
164

mple-
 Ep-

, Chad

hall
 of the
is
ge even
 item

 exact

s
nce,
CHAPTER 19THE ASCEND IV LANGUAGE

SYNTAX AND SEMANTICS

Benjamin Allan1

Arthur W. Westerberg1

Department of Chemical Engineering
and the Engineering Design Research Center /
Institute for Complex Engineered Systems

Carnegie Mellon University

1. The ASCEND language has evolved from the combined efforts of several generations of users and i
mentors. We wish to particularly acknowledge the contributions of ASCEND III implementors Kirk Abbott, Tom
perly, Peter Piela, Boyd Safrit, Karl Westerberg, and Joe Zaher, and of the ASCEND IV crew: Duncan Coffey
Farschman, Jennifer Perry, Vicente Rico-Ramirez, Mark Thomas and Ken Tyner.

We shall present an informal description of the ASCEND IV language. Being informal, we s
usually include examples and descriptions of the intended semantics along with the syntax
items. At times the inclusion of semantics will seem to anticipate later definitions. We do th
because we would also like this chapter to be used as a reference for the ASCEND langua
after one generally understands it. Often one will need to clarify a point about a particular
and will not wish to have to search in several places to do so.

Syntax is the form or structure for the statements in ASCEND, where one worries about the
words one uses, their ordering, the punctuation, etc.Semantics describe the meaning of a
statement.

To distinguish between syntax and semantics, consider the statement

y IS_A fraction;

Rules on the syntax for this statement tell us we need a user supplied instance name,y, followed
by the ASCEND operatorIS_A , followed by a type name (fraction). The statement terminate
with a semicolon. The statement semantics says we are declaring the existence of an insta
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

165 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 be

ently

n
 under

s

s
he
ther

) in

. It is
) is

ent

d

te is

ally

t

locally named y, of the type fraction as a part within the current model definition and it is to
constructed when an instance of the current model definition is constructed.

The syntax for a computer language is often defined by using a Bachus-Naur formal (BNF)
description. The complete YACC and FLEX description of the language described (as pres
implemented) is available by FTP2 and via the World Wide Web3. The semantics of a very high
level modeling language such as ASCEND IV are generally much more restrictive than the
syntax. For this reason we do not include a BNF description in this paper. ASCEND IV is a
experiment. The language is under constant scrutiny and improvement, so this document is
constant revision. Contact the authors for the latest version.

19.1 PRELIMINARIES

2. In the directory ftp.cs.cmu.edu:project/ascend/gnu-ascend/ see the file README.
3. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ascend/ftp/gnu-ascend/README

We will start off with some background information and some tip
that make the rest of the chapter easier to read. ASCEND is an
object-oriented (OO) language for hierarchical modeling that ha
been somewhat specialized for mathematical models. Most of t
specialization is in the implementation and the user interface ra
than the language definition.

We feel the single most distinguishing feature of mathematical
models is that solving them efficiently requires that the solving
algorithms be able to address the entire problem either
simultaneously or in a decomposition of the natural problem
structure that the algorithm determines is best for the machine(s
use. In the ASCEND language object-orientation is used to
organize natural structures and make them easier to understand
not used to hide the details of the objects. The user (or machine
free to ignore uninteresting details, and the ASCEND environm
provides tools for the runtime suppression of these.

ASCEND is well into its 4th generation. Some features we will
describe are not yet implemented (some merely speculative) an
these are clearly marked (* 4+ *). Any feature not marked (* 4+
*)has been completely implemented, and thus any mismatch
between the description given here and the software we distribu
a bug we want you to tell us about.

The syntax and semantics of ASCEND may seem at first a bit
unusual. However, do not be afraid to just try what comes natur
if what we write here is unclear. The parser and compiler of
ASCEND IV really will help you get things right. Of course if wha
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 166

 to
tem

s.

is
is an

 of

type
se,

ave
or
ents.

to

lp

d to

 in

e

we write here is unclear, please ask us about it because we aim
continuously improve both this document and the language sys
it describes.

