually discover right answers. Do it our way so thatASCEND can
help you find your mistakes.

We (geniuses or not we’ll leave to our users to decide) have found
it is best to write mathematical MODELs and mathematical modelin
software in ways which make our mistakes (or your mistakes) very
easy to detect. This way it is easier to find and fix problems early,
instead of discovering the bug while the boss and the vice-presiden
the advisor and the industrial sponsor) are hovering near. The
ASCEND system will not force you to write standard methods in yo
models. METHODs of the sort we advocate here make your MODE
much easier to use and much more reliable. They pay off in the sh
run as well as the long run. These areguidelines, not laws: geniuses
know when to color outside the lines.

If you do not write the standard methods, your MODEL will inherit th
ones given in the library basemodel.a4l. TheClearAll andreset
methods here will work for you if you follow the guidelines for the
methodspecify. The other methods defined in basemodel.a4l
(check_self, default_self, bound_self, scale_self, check_all, default
bound_all, scale_all) all contain STOP statements which will warn yo
that you have skipped something important, should you accidentall
call one of these methods. If you create a model for someone else
they run into one of these STOP errors while using your model, tha
error isyour fault.

10.2 METHODS *_SELF VS *_ALL

When you create a model definition, you create a container holding
variables, equations, arrays, and other models. You create method
the same definition to control the state of (the values stored in) all th
parts. ASCEND lets you share objects among several models by
passing objects through a model interface (the MODEL parameter l
by creating ALIASES for parts within contained objects, and even b
merging parts (though this is a dumb idea for any object bigger tha
variable).

Too many cooks spoil
the soup.

The problem this creates for you as a METHOD writer is to decide
which of the several MODELs that share an object is responsible fo
updating that variable’s default, bounds, and nominal values. You co
decide that every model which shares a variable is responsible for t
values. This will lead to many, many, many hard to understand confl
as different models all try to manage the same value. The sensible
approach is to make only one model responsible for the bounding,
Last modified: June 20, 1998 8:51 pm

METHODS*_SELFVS *_ALL 95

es

ods

 the
nd

ting

d
ver
scaling, and default setting of each variable: the model which creat
the variable in the first place.

Use *_self methods
on locally created
variables and parts

Consider the following model and creating the *_self methods
default_self, check_self, bound_self, and scale_self for it.

MODEL selfish(

external_var WILL_BE solver_var;

out_thingy WILL_BE input_part;

);

my_variable IS_A solver_var;

peek_at_variable ALIASES out_thingy.mabob.cost;

my_thingy IS_A nother_part;

navel_gaze ALIASES my_thingy.mabob.cost;

END selfish;

This model should manage the value of the variable it creates:
my_variable. External_var comes in from the outside, so some other
model will create and manage it.Peek_at_variableandnavel_gaze also
are not created here and should not be managed in the *_self meth
of selfish.. We want to default, bound, or scale variables in complex
parts we create also. We should callmy_thingy.default_self whenever
default_self is called for this model. We should not call
out_thingy.default_self, however, as some other model will do so.

Use *_all methods to
manage a troublesome
part

Any mathematical subproblem in a large simulation may need to be
isolated for debugging or solving purposes. When this is done using
Browser and Solver tools, you still need to call scaling, bounding, a
checking methods for all parts of the isolated subproblem, even for
those parts that came in from the outside. This is easily done by wri
*_all methods. In the example above,scale_all will scaleexternal_var
and callout_thingy.scale_all because these parts are defined using
WILL_BE statements.scale_all will then call the localscale_self to do
all the normal scaling.

That’s the big picture of _self and _all methods. Each kind of metho
(bound, scale, default, check) has its own peculiarities which we co
in Section 10.4 and Section 10.5, but they all follow the rules above
which distinguish among variables and parts defined with WILL_BE
(managed in *_all only), IS_A (managed in *_self only), and
ALIASES (not our responsibility).
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

96 HOW (AND WHY) TO WRITE STANDARD METHODS

 do
hall
ions

nd

n

 for
ase.

f a
 long
ons
nds

re

y
ds
10.3 HOW TO WRITE CLEAR ALL AND RESET

Writing these two standard methods in your model is very simple—
nothing. You may wish to write alternative reset_* methods as we s
discuss. These methods are inheritted by all models from the definit
in basemodel.a4l. Just so you know, here is what they do.

10.3.1 CLEAR ALL

This method finds any variable that is a solver_var or refinement of
solver_var and changes the .fixed flag on that var to FALSE. This
method does not change the value of .included flags on relations or
return boolean, integer, or symbol variables to a default value.

10.3.2 RESET

This method callsClearAll to bring the model to a standard state with
all variables unfixed (free), then it calls the user-writtenspecify method
to bring the model with an equal number of variables to calculate a
equations to solve. Normally you do not need to write this method:
your models will inherit this one unless you override it (redefine it) i
your MODEL.

This standard state is not necessarily the most useful starting state
any particular application. This method merely establishes a base c
There is no ‘one perfect “reset”’ for all purposes. Other
reset_whatElseYouWant methods can also be written. The name o
method is a communication tool. Please use meaningful names as
as necessary to tell what the method does. Avoid cryptic abbreviati
and hyper-specialized jargon known only to you and your three frie
when you are naming methods; however, do not shy away from
technical terms common to the engineering domain in which you a
modeling.

10.4 THE *_SELF METHODS

The following methods should be redefined by each reusable librar
MODEL. Models that do not supply proper versions of these metho
are usually very hard to reuse.
Last modified: June 20, 1998 8:51 pm

THE *_SELF METHODS 97

ey

he
p
me
tly

t
re

eck

sical

es
ic

ises
stops
l,

ally

If

od.

e

h the
10.4.1 METHOD CHECK _SELF

This method should be written first, though it is run last. Just like th
taught you in elementary school, always check your work. Start by
defining criteria for a successful solution that will not be included in t
equations solved and compute them in this method. As you develo
your MODEL, you should expect to revise the check method from ti
to time, if you are learning anything about the MODEL. We frequen
change our definition of success when modeling.

When a mathematical MODEL is solved, the assumptions that wen
into writing (deriving) the equations should be checked. Usually the
are redundant equations available (more than one way to state the
physics or economics mathematically). These should be used to ch
the particularly tricky bits of the MODEL.

Check that the physical or intuitive (qualitative) relationships among
variables you expect to hold are TRUE, especially if you have not
written such relationships in terms of inequalities (x*z <= y) in the
MODEL equations.

In some models, checking the variable values against absolute phy
limits (temperature > 0{K} and temperature < Tcritical for example)
may be all that is necessary or possible. Do not check variable valu
against their .lower_bound or .upper_bound, as any decent algebra
solver or modeling system (e.g. ASCEND) will do this for you.

If a check fails, use a STOP statement to notify yourself (or you
MODEL using customer) that the solution may be bogus. STOP ra
an error signal and issues an error message. STOP normally also
further execution of the method and returns control to a higher leve
though there are interactive tools to force method execution to
continue. STOP does not crash the ASCEND system.

10.4.2 METHOD DEFAULT _SELF

This method should set default values for any variables declared loc
(IS_A) to the MODEL. It also should rundefault_self onall the
complex parts that are declared locally (with IS_A) in the MODEL.
the atoms you use to define your variables have a suitable default
already, then you do not need to assign them a default in this meth

This method should not run any methods on MODEL parts that com
via WILL_BE in the definition’s parameter list. This method also
should not change the values of variables that are passed in throug
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

98 HOW (AND WHY) TO WRITE STANDARD METHODS

o.
del
ll it

ll

el

tly
ed

d

e.
t
h

oo
the
der
parameter list. Sometimes there will be nothing for this method to d
Define it anyway, leaving it empty, so that any writer reusing this mo
as part of a higher level model can safely assume it is there and ca
without having to know the details.

When a top-level simulation is built by the compiler, this method wi
be run (for the top-level model) at the end of compilation. If your
model’sdefault_self method does not call the lower leveldefault_self
methods in your model’s IS_A’d parts, it is quite likely that your mod
will not solve.

10.4.3 METHOD BOUND_SELF

Much of the art of nonlinear physical modeling is in bounding the
solution. This method should update the bounds on locally defined
(IS_A) variables and IS_A defined MODEL parts. Updating bounds
requires some care. For example, the bounds on fractions frequen
don’t need updating. This method should not bound variables pass
into the MODEL definition or parts passed into the definition.

A common formula for updating bounds is to define a region aroun
the current value of the variable. A linear region size formula, as an
example, would be:

or

v.upper_bound := v + boundwidth * v.nominal;

v.lower_bound := v - boundwidth v.nominal;

Care must be taken that such a formula does not move the bounds
(particularly lower bounds) out so far as to allow non-physical
solutions. Logarithmic bounding regions are also simple to calculat
Here boundwidth IS_A bound_width; boundwidth is a real atom (bu
not a solver_var) or some value you can use to determine how muc
“wiggle-room” you want to give a solver.

Small powers of 4 and 10 are usually good values of boundwidth. T
small a boundwidth can cut off the portion of number space where
solution is found. Too large a bound width can allow solvers to wan
for great distances in uninteresting regions of the number space.

x.bound x ∆ x.nominal•±=
Last modified: June 20, 1998 8:51 pm

THE *_ALL METHODS 99

e

 is

t are

way
 if

 can
is
ND

have

bles

e
fined
10.4.4 METHOD SCALE_SELF

Most nonlinear (and many linear) models cannot be solved without
proper scaling of the variables.scale_self should reset the .nominal
value on every real variable in need of scaling. It should then call th
scale_self method on all the locally defined (IS_A) parts of the
MODEL. 0.0 is the worst possible nominal value. A proper nominal
one such that you expect at the solution . This
method should not change the scaling of models and variables tha
received through the parameter list of the MODEL.

Variables (like fractions) bounded such that they cannot be too far a
from 1.0 in magnitude probably don’t need scaling most of the time
they are also bounded away from 0.0.

Some solvers, but not all, will attempt to scale the equations and
variables by heuristic matrix-based methods. This works, but
inconsistently; user-defined scaling is generally superior. ASCEND
makes scaling equations easy to do. You scale the variables, which
only be done well by knowing something about where the solution
going to be found (by being an engineer, for example.) Then ASCE
can calculate an appropriate equation-scaling by efficient symbolic
methods.

10.5 THE *_ALL METHODS

10.5.1 METHOD DEFAULT _ALL

This method assumes that the arguments to the MODEL instance
not been properly initialized, as is frequently the case in one-off
modeling efforts. This method should run thedefault_all method on
each of the parts received through the parameter list via WILL_BE
statements and should give appropriate default values to any varia
received through the parameter list. After these have been done, it
should then calldefault_self to take care of all local defaults.

10.5.2 METHOD CHECK _ALL

When solving only a part of a simulation, it is necessary to check th
models and variables passed into the part as well as the locally de
parts and variables. This method should callcheck_all on the parts
received as WILL_BE parameters, then callcheck_self to check the
locally defined parts and equations.

0.1 abs
x

x.nominal
------------------------() 10≤ ≤
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

100 HOW (AND WHY) TO WRITE STANDARD METHODS

d

 the

ld
 are
 to

ow

help

d)

at

ver
ally.

es

rs.

es
10.5.3 METHOD BOUND_ALL

This method should be likebound_self except that it bounds the passe
in variables and callsbound_all on the passed in parts. It should then
call bound_self.

