
CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 117

ND

 to
d
rn
will

l.

ing
CHAPTER12 A DETAILED ASCEND EXAMPLE

OF A DYNAMIC SIMULATION : THE

MODELING OF A SIMPLE DYNAMIC

TANK

the purpose for this
chapter

This chapter assumes you have read Chapter 2, “A Detailed ASCE
Example for Beginners: the modeling of a vessel,” on page 5 and
Chapter 3, “Preparing a model for reuse,” on page 25.

The purpose of this chapter is to be a good first step along the path
learning how to use ASCEND for dynamic simulations. We shall lea
you through the steps for creating a simple model. You will also lea
the standard methods that we employ for our dynamic libraries. We
present our reasons for the steps we take.

The problem

Step 1:We would like to create a dynamic model of a simple tank.

topics covered Topics covered in this chapter are:

• Converting the word description to an ASCEND model.

• Solving the model.

• Creating a script to load and execute an instance of the mode

• Integrating the model.

• View Integration Results.

12.1 CONVERTING THE WORD DESCRIPTION INTO

AN ASCEND MODEL

an ASCEND model
is a type definition

As stated in Section 2.1, ”Converting the word description into an
ASCEND model,” on page 7, we need to make an instance of a type
and solve the instance. So we shall start by creating a tanktype
definition. We will have to create our type definition as a text file us
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

118 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 and

 that

n if
 the

enu

k
lso
t
tem.

nd
 the

be
a text editor. (Possible text editors are Word, Framemaker, Emacs,
Notepad, pico, vi, et c. We shall discuss editors shortly.)

We need first to decide the parts to our model. In this case we know
we need the variables listed in Table 12-1. We readily fill in the first
three columns in this table, and we can also fill out the fourth colum
we know the units that are associated with each of the parts. To find

ASCEND variable type needed for the fourth column use the find m
on the library window and select ATOM by units. The result of this
search will be all the ASCEND variable type that have the units you
entered.

We would like to be able to compute the number of moles in the tan
for a given volume assuming steady state (dM_dt = 0). We would a
like to be able to calculate how the volume changes if we are not a
steady state. The following equations describe the simple tank sys

(12.1)

(12.2)

The first equation is the differential equation that relates the input a
output flows to the accumulation in the tank. The second equation is
relation of the moles in the tank to the volume of liquid and should

Table 12-1Variables required for model

Symbol Meaning Typical Units
ASCEND
variable type

M Moles in Tank mol, kmol mole

dM_dt Rate of change
of Moles in tank
(derivative)

mol/sec, kmol/secmolar_rate

input Feed flow rate mol/sec, kmol/secmolar_rate

output output flow rate mol/sec, kmol/secmolar_rate

Volume Volume of liquid
in the tank

m3,ft3 volume

density molar density of
tank fluid

mol/m3,mol/ft3 molar_densi
ty

dynamic Boolean for
switching
between
dynamic and
steady state simu-
lations

N/A boolean

dM_dt input output–=

Volume
M

density
-------------------=
Last modified: June 20, 1998 9:01 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 119

r a
rearranged to avoid division. These equations are all that is need fo
simple tank.

the first version of the
code for tank

REQUIRE "ivpsystem.a4l";

REQUIRE "atoms.a4l";

MODEL tank;

 (* List of Variables *)

 dM_dt IS_A molar_rate;

 M IS_A mole;

 input IS_A molar_rate;

 output IS_A molar_rate;

 Volume IS_A volume;

 density IS_A real_constant;

 dynamic IS_A boolean;

 t IS_A time;

 (* Equations *)

 dM_dt = input - output;

 M = Volume * density;

 (* Assignment of values to Constants *)

 density :==10 {mol/m^3};

 METHODS

 METHOD check_self;

IF (input < 1e-4 {mole/s}) THEN

 STOP {Input dried up in tank};

END IF;

IF (output < 1e-4 {mole/s}) THEN

 STOP {Output dried up in tank};

END IF;

 END check_self;

 METHOD check_all;

RUN check_self;

 END check_all;

 METHOD default_self;

dynamic := FALSE;

t :=0 {sec};

dM_dt :=0 {mol/sec};

dM_dt.lower_bound := -1e49 {mol/sec};

 END default_self;

 METHOD default_all;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

120 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-
RUN default_self;

 END default_all;

 METHOD bound_self;

 END bound_self;

 METHOD bound_all;

RUN bound_self;

 END bound_all;

 METHOD scale_self;

 END scale_self;

 METHOD scale_all;

RUN scale_self;

 END scale_all;