We will describe, starting in Section 19.1.2, the higher level
concepts of ASCEND, but first some important punctuation rule

ASCEND is cAsE
sensitive!

The keywords that are shown capitalized (or in lower case) in th
chapter are that way because ASCEND is case sensitive. IS_A
ASCEND keyword; isa, Is_a, and all the other permutations you
can think of are NOT equivalent to IS_A. In declaring new types
models and variables the user is free to use any style of
capitalization he or she may prefer, however, they must remain
consistent or undefined types and instances will result.

This case restriction makes our code very readable, but hard to
without a smart editor. We have kept the case-sensitivity becau
like all mathematicians, we find ourselves running out of good
variable names if we are restricted to a 26 letter alphabet. We h
developed smart add-ins for two UNIX editors, EMACS and vi, f
handling the upper case keywords and some other syntax elem
The use of these editors is described in another chapter.

The ASCEND IV parser is very picky and pedantic. It also tries
give helpful messages and occasionally even suggestions. New
users should just dive in and make errors, letting the system he
them learn how to avoid errors.

19.1.1 PUNCTUATION

This section covers both the punctuation that must be understoo
read this document and the punctuation of ASCEND code.

keywords: ASCEND keywords and type names are given in the left column
bold format. It is generally clear from the main text which are
keywords and which are type names.

Minor items: Minor headings that are helpful in finding details are given in th
left column inunderline format.

Tips: Special notes and hints are sometimes placed on the left.

3: This indicates that what follows is specific to ASCEND IIIc and
may disappear in a future version of ASCEND IV. Generally
ASCEND IV will provide some equivalent functionality at 1/10th
of the ASCEND III price.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

167 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

II
a
ing

ay

gh z,
t it

s (.).

ers.

O

s or

}.

ce,
4 This indicates that what follows is specific to ASCEND IV
and may not be available in ASCEND IIIc. Generally ASCEND I
may provide some very klugey equivalent functionality, often at
very high price in terms of increased compilation time or debugg
difficulty.

4+ ASCEND IV functionality that is not fully implemented at the time
of this writing. The precise syntax of the final implementation m
vary slightly from what is presented here. A revision of this
document will be made at the time of implementation.

LHS: Left Hand Side. Abbreviation used frequently.

RHS: Right Hand Side. Abbreviation used frequently.

Simple Names: In ASCEND simple names are made of the characters a throu
A through Z, _, (*4+*: $). The underscore is used as a letter, bu
cannot be the first letter in a name. The “$” character is used
exclusively as the first character in the name of system defined
built-in parts. "$" is explained in more detail in Section 19.6.2.
Simple names should be no more than 80 characters long.

Compound names: Compound names are simple names strung together with dot
See the description of "." below.

Groupings:

« » In documentation optional fields are surrounded by these mark

(* *) Comment. *3* Anything inside these is a comment. Comments D
NOT nest in ASCEND IIIc. Comments may extend over many
lines. *4* Comments DO nest in ASCEND IV.

() Rounded parentheses. Used to enclose arguments for function
models where the order of the arguments matters. Also used to
group terms in complex arithmetic, logical, or set expressions
where the order of operations needs to be specified.

Efficiency tip: The compiler can simplify relation definitions in a particularly
efficient manner if constants are grouped together.

{ } Curly braces. Used to enclose units. For example, 1 {kg_mole/s
Also used to enclose the body of annotations.Note: Curly braces
are also used in TCL, the language of the ASCEND user interfa
about which we will say more in another chapter.
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 168

ject

es
y to

red

me

thod

o.)

n

nted
[] Square brackets. Used to enclose sets or elements of sets.
Examples: my_integer_set :== [1,2,3], demonstrates the use of
square brackets in the assignment of a set. My_array[1]
demonstrates the use of square brackets in naming an array ob
indexed over an integer set which includes the element 1.

. Dot. The dot is used, as in PASCAL and C, to construct the nam
of nested objects. Examples: if object a has a part b, then the wa
refer to b is as a.b. Tray[1].vle shows a dot following a square
bracket; here Tray[1] has a part named vle.

