
ADDING COMMENTS AND NOTES 25

s to a
 an

hich
d
ve a
der

,
tand
 *).

en

ger
d
is
tion
g

l —
t on
ate
CHAPTER3 PREPARING A MODEL FOR REUSE

There are four major ways to prepare a model for reuse. First, you
should add comments to a model. Second, you should add method
model definition to pass to a future user your experience in creating
instance of this type which is well-posed. Third, you should
parameterize the model type definition to alert a future user as to w
parts of this model you deem to be the most likely to be shared. An
fourth, you should prepare a script that a future user can run to sol
sample problem involving an instance of the model. We shall consi
each of these items in turn in what follows.

3.1 ADDING COMMENTS AND NOTES

In ASCEND we can create traditional comments for a model — i.e.
add text to the code that aids anyone looking at the code to unders
what is there. We do this by enclosing text with the delimiters (* and
Thus the line

(* This is a comment *)

is a comment in ASCEND. Traditional comments are only visible wh
we display the code using theDisplay code tool in theLibrary window
or when we view the code in the text editor we used to create it.

We suggest we can do more for the modeler with the concept ofNotes,
a form of “active” comments available in ASCEND. ASCEND has
tools to extract notes and display them in searchable form.

notes are active
comments

In Figure 3-1 we show two types of notes the modeler can add. Lon
notes are set off in block style starting with the keyword NOTES an
ending with END NOTES. In this model, we declare two notes in th
manner: (1) to indicate who the author is and (2) to indicate the crea
date for this model. Note that the notes are directed to documentin
SELF which is the model itself — i.e., the vessel model as a whole
object. The object one documents can be any instance in the mode
any variable, equation or part. The tools for handling notes can sor
the terms enclosed in single quotes so one could, for example, isol
theauthor notes for all the models.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

26 PREPARING A MODEL FOR REUSE
REQUIRE "atoms.a4l";

MODEL vessel;

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

vessel_vol "the volume contained within the cylindrical vessel",

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

wall_thickness "the thickness of all of the vessel walls",

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

H_to_D_ratio "the ratio of vessel height to diameter"

 IS_A factor;

metal_density "density of the metal from which the vessel

 is constructed"

 IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"

 IS_A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;

Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-1 Vessel model with Notes added (model
vesselNotes.a4c)
Last modified: June 20, 1998 9:04 pm

ADDING METHODS 27

t
 yet
ust a

odel.
s

er

l
ent
use
s

ode.

del

s to
t be
ll
gs

ady

r

A user may use any term desired in the single quotes. We have no
decided yet what the better set of terms should be so we do not as
suggest any. With time we expect the terms used to settle down to j
few that are repeated for all the models in a library.

there are short notes,
long notes and
separate notes

There are also short notes we can attach to every variable in the m
A “one liner” in double quotes just following the variable name allow
the automatic annotation of variables in reports.

The last few lines of Figure 3-1 shows adding notes we write in a
separateADD NOTES IN object. This object can appear before or aft
or in a different file from the object it describes. This style of note
writing is useful as it allows another person to add notes to a mode
without changing the code for a model. Thus it allows several differ
sets of notes to exist for a single model, with the choice of which to
being up to the person maintaining the model library. Finally, it allow
one to eliminate the “clutter” the documentation often adds to the c

3.2 ADDING METHODS

We would next like to pass along our experiences in getting this mo
to be well-posed—i.e., we would like to tell future users which
variables we decided to fix and which we decided to calculate. We
would also like to provide some typical values for the variables we
decided to fix. ASCEND allows us to attach any number of method
a type definition. Methods are procedural code that we can reques
run through the interface while browsing a model instance. We sha
include methods as described Table 3-1 to set just the right fixed fla
and variable values for an instance of our vessel model to be well-
posed.

The system has defaults definitions for all these methods. You alre
saw that to be true if you went through the process of setting all the
fixed flags toFALSE in the previous chapter. In case you did not, load
and compile thevesselPlain.a4c model in ASCEND. Export the
compiled instance to theBrowser. Then in theBrowser, under theEdit
button, selectRun method. You will see a list containing these and othe
methods we shall be describing shortly. Selectspecifyand hit theOK
button. Then look in the Console window. A message similar to the
following will appear, with all but the first line being in red to signify
you should pay attention to the message:

Running method specify in v

Found STOP statement in METHOD

C:\PROGRAM FILES\ASCEND\ASCEND4\models\basemodel.a4l:307
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

28 PREPARING A MODEL FOR REUSE

at

lert

se

 an
 STOP {Error! Standard method "specify" called but not written in MODEL.};

This message is telling you that you have just run the defaultspecify
method. We have to hand-craft everyspecify method so the default
method is not appropriate. This message is alerting us to the fact th
we did not yet write a specialspecify method for this model type.

