
73

een
in

nd in
ow
 so

es
s in
s

d to
r
ng

ep

ies

ry
n

CHAPTER7 HOW TO DEFINE VARIABLES AND

SCALING VALUES IN AN ASCEND
MODEL

the purpose of this
chapter

By now you have probably read Section 2, ”A Detailed ASCEND
Example for Beginners: the modeling of a vessel,” on page 5 and s
an example of how to create a model using existing variable types 
ASCEND. You found that variables of types area, length, mass,
mass_density, and volume were needed and that they could be fou
the library atoms.a4l. You want to know how to generalize on that; h
to use variables, constants, and scaling values in your own models
that the models will be easier to solve.

This chapter is meant to explain the following things:

• The “Big Picture” of how variables, constants, and scaling valu
relate to the rest of the ASCEND IV language and to equation
particular. We’ll keep it simple here. More precise explanation
for the language purist can be found in “The ASCEND IV
language syntax and semantics” (syntax.pdf). You do not nee
read about the “Big Picture” in order to read and use the othe
parts of this chapter, but you may find it helpful if you are havi
trouble writing an equation so that ASCEND will accept it.

• How to find the type of variable (or constant) you want. We ke
a mess of interesting ATOM and CONSTANT definitions in
atoms.a4l. We provide tools to search in already loaded librar
to locate the type you need.

• How to define a new type of variable when we do not have a
predefined ATOM or CONSTANT that suits your needs. It is ve
easy to define your own variable types by copying code into a
atoms library of your own from atoms.a4l and then editing the
copied definition.

• How to define a scaling variable to make your equations much
easier to solve.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5



74 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

5,

.
 see

ng
 also

s.
s”
ost

m.
f

sual
Not

y

r,
7.1 THE BIG PICTURE : A TAXONOMY

As you read in Section 3, ”Preparing a model for reuse,” on page 2
simulations are built from MODEL and ATOM definitions, and
MODEL and ATOM definitions are defined by creating types in an
ASCEND language text file that you load into the ASCEND system
Figure 7-1 shows the types of objects that can be defined. You can

there are many more types than simply real variables used for writi
equations. Some of these types can also be used in equations. You
see that there are three kinds of equations, not simply real relation
Throughout our documentation we call real relations simply “relation
because that is the kind of equation most people are interested in m
of the time. Notice that “scaling values” do not appear in this diagra
We will cover scaling values at the end of this The major features o
this diagram are:

ATOM • Any variable quantity for use in relations, logical relations, or
when statements or other computations. These come in the u
programming language flavors real, boolean, symbol, integer. 
all kinds of atoms can be used in all kinds of equations, as we
shall explain when describing relations in a little bit. Atoms ma
be assigned values many times interactively, with the Script
ASSIGN statement, with the METHOD := assignment operato

Figure 7-1 The Big Picture: How to think about variables

(TYPE) ATOM

real relation
logical relation
WHEN relationship

CONSTANT

set

MODEL

real
boolean
integer
symbol

real_constant
boolean_constant
integer_constant
symbol_constant

integer_constant
symbol_constant

OF

solver_var
Last modified: June 20, 1998 9:00 pm



THE BIG PICTURE: A TAXONOMY 75

nce
om
e

or it.

nce.
t

ms.

in
ts

with

s
 used

r

 A
ys
Sets

d
.

s in
ical

teger
ms,
or by an ASCEND client such as a solver.

An ATOM may have attributes other than its value, such as .fixed in
solver_var, but these attributes are not atoms. They are subatomic
particles and cannot be used in equations. These attributes are
interpretable by ASCEND clients, and assignable by the user in the
same ways that the user assigns atom values.

Each subatomic particle instance belongs to exactly one atom insta
(one variable in your compiled simulation). This contrasts with an at
instance which can be shared among several models by passing th
atom instance from one model into another or by creating aliases f

CONSTANT • Constants are “variables” that can be assigned no more than o
By convention, all constant types in atoms.a4l have names tha
end in _constant so that they are not easily confused with ato
A constant gets a values from the DEFAULT portion of its type
definition, by an interactive assignment, or by an assignment 
the a model which uses the :== assignment operator. Constan
cannot be assigned in a METHOD, nor can they be assigned 
the := operator.

Integer and symbol constants can appear as members of sets or a
subscripts of arrays. Integer, boolean, and symbol constants can be
to control SELECT statements which determine your simulation’s
structure at compile-time or to control SWITCH and WHEN behavio
during problem solving .

set • Sets are unordered lists of either integer or symbol constants.
set is assigned its value exactly once. The user interface alwa
presents a set in sorted order, but this is for convenience only. 
are useful for defining an array range or for writing indexed
relations. More about sets and their use can be found in
syntax.pdf.

relationships • Relations and logical relations allow you to state equalities an
inequalities among the variables and constants in you models
WHEN statements allow you to state relationships among the
models and equations which depend on the values of variable
those models. Sets and symbols are not allowed in real or log
relations except when used as array subscripts.

