
THE PROBLEM DESCRIPTION 144

 file

ple

g it
D.

y

e
ies

into
 is

 A.

e
e B

ed,

 A
CHAPTER17 A SIMPLE CHEMICAL ENGINEERING

FLOWSHEETINGEXAMPLE

In this example we shall examine a model for a simple chemical
engineering process flowsheet. The code listed below exists in the
in the ASCEND examples subdirectory entitledsimple_fs.asc. Except
for some formatting changes to make it more presentable here, it is
exactly as it is in the library version. Thus you could run this exam
by loading this file and using it and its corresponding scriptsimple_fs.s.

17.1 THE PROBLEM DESCRIPTION

This model is of a simple chemical engineering flowsheet. Studyin
will help to see how one constructs more complex models in ASCEN
Models for more complex objects are typically built out of previousl
defined types each of which may itself be built of previously defined
parts, etc. A flowsheet could, for example, be built of units and
streams. A distillation column could itself be built out of trays and
interconnecting streams.

Lines 40 to 56 in the code below give a diagram of the flowsheet w
would like to model. This flowsheet is to convert species B into spec
C. B undergoes the reaction.

 B-->C

The available feed contains 5 mole percent of species A, a light
contaminant that acts as an inert in the reactor. We pass this feed
the reactor where only about 7% of B converts per pass. Species C
much less volatile than B which is itself somewhat less volatile than
Relative volatilities are 12, 10 and 1 respectively for A, B and C.
Species A will build up if we do not let it escape from the system. W
propose to do this by bleeding off a small portion (say 1 to 2%) of th
we recover and recycle back to the reactor.

The flowsheet contains a mixer where we mix the recycle with the fe
a reactor, a flash unit, and a stream splitter where we split off and
remove some of the recycled species B contaminated with species
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

145 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

e of
it to

e
this

l.

(*

s

Our goal is to determine the impact of the bleed on the performanc
this flowsheet. We would also like to see if we can run the flash un
get us fairly pure C as a bottom product from it.

The first type definitions we need for our simple flowsheet are for th
variables we would like to use in our model. The ones needed for
example are all in the file atoms.a4l. Thus we will need to load
atoms.a4l before we load the file containing the code for this mode

The following is the code for this model. We shall intersperse
comments on the code within it.

17.2 THE CODE

As the code is in our ASCEND models directory, it has header
information that we require of all such files included as one large
comment extending over several lines. Comments are in the form
comment *).

To assure that appropriate library files are loaded first, ASCEND ha
the REQUIRE statement, such as appears on line 61:

REQUIRE atoms.a4l

This statement causes the system to load the fileatoms.a4l before
continuing with the loading of this file.atoms.a4l in turn has a require
statement at its beginning to causesystem.a4l to be loaded before it is.

(***\ 1

 simple_fs.asc 2

 by Arthur W. Westerberg 3

 Part of the Ascend Library 4

5

This file is part of the Ascend modeling library. 6

7

Copyright (C) 1994 8

9

The Ascend modeling library is free software; you can redistribute 10

it and/or modify it under the terms of the GNU General Public License as 11

published by the Free Software Foundation; either version 2 of the 12

License, or (at your option) any later version. 13

14

The Ascend Language Interpreter is distributed in hope that it will be 15

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 16

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17
Last modified: June 20, 1998 10:33 pm

