
CREATING A PLOT 43

t
tand
l
plot
if
t

 to

ND.
now

el
ge
is

ing

pe

s
th
CHAPTER4 CREATING A PLOT (USING A

LIBRARY MODEL)

In this chapter we are going to produce a plot by using a model tha
someone else has created. We gain two lessons: (1) you will unders
first hand the difficulties one encounters when trying to use a mode
someone else has created and (2) you will learn how to produce a
in ASCEND. The approach we take is not the one you should take
your goal is simply to produce this plot. Our goal is pedagogical, no
efficiency. In the last chapter we created an array of vessel models
produce the data that we now about to plot. We approached this
problem this way so you could see how one creates arrays in ASCE
Having this model, we have the data. The easiest thing we can do
it use it to produce a plot.

We also have in ASCEND the ability to do case studies over a mod
instance, varying one or more of the fixed variables for it over a ran
of values and capturing the values of other variables that result. Th
powerful case study tool is the proper way to produce this plot as
ASCEND only has to compile one instance and solve it repeatedly
rather than produce an array of models. We finish this chapter show
you how to use this case study tool.

4.1 CREATING A PLOT

We want a plot ofmetal_mass values vs.H_to_D_ratio. If we look
around at the available tools, we find there is aPlot tool under the
Display button in theBrowser window. While not obvious, it turns out
we can plot the arrays we produce when we include instances of ty
plt_plot_integer andplt_plot_symbol in our model. We find these types
in the fileplot.a4l located in the ASCEND4 models directory which i
distributed with ASCEND. Figure 4-1 is a print out of that file (but wi
line numbers added so we can reference them here).

REQUIRE "system.a4l"; 1

PROVIDE "plot.a4l"; 2

(***\ 3

plot.a4l 4

by Ben Allan 5
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

44 CREATING A PLOT (USING A LIBRARY MODEL)
Part of the Ascend Library 6

This file is part of the Ascend modeling library. 7

Copyright (C) 1997 Benjamin Andrew Allan 8

The Ascend modeling library is free software; you can redistribute 9

it and/or modify it under the terms of the GNU General Public License as 10

published by the Free Software Foundation; either version 2 of the 11

License, or (at your option) any later version. 12

The Ascend Language Interpreter is distributed in hope that it will be 13

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 14

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15

General Public License for more details. 16

You should have received a copy of the GNU General Public License along with17

the program; if not, write to the Free Software Foundation, Inc., 675 18

Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 19

***) 20

(***\ 21

 $Date: 97/08/04 15:22:21 $ 22

 $Revision: 1.1 $ 23

 $Author: ballan $ 24

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/plot.a4l,v $ 25

***) 26

(*===

==* 27

 P L O T . A 4 L 28

 --------------- 29

AUTHOR:Ben Allan 30

provoked by plot.lib by Peter Piela and Kirk A. Abbott 31

DATES:03/97 - Original code. 32

CONTENTS: 33

A parameterized plot library mostly compatible 34

with plot.lib, but with variable graph titles. 35

*) 36

MODEL pltmodel() REFINES cmumodel(); 37

END pltmodel; 38

MODEL plt_point(39

x WILL_BE real; 40

y WILL_BE real; 41

) REFINES pltmodel(); 42

END plt_point; 43

(***) 44

MODEL plt_curve(45

npnts IS_A set OF integer_constant; 46

y_data[npnts] WILL_BE real; 47

x_data[npnts] WILL_BE real; 48

) REFINES pltmodel(); 49

(* points of matching subscript will be plotted in order of 50
Last modified: June 20, 1998 9:04 pm