Try running theClearAll method. The defaultClearAll method is
always the one you will want so it does not put out a message to a
you that it is the default. d

writing thespecify
andvalues methods

To write thespecify andvalues methods for our vessel model, we note
that we have successfully solved the vessel model in at least two
different ways above. Thus both variations are examples of being
“well-posed.” We can choose which variation we shall use when
creating thespecify method for our vessel type definition. Let us choo
the alternative where we fixedvessel_volume, H_to_D_ratio,
metal_density andwall_thicknesand provided them with the values of
250 ft^3, 3, 5000 kg/m^3 and5 mm respectively to be our “standard”
specification.

Table 3-1 Some of the methods we require for putting a model into
ASCEND library

method description

ClearAll a method to set all the .fixed flags for variables in the type to
FALSE. This puts these flags into a known standard state —
i.e., all areFALSE. All models inherit this method from the
base model and the need to rewrite it is very, very rare.

specify a method which assumes all the fixed flags are currently
FALSE and which then sets a suitable set offixed flags to
TRUE to make an instance of this type of model well-posed.
A well-posed model is one that is square (n equations inn
unknowns) and solvable.

reset a method which first runs the ClearAll method and then the
specify method. We include this method because it is very
convenient. We only have to run one method to make any
simulation well-posed, no matter how its fixed flags are cur-
rently set. All models inherit this method from the base
model, as withClearAll. It should only rarely have to be
rewritten for a model.

values a method to establish typical values for the variables we have
fixed in an application or test model. We may also supply val-
ues for some of the variables we will be computing to aid in
solving a model instance of this type. These values reflective-
ness that we have tested for a simulation of this type and
found to work.
Last modified: June 20, 1998 9:04 pm

ADDING METHODS 29

se

lly

d
at
e

default methods
ClearAll andreset are
appropriate

As already noted, the purpose ofClearAll is to set all the fixed flags to
FALSE, a well-defined state from which we can start over to set the
flags as we wish them set.Reset simply runsClearAll and thenspecify
for a model. The default versions for these two methods are genera
exactly what one wants so one need not write these.

Figure 3-2 illustrates our vessel model with our local versions adde
for specify andvalues. Look only at these for the moment and note th
they do what we described above. We show some other methods w
shall explain in a moment.

REQUIRE "atoms.a4l";

MODEL vessel;

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

vessel_vol "the volume contained within the cylindrical vessel",

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

wall_thickness "the thickness of all of the vessel walls",

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

H_to_D_ratio "the ratio of vessel height to diameter"

 IS_A factor;

metal_density "density of the metal from which the vessel

 is constructed"

 IS_A mass_density;

metal_mass "the mass of the metal in the walls of the vessel"

 IS_A mass;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;

Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

30 PREPARING A MODEL FOR REUSE

will
s,
 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD scale_self;

END scale_self;

METHOD default_self;

D := 1 {m};

H := 1 {m};

H_to_D_ratio := 1;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END default_self;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-2 Version of vessel with methods added
(vesselMethods.a4c)

In Table 3-2 we describe additional methods we require before we
put a model into one of our libraries. Each of these had two version
both of which we require. The designation_self is for a method to do
Last modified: June 20, 1998 9:04 pm

ADDING METHODS 31

ter”

3.3.
in

g
 in
d;

el in
or
something for all the variables and/or parts we have defined locally
within the current model with anIS_A statement. The designation_all
is for a method to do something for parts that are defined within an
“outer” model that has an instance of this model as a part. The “ou
model is at a higher scope. It can share its parts with this model by
passing them in as parameters, a topic we cover shortly in Section
Only the_self versions of these methods are relevant here and are
Figure 3-2.

adding our remaining
standard methods to
a model definition

Thebound_self andscale_self, methods we have written are both
empty. We anticipate no difficulties with variable scaling or boundin
for this small model. Larger models can often give difficult problems
solving if the variables in them are not properly scaled and bounde
these issues must be taken very seriously for such models.