Real relations relate the values of real atoms, real constants, and in
constants. Real relations cannot contain boolean constants and ato
nor can they contain integer atoms.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5



76 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

al
or

ly

kind

as a

ical
.a4l

ic
tion

e
or

ts,
 of
s

el

ou
f
lue

r
e
ese
al
Logical relations relate the values of boolean atoms and boolean
constants. The SATISFIED operator makes it possible to include re
relations in a logical relation. Neither integer atoms and constants n
real atoms and constants are allowed in logical relations. If you find
yourself trying to write an equation with integer atoms, you are real
creating a conditional model for which you should use the WHEN
statement instead. See Section 13, ”Creating Conditional Models in
Ascend,” on page 131 to learn about how ASCEND represents this 
of mathematical model. There are also a real variable types,
solver_integer andsolver_binary, which are used to formulate
equations when the solver is expected to initially treat the variable 
real value but drive it to an integer or 0-1 value at the solution. The
integer programming features of ASCEND are described in a techn
report by Craig Schmidt not yet available electronically. See system
for elementary details.

Like atoms, real and logical relations may have attributes, subatom
particles for use by ASCEND clients and users. The name of a rela
can be used in writing logical relations and WHEN statements.

WHEN statements are outside the scope of this chapter; please se
Section 13, ”Creating Conditional Models in Ascend,” on page 131 
syntax.pdf for the details.

MODEL • A model is simply a container for a collection of atoms, constan
sets, relations, logical relations, when statements, and arrays
any of these. The container also specifies some of the method
that can be used to manipulate its contents. Compiling a mod
creates an instance of it-- a simulation.

SOLVER_VAR • The real atom typesolver_var is the type from which all real
variables that you want the system to solve for must spring. If y
define a real variable using a type which is not a refinement o
solver_var, all solvers will treat that variable as an a scaling va
or other given constant rather than as a variable.

Solver_vars have a number of subatomic attributes (upper_bound,
lower_bound, and so forth) that help solvers find the solution of you
model. ATOM definitions specify appropriate default values for thes
attributes that depend on the expected applications of the atom. Th
attribute values can (and should) be modified by methods in the fin
application model where the most accurate problem information is
available.

Scaling value • A real which is not a member of thesolver_var family is ignored
by the solver. Numerical solvers for problems with many
Last modified: June 20, 1998 9:00 pm



HOW TO FIND THE RIGHT VARIABLE TYPE 77

for
ly
ew
ror
at

l

 with

tion
es

n its
es
 for

ou
the
th/
h

that

al
eet/

ave

g SI
r

equations in many variables work better if the error computed 
each equation (before the system is solved) is of approximate
size 1.0. This is most critical when you are starting to solve a n
problem at values far, far away from the solution. When the er
of one equation is much larger than the errors in the others, th
error will skew the behavior of most numerical solvers and wil
cause poor performance.

This is one of the many reasons that scientists and engineers work
dimensionless models: the process of scaling the equations into
dimensionless form has the effect of making the error of each equa
roughly the same size even far away from the solution. It is sometim
easiest to obtain a dimensionless equation by writing the equation i
dimensional form using natural variables and then dividing both sid
by an appropriate scaling value. We will see how to define an atom
scaling purposes in the last part of this chapter.

7.2 HOW TO FIND THE RIGHT VARIABLE TYPE

The type of real atom you want to use depends first on the
dimensionality (length, mass/time, etc.) needed and then on the
application in which the atom is going to be used. For example, if y
are modeling a moving car and you want an atom type to describe 
car’s speed, then you need to find an atom with dimensionality leng
time or in ASCEND terms L/T. There may be two or three types wit
this dimensionality, possibly including real_constants, a real scaling
value, and an atom derived from solver_var.

Load atoms.a4l The first step to finding the variable type needed is to make sure 
atoms.a4l is loaded in your Library window from ascend4/models/
atoms.a4l.

Find an ATOM or
CONSTANT by units

The next step is to open the “ATOM by units” dialog found in the
Library window’s Find menu. This dialog asks for the units of the re
variable type you want. For our example, speed, you would enter “f
second,” “furlongs/fortnight,” “meter^3/second/ft^2” or any other
combination of units that corresponds to the dimensionality L/T.