THE CODE 146
General Public License for more details. 18

19

You should have received a copy of the GNU General Public License along 20

with the program; if not, write to the Free Software Foundation, Inc., 21

675 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 22

23

Use of this module is demonstrated by the associated script file 24

simple_fs.s. 25

***) 26

27

(***\ 28

 $Date: 97/02/20 18:54:21 $ 29

 $Revision: 1.5 $ 30

 $Author: mthomas $ 31

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/examples/

simple_fs.asc,v $ 32

***) 33

(* 34

35

The following example illustrates equation based modeling using the 36

ASCEND system. The process is a simple recycle process. 37

38

39

40

 ------- 41

 | | 42

 ----------------------| split |----> purge 43

 | | | 44

 | ------- 45

 | ^ 46

 v | 47

 ----- --------- ------- 48

 | | | | | | 49

 ----->| mix |--->| reactor |--->| flash | 50

 | | | | | | 51

 ----- --------- ------- 52

 | 53

 | 54

 -----> C 55

56

This model requires: “system.a4l” 57

“atoms.a4l” 58

*) 59

60

REQUIRE atoms.a4l 61
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

147 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

e
s

nly
es

o
and
tion

 We
ach
le

ine
The first model we shall define is for defining a stream. In the
document entitled “Equation-based Process Modeling” we argue th
need to define a stream by maximizing the use of intensive variable
and the equations interrelating them. Our problem here requires o
the molar flows for the components as the problem definition provid
us with all the physical properties as constants. Nowhere for this
simple model do we seem to need temperatures, fugacities, etc. T
maximize the use of intensive variables, we will use mole fractions
total molar flow to characterize a stream. We must include the equa
that says the mole fractions add to unity. Our first model we call
mixture.

(* *** *) 62

63

MODEL mixture; 64

65

components IS_A set OF symbol_constant; 66

y[components] IS_A fraction; 67

68

SUM[y[i] | i IN components] = 1.0; 69

70

METHODS 71

METHOD clear; 72

y[components].fixed := FALSE; 73

END clear; 74

75

METHOD specify; 76

y[components].fixed := TRUE; 77

y[CHOICE[components]].fixed := FALSE; 78

END specify; 79

80

METHOD reset; 81

RUN clear; 82

RUN specify; 83

END reset; 84

85

END mixture; 86

87

Line 66 of the model for mixture defines a set of symbol constants.
will later include in this set one symbol constant giving a name for e
of the species in the problem (A, B and C). Line 67 defines one mo
fraction variable for each element in the set of components, while l
69 says these mole fractions must add to 1.0.
Last modified: June 20, 1998 10:33 pm

THE CODE 148

hich
lem

a

o a
tion

ng

 of
E,
es

n
xed

em is
 The
ack

art
We add a methods section to our model to handle the flag setting w
we shall need when making the problem well-posed -- i.e., as a prob
having an equal number of unknowns as equations. We first have
method called clear which resets all the “fixed” flags for all the
variables in this model to FALSE. This method puts the problem int
known state (all flags are FALSE). The second method is our selec
of variables that we wish to fix if we were to solve the equations
corresponding to a mixture model. There is only one equation amo
all the mole fraction variables so we set all but one of the flags to
TRUE. The CHOICE function picks arbitrariliy one of the members
the setcomponents. For that element, we reset the fixed flag to FALS
meaning that this one variable will be computed in terms of the valu
given to the others.

The reset method is useful as it runs first the clear method to put a
instance of a mixture model into a known state with respect to its fi
flags, followed by runing the specify method to set all but one of the
fixed flags to TRUE.

These methods are not needed to create our model. To include th
a matter of modeling style, a style we consider to be good practice.
investment into writing these methods now has always been paid b
in reducing the time we have needed to debug our final models.

The next model we write is for a stream, a model that will include a p
we callstate which is an instance of the type mixture.

(* *** *) 88

89

MODEL molar_stream; 90

91

components IS_A set OF symbol_constant; 92

state IS_A mixture; 93

Ftot,f[components] IS_A molar_rate; 94

95

components, state.components ARE_THE_SAME; 96

97

FOR i IN components CREATE 98

f_def[i]: f[i] = Ftot*state.y[i]; 99

END; 100

101

METHODS 102

103

METHOD clear; 104

RUN state.clear; 105

Ftot.fixed := FALSE; 106
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

149 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

 part

, we
We

e

r
 the
e
the
 to
d up
f[components].fixed:= FALSE; 107

END clear; 108

109

METHOD seqmod; 110

RUN state.specify; 111

state.y[components].fixed:= FALSE; 112

END seqmod; 113

114

METHOD specify; 115

RUN seqmod; 116

f[components].fixed:= TRUE; 117

END specify; 118

119

METHOD reset; 120

RUN clear; 121

RUN specify; 122

END reset; 123

124

METHOD scale; 125

FOR i IN components DO 126

f[i].nominal := f[i] + 0.1{mol/s}; 127

END; 128

Ftot.nominal := Ftot + 0.1{mol/s}; 129

END scale; 130

131

END molar_stream; 132

133

We define our stream over a set of components. We next include a
which is of type mixture and call itstate as mentioned above. We also
include a variable entitledFtot which will represent the total molar
flowrate for the stream. For convenience -- as they are not needed
also include the molar flows for each of the species in the stream.
realize that the components defined within the part calledstate and the
set of components we just defined for the stream should be the sam
set. We force the two sets to be the same set with the
ARE_THE_SAME operator.