.. Dot-dot or double dot. Integer range shorthand. For example,
my_integer_set :== [1,2,3] and my_integer_set :== [1..3] are
equivalent. If .. appears in a context requiring (), such as the
ALIASES/IS_A statement, then the range is expanded and orde
as we would naturally expect.

: Colon. A separator used in various ways, principally to set the na
of an arithmetic relation apart from the definition.

:: Double colon. A separator used in the methods section for
accessing methods defined on types other than the type the me
is part of. Explained in Section 19.4.

; Semicolon. The separator of statements.

19.1.2 BASIC ELEMENTS

Boolean value TRUE or FALSE. Can’t get much simpler, eh? In the language
definition TRUE and FALSE do not map to 1 and 0 or any other
type of numeric value. (In the implementation, of course, they d

User interface tip: The ASCEND user interface programmers have found it very
convenient, however, to allow T/F, 1/0, Y/N, and other obvious
boolean conventions as interactive input when assigning boolea
values. We are lazy users.

Integer value A signed whole number up to the maximum that can be represe
by the computer on which one is running ASCEND.
MAX_INTEGER is machine dependent. Examples are:

123

-5

MAX_INTEGER, typically 2147483647.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

169 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

issa
t

uter

KS

f

.

y.
.
. A

e

Real value ASCEND represents reals almost exactly as any other
mathematically oriented programming language does. The mant
has an optional negative sign followed by a string of digits and a
most one decimal point. The exponent is the lettere or E followed
by an integer. The number must not exceed the largest the comp
is able to handle. There can be no blank characters in a real.
MAX_REAL is machine dependent. The following are legitimate
reals in ASCEND:

-1

1.2

1.3e-2

7.888888e+34

.6E21

MAX_REAL, typically about 1.79E+308.

while the following are not:

1. 2 (*contains a blank within it*)

1.3e2.0 (*exponent has a decimal in it*)

+1.3 (* illegal unary + sign. x = +1.3 not allowed*)

Reals stored in SI units We store all real values as double precision numbers in the M
system of units. This eliminates many common errors in the
modeling of physical systems. Since we also place the burden o
scaling equations on system routines and a simple modeling
methodology, the internal units are not of concern to most users

Dimensionality: Real values have dimensionality such as length/time for velocit
Dimensionality is to be distinguished from the units such as ft/s
ASCEND takes care of mapping between units and dimensions
value without units (this includes integer values) is taken to be
dimensionless. Dimensionality is built up from the following bas
dimensions:

Name definition typical units

L length meter, m

M mass kilogram, kg

T time second, s

E electric current ampere, A

Q quantity mole, mole
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 170

 of

ith

use
ed.

its
r

s,

t

s.
roup
 by

ote
nts
TMP temperature Kelvin, K

LUM luminous intensity candela, cd

P plane angle radian, rad

S solid angle steradian, srad

C currency currency, CR

The atom and constant definitions in the library illustrate the use
dimensionality.

Dimensions may be any combination of these symbols along w
rounded parentheses, (), and the operators *, ^ and /. Examples
includeM/T or M*L^2/T^2/TMP {this latter means
(M*(L^2)/(T^2))/TMP }. The second operand for the “to the
power” operator, ^, must be an integer value (e.g., -2 or 3) beca
fractional powers of dimensional numbers are physically undefin

If the dimensionality for a real value is undefined, then ASCEND
gives it a wild card dimensionality. If ASCEND can later deduce
dimensionality from its use in a model definition it will do so. Fo
example consider the real variablea, supposea has wild card
dimensionality,b has dimensionality ofL/T. Then the statement:

Example of a
dimensionally consistent
equation.

a + b = 3 {ft/s};

requires thata have the same dimensionality as the other two term
namely,L/T. ASCEND will assign this dimensionality toa. The
user will be warned of dimensionally inconsistent equations.

Unit expression A unit expression may be composed of any combination of uni
names defined by the system and any numerical constants
combined with times (*), divide(/) and “to the power” (^) operator
The RHS of ^ must be an integer. Parentheses can be used to g
subexpressions EXCEPT a divide operator may not be followed
a grouped subexpression.