If the system is able to deduce the dimensionality of the units you h
entered, it will return a list of all the currently loaded ATOM and
CONSTANT definitions with matching dimensions. It may fail to
understand the units, in which case you should try the correspondin
units. If it understands the units but there are no matching atoms o
constants, you will be duly informed. If there is no atom that meets
your needs, you should create one as outlined in Section 7.3.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5



78 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

the
pe

d

 you

ant
ld

rom
s

and

n
iling

 are
Selecting the right
type

The resulting list of types includes a Code button which will display 
definition of any of the types listed once you select (highlight) that ty
with the mouse. Usually you will need to examine several of the
alternatives to see which one is most appropriate to the physics an
mathematics of your problem. Compare the default, bounds, and
nominal values defined to those you need. Check whether the type
are looking at is a CONSTANT or an ATOM.

You now know the name of the variable type you need, or you know
that you must create a new one to suit your needs.

7.3 HOW TO DEFINE A NEW TYPE OF VARIABLE

In this section we will give examples of defining the atom and const
types as well as outline a few exceptional situations when you shou
NOT define a new type. More examples can be found and copied f
atoms.a4l. You should define your new atoms in your personal atom
library.

Saving customized
variable types

The normal location for this personal library is in the user data file
~\ascdata\myatoms.a4l. This file contains the following three lines 
then the ATOM and CONSTANT definitions you create.

REQUIRE “atoms.a4l”; (* loads our atoms first *)

PROVIDE “myatoms.a4l”; (* registers your library *)

(* Custom atoms created by <insert your name here> *)

If you develop an interesting set of atoms for some problem domai
outside chemical engineering thermodynamics, please consider ma
it to us through our web page.

The user data directory ~/ascdata may have a different name if you
running under Windows and do not have the environment variable
HOME defined. It may be something like C:\ascdata or
\WINNT\Profiles\Your Name\ascdata. When ASCEND is started, it
prints out the name of this directory.

When you write a MODEL which depends on the definition of your
new atoms, do not forget to add the statement

REQUIRE “myatoms.a4l”;

at the very top of your model file so that your atoms will be loaded
before your model definitions try to use them.
Last modified: June 20, 1998 9:00 pm



HOW TO DEFINE A NEW TYPE OF VARIABLE 79

be
 not
dard

 of

you

 as
 in

s in

your

lue
.

 of
und

t

7.3.1 ANEW REAL VARIABLE FOR SOLVER USE

Suppose you need an atom with units {dollar/ft^2/year} for some
equation relating amortized construction costs to building size. May
this example is a bit far fetched, but it is a safe bet that our library is
going to have an atom or a constant for these units. Here is the stan
incantation for defining a new variable type based on solver_var.
ASCEND allows a few permutations on this incantation, but they are
no practical value. The parts of this incantation that are initalics should
be changed to match your needs. You can skip the comments, but 
must include the units of the default on the bounds and nominal.

ATOMamortized_area_cost

REFINES solver_var DEFAULT 3.0 {dollar/ft^2/year} ;

lower_bound := 0 {dollar/ft^2/year} ;

(* minimum value *)

upper_bound := 10000 {dollar/ft^2/year} ;

(* maximum value for any sane application *)

nominal := 10 {dollar/ft^2/year} ;

(* expected size for all reasonable applications*)

END amortized_area_cost ;

In picking the name of your atom, remember that names should be
self-explanatory as possible. Also avoid choosing a name that ends
_constant (as this is conventionally applied only to CONSTANT
definitions) or_parameter. Parameter is an extremely ambiguous and
therefore useless word. Also remember that the role a variable play
solving a set of equations depends on how the solver being applied
interprets .fixed and other attributes of the variable.

Exceptions If an atom type matches all but one of the attributes you need for 
problem, say for example the upper_bound is way too high, use the
existing variable type and reassign the bound to a more sensible va
in thedefault_self method of the model where the variable is created
Having a dozen atoms defined for the same units gets confusing in
short order to anyone you might share your models with.

The exception to the exception (yes, there always seems to be one
those) is the case of a lower_bound set at zero. Usually a lower_bo
of zero indicates that there is something inherently positive about
variables of that type. Variables with a bound of this type should no
have these physical bounds expanded in an application. Another
example of this type of bound is the upper_bound 1.0 on the type
fraction.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5



80 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

sical

re
ned.
ch

 is

ed
 the

pe is:

ion.

unit
D

he
by
d
C

For example, negative temperature just is not sensible for most phy
systems. ASCEND defines atemperature atom for use in equations
involving the absolute temperature. On the other hand, a temperatu
difference, delta T, is frequently negative so a separate atom is defi
Anyone receiving a model written using the two types of atoms whi
both have units of {Kelvin} can easily tell which variables might
legitimately take on negative values by noting whether the variable
defined as atemperature or adelta_temperature.