10.5.4 METHOD SCALE_ALL

This method should be likescale_self above except that it scales the
variables received through the parameter list and calls scale_all on
passed in parts. It should then callscale_self to take care of the local
variables and models.

10.6 METHOD SPECIFY

Assuming ClearAll has been run on the MODEL, this method shou
get the MODEL to a condition called ‘square’: the case where there
as many variables with .fixed == FALSE as there equations eligible
compute them. This is one of the hardest tasks ever invented by
mathematicians if you go about it in the wrong way. We think we kn
the right way.

Actually, ‘square’ is a bit trickier to achieve than simply counting
equations and variables. Solvers, such as QRSlv in ASCEND, may
greatly with the bookkeeping.

The general approach is to:

1. Run “specify” for all the parts (both passed in and locally define
that are not passed on into other parts.

2. Fix up (by tweaking .fixed flags on variables) any difficulties th
arise when parts compete to calculate the same variable.

3. Use the remaining new local variables to take care of any lefto
equations among the parts and any new equations written loc

At all steps 1-3 pay special attention to indexed variables used in
indexed equations. Frequently you must fix or free N or N-1 variabl
indexed over a set of size N, if there are N matching equations. In
general, if you think you havespecify correctly written, change the
sizes of all the sets in your MODEL by one and then by two membe
If your specify method still works, you are probably using sets
correctly. Pursuing “symmetry,” the identical treatment of all variabl
defined in a single array, usually helps you write specify correctly.
Last modified: June 20, 1998 8:51 pm

METHOD VALUES 101

ell,

ct
nd
me

ld
L.
in,
gful
yptic
our
way
ou

d-for
vent

del
n
ring

lls to
When writing models that combine parts which do not share very w
or which both try to compute the same variable in different ways, it
may even be necessary to write a WHEN statement to selectively
TURN OFF the conflicting equations or MODEL fragments. An obje
or equation USEd in any WHEN statement is turned off by default a
becomes a part of the solved MODEL only when the condition of so
CASE which USEs that object is matched.

The setting of boolean, integer, and symbol variables which are
controlling conditions of WHEN and SWITCH statements should be
done in the specify method.

There is no ‘one perfect “specify”’ for all purposes. This routine shou
merely define a reasonably useful base configuration of the MODE
Other specify_whatElseYouWant methods can also be written. Aga
the name of a method is a communication tool. Please use meanin
names as long as necessary to tell what the method does. Avoid cr
abbreviations and hyper-specialized jargon known only to you and y
three friends when you are naming methods; however, do not shy a
from technical terms common to the engineering domain in which y
are modeling.

10.7 METHOD VALUES

In a final application MODEL, you should record at least one set of
input values (values of the fixed variables and guesses of key solve
variables) that leads to a good solution. Do this so no one need rein
that set the next time you use the MODEL or someone picks the
MODEL up after you.

10.8 METHODS AND CHEMICAL PROCESS MODELS

This next tip is due to Duncan Coffey. When creating a process mo
(such as a flash tank) which involves an equilibrium state calculatio
connected to input or output process flow streams, take care in orde
the calls to these stream and thermodynamic parts. Specifically, ca
methods in the equilibrium calculation should be doneafter calls to
methods in the streams. For example in MODEL
dyn_flash.a4l:detailed_tray:

METHOD default_all;

Qin := 0 {watt};

RUN vapin.default_self;

RUN liqin.default_self;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

102 HOW (AND WHY) TO WRITE STANDARD METHODS

hich
ed
uld

the
RUN vapout.default_self;

RUN liqout.default_self;

RUN state.default_self;

RUN default_self;

END default_all;

Here we seestate.default selfis called last. The part state shares
information with vapout and liqout, naturally.

10.9 SUMMARY

adding ourstandard
methods to a model
definition

We have defined a set of standard methods for ASCEND models w
we insist a modeler provide before we will allow a model to be plac
in any of our model libraries. These are listed in Table 10-1. As sho

Table 10-1List of standard methods we insist be added for each of
types in our ASCEND library of type definitions

method description

default_self a method called automatically when any simulation is com-
piled to provide default values and adjust bounds for any
locally created variables which may have unsuitable defaults
in their ATOM definitions. Usually the variables selected are
those for which the model becomes ill-behaved if given poor
initial guesses or bounds (e.g., zero). This method should
include statements to run thedefault_selfmethod for each of
its locally created (IS_A’d) parts. This method should be writ-
ten first.

ClearAll a method to set all the.fixed flags for variables in the type to
FALSE. This puts these flags into a known standard state --
i.e., all areFALSE. All models inherit this method from the
base model and the need to rewrite it is very, very rare.

specify a method which assumes all the fixed flags are currently
FALSE and which then sets a suitable set offixed flags to
TRUE to make an instance of this type of model well-posed.
A well-posed model is one that is square (n equations inn
unknowns) and solvable.

reset a method which first runs the ClearAll method and then the
specify method. We include this method because it is very
convenient. We only have to run one method to make any
simulation well-posed, no matter how its fixed flags are cur-
rently set. All models inherit this method from the base
model, as withClearAll.
Last modified: June 20, 1998 8:51 pm

METHOD WRITING AUTOMATION 103

;
ur

serve

e

he
lect
on.

t
t it
 are

 copy

t the

the
be evident from above, notall models must have associated methods
our first vessel model did not. It is simply our policy that models in o
libraries must have these methods to promote model reuse and to
as examples of best practices in mathematical modeling.

10.10 METHOD WRITING AUTOMATION

Just hit the button
Library.Edit.Suggest
methods and tweak
the results.

ASCEND will help you write the standard methods. Writing most of
the standard methods can be nearly automated once the declarativ
portion of the model definition is written. Usually, however, some
minor tweaking of the automatically generated code is needed. In t
Library window, the Edit menu has a “Suggest methods” button. Se
a model you have written and read into the library, then hit this butt

In the Display window will appear a good starting point for the
standard methods that you have not yet defined. This starting poin
follows the guidelines in this chapter. It saves you a lot of typing bu
is a starting point only. Select and copy the text into the model you
editing, then tailor it to your needs and finish the missing bits. The
comments in the generated code can be deleted before or after you
the text to your model file.

If you have suggestions for general improvements to the generated
method code, please mail them to us and include a sample of wha

values a method to establish typical values for the variables we have
fixed in an application or test model. We may also supply val-
ues for some of the variables we will be computing to aid in
solving a model instance of this type. These values are ones
that we have tested for simulation of this type and found
good.

bound_self a method to update the .upper_bound and .lower_bound
value for each of the variables. ASCEND solvers use these
bound values to help solve the model equations. This method
should bound locally created variables and then call
bound_self for every locally created (IS_A’d) part.

scale_self a method to update the .nominal value for each of the vari-
ables. ASCEND solvers will use these nominal values to
rescale the variable to have a value of about one in magnitude
to help solve the model equations. This method should
rescale locally created variables and then call scale_self for
every locally created (IS_A’d) part.

Table 10-1List of standard methods we insist be added for each of
types in our ASCEND library of type definitions

method description
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-methods.fm5

104 HOW (AND WHY) TO WRITE STANDARD METHODS

d
le
generated code ought to look likebefore the user performs any hand-
editing. We aim to create easily understood and easily fixed metho
suggestions, not perfect suggestions, because procedural code sty
tastes vary so widely.
Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 105

ing

 for a
/

n,
tc.
eed

itzer,

s

ative
CHAPTER11 THE MODEL LIBRARIES FOR MULTI-
COMPONENT, MULTI -PHASE

EQUILIBRIUM CALCULATIONS

This chapter describes the models we provide to compute
thermodynamic properties for multi-phase, multi-component vapor/
liquid mixtures where we assume equilibrium exists among co-exist
phases.

11.1 ADESCRIPTION OF THE LIBRARIES

In this section we describe the three libraries,phases.a4l,
components.a4l andthermodynamics.a4l. These libraries contain many
models, but the end user is only interested in a few of them. Our
intention is that these few should be very simple to use, with the
complexities buried inside the models.

first the phase
definitions

The first contains the models we use to define the phases we allow
mixture (i.e., vapor, liquid, vapor/liquid, liquid/liquid and vapor/liquid
liquid)1.

1. It should be noted that, while the models will correctly set up the data structures for the liquid/liquid and
vapor/liquid/liquid options, we do not really support these alternatives at this time.

then the components
and their data

The second library contains the models having all the component
physical properties for the components we include with ASCEND —
e.g., there are property values for heat capacity, heat of vaporizatio
accentric factor and so forth for water, methanol, carbon dioxide, e
There is also the very extensive list of group contribution data we n
to use the UNIFAC method.

and finally the
mixture
thermodynamic
models

The third provides the models we use to compute multi-component
mixture thermodynamic properties for phases, such as ideal gas, P
UNIFAC, and Wilson. The final model in this library is the one to
compute equilibrium conditions for multi-component, multi-phase
systems. We provide both a constant relative volatility and a rigorou
phase equilibrium model, with the ability to switch interactively
between which one to use. Thus one can first assume constant rel
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

106 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -

 all

 data

a
the
uct
id
a
can

e

e. An

es are
volatility to have a better chance to converge and then switch to the
version that makes the chemical potential equal for a component in
phases.

11.1.1 THE PHASES.A4L LIBRARY

need to create only
instances of
phases_data

ThePhases.a4l library, see Figure 11-12, has only one model in it,
phases_data. The user creates an instance of this model, specifying
which phases are to exist for a stream or holdup and which
thermodynamic model the system should use to compute mixture
properties for each phase. Compiling this instance then sets up the
structures required to characterize those phases for the system.

For example, suppose we want to model a flowsheet consisting of
single flash unit. Suppose further that we want to allow the feed to
flash unit to be vapor, liquid or vapor/liquid (i.e., 2 phase). The prod
streams from the flash unit will be a vapor phase mixture and a liqu
phase mixture. We would define three instances of the phases_dat
model, one for each type of phase condition we wish to model. You
find the following statements in the modeltestflashmodel in the library
flash.a4l.

2. In this and following figures, we represent each model as a rectangle. On the upper left is the name of th
model. In Figure 11-1, the model is phases_data. On the left side we list in order the parameters for the
model. These are shared objects a model containing an instance of phases_data will pass to that instanc
example would be

pd IS_A phases_data(V, ‘Pitzer_vapor_mixture’, ‘none’, ‘none’)

We list the parts defined locally within a model on the right side of the rectangle, including instances of
models, atoms and sets. The slanted double-headed arrow indicates a set; thus, phases and other_phas
sets in phases_data.