 METHOD seqmod;

dM_dt.fixed :=TRUE;

M.fixed :=FALSE;

Volume.fixed :=TRUE;

input.fixed :=TRUE;

output.fixed :=FALSE;

IF dynamic THEN

 dM_dt.fixed :=FALSE;

 M.fixed :=TRUE;

 Volume.fixed :=FALSE;

 output.fixed :=TRUE;

END IF;

 END seqmod;

 METHOD specify;

input.fixed :=TRUE;

RUN seqmod;

 END specify;

 METHOD set_ode;

(* set ODE_TYPE -1=independent variable,

 0=algebraic variable, 1=state variable,

 2=derivative *)

t.ode_type :=-1;

dM_dt.ode_type :=2;

M.ode_type :=1;

(* Set ODE_ID *)

dM_dt.ode_id :=1;

M.ode_id :=1;
Last modified: June 20, 1998 9:01 pm

CONVERTING THE WORD DESCRIPTION INTO ANASCENDMODEL 121

 up

e

uld

 The
ibed
le
 END set_ode;

 METHOD set_obs;

(* Set OBS_ID to any integer value greater

than 0, the variable will be recorded

(i.e., observed) *)

M.obs_id :=1;

Volume.obs_id :=2;

input.obs_id :=3;

output.obs_id :=4;

 END set_obs;

 METHOD values;

Volume :=5 {m^3};

input :=100 {mole/s};

 END values;

END tank;

Figure 12-1 First version of the type definition fortank

Our model definition has the following structure for it so far:

• MODEL statement

• list of variables we intend to use in the type definition

• equations

• METHODS

• END statement

While we have put the statements in this order, we could mix them
and intermix the middle two types of statements, even going to the
extreme of defining the variables after we first use them. Once the
METHODS section is started no new equations or variables can be
declared. The MODEL and END statements begin and end the typ
definition.

There are two new methods added to a dynamic model that you wo
not see in a steady state model, and they are theset_ode andset_obs
methods. Theset_ode method is used to setup the model for
integration. Theset_obsmethod is used to tell ASCEND which
variables you would like to observe in the output of the integration.

Now we need to discuss the how and why of the two new methods.
set_ode method is used to set up the equations and variables descr
in the model for integration by LSODE. In order for LSODE to be ab
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

122 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

e
e to
f an

ed to

ed

ry
tes

st

s it

s to
er is
air

ile

 of
 of

lly;

es
to integrate the model, it needs to know which variable is the
independent variable — in this case t (time), which variables are th
derivatives, and which are the states. The way we do this is we hav
add a few extra attributes to each variable. In Section 2.1, the idea o
atom was discussed with its units, default value, bounds etc. We ne
add 5 more of this type of parameter. These attributes areode_type,
ode_id, obs_id, ode_rtolandode_atol.

This now brings us to the reason there is a system.a4l and an
ivpsystem.a4l. For a steady state model the new attributes discuss
above are not needed, and would take up memory and introduce
confusion; therefore, they are excluded for the system library. If a
dynamic simulations is to be loaded and solved, the ivpsystem libra
needs to be loaded instead of the system library so the extra attribu
will be present with each part.

We will now go through the purpose of each of these attributes. Fir
ode_type is to tell the system what type of variable it is. A value of -1
for ode_type means the variable is the independent variable, 0 mean
is an algebraic variable (default), 1 means it is a state variable, and
finally 2 means it is a derivative.

The attributeode_idis used to match the state variables with their
derivatives and only needs to be used if the variable is a state or
derivative. In the exampleM is a state anddM_dt is the derivative.
Therefore they both need to have the sameode_id so ASCEND will
know that they belong together. Each state and derivative pair need
have a different ode_id; however, it does not matter what the numb
as long as it is a positive integer and no other state and derivative p
has the same number.

Nextobs_id is used by the user to flag a variable for observation wh
integrating. For any integer value ofobs_idgreater then 0 the variable
will be observed. The result of flagging a variable for observation is
that its values will be in a data column in one of two output files. One
the files of data produced with each integration contains the values
the states and the second the values of the variables flagged for
observation. The default file names are y.dat and obs.dat respectfu
however, they can be changed in the solver options general menu.