We have included the variables that define the geometry of the vess
defaults_selfmethod to avoid such things as negative initial values f

Table 3-2 Additional methods required for model in ASCEND
libraries

method

description
(The_self versions of each of these methods should run the
_self versions for the same method for all of its parts that are
instances of models created with anIS_A statement. The_all
version should first run the _self version of the same method
and then the_all version for all of its parts passed in as
parameters with aWILL_BE statement.)

default_self
default_all

a method called automatically when any simulation is com-
piled to provide default values and adjust bounds for any vari-
ables which may have unsuitable defaults in their ATOM
definitions. Usually the variables selected are those for which
the model becomes ill-behaved if given poor initial guesses or
bounds (e.g., zero).

bound_self
bound_all

a method to update the .upper_bound and .lower_bound value
for each of the variables. ASCEND solvers use these bound
values to help solve the model equations.

scale_self
scale_all

a method to update the .nominal value for each of the vari-
ables. ASCEND solvers will use these nominal values to
rescale the variable to have a value of about one in magnitude
to help solve the model equations.

check_self
check_all

a method to check that the computations make sense. At first
this method may be empty, but, with experience, one can add
statements that detect answers that appear to be wrong. As
ASCEND already does bounds checking, one should not
check for going past bounds here. However, there could be a
rule of thumb available that suggests one computed variable
should be about an order of magnitude larger than another.
This check could be done in this method.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

32 PREPARING A MODEL FOR REUSE

as
here

pile

es

del
 for
it

 an
vessel_volume. The compiler for ASCEND runs this method as soon
the model is compiled into an instance so the variables mentioned
start with their default values.

using methods when
solving

Exit ASCEND and repeat all the steps above to edit, load and com
this new vessel type definition. Then proceed as follows.

• In theBrowser window, examine the values for those variables
mentioned in thedefault_selfmethod. Note they already have
their default values.

• To place the new instancev in a solvable state, go to theBrowser
window. Pick the commandRun method under theEdit button.
Select first the methodvalues and hitOK.

• Repeat the last step but this time select the methodreset.

In theBrowser, examine the values for the variables listed in the
methodvalues in Figure 3-2. They should be set to those stated
(remember you can alter the units ASCEND uses to report the valu
by using the tools in theUnits window).Also examine thefixed flags
for these variables; they should all beTRUE (remember that you can
find which variables are fixed all at once by using theBy type command
under theFind button).

• Finally exportv to theSolver. TheEligible window should NOT
appear; rather thatSolver should report the model to besquare.

• Solve by selectingSolve under theExecute button.

The inclusion of methods has made the process of making this mo
much easier to get well-posed. This approach is the one that works
really large, complex models. For chemical engineering process un
models there are one or two additional tips covered in Chapter 10.

3.3 PARAMETERIZING THE VESSEL MODEL

let’s compute
metal_mass vs.
H_to_D_ratio

Reuse generally implies creating a model which will have as a part
instance of a previously defined type. For example, let us compute
metal_mass as a function of theH_to_D_ratio for a vessel for a fixed
vessel_volume. We would like to see if there is a value for the
H_to_D_ratio for which themetal_mass is minimum for a vessel with a
givenvessel_volume. We might wonder ifmetal_mass goes to infinity
as this ratio goes either to zero or infinity.
Last modified: June 20, 1998 9:04 pm

PARAMETERIZING THE VESSEL MODEL 33

he
rent
es

e

el
3.3.1 CREATING A PARAMETERIZED VERSION OF VESSEL

parameters indicate
likely object sharing

To use instances of our model as parts in another model, we can
parameterize it. We use parameterization to tell a future user that t
parameters are objects he or she is likely to share among many diffe
parts of a model. We wish to create a table containing different valu
of H_to_D_ratio vs.metal_mass. We can accomplish this by
computing simultaneously several different vessels having the sam
vessel_volume, wall_thicknessandmetal_density. The objects we want
to see and/or share for each instance of a vessel should include,
therefore:H_to_D_ratio, metal_mass, metal_density, vessel_volume
andwall_thickness.

