
USING REQUIREAND PROVIDE 57

In
del

he
it to

l and
any

n
el

d

 of
ry
CHAPTER5 MANAGING MODEL DEFINITIONS,
LIBRARIES, AND PROJECTS

Most complex models are built from parts in one or more libraries.
this chapter we show typical examples of how to make sure your mo
gets the libraries it needs. We then explain in more general terms t
ASCEND mechanism which makes this work and how you can use
manage multiple modeling projects simultaneously.

5.1 USING REQUIRE AND PROVIDE

5.1.1 REQUIREING SYSTEM.A4L

Suppose you are in a great hurry and want to create a simple mode
solve it without concern for good style, dimensional consistency, or
of the other hobgoblins we preach about elsewhere. You will write
equations using onlygeneric_real variables as defined in system.a4l.
The equations in this example do not necessarily have a solution. I
your ascdata (see howto1) directory you create an application mod
definition file “myfile.a4c” which looks like:

REQUIRE “system.a4l”;

MODEL quick_n_dirty;

x = y^2;

y = x + 2*z;

z = cos(x+y);

x,y,z IS_A generic_real;

(* homework problem 3, due May 21. *)

END quick_n_dirty;

The very first line ‘REQUIRE “system.a4l”; tells ASCEND to find an
load a file named “system.a4l” if it has not already been loaded or
provided in some other way. This REQUIRE statement must come
before the MODEL which uses thegeneric_real ATOM that system.a4l
defines.

The REQUIRE statements in a file should all come at the beginning
the file before any other text, including comments. This makes it ve
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

58 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

any,

r
t

out
o

. To

first

s
alent

d to
one
ct
easy for other users or automated tools to determine which files, if
your models require.

On the ASCEND command line (in the Console window or xterm) o
in the Script window, you can then enter and execute the statemen

READ FILE “myfile.a4c”;

to cause system.a4l and then myfile.a4c to be loaded.

5.1.2 CHAINING REQUIRED FILES

Notice when you read myfile.a4c that ASCEND prints messages ab
the files being loaded. You will see that a file “basemodel.a4l” is als
loaded. In system.a4l you will find at the beginning the statements

REQUIRE “basemodel.a4l”;

PROVIDE “system.a4l”;

The basemodel library is loaded in turn because of the REQUIRE
statement in system.a4l. We will come back to what the PROVIDE
statement does in a moment. This chaining can be many files deep
see a more complicated example, enter

READ FILE column.a4l;

and watch the long list of files that gets loaded. If you examine the
few lines of each file in the output list, you will see that each file
REQUIRES only the next lower level of libraries. This style minimize
redundant loading messages and makes it easy to substitute equiv
libraries in the nested lower levels without editing too many higher
level libraries. The term “equivalent libraries” is defined better in the
later section on PROVIDE.

5.1.3 BETTER APPLICATION MODELING PRACTICE

never require
system.a4l in an
application model.

It is generally a bad idea to create a model using only generic_real
variables. The normal practice is to use correct units in equations an
use dimensional variables. In the following file we see that this is d
by requiring “atoms.a4l” instead of “system.a4l” and by using corre
units on the coefficients in the equations.

REQUIRE “atoms.a4l”; MODEL quick_n_clean;

x = y^2/1{PI*radian};

y = x + 2{PI*radian}*z;
Last modified: June 20, 1998 9:05 pm

USING REQUIREAND PROVIDE 59

s

ys
4l

 is
f
ht
en
one.

s
ne.
re
e

s not

,
ally
s
ent
z = cos(x+y);

x, y IS_A angle;

z IS_A dimensionless;

(* homework problem 3, due May 21. *)

END quick_n_clean;

5.1.4 SUBSTITUTE LIBRARIES AND PROVIDE

ASCEND keeps a list of the already loaded files, as we hinted at in
Section 5.1.1. A library file should contain a PROVIDE statement, a
system.a4l does, telling what library it supplies. Normally the
PROVIDE statement just repeats the file name, but this is not alwa
the case. For example, see the first few lines of the file ivpsystem.a
which include the statement

PROVIDE “system.a4l”;

indicating that ivpsystem.a4l is intended to be equivalent to file
system.a4l while also supplying new features. When ivpsystem.a4l
loaded both “system.a4l” and “ivpsystem.a4l” get added to the list o
already loaded files. For one explanation of when this behavior mig
be desirable, see Section 12.1. Another use for this behavior is wh
creating and testing a second library to eventually replace the first

When a second library provides compatible but extended definition
similar to a first library, the second can be substituted for the first o
The second library will obviously have a different file name, but the
is no need to load the first library if we already have the second on
loaded. ivpsystem.a4l is a second library substitutable for the first
library system.a4l. Note that the reverse is not true: system.a4l doe

PROVIDE “ivpsystem.a4l”;

so system is not a valid substitute for ivpsystem.

5.1.5 REQUIRE AND COMBINING MODELING PACKAGES

Model libraries frequently come in interrelated groups. For example
the models referred to in Ben Allan’s thesis are published electronic
as a package models/ben/ in ASCEND IV release 0.9. To use Ben’
distillation libraries, which require rather less memory than the curr
set of more flexible models, your application model should have the
statement

REQUIRE “ben/bencolumn.a4l”;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

60 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

es
ory

E

e
We

e
for

re
ies

tory.

D

t

D

e

at the beginning.

Combining models from different packages may be tricky if the
package authors have not documented them well. Since all packag
are open source code which you can copy into your ascdata direct
and modify to suit your needs, the process of combining libraries
usually amounts to changing the names of the conflicting model
definitions in your copy.