We next write the equations that define the individual molar flows fo
the components in terms of their corresponding mole fractions and
total flowrate for the stream. Note, the equations that says the mol
fractions add to unity in the definition of the state forces the total of
individual flowrates to equal the total flowrate. Thus we do not need
include an equation that says the molar flowrates for the species ad
to the total molar flowrate for the stream.
Last modified: June 20, 1998 10:33 pm

THE CODE 150

 a

od is
r our
 of
his

will
The
 of

f the
et.
ies
 the
We again write the methods we need for handling flag setting. We
leave it to the reader to establish that the specify method produces
well-posed instance involving the same number of variables to be
computed as equations available to compute them. The scale meth
there as we may occasionally wish to rescale the nominal values fo
flows to reflect the values we are computing for them. Poor scaling
variables can lead to numerical difficulties for really large models. T
method is there to reduce the chance we will have poor scaling.

Note that the nominal values for the remaining variables -- the mole
fractions -- are unity. It does not need to be recomputed as unity is
almost always a good nominal value for each of them.

Our next model is for the first of our unit operations. Each of these
be built of streams and equations that characterize their behavior.
first models a mixer. It can have any number of feed streams, each
which is a molar stream. We require the component set for each o
feed streams and the output stream from the unit to be the same s
Finally we write a component material balance for each of the spec
in the problem, where we sum the flows in each of the feeds to give
flow in the output stream,out.

(* *** *) 134

135

MODEL mixer; 136

137

n_inputs IS_A integer_constant; 138

feed[1..n_inputs], out IS_A molar_stream; 139

140

feed[1..n_inputs].components, 141

out.components ARE_THE_SAME; 142

143

FOR i IN out.components CREATE 144

cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 145

END; 146

147

METHODS 148

149

METHOD clear; 150

RUN feed[1..n_inputs].clear; 151

RUN out.clear; 152

END clear; 153

154

METHOD seqmod; 155

END seqmod; 156

157
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

151 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

to
nd
,

o
e

at,
ell-
g

se for
y

ich

he
n as
 will
es/s
one
METHOD specify; 158

RUN seqmod; 159

RUN feed[1..n_inputs].specify; 160

END specify; 161

162

METHOD reset; 163

RUN clear; 164

RUN specify; 165

END reset; 166

167

METHOD scale; 168

RUN feed[1..n_inputs].scale; 169

RUN out.scale; 170

END scale; 171

172

END mixer; 173

TheMETHOD clear sets all the fixed flags for the parts of this model
false by running each of their clear methods (i.e., for all the feeds a
for the stream out). If this model had introduced any new variables
their fixed flags would have been set to FALSE here.

We will implement the method to make the model well posed into tw
parts:seqmod (stands for “sequential modular” which is the mindset w
use to get a unit well-posed) andspecify. The first we shall use within
any unit operation to fix exactly enough fixed flags for a unit such th
if we also make the feed streams to it well-posed, the unit will be w
posed. For a mixer unit, the output stream results simply from mixin
the input streams; there are no other variables to set other than tho
the feeds. Thus theseqmod method is empty. It is here for consistenc
with the other unit operation models we write next. TheMETHOD
specify makes this model well-posed by calling theseqmod method and
then thespecify method for each of the feed streams. No other flags
need be set to make the model well-posed.

METHOD reset simply runsclear followed byspecify. Running this
sequence of method will make the problem well-posed no matter wh
of the fixed flags for it are set to TRUE before runningreset. Finally,
flowrates can take virtually any value so we can include ascale method
to scale the flows based on their current values.

The next model is for a very simple ‘degree of conversion’ reactor. T
model defines a turnover rate which is the rate at which the reactio
written proceeds (e.g., in moles/s). For example, here our reaction
be B --> C. A turnover rate of 3.7 moles/s would mean that 3.7 mol
of B would convert to 3.7 moles/s of C. The vector stoich_coef has
Last modified: June 20, 1998 10:33 pm

THE CODE 152

e

e
ts
entry per component. Here there will be three components when w
test this model so the coefficients would be 0, -1, 1 for the reaction

0 A + (-1) B + (+1) C = 0.

Reactants have a negative coefficient, products a positive one. Th
material balance to compute the flow out for each of the componen
sums the amount coming in plus that created by the reaction.