Last, but not least, are the error control attributes for LSODE:ode_rtol
andode_atol.Both of these come directly from the LSODE attributes
rtol and atol which are the local relative and absolute error toleranc
for the variable respectively.
Last modified: June 20, 1998 9:01 pm

SOLVING AN ASCENDINSTANCE 123

fore

 It
 an
an
ady

ady
w

 to
ero,

 for
el

he
e.

 for
or

del.
dow,
There is one other thing about methods that we need to discuss be
moving on and that is theseqmod method. If you have not already
noticed, it is a little different from the other examples as it has an IF
statement in it. This is an important part of the dynamic simulation.
switches the degrees of freedom depending on if we are computing
initial condition or performing an integration step. We use the boole
dynamic to control whether we are going to solve the model as a ste
state model (dynamic := FALSE;) or as a dynamic model (dynamic :=
TRUE;). For the current example, we have a simple tank and, for ste
state, we would like to calculate the number of moles and output flo
rate for a fixed tank volume and input flow rate. Also, for the model
be at steady state, we have to fix the derivative and set it equal to z
(dM_dt.fixed :=TRUE;dM_dt :=0 {mole/s}; The derivative is normally
set to zero in the default_self method to prepare the model to solve
initial steady-state conditions.) If we then want to integrate this mod
for a fixed output flow (as when pumping the liquid out under flow
control), we would free up the volume and fix the output flow rate. T
model will then compute how the liquid volume will change with tim

In dynamic simulation, an initial value integration package, such as
LSODE, repeatedly asks the model to compute the time derivatives
the state variables, given fixed values for the states. Using values f
dM_dt computed by the model, the integration package will then
update the state variable,M, to its new value. To accommodate this
calculation, we therefore fix the state variable,M, and free up the
derivative,dM_dt.

12.2 SOLVING AN ASCEND INSTANCE

We are now ready to read in and compile an instance of our tank mo
We are assuming that you understand how to use the scripting win
and we will show how to go about reading, compiling, solving and
integrating a dynamic model using the script in Figure 12-2.

script code DELETE TYPES;

READ FILE "example.a4c";

COMPILE ex OF tank;

BROWSE ex;

RUN {ex.default_self};

RUN {ex.reset};

RUN {ex.values};

SOLVE ex WITH QRSlv;

RUN {ex.check_all};

ASSIGN {ex.dynamic} TRUE;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

124 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 the
ad

e

et
RUN {ex.reset};

RUN {ex.set_ode};

RUN {ex.set_obs};

User will need to edit the next line to correct path

to the models directory

source "$env(ASCENDDIST)/models/set_intervals.tcl";

set_int 500 10 {s};

INTEGRATE ex FROM 0 TO 50 WITH BLSODE;

ASSIGN {ex.input} 120 {mole/s};

INTEGRATE ex FROM 50 TO 499 WITH BLSODE;

In order to view integration results for both the

integrations the user will have to go to the solver

window, select options, general and turn off the

overwrite integrator logs toggle.

(NOTE: If you were then to run a different model or this

same simulation again it would still write to the same

files)

In order to see both sets of data at the same time on

one plot you will have to merge the two sets of data in

the file. This is done with following command.

asc_merge_data_file ascend new_obs.dat obs.dat;

This command can also be used to convert data into a

format that can be loaded into matlab for further work.

asc_merge_data_file matlab matlab_obs.m obs.dat;

This command can also be used to convert data into a

format that can be loaded into excel as a tab delimited

text file.

asc_merge_data_file excel excel_obs.txt obs.dat;

Figure 12-2 Script Code.

First of all reading and compiling an instance of a dynamic model is
same as a steady state model except, as stated earlier, we must lo
ivpsystem.a4l instead ofsystem.a4l. The file containingexample.a4c
(see Figure 12-1) hasREQUIRE statements to load the right system fil
and the fileatoms.a4l.

Now it is time to solve the model, and this is where things start to
change. We must first solve the model for its initial conditions. We s
Last modified: June 20, 1998 9:01 pm

VIEWING SIMULATION RESULTS 125

l

ic

ve
e
les

s a

 this
t

is to

n

the boolean variabledynamic to FALSE (in thedefault_self method)
and run thereset method to get a well-posed steady-state model. We
also need to run thevalues method to set the fixed values of the initia
conditions. Finally we are solve, getting as the solution the initial
conditions for our model.

After solving for the initial conditions, we set things up for the dynam
simulation. We set the boolean variabledynamic to TRUE and then run
theseqmod method to give a well-posed dynamic model. We now ha
to establish which variables are the independent variables, the stat
variables and their corresponding derivatives, and tell which variab
we would like to observe; we runset_ode andset_obs methods
described above.