So, {kg/m/s} is fine, but {kg/(m*s)} is not. Although the two
expressions are mathematically equivalent, it makes the system
programming and output formatting easier to code and faster to
execute if we disallow expressions of the latter sort.

The units understood by the system are defined in Chapter 20. N
that several “units” defined are really values of interesting consta
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

171 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.

eal
st

tent

/s}

or;

 a

D:

g

in SI, e.g. R :== 1{GAS_C} yields the correct value of the
thermodynamic gas constant. Users can define additional units

Units A unit expression must be enclosed in curly braces {}. When a r
number is used in a mathematical expression in ASCEND, it mu
have a set of units expressed with it. If it does not, ASCEND
assumes the number is dimensionless, which may not be the in
of the modeler. An example is shown in the dimensionally
consistent equation above where the number 3 has the units {ft
associated with it.

Examples:

{kg_mole/s/m} same as {(kg_mole/s)/m}

{m^3/yr}

{3/100*ft} same as {0.03*ft}

{s^-1} same as {1/s}

Illegal unit examples are

{m/(K*kg_mole)} grouped subexpression used in the denominat
should be written{m/K/kg_mole} .

{m^3.5} power of units or dimensions must be integer.

Symbol Value The format for a symbol is that of an arbitrary character string
enclosed between two single quotes. There is no way to embed
single quote in a symbol: we are not in the escape sequence
business at this time. The following are legal symbols in ASCEN

’H2O'

’r1'

’Bill said,”foo” to whom?’

while the following are not legal symbol values:

"ethanol" (double quotes not allowed)

water (no single quotes given)

’i can’t do this’ (no embedded quotes)

There is an arbitrary upper limit to the number of characters in a
symbol (something like 10,000) so that we may detect a missin
close quote in a bad input file without crashing.
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 172

all of
e

1, 2,
ust
es.
ted

1) if
.
ents

 no

 the
 and
 as

 of a

eak,
e

her
Sets values Set values are lists of elements, all of type integer_constant or
type symbol_constant, enclosed between square brackets []. Th
following are examples of sets:

['methane', 'ethane', 'propane']

[1..5, 7, 15]

[2..n_stages]

[1, 4, 2, 1, 16]

[]

We will say more about
sets in 19.2.2.

The value range 1..5 is an allowable shorthand for the integers
3, 4 and 5 while the value range 2..n_stages (where n_stages m
be of type integer_constant) means all integers from 2 to n_stag
If n_stages is less than 2, then the third set is empty. The repea
occurrence of 1 in the fourth set is ignored. The fifth set is the
empty set.

We use the termset in an almost pure mathematical sense. The
elements have no order. One can only ask two things of a set: (
an element is a member of it and (2) its cardinality (CARD(set))
Repeated elements used in defining a set are ignored. The elem
of setscannot themselves be sets in ASCEND; i.e., there can be
sets of set.

Sets are unordered. A set of integers may appear to be ordered to the modeler as
natural numbers have an order. However, it is the user imposing
using the ordering, not ASCEND. ASCEND sees these integers
elements in the set with NO ordering. Therefore, there are no
operators in ASCEND such as successor or precursor member
set.

Arrays An array is a list of instances indexed over a set, in computer-sp
an associative array of objects. The instances are all of the sam
base type (as that is the only way they can be defined). An
individual member of a list may later be more refined than the ot
members (we shall illustrate that possibility). The following are
arrays in ASCEND.

stage[1..n_stages]

y[components]

column[areas][processes]

wherecomponents, areas andprocesses are sets. For
examplecomponents could be the set of symbols
['ethylene','propylene'], areas the set of symbols
['feed_prep','prod_purification'] while
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

173 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ly

ut,
re
 that

are
tter

ets
processes could be the set['alcohol_manuf',
'poly_propropylene_manuf'] . Note that the third example
(column) is a list of lists (the way that ASCEND permits a multip
subscripted array).

The following are elements in the above arrays:

stage[1]

y['ethylene']

column['feed_prep'][alcohol_manuf']

provided that n_stages is 1 or larger.