7.3.2 ANEW REAL CONSTANT TYPE

Real constants which do not have a default value are usually need
only in libraries of reusable models, such as components.a4l, where
values depend on the end-user’s selection from alternatives in a
database. The standard incantation to define a new real constant ty

CONSTANTcritical_pressure_constant

REFINES real_constant DIMENSION M/L/T^2 ;

Here again, theitalic parts of this incantation should be redefined for
your purpose.

Universal exceptions
and unit conversions

It is wasteful to define a CONSTANT type and a compiled object to
represent auniversal constant. For example, the thermodynamic gas
constant, R = 8.314... {J/mole/K}, is frequently needed in modeling
chemical systems. The SI value of R does not vary with its applicat
Neither does the value ofπ. Numeric constants of this sort are better
represented as a numeric coefficient and an appropriately defined 
conversion. Consider the ideal gas law, PV = NRT and the ASCEN
unit conversion {GAS_C} which appears in the library ascend4/
models/measures.a4l. This equation should be written:

P * V = n * 1.0{GAS_C} * T;

Similarly, area = pi*r^2 should be written

area = 1{PI} * r^2;

The coefficient 1 of {GAS_C} and {PI} in these equations takes of t
dimensionality of and is multiplied by the conversion factor implied 
the UNITS definition for the units. If we check measures.a4l, we fin
the definition of PI is simply {3.14159...} and the definition of GAS_
is {8.314... J/mole/K} as we ought to expect.
Last modified: June 20, 1998 9:00 pm



HOW TO DEFINE A SCALING VARIABLE 81

 in
ed
date.

t
 you

ill

s to

ing
ing

.

ery
ted
.

 you
In a
on
t the

f

For historical reasons there are a few universal constant definitions
atoms.a4l. New modelers should not use them; they are only provid
to support outdated models that no one has yet taken the time to up

7.3.3 NEW TYPES FOR INTEGERS, SYMBOLS, AND BOOLEANS

The syntax for ATOM and CONSTANT definitions of the non-real
types is the same as for real number types, except that units are no
involved. Take your best guess based on the examples above, and
will get it right. If even that is too hard, more details are given in
syntax.pdf.

7.4 HOW TO DEFINE A SCALING VARIABLE

A scaling variable ATOM is defined with a name that ends in_scale as
follows. Note that this ATOM does not refine solver_var, so solvers w
not try to change variables of this type during the solution process.

ATOM distance_scale REFINES real DEFAULT 1.0{meter};

END distance_scale;

ASCEND cannot do it
all for you

ASCEND uses a combination of symbolic and numerical technique
create and solve mathematical problems. Once you get the problem
close to the solution, ASCEND can internally compute its own scal
values for relations, known elsewhere as “relation nominals”, assum
you have set good values for the .nominal attribute of all the variables.
It does this by computing the largest additive term in each equation
The absolute value of this term is a very good scaling value.

This internal scaling works quite well, but not when the problem is v
far away from the solution so that the largest additive terms compu
are not at all representative of the physical situation being modeled
Thescale_self method, which should be written for every model as
described in Section 10.4.4, should set the equation scaling values
have defined in a MODEL based on the best available information. 
chemical engineering flowsheeting problem, for example, informati
about a key process material flow should be propagated throughou
process flowsheet to scale all the other flows, material balance
equations, and energy balance equations.

Scaling atom default
value

The default value for any scaling atom should always be 1.0 in
appropriate SI units, so that the scaling will have no effect until you
assign a problem specific value. Multiplying or dividing both sides o
an equation by 1.0 obviously will not change the mathematical
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-atoms.fm5



82 HOW TO DEFINE VARIABLES AND SCALING VALUES IN AN

er--
behavior, but you do not want to change the behavior arbitrarily eith
you want to change it based on problem information that is not
contained in your myatoms.a4l file.
Last modified: June 20, 1998 9:00 pm


	Chapter 7 How to Define Variables and Scaling Valu...
	the purpose of this chapter
	7.1 The Big Picture: a taxonomy
	ATOM
	CONSTANT
	set
	relationships
	MODEL
	SOLVER_VAR
	Scaling value

	7.2 How to find the right variable type
	Load atoms.a4l
	Find an ATOM or CONSTANT by units
	Selecting the right type

	7.3 How to define a new type of variable
	Saving customized variable types
	7.3.1 A new real variable for solver use
	Exceptions

	7.3.2 A new real constant type
	Universal exceptions and unit conversions

	7.3.3 New types for integers, symbols, and boolean...

	7.4 How to define a scaling variable
	ASCEND cannot do it all for you
	Scaling atom default value