In Figure 11-3 we show lines connecting a model, call itA, to a part within another model, call itB.part. The
connection is to the sides of both. This type of connection saysB.part is an instance of modelA. We also
show connections from the bottom of one model, call itC, to the top of another, call itD; with this
connection we indicate that the lower modelD is a refinement of the upper modelC.

pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none');

pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none');

pdVL IS_A phases_data('VL', 'ideal_vapor_mixture', 'UNIFAC_liquid_mixture',

'none');

When compiled,pdV, pdL andpdVL contain the data structures the
thermodynamic models require to model a vapor, liquid and vapor/
liquid stream (or holdup).
Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 107

sired

 ‘L’
ree
dels
er
,

rty
ide

rs.

 for
se
 is

f
ving
the phase indicators
and types

The first parameter is a character that indicates the phase option de
- 'M', 'V', 'L', 'VL', 'LL' and 'VLL'. ‘M’ is for a material only stream (no
thermodynamic properties are to be computed), ‘V’ is for vapor and
for liquid. This model always expects the user to supply in the last th
parameters an ordered list giving the three single phase mixture mo
to be used: vapor, liquid1, liquid2. For a non-existent phase, the us
should supply ‘none’ as the model. If there is only one liquid phase
liquid2 will not exist. The allowed models we can use to estimate
multi-component phase mixture properties are in the third of the
libraries we describe in this chapter,thermodynamics.a4l, which we
discuss shortly in Section 11.1.3.

Figure 11-1 Phases.a4l models

11.1.2 THE COMPONENTS.A4L LIBRARY

In this library (see Figure 11-2) we provide the actual physical prope
data for the components supplied with ASCEND. The data we prov
is that found in the tables at the back of Reid, Prausnitz and Poling,The
Properties of Vapors & Liquids, 4th Ed, McGraw-Hill, New York
(1986). For a few of the components, we have also identified their
UNIFAC groups. We include a few Wilson binary mixture paramete

need to create only
instances of
components_data

The purpose of this library is similar to thephases.a4l library. We wish
to provide an easy-to-use model that will set up the data structures
the components in a mixture that the thermodynamic models will u
when estimating mixture physical properties. All the user has to do
create an instance of the bottom-most modelcomponents_data, passing
into it a list of the components in the mixture and the name of one o
them which is to serve as the reference component. This model, ha
parts which are instances of the others present in this library, then
compiles into the needed data structures.

An example of use is found in the modeltestflashmodel in the library
flash.a4l:

cd IS_A components_data(['n_pentane','n_hexane','n_heptane'],'n_heptane');

phases_data

phase_indicator

vapor_option

liquid1_option

liquid2_option

phases

reference_phase

phase_type
other_phases
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

108 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -

is up to
,

t
ently
When compiledcd has in it a data structure containing the physical
properties for the three species listed.

reference component The choice of which species to use as the reference component
the user. Usually a good choice is one that is plentiful in the mixture
but that need not be so.

Figure 11-2 components.a4l models

adding a new
component

One can add more components to this library as follows:

1. add the name of the new component to the list of
supported_components at the beginning of the model
td_thermodynamic_constants (part of the WHERE statement tha
causes the system to output a diagnostic if someone subsequ

compmodel

UNIFAC_constants
component_constants

td_component_constants

groupssub

subgroups
group

a

R
Q

groups

groups

mw
Tb
Tc
Pc
etc

supported_components

component_name
SELECT

hydrogen

carbon_dioxide
water

chloroform
methane

etc

basic_components_data

components_data

components

reference data components
Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 109

t in

he

re in

e it
misspells the name of a component)

2. add the component data as a CASE to the SELECT statemen
td_thermodynamic_constants(for an example, look at how it is
done for ‘methanol’)

adding UNIFAC
group identifiers

3. Put the UNIFAC group identifiers for the new component into t
set subgroups. To illustrate, this statement for methanol is:

subgroups :== ['CH3', 'OH'];

You can find all the UNIFAC group identifiers possible in the
modelUNIFAC_constants. Then fill in the vectornu with a value
for each of these groups (to indicate how many such groups a
the molecule). To illustrate, the values for methanol are:

nu['CH3'] :==1;

nu['OH'] :==1;

If you are entering the component without identifying its
UNIFAC groups, then enter the subgroups statement and defin
as empty — i.e., write

subgroups :== [];

There should then be no entry fornu (see the CASE for hydrogen,
for example). An activity coefficient estimated by the UNIFAC
method will be unity for such a component.

adding Wilson
parameters

4. To add Wilson parameters, first fill in the names of the other
components for which you are adding data into the setwilson_set.
For example, this set for methanol might be:

wilson_set :== ['H2O','(CH3)2CO','CH3OH'];

Then fill in lambda and energy parameters into the arrayslambda
anddel_ip, one for each of the other components. Again, to
illustrate, these arrays for methanol would be:

lambda['H2O'] :==0.43045;

lambda['(CH3)2CO']:==0.77204;

lambda['CH3OH'] :==1.0;

del_ip['(CH3)2CO']:==2.6493E+002 {J/g_mole};

del_ip['H2O'] :==1.1944E+002 {J/g_mole};

del_ip['CH3OH'] :==0.0 {J/g_mole};

Finally for each of these other components, go to its CASE
statement, add the name of the new component to itswilson_set
and then add statements to set the corresponding lambda and
energy data. BEN, IS THIS RIGHT????

If you are not adding any Wilson data, enter the statement:
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

110 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -

ser

e

odel

o be
ase
wilson_set :== [];

11.1.3 THE THERMODYNAMICS.A4L LIBRARY

create instances only
of phase_partials and
thermodynamics

Figure 11-3 shows all the models in this library and how they are
related to each other. There are two models in this library that the u
has to worry about:phase_partials andthermodynamics. The user
creates one instance ofthermodynamics for every stream or holdup in a
process model. Each instance, when compiled has parts which are
instances of the other models in this library and which are create th
equations to compute the thermodynamic properties for a multi-
component, multi-phase mixture.

However, the user must pass each instance of a thermodynamics m
an array of instances ofphase_partials, one for each phase in the
mixture. Onephase_partials model must exist for each phase in each
stream or holdup in the process model as it provides the equations
modeling that phase.

Each of the models in the array of phase_partials must be refined t
one of the possible models for computing properties for a single ph
mixture, i.e., one of the models lying below thephase_paritals model
in Figure 11-3:ideal_vapor_mixture, Pitzer_vapor_mixture,
UNIFAC_liquid_mixture or Wilson_liquid_mixture. I
Last modified: June 20, 1998 8:51 pm

A
D

E
S

C
R

IP
T

IO
N

O
F

T
H

E
LIB

R
A

R
IE

S
111

 /afs/cs.cm
u.edu/project/edrc-ascend7/D

O
C

S
/H

elp/how
to-physprops.fm

5

y

amics

ses]

Number_of_other_phases
alpha_barP

T
V
H
G

Slack_PhaseDisappearance pd.phases

cd.components
F
igure 11-3

M
odels inth

e
rm

o
d

yn
a

m
ic.a

4
l

td_model

thermodynamic_properties
P
T

v
h
g

pure_component
P
T
data

partial_component
P
T

Pitzer_vapor_component
P
T
data

v =
h =
g =

ideal_vapor_component
P
T
data

v =
h =
g =

Rackett_liquid_component
P
T
data

VP v =
h =
g =

phase_partials

cd
P
T
v_y
h_y
g_y

components
partial
alpha

y

slack_Phase_Disappearance

ideat_vapor_mixture

cd

cd

Pitzer_vapor_mixture

cd

UNIFAC_liquid_mixture

cd

Wilson_liquid_mixture

data components
pure

data components
pure

data components
pure

data components
pure

thermodyn

cd
pd
phase[pd.pha
equilibrated

112 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -
11.1.3.1 CREATING AN INSTANCE OF A PHASE_PARTIALS ARRAY

The information in an instance of aphases_data model allows us to
construct this array ofphase_partials. We extract the following code
from the librarystream_holdup.a4l to illustrate how we have created
such a model, given a phases_data model.

MODEL select_mixture_type(

 cd WILL_BE components_data;

 type WILL_BE symbol_constant;

) REFINES sh_base;

phase IS_A phase_partials(cd);

SELECT (type)

CASE 'ideal_vapor_mixture':

phase IS_REFINED_TO ideal_vapor_mixture(cd);

CASE 'Pitzer_vapor_mixture':

phase IS_REFINED_TO Pitzer_vapor_mixture(cd);

CASE 'UNIFAC_liquid_mixture':

phase IS_REFINED_TO UNIFAC_liquid_mixture(cd);

CASE 'Wilson_liquid_mixture':

phase IS_REFINED_TO Wilson_liquid_mixture(cd);

OTHERWISE:

END SELECT;

boundwidth IS_A bound_width;

...

...

...

END select_mixture_type;

MODEL stream(.......

...

...

...

FOR j IN phases CREATE

smt[j] IS_A select_mixture_type(cd, pd.phase_type[j]);

END FOR;

FOR j IN phases CREATE

phase[j] ALIASES smt[j].phase;

END FOR;

state IS_A thermodynamics(cd, pd, phase, equilibrated);

...

...

...

...
Last modified: June 20, 1998 8:51 pm

A DESCRIPTION OF THE LIBRARIES 113

 that
ere.

se.
y
ase

ts

ears by

n it
el
apor

ing
cannot directly
embedSELECT
statements inFOR
loops

We had to be a bit tricky, but we hope we have not been so devious
you cannot understand what we have done if we explain it to you h
Look first at the code we extracted from the modelstream. The models
cd andpd are instances of acomponents_data and aphases_data model
respectively. If we look insidepd, we will find it contains an array
calledphase_type, with one entry for each phase that gives the type
(name) of the model to be used to set up the equations for that pha
ASCEND does not allowSELECT statements to be embedded directl
within aFOR loop — thus we need a bit of deviousness. For each ph
j we createsmt[j] as an instance of aselect_mixture_type model. We
parameterize theselect_mixture_type with the components datacd and
the type (name)pd.phase_type[j]of the model to be used to generate i
equations. Then we embed the select statement within the
select_mixture_type model, something ASCEND does allow.

The modelselect_mixture_type appears first in this code. It uses the
type (name) it is passed to select and then to instance the desired
refinement of thephase_partials model.

Returning to the code extracted from theflash model, the secondFOR
loop creates the desired array by aliasing the array elementphase[j]
with the phase model created within the correspondingsmt instance.

disappearing phases The multi-phase model handles the case where a phase disapp
using a complementarity formulation. This formulation relaxes the
constraint for a phase that its mole fractions must sum to unity whe
disappears. Thus the vapor/liquid model will correctly alter the mod
to handle the situation when the mixture becomes a superheated v
or a subcooled liquid.

11.1.3.2 CREATING AN INSTANCE OF A THERMODYNAMICS MODEL

We are now ready to create an instance of athermodynamics model.
When compiled this instance contains all the equations needed to
estimate the phase conditions for a multi-phase, multi-component
mixture assuming equilibrium exists among the phases. The follow
line of code, extracted from thestream model referred to above,
illustrates its use:

state IS_A thermodynamics(cd, pd, phase, equilibrated);

wherecd is an instance of acomponents_data model,pd of a
phases_data model,phase an array of instances ofphase_partials, and
equilibrated aboolean variable. Whenequilibrated is FALSE, the
model will generate the equations assuming constant relative
volatilities (the user must estimate these volatilities). WhenTRUE, the
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

114 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -

or a

ve
is

e
f a

ary
f this
te a

del

els.
list
model generates the equations assuming the chemical potentials f
component are equal in all phases.