The code in Figure 3-3 indicates the changes we make to the mod
declaration statement and the statements defining the variables to
parameterize our model.

REQUIRE "atoms.a4l";

MODEL vessel(

vessel_vol "the volume contained within the cylindrical vessel"

WILL_BE volume;

wall_thickness "the thickness of all of the vessel walls"

WILL_BE distance;

metal_density "density of the metal from which the vessel is constructed"

WILL_BE mass_density;

H_to_D_ratio "the ratio of vessel height to diameter"

WILL_BE factor;

metal_mass "the mass of the metal in the walls of the vessel"

WILL_BE mass;

);

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;

(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

 IS_A area;

wall_vol "the volume of the walls for the vessel"

 IS_A volume;

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

 IS_A distance;

(* equations *)

FlatEnds: end_area = 1{PI} * D^2 / 4;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

34 PREPARING A MODEL FOR REUSE
Sides: side_area = 1{PI} * D * H;

Cylinder: vessel_vol = end_area * H;

Metal_volume: (side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition: D * H_to_D_ratio = H;

VesselMass: metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;

 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD bound_all;

RUN bound_self;

END bound_all;

METHOD scale_self;

END scale_self;

METHOD scale_all;

RUN scale_self;

END scale_all;

METHOD default_self;

D := 1 {m};

H := 1 {m};

END default_self;

METHOD default_all;

RUN default_self;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

H_to_D_ratio := 1;

END default_all;
Last modified: June 20, 1998 9:04 pm

PARAMETERIZING THE VESSEL MODEL 35

pes

ssel.

y
ays
The
END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

Figure 3-3 The parameterized version of vessel model
(vesselParams.a4c)

Substitute the statements in Figure 3-3 for lines 2 through 9 in
Figure 3-2. Save the result in the filevesselParam.a4c.

Note the use of the WILL_BE statement in the parameter list. By
declaring that the type of a parameter will be compatible with the ty
shown, the compiler can tell immediately if a user of this model is
passing the wrong type of object when defining an instance of a ve

3.3.2 USING THE PARAMETERIZED VESSEL MODEL

Creating a table of
metal_mass values
vs. H_to_D_ratio

We next need to create a type definition that will set up our table of
H_to_D_ratio values vs.metal_mass so we can observe approximatel
where it attains a minimum value. ASCEND allows us to create arr
of instances of any type. Here we shall create an array of vessels.
type definition is shown in Figure 3-4.

REQUIRE "atoms.a4l";

MODEL vessel(

vessel_vol "the volume contained within the cylindrical vessel"

WILL_BE volume;

wall_thickness "the thickness of all of the vessel walls"

WILL_BE distance;

metal_density "density of the metal from which the vessel is constructed"

WILL_BE mass_density;

H_to_D_ratio "the ratio of vessel height to diameter"

WILL_BE factor;

metal_mass "the mass of the metal in the walls of the vessel"

WILL_BE mass;

);

 NOTES

'author' SELF {Arthur W. Westerberg}

'creation date' SELF {May, 1998}

 END NOTES;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

36 PREPARING A MODEL FOR REUSE
(* variables *)

side_area "the area of the cylindrical side wall of the vessel",

end_area "the area of the flat ends of the vessel"

IS_A area;

wall_vol "the volume of the walls for the vessel"

IS_A volume;

H "the vessel height (of the cylindrical side walls)",

D "the vessel diameter"

IS_A distance;

(* equations *)

FlatEnds:end_area = 1{PI} * D^2 / 4;

Sides:side_area = 1{PI} * D * H;

Cylinder:vessel_vol = end_area * H;

Metal_volume:(side_area + 2 * end_area) * wall_thickness = wall_vol;

HD_definition:D * H_to_D_ratio = H;

VesselMass:metal_mass = metal_density * wall_vol;

METHODS

METHOD specify;

 NOTES

'purpose' SELF {to fix four variables and make the problem well-posed}

 END NOTES;

vessel_vol.fixed := TRUE;

H_to_D_ratio.fixed := TRUE;

wall_thickness.fixed := TRUE;

metal_density.fixed := TRUE;

END specify;

METHOD values;

 NOTES

'purpose' SELF {to set the values for the fixed variables}

 END NOTES;

H_to_D_ratio := 2;

vessel_vol := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

END values;

METHOD bound_self;

END bound_self;