In order for ASCEND and LSODE to know what step size and how
many steps we want to observe, we must load a Tcl file that define
new script command. The file we need to load is called
set_intervals.tcl,and it is found in the models subdirectory of the
ASCEND distribution. The commandsource comes from Tcl and is
used to read and execute the a set of commands in a file. The file in
case isset_intervals.tcl and the commands within it setup a new scrip
commandset_int. Once we have loaded this file, we can use the new
commandset_int1 to set up the number of possible steps and their
maximum size. Now we are ready to integrate. The way we do this
use theINTEGRATE command in the script. The syntax for these
command is as follows.

1. set_lagrangeint is also defined inset_intervals.tcl, and you can write other Tcl functions in this style if
you want to create a customized sampling schedule.

Syntax for set_int set_int number_of_steps step_size { units of step

size(time) };

Syntax for
INTEGRATE

INTGRATE compiled_model_name FROM initial_step TO

final_step WITH BLSODE;

The command is set up with the initial and final step so that you ca
integrate for a number of steps, then make step changes, and then
continue to integrate another number of steps.

12.3 VIEWING SIMULATION RESULTS

To view the simulation results, open theASCPLOT window using the
Tools menu on theScript window. To view a plot, first use the file
menu to load the data usingLoad data set. Depending on what you
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

126 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

 file
o

.

 to
,

,
ow

le
he
e
the

or

s

 full

s a
s.

ve
files
 the
want to look at, you can load the file containing the states or the file
containing the variables you flagged for observation. Once the data
is loaded, you can double click on the file name in the top window t
get a list of the variables in the file. This list will appear in the left
window namedUnused variables below where you just double clicked
As you will notice on the line below, the independent variable has
already been set to time. The way we select the variables we want
plot vs. time is to highlight them from the list in the left window and
using the top arrow button, move them over to the plotted variables
window on the right. We then use theView plot file command from the
Execute menu to view the plot.

If we now want to plot something else, we simply highlight those
variables that we do not want to plot in the plotted variables window
use the other arrow to move them back to the unused variable wind
and then move new variables to the plotted variables window.

If we want to change the independent variable, we select the variab
we want to be the new independent variable from the list in either t
unused variable window or the plotted variable window and then us
the appropriate down arrow to move that variable down to become
independent variable.

Graphing options Now that you are able to view a plot, you might want to add titles
change the axis scale, line colors, and so forth. Adding titles can be
done by selectingset titles under theDisplay menu, a new window will
open in which you will have the option to add a plot title and axis
labels. To change the axis scale, line color and many other feature
selectsee options from theOptions menu.

Graphing in Windows Under MS Windows the default graph program Tkxgraph gives you
control of the options without having to go through the ASCPLOT
Options menu. Tkxgraph is also available for UNIX, but xgraph doe
much better job drawing dashed lines with X11 than Tkxgraph doe

If you decide you don’t like the plotting tools described above you ha
two more options and they are to convert the ASCEND output data
so that they can be loaded by Matlab or a spreadsheet. To convert
data files a new script command needs to be introduced and the
command isasc_merge_data_file.

Syntax for
asc_merge_data_file
command

asc_merge_data_fileconvert_to ouput_file_name input_file_names

The syntax for theasc_merge_data_file command is as follows. First of
all theconvert_to is the format you want the data converted to. There
are three optionsmatlab, excelor ascend. Theoutput_file_name is
Last modified: June 20, 1998 9:01 pm

VIEWING SIMULATION RESULTS 127

ata

 the

 file

at is
e but
as
has
able
l
The

n of
 file
s and

t
 it is
d
its
ata is

the
ore

ff.
 as the
at
ata
ill
exactly that, the name of the file in which you want the converted d
to be put. Theinput_file_names is also exactly that, the file name or
names that you want converted. If more than one input file is given
data is combined into one output file.

If the matlab option is used the output file extension should be m, if
excel is used the extension should be txt as it is a tab delimited text
and forascend the extension should be dat for use withASCPLOT.

You maybe wondering what exactly is thisasc_merge_data_file
command doing. In the next three paragraphs we will give a brief
explanation of each of the options.

matlab conversion When the data is converted to be used in matlab the first thing th
done is the header of the ascend data file is placed in the output fil
is commented out. This is so the user can still tell when the data w
created. The next thing is does is put all the data into a matrix that
the same name as the output file with var added to the end. All vari
names from the ascend data file are then converted to matlab lega
names by replacing the all dots and brackets with underscores(_).
new variable names are then set equal to there corresponding colum
data in the matrix. Each variable then becomes a vector. When the
is run all the data is loaded and set equal to the new variable name
can easily be plotted using matlab commands.

excel conversion When the data is converted to be used in Excel the only thing tha
happens is instead of the list of variables and units being a column
turn into rows. When the data is loaded into Excel as a tab delimite
text file all the data will be in columns with the first row being the un
of the data and the second being the ascend variable name. The d
then easily plotted using the Excel graphing package.