11.2 USING THE THERMODYNAMICS MODELS

There are several libraries of models which use the libraries we ha
just described. The first library to examine is stream_holdup.a4l. Th
library contains steady-state models for a stream and a holdup. Th
following gives the parameter list for a user to create an instance o
stream.

11.2.1 STREAMS AND HOLDUPS

MODEL stream(84

 cd WILL_BE components_data; 85

 pd WILL_BE phases_data; 86

 equilibrated WILL_BE boolean; 87

) REFINES sh_base; 88

The model sh_base is a dummy model to tie all models into this libr
back to a common root model. The user need do nothing because o
refinement. What you should note is that all you need to do to crea
stream is create acomponents_data model and aphases_data model.
One supplies the boolean variableequilibrated as a variable that one
can set interactively or in a method or a script when running the mo
to decide how to model equilibrium, as we have discussed above. A
holdup is equally as easy to model.

11.2.2 FLASH UNITS AND VARIANTS THEREOF

From streams and holdups, we can move on to unit operation mod
The library flash.a4l provide us with a flash model. The parameter
for the flash model is:

MODEL vapor_liquid_flash(

Qin WILL_BE energy_rate;

equilibrated WILL_BE boolean;

feed WILL_BE stream;

vapout WILL_BE stream;

liqout WILL_BE stream;

) WHERE (

feed, vapout, liqout WILL_NOT_BE_THE_SAME;

feed.cd, vapout.cd, liqout.cd WILL_BE_THE_SAME;

vapout.pd.phase_indicator == 'V';
Last modified: June 20, 1998 8:51 pm

USING THE THERMODYNAMICS MODELS 115

t
m

ot

:

l

al

es

 as
 a
liqout.pd.phase_indicator == 'L';

(feed.pd.phase_indicator IN ['V','L','VL','VLL']) ==

TRUE;

) REFINES flash_base;

Again we see that to create aflash unit, we need to create the variable
Qin for the heat input to the unit, a booleanequilibrated and three
streams,feed, vapout andliqout. The three streams must all be differen
streams. They must have the same components in them. The strea
vapout must be a vapor stream and the streamliqout a liquid stream.
The feed stream can be of any kind.

Hopefully with the above information, creating a flash unit should n
now seem particularly difficult.

If you examine this library further, you will see it contains models
which are variations of the flash unit for:detailed_tray, tray, feed_tray,
total_condenser andsimple_reboiler.

11.2.3 DISTILLATION COLUMNS

We provide two libraries that allow you to model distillation columns
column.a4l andcollocation.a4l. The librarycolumn.a4l first models a
tray stack and then a simple column using that model. A third mode
extracts the profiles for pressure, temperature, a parameter that
indicates the deviation from constant molar overflow conditions, tot
vapor and liquid flows and component compositions against tray
number. This information may then be used for plotting these profil
using the ASCEND plotting capability.

The librarycollocation.a4l provides collocation models for simple
columns. With collocation models, one models composition profiles
smooth functions of tray number in a column section. Columns with
large number of trays are modeled with relatively small collocation
models. Also the number of trays becomes a continuous variable,
aiding in optimization studies where the number of trays in each
section is to be computed.

11.2.4 DYNAMIC UNIT MODELS

ASCEND contains models for simulating the dynamic behavior of
units. Their use is described inChapter xxxx.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-physprops.fm5

116 THE MODEL LIBRARIES FOR MULTI-COMPONENT, MULTI -

odel

ists
e

es,
of,
11.3 DISCUSSION

We have presented a description of the libraries that allow one to m
the equations providing thermodynamic properties for multi-
component, multi-phase mixtures when one assume equilibrium ex
among co-existing phases. With this description, we hope that thes
models become much less difficult to use. We end this chapter by
describing other libraries that build on the property estimation librari
models for streams and holdups, for flash units and variations there
and for columns.
Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 117

ND

 to
d
rn
will

l.

ing
CHAPTER12 A DETAILED ASCEND EXAMPLE

OF A DYNAMIC SIMULATION : THE

MODELING OF A SIMPLE DYNAMIC

TANK

the purpose for this
chapter

This chapter assumes you have read Chapter 2, “A Detailed ASCE
Example for Beginners: the modeling of a vessel,” on page 5 and
Chapter 3, “Preparing a model for reuse,” on page 25.

The purpose of this chapter is to be a good first step along the path
learning how to use ASCEND for dynamic simulations. We shall lea
you through the steps for creating a simple model. You will also lea
the standard methods that we employ for our dynamic libraries. We
present our reasons for the steps we take.

The problem

Step 1:We would like to create a dynamic model of a simple tank.

topics covered Topics covered in this chapter are:

• Converting the word description to an ASCEND model.

• Solving the model.

• Creating a script to load and execute an instance of the mode

• Integrating the model.

• View Integration Results.

12.1 CONVERTING THE WORD DESCRIPTION INTO

AN ASCEND MODEL

an ASCEND model
is a type definition

As stated in Section 2.1, ”Converting the word description into an
ASCEND model,” on page 7, we need to make an instance of a type
and solve the instance. So we shall start by creating a tanktype
definition. We will have to create our type definition as a text file us
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

118 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 and

 that

n if
 the

enu

k
lso
t
tem.

nd
 the

be
a text editor. (Possible text editors are Word, Framemaker, Emacs,
Notepad, pico, vi, et c. We shall discuss editors shortly.)

We need first to decide the parts to our model. In this case we know
we need the variables listed in Table 12-1. We readily fill in the first
three columns in this table, and we can also fill out the fourth colum
we know the units that are associated with each of the parts. To find

ASCEND variable type needed for the fourth column use the find m
on the library window and select ATOM by units. The result of this
search will be all the ASCEND variable type that have the units you
entered.

We would like to be able to compute the number of moles in the tan
for a given volume assuming steady state (dM_dt = 0). We would a
like to be able to calculate how the volume changes if we are not a
steady state. The following equations describe the simple tank sys

(12.1)

(12.2)

The first equation is the differential equation that relates the input a
output flows to the accumulation in the tank. The second equation is
relation of the moles in the tank to the volume of liquid and should

Table 12-1Variables required for model

Symbol Meaning Typical Units
ASCEND
variable type

M Moles in Tank mol, kmol mole

dM_dt Rate of change
of Moles in tank
(derivative)

mol/sec, kmol/secmolar_rate

input Feed flow rate mol/sec, kmol/secmolar_rate

output output flow rate mol/sec, kmol/secmolar_rate

Volume Volume of liquid
in the tank

m3,ft3 volume

density molar density of
tank fluid

mol/m3,mol/ft3 molar_densi
ty

dynamic Boolean for
switching
between
dynamic and
steady state simu-
lations

N/A boolean

dM_dt input output–=

Volume
M

density
-------------------=
Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 119

r a
rearranged to avoid division. These equations are all that is need fo
simple tank.

the first version of the
code for tank

REQUIRE "ivpsystem.a4l";

REQUIRE "atoms.a4l";

MODEL tank;

 (* List of Variables *)

 dM_dt IS_A molar_rate;

 M IS_A mole;

 input IS_A molar_rate;

 output IS_A molar_rate;

 Volume IS_A volume;

 density IS_A real_constant;

 dynamic IS_A boolean;

 t IS_A time;

 (* Equations *)

 dM_dt = input - output;

 M = Volume * density;

 (* Assignment of values to Constants *)

 density :==10 {mol/m^3};

 METHODS

 METHOD check_self;

IF (input < 1e-4 {mole/s}) THEN

 STOP {Input dried up in tank};

END IF;

IF (output < 1e-4 {mole/s}) THEN

 STOP {Output dried up in tank};

END IF;

 END check_self;

 METHOD check_all;

RUN check_self;

 END check_all;

 METHOD default_self;

dynamic := FALSE;

t :=0 {sec};

dM_dt :=0 {mol/sec};

dM_dt.lower_bound := -1e49 {mol/sec};

 END default_self;

 METHOD default_all;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

120 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-
RUN default_self;

 END default_all;

 METHOD bound_self;

 END bound_self;

 METHOD bound_all;

RUN bound_self;

 END bound_all;

 METHOD scale_self;

 END scale_self;

 METHOD scale_all;

RUN scale_self;

 END scale_all;

 METHOD seqmod;

dM_dt.fixed :=TRUE;

M.fixed :=FALSE;

Volume.fixed :=TRUE;

input.fixed :=TRUE;

output.fixed :=FALSE;

IF dynamic THEN

 dM_dt.fixed :=FALSE;

 M.fixed :=TRUE;

 Volume.fixed :=FALSE;

 output.fixed :=TRUE;

END IF;

 END seqmod;

 METHOD specify;

input.fixed :=TRUE;

RUN seqmod;

 END specify;

 METHOD set_ode;

(* set ODE_TYPE -1=independent variable,

 0=algebraic variable, 1=state variable,

 2=derivative *)

t.ode_type :=-1;

dM_dt.ode_type :=2;

M.ode_type :=1;

(* Set ODE_ID *)

dM_dt.ode_id :=1;

M.ode_id :=1;
Last modified: June 20, 1998 8:51 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 121

 up

e

uld

 The
ibed
le
 END set_ode;

 METHOD set_obs;

(* Set OBS_ID to any integer value greater

than 0, the variable will be recorded

(i.e., observed) *)

M.obs_id :=1;

Volume.obs_id :=2;

input.obs_id :=3;

output.obs_id :=4;

 END set_obs;

 METHOD values;

Volume :=5 {m^3};

input :=100 {mole/s};

 END values;

END tank;

Figure 12-1 First version of the type definition fortank

Our model definition has the following structure for it so far:

• MODEL statement

• list of variables we intend to use in the type definition

• equations

• METHODS

• END statement

While we have put the statements in this order, we could mix them
and intermix the middle two types of statements, even going to the
extreme of defining the variables after we first use them. Once the
METHODS section is started no new equations or variables can be
declared. The MODEL and END statements begin and end the typ
definition.

There are two new methods added to a dynamic model that you wo
not see in a steady state model, and they are theset_ode andset_obs
methods. Theset_ode method is used to setup the model for
integration. Theset_obsmethod is used to tell ASCEND which
variables you would like to observe in the output of the integration.

Now we need to discuss the how and why of the two new methods.
set_ode method is used to set up the equations and variables descr
in the model for integration by LSODE. In order for LSODE to be ab
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

122 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

e
e to
f an

ed to

ed

ry
tes

st

s it

s to
er is
air

ile

 of
 of

lly;

es
to integrate the model, it needs to know which variable is the
independent variable — in this case t (time), which variables are th
derivatives, and which are the states. The way we do this is we hav
add a few extra attributes to each variable. In Section 2.1, the idea o
atom was discussed with its units, default value, bounds etc. We ne
add 5 more of this type of parameter. These attributes areode_type,
ode_id, obs_id, ode_rtolandode_atol.

This now brings us to the reason there is a system.a4l and an
ivpsystem.a4l. For a steady state model the new attributes discuss
above are not needed, and would take up memory and introduce
confusion; therefore, they are excluded for the system library. If a
dynamic simulations is to be loaded and solved, the ivpsystem libra
needs to be loaded instead of the system library so the extra attribu
will be present with each part.