There can be any number of subscripts for an array. We point o
however, that in virtually every application of arrays requiring mo
than two subscripts, there is usually a some underlying concept
is much better modeled as an object than as part of a deeply
subscripted array. In the following jagged array example, there
really the concepts of unit operation and stream that would be be
understood if made explicit.

Arrays can be jagged (* 4 *) Arrays can be ’sparse’ or jagged. For example:

process[1..3] IS_A set OF integer;

process[1] :== [2];

process[2] :== [7,5,3];

process[3] :== [4,6];

FOR i in [1..3] CREATE

FOR j IN process[i] CREATE

flow[i][j] IS_A mass;

END FOR;

END FOR;

process is an array of sets (not to be confused with a set of s
which ASCEND does not have) andflow is an array with six
elements spread over three rows:

flow[1][2]

flow[2][7], flow[2][3], flow[2][5]

flow[3][4], flow[3][6]

Sparse arrays of models and variables are new to ASCEND IV.

Arrays are also instances Each array is itself an object. That is, when you write
"a[1..2]IS_A real;" three objects get created:a[1] ,
a[2] , anda. a is anarray instance which has parts named [1]
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 174

 not
C,

b
nly

s are

dex

ent:

e

 the

h
ssary
 or

 is:

ment
and [2] that arereal instances. When a parameterized model
requires an array, you pass it the single itema, not the elements
a[1..2] .

Not contiguous storage Just in case you still have not caught on, ASCEND arrays are
blocks of memory such as are seen in low-level languages like
FORTRAN, and Matlab. Themodeling language does not provide
things like MatMult, Transpose, and Inverse because these are
procedural solving tools. If you are dedicated, you could write
METHODs that implement matrix algebra, but this is a really dum
idea. We aim to structure our software so that it can interact ope
with separate, dedicated tools (such as Matlab) when those tool
needed.

Index variable One can introduce a variable as an index ranging over a set. In
variables are local to the statements in which they occur. An
example of using an index variable is the following FOR statem

FOR i IN components CREATE

VLE_equil[i]: y[i] = K[i]*x[i];

END FOR;

In this examplei implicitly is of the same type as the values in th
setcomponents. If another objecti exists in the model
containing the FOR loop, it is ignored while executing the
statements in that loop. This may cause unexpected results and
compiler will generate warnings about loop index shadowed
variables.

Label: One can label statements which define arithmetic relationships
(objective functions, equalities, and inequalities) in ASCEND.
Labeling is highly recommended because it makes models muc
more readable and more easily debugged. Labels are also nece
for relations which are going to be used in conditional modeling
differentiation functions. A label is a sequence of alphanumeric
characters ending in a colon. An example of a labeled equation

mass_balance: m_in = m_out;

An example of a labeled objective function is:

obj1: MAXIMIZE revenue - cost;

If a relation is defined within a FOR statement, it must have an
array indexed label so that each instance created using the state
is distinguishable from the others. An example is:
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

175 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

y

erits

e

ion.

mes

 ().

ND
at

en the

t an
FOR i IN components CREATE

equil[i]: y[i] = K[i]*x[i];

END FOR;

The ASCEND interactive user interface identifies relationships b
their labels. If one has not provided such a label, the system
generates the label:

modelname_equationnumber

wheremodelname andequationnumber are the name of the model
and the equation number in the model. An example is

mixture_14

for the unlabeled 14th relation in the mixture definition. If there is a
conflict caused with an existing name, the generated name has
enough letters added afterequationnumber to make it a unique
name. Remember that each model in a refinement hierarchy inh
the equations of its less refined ancestors, so the first equation
appearing in the source code of a refining model may actually b
the nth relation in that model.

Lists Often in a statement one can include a list of names or express
A name list is one or more names where multiple list entries are
separated from each other by commas. Examples of a list of na
are:

T1, inlet_T, outlet_T

y[components], y_in

stage[1..n_stages]

Ordered lists: If the ordering of names in a list matters, that list is enclosed in
Order matters in: calling externally defined methods or models,
calling most real-valued functions, passing parameters to ASCE
models or methods, and declaring the controlling parameters th
SELECT, SWITCH, and WHEN statements make decisions on.