ascend conversion This is not so much a conversion as a merge and is the origin of
command. It is only useful if there are multiple headers in a file or m
than one input file is given. Multiple headers in the file occur when
stopping and starting integrations with the overwrite option turned o
This conversion removes all subsequent headers that are the same
first, whether in one file or multiple, to leave one output file with wh
looks like one data set for plotting. If the headers are different the d
will just be combined into one file and when loaded in ASCPLOT w
still look like different data sets.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

128 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-

ed in

ever,
r

em

ent
in
anks
d

eters
ple
12.4 PREPARING A MODEL FOR REUSE

There are four major ways to prepare a model for reuse as describ
Chapter 3, “Preparing a model for reuse,” on page 25. All of what is
said there about reusable models applies to dynamic models. How
there is one thing that we think should be repeated to make clear fo
dynamic models, and that is parameterizing a model.

12.4.1 PARAMETERIZING THE TANK MODEL

As stated in Section 3.3 on page 32, parameterizing a model type
definition alerts a future user as to which parts of this model you de
to be the most likely to be shared. An instance of a parameterized
model is then created from previously defined types.

The new thing that needs to be repeated is that theode_id’s of
derivative and state pairs must be different even if they are in differ
part of a larger model. If for instance we wanted to have two tanks
series we could parameterize the tank model and connect the two t
together with the outlet of the first tank being the feed to the secon
tank. However, with theset_ode method, as we have currently written
it, the derivative and state pairs for both tanks would have the same
ode_id’s. Our way around this is to introduce anode_counterthat is
used to set theode_id’s and is incremented after each derivative and
state pair is set. The ode counter becomes one of the model param
and is, therefore, the same in all models. We will now give an exam
of this to help explain.

parameterized tank
model set_ode
method

METHOD set_ode;

(* set ODE_TYPE -1=independent variable,

 0=algebraic variable, 1=state variable,

 2=derivative *)

t.ode_type :=-1;

dM_dt.ode_type :=2;

M.ode_type :=1;

(* Set ODE_ID *)

dM_dt.ode_id := ode_offset;

M.ode_id := ode_offset;

ode_offset := ode_offset+1;

END set_ode;

Larger model with
two tank models being
used as parts. set_ode
method

METHOD set_ode;

RUN tank_1.set_ode;

RUN tank_2.set_ode;
Last modified: June 20, 1998 9:01 pm

IN CONCLUSION 129

and

he
tput
s

 is
must
ach
ectly
END set_ode;

Figure 12-3 Parameterized set_ode methods.

The parameterized tank set_ode method is almost the same as the
original one we wrote except it now usesode_offset, an ode_counter, to
set theode_id’s. It may be obvious but this is how it works. When the
larger modelset_ode is run, theset_ode for tank_1 is run, theode_id’s
are set to the current value ofode_offset, the counter is then
incremented andset_ode is run for tank_2 which then gets the
incrementedode_offset so the values are now different. You can now
hopefully see that we can string as may tanks together as we like,
all the derivative and state pairsode_id will be different.

This same idea can be applies to setting the observed variables. T
reason this is a good idea is that the variables are placed in the ou
files in order of thereobs_id value. This way we can keep all variable
flagged for observation from one part of a model together.

The important thing that needs to be stressed for a dynamic system
that the time variable, dynamic boolean, and ode and obs counters
be in the parameter list. All these variable need to be the same in e
model to be consistent and to make sure the model gets setup corr
when theset_ode method is executed.

12.5 IN CONCLUSION

We have just led you step by step through the process of creating a
small dynamic ASCEND model and the basics on how to view the
results.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-ivp.fm5

130 A DETAILED ASCEND EXAMPLE OF A DYNAMIC SIMULA-
Last modified: June 20, 1998 9:01 pm

	Chapter 12 A Detailed ASCEND Example of a Dynamic ...
	the purpose for this chapter
	topics covered
	12.1 Converting the word description into an ASCEN...
	an ASCEND model is a type definition
	the first version of the code for tank

	12.2 Solving an ASCEND instance
	script code
	Syntax for set_int
	Syntax for INTEGRATE

	12.3 Viewing Simulation Results
	Graphing options
	Graphing in Windows
	Syntax for asc_merge_data_file command
	matlab conversion
	excel conversion
	ascend conversion

	12.4 Preparing a model for reuse
	12.4.1 Parameterizing the tank model
	parameterized tank model set_ode method
	Larger model with two tank models being used as pa...

	12.5 In conclusion