We will now go through the purpose of each of these attributes. Fir
ode_type is to tell the system what type of variable it is. A value of -1
for ode_type means the variable is the independent variable, 0 mean
is an algebraic variable (default), 1 means it is a state variable, and
finally 2 means it is a derivative.

The attributeode_idis used to match the state variables with their
derivatives and only needs to be used if the variable is a state or
derivative. In the exampleM is a state anddM_dt is the derivative.
Therefore they both need to have the sameode_id so ASCEND will
know that they belong together. Each state and derivative pair need
have a different ode_id; however, it does not matter what the numb
as long as it is a positive integer and no other state and derivative p
has the same number.

Nextobs_id is used by the user to flag a variable for observation wh
integrating. For any integer value ofobs_idgreater then 0 the variable
will be observed. The result of flagging a variable for observation is
that its values will be in a data column in one of two output files. One
the files of data produced with each integration contains the values
the states and the second the values of the variables flagged for
observation. The default file names are y.dat and obs.dat respectfu
however, they can be changed in the solver options general menu.

Last, but not least, are the error control attributes for LSODE:ode_rtol
andode_atol.Both of these come directly from the LSODE attributes
rtol and atol which are the local relative and absolute error toleranc
for the variable respectively.
Last modified: June 20, 1998 8:51 pm

SOLVING AN ASCENDINSTANCE 123

fore

 It
 an
an
ady

ady
w

 to
ero,

 for
el

he
e.

 for
or

del.
dow,
There is one other thing about methods that we need to discuss be
moving on and that is theseqmod method. If you have not already
noticed, it is a little different from the other examples as it has an IF
statement in it. This is an important part of the dynamic simulation.
switches the degrees of freedom depending on if we are computing
initial condition or performing an integration step. We use the boole
dynamic to control whether we are going to solve the model as a ste
state model (dynamic := FALSE;) or as a dynamic model (dynamic :=
TRUE;). For the current example, we have a simple tank and, for ste
state, we would like to calculate the number of moles and output flo
rate for a fixed tank volume and input flow rate. Also, for the model
be at steady state, we have to fix the derivative and set it equal to z
(dM_dt.fixed :=TRUE;dM_dt :=0 {mole/s}; The derivative is normally
set to zero in the default_self method to prepare the model to solve
initial steady-state conditions.) If we then want to integrate this mod
for a fixed output flow (as when pumping the liquid out under flow
control), we would free up the volume and fix the output flow rate. T
model will then compute how the liquid volume will change with tim

In dynamic simulation, an initial value integration package, such as
LSODE, repeatedly asks the model to compute the time derivatives
the state variables, given fixed values for the states. Using values f
dM_dt computed by the model, the integration package will then
update the state variable,M, to its new value. To accommodate this
calculation, we therefore fix the state variable,M, and free up the
derivative,dM_dt.

12.2 SOLVING AN ASCEND INSTANCE

We are now ready to read in and compile an instance of our tank mo
We are assuming that you understand how to use the scripting win
and we will show how to go about reading, compiling, solving and
integrating a dynamic model using the script in Figure 12-2.

script code DELETE TYPES;

READ FILE "example.a4c";

COMPILE ex OF tank;

BROWSE ex;

RUN {ex.default_self};

RUN {ex.reset};

RUN {ex.values};

SOLVE ex WITH QRSlv;

RUN {ex.check_all};

ASSIGN {ex.dynamic} TRUE;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

124 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 the
ad

e

et
RUN {ex.reset};

RUN {ex.set_ode};

RUN {ex.set_obs};

User will need to edit the next line to correct path

to the models directory

source "$env(ASCENDDIST)/models/set_intervals.tcl";

set_int 500 10 {s};

INTEGRATE ex FROM 0 TO 50 WITH BLSODE;

ASSIGN {ex.input} 120 {mole/s};

INTEGRATE ex FROM 50 TO 499 WITH BLSODE;

In order to view integration results for both the

integrations the user will have to go to the solver

window, select options, general and turn off the

overwrite integrator logs toggle.

(NOTE: If you were then to run a different model or this

same simulation again it would still write to the same

files)

In order to see both sets of data at the same time on

one plot you will have to merge the two sets of data in

the file. This is done with following command.

asc_merge_data_file ascend new_obs.dat obs.dat;

This command can also be used to convert data into a

format that can be loaded into matlab for further work.

asc_merge_data_file matlab matlab_obs.m obs.dat;

This command can also be used to convert data into a

format that can be loaded into excel as a tab delimited

text file.

asc_merge_data_file excel excel_obs.txt obs.dat;

Figure 12-2 Script Code.

First of all reading and compiling an instance of a dynamic model is
same as a steady state model except, as stated earlier, we must lo
ivpsystem.a4l instead ofsystem.a4l. The file containingexample.a4c
(see Figure 12-1) hasREQUIRE statements to load the right system fil
and the fileatoms.a4l.

Now it is time to solve the model, and this is where things start to
change. We must first solve the model for its initial conditions. We s
Last modified: June 20, 1998 8:51 pm

VIEWING SIMULATION RESULTS 125

l

ic

ve
e
les

s a

 this
t

is to

n

the boolean variabledynamic to FALSE (in thedefault_self method)
and run thereset method to get a well-posed steady-state model. We
also need to run thevalues method to set the fixed values of the initia
conditions. Finally we are solve, getting as the solution the initial
conditions for our model.

After solving for the initial conditions, we set things up for the dynam
simulation. We set the boolean variabledynamic to TRUE and then run
theseqmod method to give a well-posed dynamic model. We now ha
to establish which variables are the independent variables, the stat
variables and their corresponding derivatives, and tell which variab
we would like to observe; we runset_ode andset_obs methods
described above.

In order for ASCEND and LSODE to know what step size and how
many steps we want to observe, we must load a Tcl file that define
new script command. The file we need to load is called
set_intervals.tcl,and it is found in the models subdirectory of the
ASCEND distribution. The commandsource comes from Tcl and is
used to read and execute the a set of commands in a file. The file in
case isset_intervals.tcl and the commands within it setup a new scrip
commandset_int. Once we have loaded this file, we can use the new
commandset_int1 to set up the number of possible steps and their
maximum size. Now we are ready to integrate. The way we do this
use theINTEGRATE command in the script. The syntax for these
command is as follows.

1. set_lagrangeint is also defined inset_intervals.tcl, and you can write other Tcl functions in this style if
you want to create a customized sampling schedule.

Syntax for set_int set_int number_of_steps step_size { units of step

size(time) };

Syntax for
INTEGRATE

INTGRATE compiled_model_name FROM initial_step TO

final_step WITH BLSODE;

The command is set up with the initial and final step so that you ca
integrate for a number of steps, then make step changes, and then
continue to integrate another number of steps.

12.3 VIEWING SIMULATION RESULTS

To view the simulation results, open theASCPLOT window using the
Tools menu on theScript window. To view a plot, first use the file
menu to load the data usingLoad data set. Depending on what you
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

126 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 file
o

.

 to
,

,
ow

le
he
e
the

or

s

 full

s a
s.

ve
files
 the
want to look at, you can load the file containing the states or the file
containing the variables you flagged for observation. Once the data
is loaded, you can double click on the file name in the top window t
get a list of the variables in the file. This list will appear in the left
window namedUnused variables below where you just double clicked
As you will notice on the line below, the independent variable has
already been set to time. The way we select the variables we want
plot vs. time is to highlight them from the list in the left window and
using the top arrow button, move them over to the plotted variables
window on the right. We then use theView plot file command from the
Execute menu to view the plot.

If we now want to plot something else, we simply highlight those
variables that we do not want to plot in the plotted variables window
use the other arrow to move them back to the unused variable wind
and then move new variables to the plotted variables window.

If we want to change the independent variable, we select the variab
we want to be the new independent variable from the list in either t
unused variable window or the plotted variable window and then us
the appropriate down arrow to move that variable down to become
independent variable.

Graphing options Now that you are able to view a plot, you might want to add titles
change the axis scale, line colors, and so forth. Adding titles can be
done by selectingset titles under theDisplay menu, a new window will
open in which you will have the option to add a plot title and axis
labels. To change the axis scale, line color and many other feature
selectsee options from theOptions menu.

Graphing in Windows Under MS Windows the default graph program Tkxgraph gives you
control of the options without having to go through the ASCPLOT
Options menu. Tkxgraph is also available for UNIX, but xgraph doe
much better job drawing dashed lines with X11 than Tkxgraph doe

If you decide you don’t like the plotting tools described above you ha
two more options and they are to convert the ASCEND output data
so that they can be loaded by Matlab or a spreadsheet. To convert
data files a new script command needs to be introduced and the
command isasc_merge_data_file.

Syntax for
asc_merge_data_file
command

asc_merge_data_fileconvert_to ouput_file_name input_file_names

The syntax for theasc_merge_data_file command is as follows. First of
all theconvert_to is the format you want the data converted to. There
are three optionsmatlab, excelor ascend. Theoutput_file_name is
Last modified: June 20, 1998 8:51 pm

VIEWING SIMULATION RESULTS 127

ata

 the

 file

at is
e but
as
has
able
l
The

n of
 file
s and

t
 it is
d
its
ata is

the
ore

ff.
 as the
at
ata
ill
exactly that, the name of the file in which you want the converted d
to be put. Theinput_file_names is also exactly that, the file name or
names that you want converted. If more than one input file is given
data is combined into one output file.

If the matlab option is used the output file extension should be m, if
excel is used the extension should be txt as it is a tab delimited text
and forascend the extension should be dat for use withASCPLOT.

You maybe wondering what exactly is thisasc_merge_data_file
command doing. In the next three paragraphs we will give a brief
explanation of each of the options.

matlab conversion When the data is converted to be used in matlab the first thing th
done is the header of the ascend data file is placed in the output fil
is commented out. This is so the user can still tell when the data w
created. The next thing is does is put all the data into a matrix that
the same name as the output file with var added to the end. All vari
names from the ascend data file are then converted to matlab lega
names by replacing the all dots and brackets with underscores(_).
new variable names are then set equal to there corresponding colum
data in the matrix. Each variable then becomes a vector. When the
is run all the data is loaded and set equal to the new variable name
can easily be plotted using matlab commands.

excel conversion When the data is converted to be used in Excel the only thing tha
happens is instead of the list of variables and units being a column
turn into rows. When the data is loaded into Excel as a tab delimite
text file all the data will be in columns with the first row being the un
of the data and the second being the ascend variable name. The d
then easily plotted using the Excel graphing package.

ascend conversion This is not so much a conversion as a merge and is the origin of
command. It is only useful if there are multiple headers in a file or m
than one input file is given. Multiple headers in the file occur when
stopping and starting integrations with the overwrite option turned o
This conversion removes all subsequent headers that are the same
first, whether in one file or multiple, to leave one output file with wh
looks like one data set for plotting. If the headers are different the d
will just be combined into one file and when loaded in ASCPLOT w
still look like different data sets.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

128 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

ed in

ever,
r

em

ent
in
anks
d

eters
ple
12.4 PREPARING A MODEL FOR REUSE

There are four major ways to prepare a model for reuse as describ
Chapter 3, “Preparing a model for reuse,” on page 25. All of what is
said there about reusable models applies to dynamic models. How
there is one thing that we think should be repeated to make clear fo
dynamic models, and that is parameterizing a model.