19.1.3 BASIC CONCEPTS

Instances and types This is an opportune time to emphasize the distinction betwe
termsinstance andtype. A type in ASCEND is what we define
when we declare an ASCEND model or atom. It is the formal
definition of the attributes (parts) and attribute default values tha
Last modified: June 20, 1998 10:58 pm

PRELIMINARIES 176

ich
ive a
n
d

pe

le
.

ght
n an

l
t be
object will have if it is created using the type definition. Methods
are associated with types.

In ASCEND there are two meanings (closely related) of an
instance.

• An instance is anamed partthat exists within a type
definition.

• An instance is a compiled object.

If one is in the context of the ASCEND interface, the system
compiles an instance of a model type to create an object with wh
one carries out computations. The system requires the user to g
simple name for this simulation instance. This name given is the
the first part of the qualified name for all the parts of the compile
object.

Implicit types It is possible to create an instance that does not have a
corresponding type definition in the library. The type of such an
instance is said to beimplicit. (Some people use the word
anonymous. However, no computable type is anonymous and the
implicit type of an instance is theoretically computable). The
simplest example of an implicit type is the type of an instance
compiled from the built-in definitioninteger_constant . For
example:

i, j IS_A integer_constant;

i:== 2;

j:== 3;

Instances i and j, though of the same formal type, are implicit ty
incompatible because they have been assigned distinct values.

Instances which are either formally or implicitly type incompatib
cannot be merged. This will be discussed further in Section 19.3

Parsing Most errors in the declaration of an ASCEND model can be cau
at parse time because the object type of any well-formed name i
ASCEND definition can be resolved or proved ambiguous. We
cannot prove at parse time whether a specific array element wil
exist, but we can know that should such an element exist, it mus
of the type with which the array is defined.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

177 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

:

rns

ot

se
n

ing

ign
 an

re
. The
nts,

 the
Other
Ambiguity is warned about loudly because it is caused by either
misspelling or poor modeling style. The simplest example of
ambiguity follows.

Assume a type,stream , and a refinement ofstream ,
heat_stream , which adds the new variable H. Now, if we write

MODEL mixer;

input[1..2] IS_A stream;

output IS_A heat_stream;

input[1].H + input[2].H = output.H;

END mixer;

We see the parser can find the definition ofH in the type
heat_stream , sooutput.H is well defined. The author of the
mixer model may intend to refine input[1] and input[2] to be
objects of different types, saysteam_stream and
electric_stream , where each defines anH suitable for use in
the equation. The parser cannot read the author’s mind, so it wa
that input[1].H and input[2].H are ambiguous in the mixer
definition. The mixer model is not highly reusable except by the
author, but sometimes reusability is not a high priority objective.
The mixer definition is allowed, but it may cause problems in
instantiation if the author has forgotten the assumption that is n
explicitly stated in the model and neglects to refine the input
streams appropriately.

Instantiation Creating an simulation based on a type definition is a multi-pha
process called compiling (or instantiation). When an instantiatio
cannot be completed because some structural parameter (a
symbol_constant, real_constant, boolean_constant,
integer_constant, or set) does not have a value there will be
PENDING statements. The user interface will warn that someth
is incomplete.

In phase 1 all statements that create instance structures or ass
constant values are executed. This phase theoretically requires
infinite number of passes through the structural statements of a
definition. We allow a maximum of 5 and have never needed mo
than 3. There may be pending statements at the end of phase 1
compiler or interface will issue warnings about pending stateme
starting with warnings about unassigned constants.

Phase 2 compiles as many real arithmetic relation definitions as
possible. Some relations may be impossible to compile because
constants or sets they depend on do not have values assigned.
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 178

hat

 as
 the

Other
etic

s
 to
y

e

n.

ned

ing

el
e

 as
tom
relations may be impossible because they reference variables t
do not exist. This is determined in a single pass.

Phase 3 compiles as many logical arithmetic relation definitions
possible. Some relations may be impossible to compile because
constants or sets they depend on do not have values assigned.
relations may be impossible because they reference real arithm
relations that do not exist. This is determined in a single pass.