Do NOT use \ instead of / in the package name given to a REQUIR
statement even if you are forced to use Microsoft Windows.

5.2 HOW REQUIRE FINDS THE FILES IT LOADS

The file loading mechanism of REQUIRE makes it simple to manag
several independent sets of models in simultaneous development.
must explain this mechanism or the model management may seem
somewhat confusing. When a REQUIRE statement is processed,
ASCEND checks in a number of locations for a file with that name:
ascdata, the current directory, and the ascend4/models directory. W
will describe how you can extend this list later. ASCEND also looks
model packages in each of these same locations.

5.2.1 ASCDATA

If your ascdata directory exists and is readable, ASCEND looks the
first for required files. Thus you can copy one of our standard librar
from the directory ascend4/models to your ascdata directory and
modify it as you like. Your modification will be loaded instead of our
standard library. See Section 2.2 for how to find your ascdata direc

5.2.2 THE CURRENT DIRECTORY

The current directory is what you get if you type ‘pwd’ at the ASCEN
Console or xterm prompt. Under Microsoft Windows, the current
directory is usually some useless location. Under UNIX, the curren
directory is usually the directory from which you started ASCEND.

5.2.3 ASCEND4/MODELS/

The standard (CMU) models and packages distributed with ASCEN
are found in the ascend4/models/ subdirectory where ASCEND is
installed. This directory sits next to the directory ascend4/bin/ wher
the ascend4 or ascend4.exe executable is located.
Last modified: June 20, 1998 9:05 pm

HOW REQUIREFINDS THE FILES IT LOADS 61

les

 in

ge

/

d
ou

ay
5.2.4 MULTIPLE MODELING PROJECTS

If you dislike navigating multi-level directories while working on a
single modeling project, you can separate projects by keeping all fi
related to your current project in one directory and changing to that
directory before starting ASCEND. If you have files that are required
all your projects, keep those files in your ascdata directory. Under
Windows, cd to the directory containing the current project from the
Console window after starting ASCEND.

5.2.5 EXAMPLE : FINDING “ BEN/BENCOLUMN .A4L”

Suppose an application model requires bencolumn.a4l from packa
ben as shown in Section 5.1.5. Normally ASCEND will execute this
statement by searching for:

~/ascdata/ben/bencolumn.a4l

./ben/bencolumn.a4l

$ASCENDDIST/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from directory /usr1/ballan/projects
test1 under UNIX, the full names of these might be

/usr0/ballan/ascdata/ben/bencolumn.a4l

/usr1/ballan/projects/test1/ben/bencolumn.a4l

/usr/local/lib/ascend4/models/ben/bencolumn.a4l

Assuming we started ASCEND from some shortcut on a Windows
desktop, the full names of these locations might be

C:\winnt\profiles\ballan\ascdata\ben\bencolumn.a4l

C:\Program Files\netscape\ben\bencolumn.a4l

C:\ASCEND\ascend4\models\ben\bencolumn.a4l

The first of these three which actually exists on your disk will be the
file that is loaded.

5.2.6 HOW REQUIRE HANDLES FILE AND DEFINITION

CONFLICTS

Normally you simply delete all types before loading a new or revise
set of ASCEND models and thus you avoid most conflicts. When y
are working with a large simulation and several smaller ones, you m
not want to delete all the types, however. We decided to make
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/howto-require.fm5

62 MANAGING MODEL DEFINITIONS, LIBRARIES, AND

t

nd
hat
 has

ere

ot
ove.

nt

can
ur
les
REQUIRE handle this situation and the almost inevitable redundan
REQUIRE statements that occur in the following reasonable way.

When a file is REQUIREd, ASCEND first checks the list of loaded a
provided files for a name that matches. If the name is found, then t
file is checked to see if it has changed since it was loaded. If the file
changed, then any definition that was changed is loaded in the
ASCEND Library and the new definition is used in building any
subsequently compiled simulations. Old simulations remain
undisturbed and are not updated to use the new definitions since th
may be conflicts that cannot be automatically resolved.

5.2.7 EXTENDING THE LIST OF SEARCHED DIRECTORIES

ASCEND uses the environment variable ASCENDLIBRARY as the
list of directory paths to search for required files. Normally you do n
set this environment variable, and ASCEND works as described ab

To see or change the value of ASCENDLIBRARY that ASCEND is
using, examine ASCENDLIBRARY in the System utilities window
available from the Script Tools menu. Changes made to environme
variables in the utilities window are NOT saved. If you are clever
enough to set environment variables before running ASCEND, you
make it look anywhere you want to put your model files. Consult yo
operating system guru for information on setting environment variab
if you do not already know how.
Last modified: June 20, 1998 9:05 pm

	Chapter 5 Managing model definitions, libraries, a...
	5.1 Using REQUIRE and PROVIDE
	5.1.1 REQUIREing system.a4l
	5.1.2 Chaining required files
	5.1.3 Better application modeling practice
	never require system.a4l in an application model.

	5.1.4 Substitute libraries and PROVIDE
	5.1.5 REQUIRE and combining modeling packages

	5.2 How REQUIRE finds the files it loads
	5.2.1 ascdata
	5.2.2 the current directory
	5.2.3 ascend4/models/
	5.2.4 Multiple modeling projects
	5.2.5 Example: Finding “ben/bencolumn.a4l”
	5.2.6 How REQUIRE handles file and definition conf...
	5.2.7 Extending the list of searched directories