12.4.1 PARAMETERIZING THE TANK MODEL

As stated in Section 3.3 on page 32, parameterizing a model type
definition alerts a future user as to which parts of this model you de
to be the most likely to be shared. An instance of a parameterized
model is then created from previously defined types.

The new thing that needs to be repeated is that theode_id’s of
derivative and state pairs must be different even if they are in differ
part of a larger model. If for instance we wanted to have two tanks
series we could parameterize the tank model and connect the two t
together with the outlet of the first tank being the feed to the secon
tank. However, with theset_ode method, as we have currently written
it, the derivative and state pairs for both tanks would have the same
ode_id’s. Our way around this is to introduce anode_counterthat is
used to set theode_id’s and is incremented after each derivative and
state pair is set. The ode counter becomes one of the model param
and is, therefore, the same in all models. We will now give an exam
of this to help explain.

parameterized tank
model set_ode
method

METHOD set_ode;

(* set ODE_TYPE -1=independent variable,

 0=algebraic variable, 1=state variable,

 2=derivative *)

t.ode_type :=-1;

dM_dt.ode_type :=2;

M.ode_type :=1;

(* Set ODE_ID *)

dM_dt.ode_id := ode_offset;

M.ode_id := ode_offset;

ode_offset := ode_offset+1;

END set_ode;

Larger model with
two tank models being
used as parts. set_ode
method

METHOD set_ode;

RUN tank_1.set_ode;

RUN tank_2.set_ode;
Last modified: June 20, 1998 8:51 pm

IN CONCLUSION 129

and

he
tput
s

 is
must
ach
ectly
END set_ode;

Figure 12-3 Parameterized set_ode methods.

The parameterized tank set_ode method is almost the same as the
original one we wrote except it now usesode_offset, an ode_counter, to
set theode_id’s. It may be obvious but this is how it works. When the
larger modelset_ode is run, theset_ode for tank_1 is run, theode_id’s
are set to the current value ofode_offset, the counter is then
incremented andset_ode is run for tank_2 which then gets the
incrementedode_offset so the values are now different. You can now
hopefully see that we can string as may tanks together as we like,
all the derivative and state pairsode_id will be different.

This same idea can be applies to setting the observed variables. T
reason this is a good idea is that the variables are placed in the ou
files in order of thereobs_id value. This way we can keep all variable
flagged for observation from one part of a model together.

The important thing that needs to be stressed for a dynamic system
that the time variable, dynamic boolean, and ode and obs counters
be in the parameter list. All these variable need to be the same in e
model to be consistent and to make sure the model gets setup corr
when theset_ode method is executed.

12.5 IN CONCLUSION

We have just led you step by step through the process of creating a
small dynamic ASCEND model and the basics on how to view the
results.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

130 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-
Last modified: June 20, 1998 8:51 pm

THE WHEN STATEMENT: CONDITIONAL CONFIGURATION OF THEMODEL STRUCTURE 131

 in

the
 or
any
k of
ome
s,

ent
al
CHAPTER13 CREATING CONDITIONAL MODELS

IN ASCEND

In this chapter, we describe how one can create conditional models
the ASCEND environment.

what is a conditional
model ?

Formally, we consider as a conditional model any problem in which
domain of validity of alternatives sets of equations depends on one
more discrete conditions; conditions can be expressed in terms of
logical, integer, or binary variables or constants. For instance, thin
a case in which you need to solve a system of equations including s
sort of numerical correlation (correlation data for physical propertie
for instance). You realize that the coefficients of your correlation
change with the value of some other variables of the problem
(temperature, pressure, etc.). You have a conditional model.

ASCEND support three modeling capabilities for the efficient
development of conditional models:

• Conditional configuration of the model structure.

• Conditional compilation.

• Conditional execution of the procedural code of methods.

In the following sections we describe the modeling tools for the
performance of each of these tasks: the WHEN statements for the
conditional configuration of a model structure, the SELECT statem
for conditional compilation, and the SWITCH statement for condition
execution of procedural statements.

13.1 THE WHEN STATEMENT : CONDITIONAL

CONFIGURATION OF THE MODEL

STRUCTURE

We start by defining the syntax for theWHEN statement:

eq1_identifier: definition_of_equation_1;

model1_identifier: definition_of_model_1;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

132 CREATING CONDITIONAL MODELS IN ASCEND

nt:

e

em.
 do

ith

les
e
s

t of

ion

e

, a
modeln_identifier: definition_of_model_n;

WHEN (list_of_variables)

CASE list_of_values_1:

USE eq1_identifier;

CASE list_of_values_2:

USE model1_identifier;

OTHERWISE:

USE modeln_identifier;

END WHEN;

observations about the
WHEN statement

The following are important observations about the WHEN stateme

1 A list of variables is used to define the applicability of each of th
alternative configuration. The variables in this list can be of any
type among boolean, integer or symbol or any combination of th
Note that the list is surrounded by rounded parentheses: (). We
that to emphasize that order matter in such a list — consistent w
the use of rounded parentheses throughout ASCEND.

2 The values in this list for each of the cases are in one to one
correspondence with the variables in the list.

3 Names of arrays of models or equations are allowed inside the
scope of eachCASE.

4 All the objects and equations used in the different CASEs of a
WHEN statement are compiled. However, the objects (the variab
and relations defined in it) of a particular CASE will only becom
part of our mathematical problem if the values in the list of value
of that CASE match the current values of the variables in the lis
variables. Practically speaking, to “USE” an object (model) means
that the variables and equations contained in that object will
become an active part of the system of nonlinear equations
representing the current configuration of the problem.

There are two different ways in which theWHEN statement can be
used.:

select among
alternatives

• First, the WHEN statement can be used to select a configurat
of a problem among several alternative configurations. This
chapter is mainly concerned with this type of simpler and mor
common application.

conditional program • Second, in combination with logical relations, theWHEN

statement can be used for conditional programming — that is

…
…

Last modified: June 20, 1998 8:50 pm

THE WHEN STATEMENT: CONDITIONAL CONFIGURATION OF THEMODEL STRUCTURE 133

ds

,
 the

. In
 to

re is

f the

nt.

ch

rom
problem in which the system of equations to be solved depen
on the solution of the problem.

13.1.1 THE SIMPLEST EXAMPLE

Assume that you want to solve a system of equations in which two
correlations are possible for the calculation of a variable. Of course
you could create two simple models, each of them including one of
alternative equations. You could also use the WHEN statement to
create only one model, in which you could include both alternatives
this latter case you will be able to switch readily from one alternative
the other without recompiling. Look at the following simple case:

laminar IS_A boolean;

Re,f IS_A factor;

invariant: sqrt(f) * Re = 0.00034576;

low_flow: Re = 64/f;

high_flow: Re = (0.206307/f)^4;

WHEN (laminar)

CASE TRUE:

USE low_flow;

CASE FALSE:

USE high_flow;

END WHEN;

The model contains three equations, all of which are compiled. The
one equation (namedinvariant) which is not used in any of the
CASEs of the WHEN statement. Such an equation is always part o
mathematical problem that we are trying to represent. On the other
hand, the equationslow_flow andhigh_flow are conditional
equations because they are used in a CASE of the WHEN stateme
The equationslow_flow andhigh_flow are part of the
mathematical problem only when the value of the boolean variable
laminar matches the value of the list of values of the CASE in whi
they are defined. If we decide that we need to use the equation
low_flow , then we have to give the value of TRUE to the boolean
variablelaminar . if we decide to use the equationhigh_flow , then
we have to give the value of FALSE to the boolean variablelaminar .
Note that the value of the variablelaminar can be modified as many
times as the user wishes. In this way, the user may readily switch f
one configuration to the other. In either of the CASEs, the resulting
system of equations contains two equations (invariant and either
low_flow or high_flow) in two variables (Re and f).
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

134 CREATING CONDITIONAL MODELS IN ASCEND

ith
d
y

e the
is

tive
We could have used another kind of variable in the list of variables w
exactly the same result. In the following example, an integer is use
instead of a boolean. With an integer variable, we can have as man
distinct CASEs as we wish inside a WHEN statement.

laminar IS_A integer;

Re,f IS_A factor;

invariant: sqrt(f) * Re = 0.00034576;

low_flow: Re = 64/f;

high_flow: Re = (0.206307/f)^4;

WHEN (laminar)

CASE 1:

USE low_flow;

CASE 2:

USE high_flow;

END WHEN;

13.1.2 A SECOND EXAMPLE

method IS_A symbol;

simplified_flash IS_A VLE_flash;

rigorous_flash IS_A td_VLE_flash;

WHEN (method)

CASE ‘rigorous’:

USE rigorous_flash;

CASE ‘simplified’:

USE simplified_flash;

END WHEN;

For this example, we have exactly the same capability as in our
previous simplest example; however, here the objects named insid
WHEN statement are models and not relations. Also, the decision
based in the value of a symbol variable:method . As mentioned
before, practically speaking, to “USE” an object (model) means that the
variables and equations contained in that object will become an ac
part of the system of nonlinear equations representing the current
configuration of the problem.

13.2 THE SELECT STATEMENT : CONDITIONAL
Last modified: June 20, 1998 8:50 pm

THE SELECT STATEMENT: CONDITIONAL COMPILATION 135

he

e
rium

re
 like

e

fter

 to
g to

e

bles

ion

l:
COMPILATION

Aside from the flexibility that conditional statements (such as the
WHEN statement) gives to the configuration of a model structure,
another application of conditional tools is the economy of
programming. An example commonly occurring in engineering is t
selection of the thermodynamic model to be used for equilibrium
calculations. In general, it is convenient to code all of the alternativ
methods so that, depending on the species appearing in the equilib
system, we can select the most appropriate method.

In this kind of problem, the decision as to which configuration we a
going to use can be made before we compile the model. We would
to compile only the configuration appropriate for the problem rather
than compiling all available configurations.

The SELECT statement incorporates conditional compilation into th
ASCEND system. While this conditional tool is flexible enough to
represent all of the alternatives, its presence will indicate that only
those alternatives consistent with the model data will be available a
compilation.

Even though the syntax for theSELECT statement is similar to that
described for theWHEN statement, we nned to highlight some
important differences:

• In theWHEN statement the declaration of the object is external
the conditional statement since of all the alternatives are goin
be created anyway. In theSELECT statement, the actual
declaration of an object (or any other declarative statement
affecting objects) is done within eachCASE of the conditional
statement, explicitly discriminating among the alternative
statements. Thus parts of a particular kind can exist in only on
case within a select statement.

• The selection among alternatives in theSELECT statement
depends on constant boolean variables, constant integer varia
or constant symbols. Since these values imply a one time
structural decision, they must not be modified during the solut
of the problem. That is why they have to be constants.