METHOD bound_all;

RUN bound_self;

END bound_all;

METHOD scale_self;

END scale_self;

METHOD scale_all;

RUN scale_self;

END scale_all;
Last modified: June 20, 1998 9:04 pm

PARAMETERIZING THE VESSEL MODEL 37
METHOD default_self;

D := 1 {m};

H := 1 {m};

END default_self;

METHOD default_all;

RUN default_self;

vessel_vol := 1 {m^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

H_to_D_ratio := 1;

END default_all;

END vessel;

ADD NOTES IN vessel;

'description' SELF {This model relates the dimensions of a

 cylindrical vessel -- e.g., diameter, height and wall thickness

 to the volume of metal in the walls. It uses a thin wall

 assumption -- i.e., that the volume of metal is the area of

 the vessel times the wall thickness.}

'purpose' SELF {to illustrate the insertion of notes into a model}

END NOTES;

MODEL tabulated_vessel_values;

 vessel_volume "volume of all the tabulated vessels"

IS_A volume;

 wall_thickness "thickness of all the walls for all the vessels"

IS_A distance;

 metal_density "density of metal used for all vessels"

IS_A mass_density;

 n_entries "number of vessels to simulate"

IS_A integer_constant;

 n_entries :== 20;

 H_to_D_ratio[1..n_entries] "set of H to D ratios for which we are

 computing metal mass"

IS_A factor;

 metal_mass[1..n_entries] "mass of metal in walls of vessels"

IS_A mass;

 FOR i IN [1..n_entries] CREATE

v[i] "the i-th vessel model"

IS_A vessel(vessel_volume, wall_thickness,

metal_density, H_to_D_ratio[i], metal_mass[i]);

 END FOR;

METHODS

METHOD default_self;

END default_self;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

38 PREPARING A MODEL FOR REUSE

e it
METHOD specify;

RUN v[1..n_entries].specify;

END specify;

METHOD values;

 NOTES 'purpose' SELF {to set up 20 vessel models having H to D ratios

 ranging from 0.1 to 2.}

 END NOTES;

vessel_volume := 250 {ft^3};

wall_thickness := 5 {mm};

metal_density := 5000 {kg/m^3};

FOR i IN [1..n_entries] DO

H_to_D_ratio[i] := i/10.0;

END FOR;

END values;

METHOD scale_self;

END scale_self;

END tabulated_vessel_values;

ADD NOTES IN tabulated_vessel_values;

'description' SELF {This model sets up an array of vessels to

 compute a range of metal_mass values for different values

 of H_to_D_ratio.}

'purpose' SELF {to illustrate the use of arrays in ASCEND}

END NOTES;

Figure 3-4 The code for thetabulated_vessel_values model
(vesselTabulated.a4c)

Add this model to the end of the filevesselParam.a4c (after the vessel
model) and save the file asvesselTabulated.a4c. Compile an instance of
tabulated_vessel_values (call it tvv), run thevalues andspecify
methods for it, and then solve it. You will discover that the tenth
element of themetal_mass array, corresponding to anH_to_D_ratio of
1 has the minimum value of510.257 kilograms.

3.4 CREATING A SCRIPT TO DEMONSTRATE THIS

MODEL

The last step to make the model reusable is to create a script that
anyone can easily run. Running the model successfully will allow a
user to demonstrate the use of the model and to explore an instanc
by browsing it.
Last modified: June 20, 1998 9:04 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 39

r the

us

e

e

ASCEND allows one to create such a script using either an editor o
tools in theScript window.

Restart the ASCEND system. You will have three windows open pl
the large one which you can close by pressing itsdismiss button. The
Script, theLibrary and theConsole1 windows remain

In theScript window you will see the license agreement information
for ASCEND. First get a new script buffer by selecting theNew file tool
under theFile button.

Select the toolRecord actions under theEdit button to start recording
the steps you are about to undertake.

• In theLibrary window, under theEdit button, selectDelete all
types. Hit Delete all on the small confirmation window that
appears.

• Load the filevesselTabulated.a4c, the file containing the model
calledtabulated_vessel_values. Do this by selecting theRead
types from file tool under theFile button and browsing the file
system to find it. If you have trouble finding it, be sure to set th
Files of type window at the bottom of the file browsing window to
allow all types of files to be seen.