CREATING A PLOT 45

n
e do
d of
an

o

 * increasing subscript value. 51

 *) 52

legend IS_A symbol; (* mutable now! *) 53

FOR i IN [npnts] CREATE 54

pnt[i]IS_A plt_point(x_data[i],y_data[i]); 55

END FOR; 56

END plt_curve; 57

(***) 58

MODEL plt_plot_integer(59

curve_set IS_A set OF integer_constant; 60

curve[curve_set] WILL_BE plt_curve; 61

) REFINES pltmodel(); 62

title, XLabel, YLabel IS_A symbol; (* mutable now! *) 63

Xlow IS_A real; 64

Ylow IS_A real; 65

Xhigh IS_A real; 66

Yhigh IS_A real; 67

Xlog IS_A boolean; 68

Ylog IS_A boolean; 69

END plt_plot_integer; 70

(***) 71

MODEL plt_plot_symbol(72

curve_set IS_A set OF symbol_constant; 73

curve[curve_set] WILL_BE plt_curve; 74

) REFINES pltmodel(); 75

title, XLabel, YLabel IS_A symbol; (* mutable now! *) 76

Xlow IS_A real; 77

Ylow IS_A real; 78

Xhigh IS_A real; 79

Yhigh IS_A real; 80

Xlog IS_A boolean; 81

Ylog IS_A boolean; 82

END plt_plot_symbol; 83

Figure 4-1 The file plot.a4l

As you can see, this file contains the two types we seek—starting i
lines 59 and 72, respectively. However, before we can use them, w
need to understand them. We are, so to speak, on the receiving en
the reusability issue. If you spend some time, you will find that you c
decipher these model definitions. To make that less painful, we will
help you do so here. If these models were better documented, they
would be much less difficult to interpret. In time we will add Notes t
them to remedy this deficiency.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

46 CREATING A PLOT (USING A LIBRARY MODEL)

 the

of
r

e

e

nd

tions
s

 run
, a

e
 the
4.1.1 MODEL REFINEMENT

please, explain
“refines”

The first model, pltmodel, is two lines long, having aMODEL
statement indicating it “refines”cmumodel and anEND statement. We
have not encountered the concept of refinement as yet. In ASCEND
“refines” means the modelpltmodel inherits all the statements of
cmumodel, a model which has been defined at the end of the file
system.a4l. We show the code forcmumodel in Figure 4-2, and we note
that it too is an empty model. It is, as it says, a root for a collection
loosely related models. You will note (and forgive) a bit of dry humo
by its author, Ben Allan. So far as we know, this model neither
provokes nor hides any bugs.

MODEL cmumodel();

(* This MODEL does nothing except provide a root

 * for a collection of loosely related models.

 * If it happens to reveal a few bugs in the software,

 * and perhaps masks others, well, what me worry?

 * BAA, 8/97.

 *)

END cmumodel;

Figure 4-2 The code for cmumodel

We need to introduce the concept of type refinement to understand
these models. We divert for a moment to do just that.

parents and children
in a refinement
hierarchy

Suppose modelB refines modelA. We callA the parent model andB
the child. The child modelB inherits all the code defining the parent
modelA. In writing the code for modelB, we do not write the code it
inherits fromA; we simply understand it is there already. The code w
write for modelB will be only those statements that we wish to add
beyond the code defining its parent. ASCEND supports only single
inheritance; thus a child may have only one parent. A parent, on th
other hand, may have many children, each inheriting its code.

order does not matter
in declarative code

We are dealing in ASCEND with models defined by their variables a
equations. As we have noted above, the order for the statements
defining each of these does not matter—i.e., the variables and equa
may be defined in any order. So adding new variables and equation
through refinement may be done quite easily.

but it does in the
procedural code for
methods

In contrast, the methods are bits of procedural code—i.e., they are
as a sequence of statements where order does matter. In ASCEND
child model will inherit all the methods of the parent. If you wish to
alter the code for a method, you must replace it entirely, giving it th
same name as the method to be replaced. (However, if you look into
Last modified: June 20, 1998 9:04 pm

CREATING A PLOT 47

dd

e

eing

f
ew

ent
nted

the
documentation on the methods (syntax.pdf), you will find that the
original method is still available for execution. You simply have to a
a qualifier to its name to point to it.)