The following is the syntax used for the conditional compilation too

defintion_of_constants;

assignment_of_constant_values;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

136 CREATING CONDITIONAL MODELS IN ASCEND

al

e

ot
the
this

ser
SELECT (list_of_constants)

CASE list_of_values_1:

list1_of_declarative_statements;

CASE list_of_values_2:

list2_of_declarative_statements;

OTHERWISE:

listn_of_declarative_statements;

END SELECT;

Summarizing, theSELECT statement provides the capability of
conditional compilation. It allows the representation of structural
alternatives pursuing economy in programming, but, since only the
desired data structure is created, it does not affect the computation
requirements of the model.

13.2.1 A SIMPLE EXAMPLE

The following example shows anASCEND model which is similar to
that shown in the previous section. The difference is that we use th
SELECT statement rather than theWHEN statement. This time, the
symbolmethod is a constant, and, once it is defined, its value will n
change. That value will always be a user decision. Also, note that
definition of the objects is done inside the SELECT statement. For
example, since the value of the symbolmethod is ‘rigorous’, the
system will compile only the list of statements in the firstCASE.

method IS_A symbol_constant;

method :== ‘rigorous’;

SELECT (method)

CASE ‘rigorous’:

rigorous_flash IS_A td_VLE_flash;

CASE ‘simplified’:

simplified_flashIS_A VLE_flash;

END SELECT;

13.3 THE SWITCH STATEMENT : CONDITIONAL

EXECUTION OF PROCEDURAL CODE

Because of the use of conditional statements in the declarative
description of a model, a similar feature must also exist to give the u
the ability to program the conditional execution of methods. For
instance, each alternative configuration of a model may require

…

Last modified: June 20, 1998 8:50 pm

THE SWITCH STATEMENT: CONDITIONAL EXECUTION OFPROCEDURALCODE 137

ing

at
The
bject
cts

he
different initialization and a different selection of the independent
variables for the solution process. Hence, ASCEND has the follow
conditional proceduralSWITCH statement:

SWITCH (list_of_variables)

CASE list_of_values_1:

list1_of_procedural_statements;

CASE list_of_values_2:

list2_of_procedural_statements;

OTHERWISE:

listn_of_procedural_statements;

END SWITCH;

This statement has the same meaning as conditional statements th
exist in procedural modeling languages such as C and FORTRAN.
procedural statements in each of these cases do not involve new o
definitions, they are only useful for the numerical processing of obje
already created.

13.3.1 A SIMPLE EXAMPLE

The use of the SWITCH statement for the conditional execution of
procedural code is illustrated below. In this example, the value of t
variableave_alpha is set to 1.5 only if the value of the symbol
method is ‘simplified’. If the value of the symbolmethod is
‘rigorous’, then a procedure calledadiabatic is executed instead.

METHODS

METHOD values;

RUN reset;

SWITCH (method)

CASE ‘rigorous’:

RUN adiabatic;

CASE ‘simplified’:

ave_alpha := 1.5;

END SWITCH;

END values;

…

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-conditional.fm5

138 CREATING CONDITIONAL MODELS IN ASCEND
Last modified: June 20, 1998 8:50 pm

BVP.A4L 139

nd

braic
lly
o or

cal
 We
 be

ows
tail
CHAPTER14 BOUNDARY VALUE PROBLEMS

The subject of formulating and solving boundary value problems
(BVP) is very large. In this chapter we demonstrate how to model a
solve the boundary value formulation of any number of differential
equations in one independent variable and possibly subject to alge
constraints. In physical systems, the independent variable is typica
time or distance. This chapter does not cover problems involving tw
more independent variables.

We begin with a very simple ode and compare a number of numeri
methods. We then investigate a nonlinear model of water in a tank.
shall see in the end that a single model of the physical system can
used for the initial value problem (IVP) as well as the BVP. This is a
very important result because hard, algebraically constrained BVPs
from engineering problems often cannot be solved without
initialization from an approximate solution obtained with an IVP
method.

14.1 BVP.A4L

A basic example is found in ascend4/models/plotbvp.a4s which sh
how to define, solve, and plot a model. We will explain it in some de
here in the near future.

.

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-bvp.fm5

140 BOUNDARY VALUE PROBLEMS
Last modified: June 20, 1998 8:50 pm

141
Index

Symbols
_all 31, 94
_self 30, 94
A
a4c 12, 14
a4l 8
accentric factor 105
active comments 25
ADD NOTE IN, see keyword
adding components 108
adding methods 27
ALIASES

treating in methods 94
ALIASES/IS_A 63

example
simple 64

all 31
anchor 63
Antoine 83
asc_merge_data_files 53
ascdata 78
ascdata, subdirectory 12
ASCEND IV library 8
ascii-picture

finger_test 69
spring_test 70

ASCPLOT 51
ATOM 74
atom 8, 9
atoms 106
atoms.a4l 8, 78
B
base case 50
blocks of equations 19
boolean 17
bound, see method
bound_all

defined 100
bound_self

defined 98
boundwidth 98
Browser, see window
bvp

libraries 3
By type, see tool
C
case study 1, 50
check, see method
check_all

defined 99
check_self

defined 97
chemical potential 106
children 46
circle_constant 10
ClearAll

global method 96
ClearAll, see method
close 13
cmumodel (code) 46
collocation

boundary value problem 3
collocation.a4l 115
column.a4l 115
comments 25
compact code 47
complementarity formulation 113
components.a4l 105, 107
components_data 107
conditiional models 131
conditional compilation 131
conditional configuration 131
conditional execution 131
Console, see window
CONSTANT 75

naming convention 79
constant molar overflow 115
constants 8

new types 2
control

discrete 3
conversion factor 89
cooks 94
correlation

equations with units 2
currency 91
curve_set 48
D
data
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendIX.doc

142
gathering into an array 2
default

for scaling atoms 81
default, see method
default_all

defined 99
default_self

defined 97
run automatically at end of compile 98

Delete all types, see tool
delimiter

(* 25
*) 25

derivatives 122
diagnostics 15
differential equation 118
dimensions 7, 9
dimensions, composite 21
disappearing phases 113
discussion 23, 40, 55, 116
display 14
Display Atom Values, see tool
Display, see window
displaying 16
distillation

dynamic
cstr approximation 3

steady-state 2
distillation column 115
division by zero

avoiding 90
dynamic model 2, 117

using libraries 3
dynamic models 115
Dynamic Simulation 117
E
eligible 17
Emacs, see text editor
END NOTES, see keyword
END statement 11
endpoint

boundary value problem 3
engineering

mechanical 63
enlarge 13
equalities 75

equation
writing with correct units 73

equilibrated (the boolean parameter) 113
equilibrium 101, 105
error 28
error messages 15
excel 53, 126
export 16, 17
F
Farenheit

offset conversions 2
finger 63
fixed flags 20, 27
fixed variables 19
flash units 114
flash.a4l 106, 107
force1d.a4c 63
fortnight 90
Framemaker, see text editor
free variables 18
furlong 90
G
GAS_C

unit corresponding to R=8.314{J/mol/K} 80
generation

method 93
go to line number, see text editor
graphing 3
H
handbook

equations 83
heat capacity 105
heat of vaporization 105
holdup 106, 114
HOME directory

Windows 95 12
hook 63
I
iconify 13
ideal gas 80, 105
ideal_vapor_mixture 110
incidence matrix, displaying 19
included flags for relations 17
independent variable 122
inequalities 75
Last modified: June 20, 1998 8:50 pm

143
inherits 46
instance 7
interface

model 1
IS_A

treatment in methods 95
ivpsystem.a4l 122
K
keyword

ADD NOTES IN 27
asc_merge_data_file 126
END NOTES 25
INTEGRATE 125
NOTES 25
REFINES 44
SELECT 113
SELECT statement example 136
SELECT syntax 134
set_int 125
SWITCH example 137
SWITCH statement syntax 136
WHEN statement example 133, 134
WHEN statement syntax 131
WILL_BE 35, 48

L
left mouse button 14
library

personal 78
substitution of 59

library model 43
Library, see window
LSODE 121
M
Matlab 53
matlab 126
McGraw-Hill 107
method

bound 31
check 31
ClearAll 22, 28
default 31
list of standard methods 28
reset 28
scale 31
Set_obs 121, 129

Set_ode 121, 128
specify 28
values 28

methods
adding 27
standard 2
tabulated 28

methods, using 32
mock_turtle 90
MODEL 76
model instance 7
MODEL statement 11
modeling

introduction 1
modeling style 15
models 106

mechanical 67
models subdirectory 11
multi-component 105
multi-phase 105
myunits.a4l 91
N
nasty windows, see window
new components 108
non-existent phase 107
nonprocedural code 46
Norway 91
Notepad, see text editor
Notes

one liner 27
notes 25
NOTES, see keyword
O
obs_id 122, 129
ODE 117
ode_atol 122
ode_id 122, 128
ode_rtol 122
ode_type 122
one liner (Notes) 27
Overspecified, see window
P
parameterizing 32
parents 46
partitions 19
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendIX.doc

144
pedagogical 43
phase option 107
phase, non-existent 107
phase_partials 110
phase_partials array 112
phases.a4l 105, 106
phases_data 106
PI 10, 80
pico, see text editor
pinky

instance of finger 70
Pitzer 105, 110
Pitzer_vapor_mixture 110
plot 43
Plot, see tool
plot.a4l 63
plot.a4l (code) 45
plotting 115
plt_curve 63
plt_plot 2
plt_plot_integer 43, 63
plt_plot_symbol 43, 48, 63
Poling 107
Prausnitz 107
procedural 136
procedural code for methods 46
process model 101
projects 57
propagate 47
properties

physical 2
Properties of Vapors & Liquids (book title) 107
PROVIDE 57, 59
pun

methodology 93
Q
quit ASCEND 14
R
reactor

introduction 2
Read types from file, see tool
Record actions, see tool
reference component 108
refinement 46, 106
refinement hierarchy 47
refinement, reasons for 47

REFINES, see keyword
Reid 107
relations

logical 76
real 75

relationships 75
relative volatility 105
reloading a file 15
REQUIRE 57

keyword 10, 15
reset

global method 96
see method

reuse 25
right mouse button 20
Run method, see tool
S
Save all appearances, see tool
Save appearance, see tool
scale, see method
scale_all

defined 100
scale_self

defined 99
scaling equations 81

scaling
user vs machine heuristics 99

scaling value
for equations 76

scaling variable
defining types 81

scope 31
script

creating 38
introduction 1

Script, see window
select_mixture_type 112
self 30
set 75
sets. 106
shared objects 106
simple_column_profiles 63
Simulation to Browser, see tool
solution

analysis 64
solve 32
Last modified: June 20, 1998 8:50 pm

145

l

solver_var 9
general 76

Solving 17
soup 94
specify, see method
spreadsheet 53
spring 63
square 18

well-posed from specify 100
standard methods 28, 31
state 113
states 122
STOP

use in check methods 97
STOP statement 27
stream 106, 114
stream model 113
stream_holdup.a4l 112
STUDY 54
substitute 47
Suggest method 67
T
table 35
tank 117
taxonomy

kinds of things 74
testflashmodel 106
text editor 7, 12

go to line number 15
thermodynamic properties 105
thermodynamics 2
thermodynamics (the model) 110, 113
thermodynamics.a4l 105, 107, 110
tool

By type 20
Code (display) 16
Delete all types 39
Display Atom Values 17
Display code 25
Incidence matrix 19
Plot 43
Read types from file 14
Record actions 39
Run method 27
Save all appearances 14
Save appearance 16