(* *** *) 174

175

MODEL reactor; 176

177

feed, out IS_A molar_stream; 178

feed.components, out.components ARE_THE_SAME; 179

180

turnover IS_A molar_rate; 181

stoich_coef[feed.components]IS_Afactor; 182

183

FOR i IN feed.components CREATE 184

out.f[i] = feed.f[i] + stoich_coef[i]*turnover; 185

END; 186

187

METHODS 188

189

METHOD clear; 190

RUN feed.clear; 191

RUN out.clear; 192

turnover.fixed := FALSE; 193

stoich_coef[feed.components].fixed := FALSE; 194

END clear; 195

196

METHOD seqmod; 197

turnover.fixed := TRUE; 198

stoich_coef[feed.components].fixed := TRUE; 199

END seqmod; 200

201

METHOD specify; 202

RUN seqmod; 203

RUN feed.specify; 204

END specify; 205

206

METHOD reset; 207

RUN clear; 208

RUN specify; 209

END reset; 210
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

153 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

ir
ed

tput
f the

need
d,

ry
211

METHOD scale; 212

RUN feed.scale; 213

RUN out.scale; 214

turnover.nominal := turnover.nominal+0.0001 {kg_mole/s}; 215

END scale; 216

217

END reactor; 218

219

TheMETHOD clear first directs all the parts of the reactor to run the
clear methods. Then it sets the fixed flags for all variables introduc
in this model to FALSE.

Assume the feed to be known. We introduced one stoichiometric
coefficient for each component and a turnover rate. To make the ou
stream well-posed, we would need to compute the flows for each o
component flows leaving. That suggests the material balances we
wrote are all needed to compute these flows. We would, therefore,
to set one fixed flag to TRUE for each of the variables we introduce
which is what we do in theMETHOD seqmod. Now when we run
seqmod and then thespecify method for the feed, we will have made
this model well-posed, which is what we do in theMETHOD specify.

The flash model that follows is a constant relative volatility model. T
reasoning why the methods attached are as they are.

(* *** *) 220

221

MODEL flash; 222

223

feed,vap,liq IS_A molar_stream; 224

225

feed.components, 226

vap.components, 227

liq.components ARE_THE_SAME; 228

229

alpha[feed.components], 230

ave_alpha IS_A factor; 231

232

vap_to_feed_ratio IS_A fraction; 233

234

vap_to_feed_ratio*feed.Ftot = vap.Ftot; 235

236

FOR i IN feed.components CREATE 237

cmb[i]: feed.f[i] = vap.f[i] + liq.f[i]; 238
Last modified: June 20, 1998 10:33 pm

THE CODE 154

ke
 This
e
l

eq[i]: vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i]; 239

END; 240

241

METHODS 242

243

METHOD clear; 244

RUN feed.clear; 245

RUN vap.clear; 246

RUN liq.clear; 247

alpha[feed.components].fixed := FALSE; 248

ave_alpha.fixed := FALSE; 249

vap_to_feed_ratio.fixed := FALSE; 250

END clear; 251

252

METHOD seqmod; 253

alpha[feed.components].fixed := TRUE; 254

vap_to_feed_ratio.fixed := TRUE; 255

END seqmod; 256

257

METHOD specify; 258

RUN seqmod; 259

RUN feed.specify; 260

END specify; 261

262

METHOD reset; 263

RUN clear; 264

RUN specify; 265

END reset; 266

267

METHOD scale; 268

RUN feed.scale; 269

RUN vap.scale; 270

RUN liq.scale; 271

END scale; 272

273

END flash; 274

275

(* *** *) 276

277

The final unit operation model is the splitter. The trick here is to ma
all the states for all the output streams the same as that of the feed.
move makes the compositions all the same and introduces only on
equation to add those mole fractions to unity. The rest of the mode
should be evident.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