If we look into this file we see the refinement hierarchy shown in
Figure 4-3.cmumodel is the parent model for all these models.
pltmodel is its child. The remaining three models are children of
pltmodel.

Figure 4-3 The refinement hierarchy in the file plot.a4l

(We can have ASCEND show us the refinement hierarchy. From th
Library window, selectRead types from file from theFile button, and
click onplot.a4l (you may need to change the filter to see the.a4l files).
Selectplot.a4l from the left hand-pane of theLibrary , and then
plt_plot_symbol from the right-hand pane. Finally, choose theAncestry
tool from theDisplay button.)

There are three reasons to support model refinement, with the last b
the most important one.

reasons for refinement •We write more compact code: The first reason is compactness o
coding. One can inherit a lot of code from a parent. Only the n
statements belonging to the child are then written to define it.
This is not a very important reason for having refinement.

• Changes we make to the parent propagate: A second reason is
that one can edit changes into the parent and know that the
children will inherit those changes without having to alter the
code written for the child. (Of course, one can change the par
in such a way that the changes to the child are not what is wa
for the child, introducing what will likely become some
interesting debugging problems.)

with the most
important being we
know what can
substitute for what

• We know what can substitute for what: The most important
reason is that inheritance tells us what kinds of parts may be
substituted for a particular part in a model. Because a child
inherits all the code from its parent, we know the child has all

cmumodel

pltmodel

plt_curve plt_plot_integer plt_plot_symbol
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

48 CREATING A PLOT (USING A LIBRARY MODEL)

nd

es

 of

e

gers
variables and equations defined for it that the parent does—a
typically more.We can use an instance of the child as a
replacement for an instance of the parent. Thus if you were to
write a model with the partA1 of typeA in it, someone else can
create an instance of your model and substitute a partB1 which is
of typeB. This substituted part will have all the needed variabl
in it that you assumed would be there.

This third reason says that when a object passed as a parameter
WILL_BE of typeA, we know that a part of either typeA or typeB will
work.

4.1.2 CONTINUING WITH CREATING A PLOT

We are going to include in our model a part of typeplt_plot_integer or
plt_plot_symbol that ASCEND can plot. We need to look at the types
parameters required by whichever of these two we select to include
here. Tracing back to its parents, we see them to be empty so all th
code for these types is right here.

The first parameter we need is acurve_set which is defined to be a set
of integer_constant or ofsymbol_constant. We have to guess at this
time at the purpose forcurve_set. It would really help to have notes
defining the intention here and to have a piece of code that would
demonstrate the use of these models. At present, we do not. We
proceed, admitting we will appear to “know” more than we should
about this model. It turns out thatcurve_set allows us to identify each
of the curves we are going to plot. These models assume we are
plotting several variables (let’s call them y[1], y[2] , ...) against the
same independent variablex. The values for curve_set are the ‘1’, ‘2’,
etc. identifying these curves.

Here we wish to plot only one curve presentingmetal_mass vs.
H_to_D_ratio. We can elect to useplt_plot_symbol and label this curve
‘5 mm’. The label ‘5 mm’ is asymbol so we will create a set of type
symbol with this single member.

The second object has to be a object of typeplt_curve.

Looking at line 45, we see how to include an object of typeplt_curve. It
must be passed three objects: a set of integers (e.g., the set of inte
from 1 to 20) and two lists of data giving they-values vs. thex-values
for the curve. In the modeltabulated_vessel_values, we have just these
two lists, and they are namedmetal_mass andH_to_D_ratio.
Last modified: June 20, 1998 9:04 pm

CREATING A PLOT 49

e
 the

ill
In Figure 4-4, we show the code you need to add to the model
tabulated_vessel_values. It contains a part calledmassVSratio of type
plt_plot_symbol that ASCEND can plot. This code is at the end of th
declarative statements in tabulated_vessel_values. It also replaces
first method, METHOD default_self.