Simulation to Browser 16
Solve 32
to Solver (export) 17

type 7
types

new atoms 2
U
unfix 22
UNIFAC 105, 109, 110

groups 107
unit

first unit of measure definition wins 89
UNITS 89
units 9

define before using 90
defining system-wide 91
groups of 92
SI 21

units of measure
defining 2

Units window, see window
universal

CONSTANTs bad 80
V
values

displaying 21
method defined 101
see method

values, specifying for fixed variables 20
vapor pressure 83
vapor/liquid 105
vapor_liquid_flash 114
variable

defining new type or class 78
override defaults in default_self method 79

variable type 7
finding by units 77

variables
new types 2

vessel 5, 25, 43
converting word problem to ASCEND mode

7
fixed variables 19
the problem in words 6
variables 7, 8

vesselMethods.a4c (code) 30
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ascendIX.doc

146
vesselNotes.a4c (code) 26
vesselParams.a4c (code) 35
vesselPlain.a4c, code 11
vesselPlot.a4c (code) 49
vesselTabulated.a4c (code) 38
vesselTabulated.a4s (code) 40
vi, see text editor
vim, see text editor
W
warning messages 15
well posed 18
WILL_BE

treatment in methods 95
WILL_BE, see keyword
Wilson 105, 107, 109, 110
window

ASCPLOT 125
Browser 16
close 13

Console 13
Display 16
Eligible 17
eligible 32
enlarge 13
getting back 13
iconify 13
Library 13, 25
nasty ones 17
Overspecified 22
saving positions 14
Script 13, 39
Units 21

Word, see text editor
Wordpad, see text editor
X
xgraph

bashing 66
Last modified: June 20, 1998 8:50 pm

	Chapter 1 Starting Points
	Our goal:
	1.1 Primal Subjects
	Chapter�2
	Chapter�3
	Chapter�4
	Chapter�5
	Chapter�6
	howto-specify (Art,Ben, in progress)
	Chapter�7
	Chapter�8
	Chapter�9
	howto-library1 (NOTES, check methods, etc)
	Chapter�10

	1.2 Engineering Subjects
	Chapter�11
	howto-column1 (Art, in progress)
	howto-reactor (Duncan, in progress)
	Chapter�12
	howto-dynamic2 (Duncan, in progress)
	howto-column2 (Duncan, in progress)
	howto-control (Duncan, in progress)
	Chapter�13
	Chapter�14 (Ben, in progress)

	Chapter 2 A Detailed ASCEND Example for Beginners:...
	the purpose for this chapter
	the problem
	topics covered
	Chapter�2 (this chapter)
	Chapter�3
	Chapter�4
	2.1 Converting the word description into an ASCEND...
	an ASCEND model is a type definition
	type definition library for variables and constant...
	dimensions and units in ASCEND.
	universal constant definition
	the first version of the code for vessel

	2.2 Editing, compiling and browsing an ASCEND mode...
	please do not alter the models subdirectory
	rather put your things into the ascdata subdirecto...
	create a text file containing the model definition...
	start the ASCEND system. Move and resize the windo...
	note that each window by itself looks pretty nonth...
	hey, where did that window go? I want it back NOW!...
	I want to go to dinner (or I just panicked when I ...
	saving window positions
	start by loading and compiling using tools in the ...
	use the left mouse button unless we tell you other...
	DO NOT ignore the diagnostics that might appear in...
	how do I jump to line 100 of a file when using som...
	reloading a file overwrites the previous version
	displaying the code
	now compile as “v”
	and pass the instance to the Browser
	examine v by playing with it in the Browser
	included flags for relations

	2.3 Solving an ASCEND instance
	if ASCEND stops responding, hunt down one of those...
	is our problem well posed?
	picking variables we are going to fix
	ASCEND partitions the problem into smaller problem...
	displaying the incidence matrix
	which variables are currently fixed for this probl...
	specifying values for the fixed variables - this a...
	alter the units used for displaying values
	returning to a consistent set of units
	now we can solve the model in other ways
	clearing all the fixed flags

	2.4 Discussion

	Chapter 3 Preparing a model for reuse
	3.1 Adding comments and notes
	notes are active comments
	there are short notes, long notes and separate not...

	3.2 Adding methods
	writing the specify and values methods
	default methods ClearAll and reset are appropriate...
	adding our remaining standard methods to a model d...
	using methods when solving

	3.3 Parameterizing the vessel model
	let’s compute metal_mass vs. H_to_D_ratio
	3.3.1 Creating a parameterized version of vessel
	parameters indicate likely object sharing

	3.3.2 Using the parameterized vessel model
	Creating a table of metal_mass values vs. H_to_D_r...

	3.4 Creating a script to demonstrate this model
	3.4.1 Discussion

	Chapter 4 Creating a plot (using a library model)
	4.1 Creating a plot
	4.1.1 Model refinement
	please, explain “refines”
	parents and children in a refinement hierarchy
	order does not matter in declarative code
	but it does in the procedural code for methods
	reasons for refinement
	with the most important being we know what can sub...

	4.1.2 Continuing with creating a plot

	4.2 Creating a case study from a single vessel
	4.2.1 The base case
	compile a vessel.
	solving the base case.
	graphical case study optimization
	script recorded so far

	4.2.2 Case study examples
	configuring a case study
	4.2.2.1 Multi-variable studies
	4.2.2.2 Multi-parameter studies
	4.2.2.3 Plotting output with other tools

	4.2.3 STUDY behavior details
	variable list
	IN clause
	parameter list
	solver name
	data file name
	error handling

	4.3 Discussion

	Chapter 5 Managing model definitions, libraries, a...
	5.1 Using REQUIRE and PROVIDE
	5.1.1 REQUIREing system.a4l
	5.1.2 Chaining required files
	5.1.3 Better application modeling practice
	never require system.a4l in an application model.

	5.1.4 Substitute libraries and PROVIDE
	5.1.5 REQUIRE and combining modeling packages

	5.2 How REQUIRE finds the files it loads
	5.2.1 ascdata
	5.2.2 the current directory
	5.2.3 ascend4/models/
	5.2.4 Multiple modeling projects
	5.2.5 Example: Finding “ben/bencolumn.a4l”
	5.2.6 How REQUIRE handles file and definition conf...
	5.2.7 Extending the list of searched directories

	Chapter 6 Plotting data sampled from complex model...
	6.1 The graph we want
	6.2 Constructing a plot curve
	6.3 Constructing the array of curves
	6.4 Resulting position plot
	6.5 1-D mechanical hook, spring, mass, anchor, and...

	Chapter 7 How to Define Variables and Scaling Valu...
	the purpose of this chapter
	7.1 The Big Picture: a taxonomy
	ATOM
	CONSTANT
	set
	relationships
	MODEL
	SOLVER_VAR
	Scaling value

	7.2 How to find the right variable type
	Load atoms.a4l
	Find an ATOM or CONSTANT by units
	Selecting the right type

	7.3 How to define a new type of variable
	Saving customized variable types
	7.3.1 A new real variable for solver use
	Exceptions

	7.3.2 A new real constant type
	Universal exceptions and unit conversions

	7.3.3 New types for integers, symbols, and boolean...

	7.4 How to define a scaling variable
	ASCEND cannot do it all for you
	Scaling atom default value

	Chapter 8 Entering Dimensional Equations from Hand...
	8.1 Example 1— vapor pressure
	8.1.1 Converting the ln term
	8.1.2 Converting the RHS
	8.1.3 In summary for example 1

	8.2 Fahrenheit— variables with offset
	8.3 example 3— pressure drop
	8.4 The difficulty of handling unit conversions de...
	8.4.1 General offset and difference units

	Chapter 9 Defining new units of measure
	9.1 Caveats
	Order matters!
	Multiplicative unit conversions only!

	9.2 Individualized units
	9.2.1 Units of measure for a specific model
	9.2.2 Units of measure for all your personal model...

	9.3 New system-wide units
	9.4 Send them in

	Chapter 10 How (and why) to write standard methods...
	10.1 Why you should follow our ways
	If debugging is the repair of modeling errors, the...

	10.2 Methods *_self VS *_all
	Too many cooks spoil the soup.
	Use *_self methods on locally created variables an...
	Use *_all methods to manage a troublesome part

	10.3 How to write ClearAll and reset
	10.3.1 ClearAll
	10.3.2 reset

	10.4 The *_self methods
	10.4.1 METHOD check_self
	10.4.2 METHOD default_self
	10.4.3 METHOD bound_self
	10.4.4 METHOD scale_self

	10.5 The *_all methods
	10.5.1 METHOD default_all
	10.5.2 METHOD check_all
	10.5.3 METHOD bound_all
	10.5.4 METHOD scale_all

	10.6 METHOD specify
	10.7 METHOD values
	10.8 Methods and chemical process models
	10.9 Summary
	adding our standard methods to a model definition

	10.10 Method writing automation
	Just hit the button Library.Edit.Suggest methods a...

	Chapter 11 The model libraries for multi- componen...
	11.1 A description of the libraries
	first the phase definitions
	then the components and their data
	and finally the mixture thermodynamic models
	11.1.1 The phases.a4l library
	need to create only instances of phases_data
	the phase indicators and types

	11.1.2 The components.a4l library
	need to create only instances of components_data
	reference component
	adding a new component
	adding UNIFAC group identifiers
	adding Wilson parameters

	11.1.3 The thermodynamics.a4l library
	create instances only of phase_partials and thermo...
	11.1.3.1 Creating an instance of a phase_partials ...
	cannot directly embed SELECT statements in FOR loo...
	disappearing phases

	11.1.3.2 Creating an instance of a thermodynamics ...

	11.2 Using the thermodynamics models
	11.2.1 streams and holdups
	11.2.2 flash units and variants thereof
	11.2.3 Distillation columns
	11.2.4 Dynamic unit models

	11.3 Discussion

	Chapter 12 A Detailed ASCEND Example of a Dynamic ...
	the purpose for this chapter
	topics covered
	12.1 Converting the word description into an ASCEN...
	an ASCEND model is a type definition
	the first version of the code for tank

	12.2 Solving an ASCEND instance
	script code
	Syntax for set_int
	Syntax for INTEGRATE

	12.3 Viewing Simulation Results
	Graphing options
	Graphing in Windows
	Syntax for asc_merge_data_file command
	matlab conversion
	excel conversion
	ascend conversion

	12.4 Preparing a model for reuse
	12.4.1 Parameterizing the tank model
	parameterized tank model set_ode method
	Larger model with two tank models being used as pa...

	12.5 In conclusion

	Chapter 13 Creating Conditional Models in Ascend
	what is a conditional model ?
	13.1 The WHEN Statement: Conditional Configuration...
	observations about the WHEN statement
	select among alternatives
	conditional program
	13.1.1 The Simplest Example
	13.1.2 A Second Example

	13.2 The SELECT Statement: Conditional Compilation...
	13.2.1 A Simple Example

	13.3 The SWITCH Statement: Conditional Execution o...
	13.3.1 A Simple Example

	Chapter 14 Boundary value problems
	14.1 bvp.a4l

	Index