155 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-
MODEL splitter; 278

279

n_outputs IS_A integer_constant; 280

feed, out[1..n_outputs] IS_A molar_stream; 281

split[1..n_outputs] IS_A fraction; 282

283

feed.components, out[1..n_outputs].components ARE_THE_SAME; 284

285

feed.state, 286

out[1..n_outputs].state ARE_THE_SAME; 287

288

FOR j IN [1..n_outputs] CREATE 289

out[j].Ftot = split[j]*feed.Ftot; 290

END; 291

292

SUM[split[1..n_outputs]] = 1.0; 293

294

METHODS 295

296

METHOD clear; 297

RUN feed.clear; 298

RUN out[1..n_outputs].clear; 299

split[1..n_outputs-1].fixed:=FALSE; 300

END clear; 301

302

METHOD seqmod; 303

split[1..n_outputs-1].fixed:=TRUE; 304

END seqmod; 305

306

METHOD specify; 307

RUN seqmod; 308

RUN feed.specify; 309

END specify; 310

311

METHOD reset; 312

RUN clear; 313

RUN specify; 314

END reset; 315

316

METHOD scale; 317

RUN feed.scale; 318

RUN out[1..n_outputs].scale; 319

END scale; 320

321

END splitter; 322

323
Last modified: June 20, 1998 10:33 pm

THE CODE 156

ash
o

ng,
 to

duce
 We

t
ell-

e
e.
(* *** *) 324

325

Now we shall see the value of writing all those methods for our unit
operations (and for the models that we used in creating them). We
construct our flowsheet by saying it includes a mixer, a reactor, a fl
unit and a splitter. The mixer will have two inputs and the splitter tw
outputs. The next few statements configure our flowsheet by maki
for example, the output stream from the mixer and the feed stream
the reactor be the same stream.

The methods are as simple as they look. This model does not intro
any variables nor any equations that are not introduced by its parts.
simply ask the parts to clear their variable fixed flags.

To make the flowsheet well-posed, we ask each unit to set sufficien
fixed flags to TRUE to make itself well posed were its feed stream w
posed (now you can see why we wanted to create the methodsseqmod
for each of the unit types.) Then the only streams we need to mak
well-posed are the feeds to the flowsheet, of which there is only on
The remaining streams come out of a unit which we can think of
computing the flows for it.

MODEL flowsheet; 326

327

m1 IS_A mixer; 328

r1 IS_A reactor; 329

fl1 IS_A flash; 330

sp1 IS_A splitter; 331

332

(* define sets *) 333

334

m1.n_inputs :==2; 335

sp1.n_outputs :==2; 336

337

(* wire up flowsheet *) 338

339

m1.out, r1.feed ARE_THE_SAME; 340

r1.out, fl1.feed ARE_THE_SAME; 341

fl1.vap, sp1.feed ARE_THE_SAME; 342

sp1.out[2], m1.feed[2] ARE_THE_SAME; 343

344

 METHODS 345

346

METHOD clear; 347

RUN m1.clear; 348
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

157 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

or
.
e an
, we

.
ctor
RUN r1.clear; 349

RUN fl1.clear; 350

RUN sp1.clear; 351

END clear; 352

353

METHOD seqmod; 354

RUN m1.seqmod; 355

RUN r1.seqmod; 356

RUN fl1.seqmod; 357

RUN sp1.seqmod; 358

END seqmod; 359

360

METHOD specify; 361

RUN seqmod; 362

RUN m1.feed[1].specify; 363

END specify; 364

365

METHOD reset; 366

RUN clear; 367

RUN specify; 368

END reset; 369

370

METHOD scale; 371

RUN m1.scale; 372

RUN r1.scale; 373

RUN fl1.scale; 374

RUN sp1.scale; 375

END scale; 376

377

END flowsheet; 378

379

(* *** *) 380

381

We have created a flowsheet model above. If you look at the react
model, we require that you specify the turnover rate for the reaction
We may have no idea of a suitable turnover rate. What we may hav
idea about is the conversion of species B in the reactor; for example
may know that about 7% of the B entering the reactor may convert
How can we alter our model to allow for us to say this about the rea
and not be required to specify the turnover rate? In a sequential
modular flowsheeting system, we would use a “computational
controller.” We shall create a model here that gives us this same
functionality. Thus we call it a “controller.” There are many ways to
construct this model. We choose here to create a model that has a
flowsheet as a part of it. We introduce a variable conv which will
Last modified: June 20, 1998 10:33 pm

THE CODE 158

h

ded

 this

we
indicate the fraction conversion of any one of the components whic
we call the key_component here. For that component, we add a
material balance based on the fraction of it that will convert. We ad
one new variable and one new equation so, if the flowsheet is well-
posed, so will our controller be well-posed. However, we want to
specify the conversion rather that the turnover rate. Thespecify method
first asks the flowsheet fs to make itself well-posed. Then it makes
one trade: fixing conv and releasing the turnover rate.