 CurveSet "the index set for all the curves to be plotted"

 IS_A set OF symbol_constant;

 CurveSet :== ['5 mm'];

 Curves['5 mm'] "the one curve of 20 points for metal_mass vs. H_to_D_ratio"

 IS_A plt_curve([1..n_entries], metal_mass, H_to_D_ratio);

 massVSratio "the object ASCEND can plot"

 IS_A plt_plot_symbol(CurveSet, Curves);

METHODS

METHOD default_self;

(* set the title for the plot and the labels for the ordinate and abscissa *)

 massVSratio.title :=

 'Metal mass of the walls vs H to D ratio for a thin-walled cylindrical

vessel';

 massVSratio.XLabel := 'H to D ratio';

 massVSratio.YLabel := 'metal mass IN kg/m^3';

END default_self;

Figure 4-4 The last bit of new code to include a plot in the
modeltabulated_vessel_values (save as
vesselPlot.a4c)

Also just after the first line in this file—which reads

REQUIRE “atoms.a4l”;

place the instruction

REQUIRE “plot.a4l”;

When you solve this new instance and makemassSVratio the current
object, you will find thePlot tool under theDisplay button in the
Browser window lights up and can be selected. If you do this, you w
get a plot ofmetal_mass vs.H_to_D_ratio. A clear minimum is
apparent on this plot atH_to_D_ratio equal to approximately one.

You should create a script to run this model just as you did for
vesselTabulated.a4c in the previous chapter. Save it asvesselPlot.a4s.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

50 CREATING A PLOT (USING A LIBRARY MODEL)

ct

h

he
nd

c

e

Use the

er

ot
ant

r
he

a

4.2 CREATING A CASE STUDY FROM A SINGLE

VESSEL

You may think creating an array of vessels and a complex plot obje
just to generate a graph is either an awful lot of work or a method
which will not work for very large models. You think correctly on bot
points. The plt_plot models are primarily useful for sampling values
from an array of inter-related models that represent a spatially
distributed system such as the pillars in a bridge or the trays in a
distillation column. You can conduct a case study, solving a single
model over a range of values for some specified variable, using the
Script command STUDY.

We will step through creating a base case and a case study using t
vessel model. Start by opening a new buffer in the Script window a
turning on the record button of the Script’s edit menu. In the Library
window run the “Delete all types” button to clear out any previous
simulations. Load the vessel model from the file vesselMethods.a4
you created in Section 3.2.

4.2.1 THE BASE CASE

compile a vessel. Select and compile the vessel model. Give the simulation the namV.
Select the simulationV in the bottom pane of the Library window and
use the right mouse button (or Alt-x b) to send the simulation to the
Browser.

solving the base case. In the Browser, place the mouse cursor over the upper left pane.
right mouse button to run methodsreset andvalues , then send the
model to the Solver by typing “Alt-x s”. Move the mouse to the Solv
window and hit the F5 key to solve the model.

graphical case study
optimization

We now know that it takes 535.7 kg of metal to make a 250 cubic fo
vessel which is twice as high as it is broad. Suppose that now we w
to know the largest volume that this amount of metal can contain
assuming the same wall thickness is required. Perhaps a skinnier o
fatter vessel can hold more, so we need to do a case study using t
aspect ratio (H_to_D_ratio) as the independent variable. Use the
Browser to changeV.metal_mass.fixed to TRUE, since we are
using a constant amount of metal. The solver will want you to free
variable now, so selectV.vessel_vol to be freed, since volume is
what we want to study.
Last modified: June 20, 1998 9:04 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 51

r

 all

g an
 as

 of
 in

udy.

ing
se
script recorded so far Turn off the recording button on the Script window. The recording
should look something like

DELETE TYPES;

READ FILE {vesselMethods.a4c};

COMPILE V OF vessel;

BROWSE {V};

RUN {V.reset};

SOLVE {V} WITH QRSlv;

ASSIGN {V.metal_mass.fixed} TRUE {};

you must type the next line in the script yourself.

ASSIGN {V.vessel_vol.fixed} FALSE {};

The file ascend4/models/vesselStudy.a4s was recorded in a simila
manner.