Phase 4 compiles as many conditional programming statement
(WHENs) as possible. Some WHEN relations may be impossible
compile because the discrete variables, models, or relations the
depend on do not exist. This is determined in a single pass.

Phase 5 executes the variable defaulting statements made in th
declarative section of each model IF AND ONLY IF there are no
pending statements from phases 1-4 anywhere in the simulatio

default_self After all phases are done, the methoddefault_self is called in the
top-most model of the simulation, if this method exists.

The first occurrence of each impossible statement will be explai
during a failed compilation. Impossible statements include:

• Relations containing undefinable variables (often
misspellings).

• Assignments that are dimensionally inconsistent or contain
mismatched types.

• Structure building or modifying statements that refer to mod
parts which cannot exist or that require a type-incompatibl
argument, refinement, or merge.

19.2 DATA TYPE DECLARATIONS

In the spectrum of OO languages, ASCEND is best considered
being class-based, though it is rather more a hybrid. We have a
and model definitions, calledtypes, and the compiled objects
themselves, calledinstances. ASCEND instances have a record of
what type they were constructed from.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

179 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

of
l

e
.

n

Type qualifiers:

UNIVERSAL Universal is an optional modifier of all ATOM, CONSTANT. and
MODEL definitions. If UNIVERSAL precedes the definition, then
ALL instances of that type will actually refer to the first instance
the type that is created. This saves memory and ensures globa
consistency of data.

Examples of universal type definitions are

UNIVERSAL MODEL methane REFINES

generic_component_model;

UNIVERSAL CONSTANT circle_constant REFINES

real_constant :== 1{PI};

UNIVERSAL ATOM counter_1 REFINES integer;

Tip: Don’t use
UNIVERSAL variables in
relations.

It is important to note that, because variables must store
information about which relations they occur in, it is a very bad
idea to use UNIVERSAL typed variables in relations. The
construction and maintenance of the relation list becomes very
expensive for universal variables. UNIVERSAL constants are fin
to use, though, because there are no relation links for constants

19.2.1 MODELS

MODEL An ASCEND model has a declarative part and an optional
procedural part headed by the METHODS word. Models are
essentially containers for variables and relations. We will explai
the various statements that can be made within models in
Section 19.3 and Section 19.4.

Simple models:

foo MODEL foo;

(* statements about foo go here*)

METHODS

(* METHODs for foo go here*)

END foo;

bar MODEL bar REFINES foo;

(*additional statements about foo *)

METHODS

(* additional METHODs for bar *)
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 180

d and

s,
nts
e

ld

ys,

ne

.

END bar;

Parameterized Models (* 4 *) Parameterizing models makes them easier to understan
faster for the system to compile. The syntax for a parameterized
model vaguely resembles a function call in imperative language
but it is NOT. When constructing a reusable model, all the consta
that determine the sizes of arrays and other structures should b
declared in the parameter list so that

• the user knows what is required to reuse the model.

• the compiler knows what values must be set before it shou
bother attempting to compile the model.

There is no reason that other items could not also go in the
parameter list, such as key variables which might be considered
inputs or outputs or control parameters in the mathematical
application of the model. A simple example of parameterization
would be:

column(n,s) MODEL column(

ntrays WILL_BE integer_constant;

components IS_A set of symbol_constant;

);

stage[1..ntrays] IS_A simple_tray;

END column;

flowsheet MODEL flowsheet;

tower4size IS_A integer_constant;

tower4size :== 22;

ct IS_A column(tower4size,[’c5’,’c6’]);

(* additional flowsheet statements *)

END flowsheet;

In this example, the column model takes the first argument, ntra
by reference. That is,ct.ntrays is an alias for the flowsheet
instancetower4size . tower4size must be compiled and
assigned a value before we will attempt to compile the column
model instance ct. The second argument is taken by value,
[’c5’,’c6’], and assigned tocomponents , a column part
that was declared with IS_A in the parameter list. There is only o
name for this set, ct.components . Note that in the flowsheet
model there is no part that is a set ofsymbol_constant .