MODEL controller; 382

383

fs IS_A flowsheet; 384

conv IS_A fraction; 385

key_components IS_A symbol_constant; 386

fs.r1.out.f[key_components] = (1 - conv)*fs.r1.feed.f[key_components]; 387

388

METHODS 389

390

METHOD clear; 391

RUN fs.clear; 392

conv.fixed:=FALSE; 393

END clear; 394

395

METHOD specify; 396

RUN fs.specify; 397

fs.r1.turnover.fixed:=FALSE; 398

conv.fixed:=TRUE; 399

END specify; 400

401

METHOD reset; 402

RUN clear; 403

RUN specify; 404

END reset; 405

406

METHOD scale; 407

RUN fs.scale; 408

END scale; 409

410

END controller; 411

412

(* *** *) 413

414

We now would like to test our models to see if they work. How can
write test for them? We can create test models as we do below.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

159 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

ous
e the
So

lso

ing
n

iven
and
d

bles
To test the flowsheet model, we create a test_flowsheet model that
refines our previously defined flowsheet model. “To refine the previ
model” means this model includes all the statements made to defin
flowsheet model plus those statements that we now provide here.
this model is a flowsheet but with it components specified to be ‘A’,
‘B’, and ‘C’. We add a new method calledvalues in which we specify
values for all the variables we intend to fix when we solve. We can a
provide values for other variables; these will be used as the initial
values for them when we start to solve. We see all the variables be
given values with the units specified. The units must be specified i
ASCEND. ASCEND will interpret the lack of units to mean the
variable is unitless. If it is not, then you will get a diagnostic from
ASCEND telling you that you have written a dimensionally
inconsistent relationship.

Note we specify the molar flows for the three species in the feed. G
these flows, the equations for the stream will compute the total flow
then the mole fractions for it. Thus the feed stream is fully specifie
with these flows.

We look at the seqmod method for each of the units to see the varia
to which we need to give values here.

MODEL test_flowsheet REFINES flowsheet; 415

416

m1.out.components:==[‘A’,’B’,’C’]; 417

418

 METHODS 419

420

METHOD values; 421

m1.feed[1].f[‘A’] := 0.005 {kg_mole/s}; 422

m1.feed[1].f[‘B’] := 0.095 {kg_mole/s}; 423

m1.feed[1].f[‘C’] := 0.0 {kg_mole/s}; 424

425

r1.stoich_coef[‘A’] := 0; 426

r1.stoich_coef[‘B’] := -1; 427

r1.stoich_coef[‘C’] := 1; 428

r1.turnover := 3 {kg_mole/s}; 429

430

fl1.alpha[‘A’] := 12.0; 431

fl1.alpha[‘B’] := 10.0; 432

fl1.alpha[‘C’] := 1.0; 433

fl1.vap_to_feed_ratio := 0.9; 434

fl1.ave_alpha := 5.0; 435

436

sp1.split[1] := 0.01; 437
Last modified: June 20, 1998 10:33 pm

THE CODE 160

ur
el is,

an

fs
 We
e for
438

fl1.liq.Ftot:=m1.feed[1].f[‘B’]; 439

END values; 440

441

END test_flowsheet; 442

443

(* *** *) 444

445

Finally we would like to test our controller model. Again we write o
test model as a refinement of the model to be tested. The test mod
therefore, a controller itself. We make our fs model inside our test
model into a test_flowsheet, making it a more refined type of part th
it was in the controller model. We can do this because the
test_controller model is a refinement of the flowsheet model which
was previously. A test_flowsheet is, as we said above, a flowsheet.
create a values method which first runs the values method we wrot
the test_flowsheet model and then adds a specification for the
conversion of B in the reactor.

MODEL test_controller REFINES controller; 446

447

fs IS_REFINED_TO test_flowsheet; 448

key_components :==‘B’; 449

450

METHODS 451

452

METHOD values; 453

RUN fs.values; 454

conv := 0.07; 455

END values; 456

457

END test_controller; 458

459

(* *** *) 460

461
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

161 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-
Last modified: June 20, 1998 10:33 pm

	Chapter 17 A Simple Chemical Engineering Flowsheet...
	17.1 The problem description
	17.2 The code