4.2.2 CASE STUDY EXAMPLES

configuring a case
study

The STUDY command takes a lot of arguments. We’ll explain them
momentarily, but should you forget them simply enter the command
STUDY without arguments in the ASCEND Console window or xterm
window to see an error message explaining the arguments and givin
example. Enter the following command in the Script window exactly
shown except for the file name followingOUTFILE. Specify a file to
be created inyour ascdata directory.

STUDY {vessel_vol} \

IN {V} \

VARYING {{H_to_D_ratio} {0.1} {0.5} {0.8} {1} {1.5} {2} \

{3} {4} {8}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

This is the simplest form of case study; the backslashes at the end
each line mean that it is all one big statement. Select all these lines
the Script at once with the mouse and then hit F5 to execute the st
The solver will solve all the cases and produce the output file
vvstudy.dat. The quickest way to see the result is to enter the follow
command in the Script, then select and execute it. (Remember to u
the name of your file and not the name shown).

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

ASCPLOT CLOSE; #omit if you want to see data table
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

52 CREATING A PLOT (USING A LIBRARY MODEL)

 can
You should get a graph that looks something like Figure 4-5. The
largest volume is in the neighborhood of anH_to_D_ratio of 1.

4.2.2.1 MULTI -VARIABLE STUDIES

We now have an idea where the solution is most interesting, so we
do a detailed study where we also monitor other variables such as
surface areas. Additional variables to watch can be added to the
STUDY clause of the statement.

STUDY {vessel_vol} {end_area} {side_area} \

IN {V} \

VARYING {{H_to_D_ratio} {0.5} {0.6} {0.7} {0.8) {0.9} \

{1} {1.1} {1.2} {1.3}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

Figure 4-5 Study of volume as a function of H/D.

AscPlot

V.vessel_vol meter^3

Y

X

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50
Last modified: June 20, 1998 9:04 pm

CREATING A CASE STUDY FROM A SINGLE VESSEL 53

he
s
ely
ps

s.
 2 in
est
ust

re
oes

e

ERROR STOP;

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

ASCPLOT CLOSE; #omit if you want to see data table

4.2.2.2 MULTI -PARAMETER STUDIES

We can also do a multi-parameter study, for example also varying t
wall thickness allowed. In general, any number of the fixed variable
can be varied in a single study, but be aware that ASCEND’s relativ
simple plotting capabilities do not yet include surface or contour ma
so you will need another graphic tool to view really pretty pictures.

STUDY {vessel_vol} \

IN {V} \

VARYING \

{{H_to_D_ratio} {0.8) {0.9} {1} {1.1} {1.2} {1.3}} \

{{wall_thickness} {4 {mm}} {5 {mm}} {6 {mm}} {7 {mm}}} \

USING {QRSlv} \

OUTFILE {/usr0/ballan/ascdata/vvstudy.dat} \

ERROR STOP;

ASCPLOT {/usr0/ballan/ascdata/vvstudy.dat};

In this study the peak volume occurs at the sameH_to_D_ratio for
any wall thickness but the vessel volume increases for thinner wall
This may be hard to see with the default graph settings, but column
rows 8-11 (H_to_D = 1.0) of the ASCPLOT data table have the larg
volumes for any given thickness in column 1. Notice that the units m
be specified for thewall_thickness values in the VARYING
clause.

4.2.2.3 PLOTTING OUTPUT WITH OTHER TOOLS

To convert the study results from the ASCPLOT format to a file mo
suitable for importing into a spreadsheet, the following command d
the trick. As usual, change the names to match yourascdata
directory.

asc_merge_data_files excel \

{/usr0/ballan/ascdata/vvs.txt} \

{/usr0/ballan/ascdata/vvstudy.dat}

If you prefer Matlab style text, substitute ‘matlab’ for ‘excel’ in the lin
above and change the output name from ‘vvs.txt’ to ‘vvs.m’.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

54 CREATING A PLOT (USING A LIBRARY MODEL)

 the

the
o

his

me

ter
g to

The

is
.