• Select the typetabulated_vessel_values in the rightLibrary
window and compile an instance of it by selecting theCreate
simulation tool under theEdit button. In the small window that
appears, enter the nametvv and hitOK.

• Export the instance to theBrowser by selecting theSimulation to
Browser tool under theExport button.

• Initialize the variable values by running thevalues method. Do
this by selecting theRun method tool under theEdit button. Select
thevalues method and hitOK.

• Set the fixed flags to get a well-posed problem by repeating th
last step but this time select thereset method.

• Export the instancetvv to theSolver by selecting theto Solver
tool under theExport button.

• Solve tvv by selecting theSolve tool under theExecute button in
theSolver window.

• Return to theScript window and turn off the recording by
selecting theRecord actions tool under theEdit button.

1. UNIX users should treat the xterm where they started ASCEND as theirConsole window.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

40 PREPARING A MODEL FOR REUSE

e

u
y
e

ter.

rary,

ded
• Save the script you have just created by selecting theSave tool
under theFile button of theScript window. Name the file
vesselTabulated.a4s (note the ‘s’ ending) to indicate it is the script
to run an example problem for models in thevesselTabulated.a4c
(note the ‘c’ ending) file.

• Exit ASCEND by selecting theExit ASCEND tool under theFile
button on theScript window. The contents of theScript window
will be similar to that in Figure 3-5 (the path to the file may
differ).

• Restart ASCEND.

• Open the script you just created by selecting theRead file tool
under theFile button on theScript window. (Be sure you are
allowing the system to see files with the endinga4s by setting the
Files of type window at the bottom of the file browsing window.)

• Highlight all the instructions in this script and then execute the
highlighted instructions by selecting theStatements selected tool
under theExecute button.

You will run the same sequence of instructions you ran to create th
script.

DELETE TYPES;

READ FILE "vesselTabulated.a4c";

COMPILE tvv OF tabulated_vessel_values;

BROWSE {tvv};

RUN {tvv.reset};

RUN {tvv.values};

SOLVE {tvv} WITH QRSlv;

Figure 3-5 Script to run vesselTabulated.a4c (this is the
contents of the file vesselTabulated.a4s)

3.4.1 DISCUSSION

In this chapter we converted the vessel model into a form where yo
and others in the future will have a chance to reuse it. We did this b
first adding methods to make the problem well-posed and to provid
values for the fixed variables for which we readily found a solution
when playing with our original model as we did in the previous chap
We then thought of a typical use for this model and developed a
parameterized version based on that use. If this model were in a lib
a future user of it would most often simply have to understand the
parameters to create an instance of this type of model. We next ad
Last modified: June 20, 1998 9:04 pm

CREATING A SCRIPT TO DEMONSTRATE THIS MODEL 41

s that
a
te
e
e

d in
eone

s
m
del
NOTES, a form of active comments, to the model. We suggest that
notes are much more useful than comments as we can provide tool
can extract them and allow us to search them, for example, to find
model with a given functionality. Finally, we showed you how to crea
a script by turning on a “phone” session where ASCEND records th
actions one takes when loading, compiling and solving a model. On
can save and play this script in the future to see a typical use of the
model.

In the next chapter, we look at how we can plot the results we create
the model vesselTabulated.a4c. We will have to reuse a model som
else has put into the library of available models. In other words, the
“shoe is on the other foot,” and we quickly experience the difficultie
with reuse first hand. We will also learn how to run a case study fro
which we can extract the same information with a single vessel mo
run multiple times.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model2.fm5

42 PREPARING A MODEL FOR REUSE
Last modified: June 20, 1998 9:04 pm

	Chapter 3 Preparing a model for reuse
	3.1 Adding comments and notes
	notes are active comments
	there are short notes, long notes and separate not...

	3.2 Adding methods
	writing the specify and values methods
	default methods ClearAll and reset are appropriate...
	adding our remaining standard methods to a model d...
	using methods when solving

	3.3 Parameterizing the vessel model
	let’s compute metal_mass vs. H_to_D_ratio
	3.3.1 Creating a parameterized version of vessel
	parameters indicate likely object sharing

	3.3.2 Using the parameterized vessel model
	Creating a table of metal_mass values vs. H_to_D_r...

	3.4 Creating a script to demonstrate this model
	3.4.1 Discussion