DY
n

d go

se

d
t the
from
back
ore
4.2.3 STUDYBEHAVIOR DETAILS

variable list We now turn to the details of the STUDY statement. As we saw in
Section 4.2.2.1, any number of variables to be monitored can follow
STUDY keyword.

IN clause The IN clause specifies which part of a simulation is to be sent to
Solver; a small part of a much larger model can be studied if you s
desire. All the variable and parameter names that follow the STUDY
keyword and that appear in the VARYING clause must be found in t
part of the simulation.

parameter list The VARYING clauses is a list of lists. Each inner list gives the na
of the parameter to vary followed by its list of values. Each possible
combination of parameter values will be attempted in multi-parame
studies. If a case fails to solve, then the study will behave accordin
the option set in the ERROR clause.

solver name The solver named in the USING clause is invoked on each case.
solver may be any of the algebraic solvers or optimizers, but the
integrators (e.g. LSODE) are not allowed.

data file name The case data are stored in the file name which appears in the
OUTFILE clause. By default, this file is overwritten when a STUDY
started, so if you want multiple result files, use separate file names

error handling When the solver fails to converge or encounters an error, the STU
can either ignore it (ERROR IGNORE) and go on to the next case, war
you (ERROR WARN) and go on to the next case, or stop (ERROR
STOP). The ERROR option makes it possible start a case study an
to lunch. Cases which fail to solve will not appear in the output data
file.

Note that if the model is numerically ill-behaved it is possible for a ca
to fail when there is in fact a solution for that combination of
parameters. STUDY uses the solution of the last successfully solve
case as the initial guess for the next case, but sometimes this is no
best strategy. STUDY also does not attempt to rescale the problem
case to case. When a case that you think should succeed fails, go
and investigate that region of the model again manually or with a m
narrowly defined study.
Last modified: June 20, 1998 9:04 pm

DISCUSSION 55

ou
nd
ce

n
truct

k at
l

odel
side
se
4.3 DISCUSSION

We have just led you step by step through the process of creating,
debugging and solving a small ASCEND model. We then showed y
how to make this model more reusable, first by adding comments a
methods. Methods capture the “how you got it well-posed” experien
you had when first solving an instance of the vessel model. We the
showed you how to parameterize this model and then use it to cons
a table ofmetal_mass values vs.H_to_D_ratio values. Finally we
showed you how to add a plot of these results. You should next loo
the chapter in the documentation where you create two more smal
ASCEND models. This chapter gives you much less detail on the
buttons to push. Finally, if you are a chemical engineer, you should
look at the chapter on the script and model for a simple flowsheet
(simple_fs.a4s and simple_fs.a4c respectively).

With this experience you should be ready to write your own simple
ASCEND models to solve problems that you might now think of
solving using a spreadsheet. Remember that once you have the m
debugged in ASCEND, you can solve inside out, backwards and up
down and NOT just the way you first posed it—unlike your typical u
of a spreadsheet model.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-model3.fm5

56 CREATING A PLOT (USING A LIBRARY MODEL)
Last modified: June 20, 1998 9:04 pm

	Chapter 4 Creating a plot (using a library model)
	4.1 Creating a plot
	4.1.1 Model refinement
	please, explain “refines”
	parents and children in a refinement hierarchy
	order does not matter in declarative code
	but it does in the procedural code for methods
	reasons for refinement
	with the most important being we know what can sub...

	4.1.2 Continuing with creating a plot

	4.2 Creating a case study from a single vessel
	4.2.1 The base case
	compile a vessel.
	solving the base case.
	graphical case study optimization
	script recorded so far

	4.2.2 Case study examples
	configuring a case study
	4.2.2.1 Multi-variable studies
	4.2.2.2 Multi-parameter studies
	4.2.2.3 Plotting output with other tools

	4.2.3 STUDY behavior details
	variable list
	IN clause
	parameter list
	solver name
	data file name
	error handling

	4.3 Discussion