The use of parameters in ASCEND modeling requires some
thought, and we will present that set of thoughts in Section 19.5
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

181 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ntil

d
ase

he

, so a

ther
made

ned

des
the
 the

h

Beginners may wish to create new models without parameters u
they are comfortable using the existing parameterized library
definitions. Parameters are intended to support model reuse an
efficient compilation which are not issues in the very earliest ph
of developing novel models.

19.2.2 SETS

Arrays in ASCEND, as already discussed in Section 19.1.2, are
defined over sets. A set is simply an instance with a set value. T
elements of sets are NOT instances or sets.

Set Declaration: A set is made of either symbol_constants or integer_constants
set object is declared in one of two ways:

my_integer_set IS_A set OF integer_constant;

or

my_symbol_set IS_A set OF symbol_constant;

:== A set is assigned a value like so:

my_integer_set :== [1,4];

The RHS of such an assignment must be either the name of ano
set instance or an expression enclosed in square brackets and
up of only set operators, other sets, and the names of
integer_constants or symbol_constants. Sets can only be assig
once.

Set Operations

UNION[setlist] A function taken over a list of sets. The result is the set that inclu
all the members of all the sets in the list. Note that the result of
UNION operation is an unordered set and the argument order to
union function does not matter. The syntax is:

+ UNION[list_of_sets]

A+B is shorthand for
UNION[A,B]

Consider the following sets for the examples to follow.

A := [1, 2, 3, 5, 9];

B := [2, 4, 6, 8];

Then UNION[A, B] is equal to the set [1, 2, 3, 4, 5, 6, 8, 9] whic
equals [1..6, 8, 9] which equals [[1..9] - [7]].
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 182

t less
ntax

he

r of

 set
et

st be

 do

 the

odel
INTERSECTION[] INTERSECTION[list of set expressions]. Finds the intersection
(and) of the sets listed.

* Equivalent to INTERSECTION[list_of_sets].

A*B is shorthand for
INTERSECTION[A,B]

For the sets A and B defined just above,INTERSECTION[A, B]
is the set [2] . The * shorthand for intersection is NOT
recommended for use except in libraries no one will look at.

Set difference: One can subtract one set from another. The result is the first se
any members in the set union of the first and second set. The sy
is

- first_set - second_set

For the sets A and B defined above, the set difference A - B is t
set [1, 3, 5, 9] while the set difference B - A is the set[4, 6, 8] .

CARD[set] Cardinality. Returns an integer constant value that is the numbe
items in the set.

CHOICE[set] Choose one. The result of running the CHOICE function over a
is an arbitrary (but consistent: for any set instance you always g
the same result) single element of that set.

RunningCHOICE[A] gives any member from the set A. The
result is a member, not a set. To make the result into a set, it mu
enclosed in square brackets. Thus[CHOICE[A]] is a set with a
single element arbitrarily chosen from the set A. Good modelers
not leave modeling decisions to the compiler; they do not use
CHOICE[]. We are stuck with it for historical reasons.

To reduce a set by one element, one can use the following

A_less_one IS_A set OF integer;

A_less_one :== A - [CHOICE[A]];

IN lhs IN rhs can only be well explained by examples. IN is used in
index expressions. If lhs is a simple and not previously defined
name, it is created as a temporary loop index which will take on
values of the rhs set definition. If lhs is something that already
exists, the result of lhs IN rhs is a boolean value; stare at the m
set_example below which demonstrates both IN and
SUCH_THAT. If you still are not satisfied, you might examine
[[westerbergksets]].
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

183 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 to
e

nts in
et of
 in

or
he
SUCH_THAT (* 4 *) Set expressions can be rather clever. We will give a detailed
example from chemistry because unordered sets are unfamiliar
most people and set arithmetic is quite powerful. In this exampl
we see arrays of sets and sparse arrays.

MODEL set_example;

(* we define a sparse matrix of reaction coefficient information

* and the species balance equations. *)

rxns IS_A set OF integer_constant;

rxns :== [1..3];

species IS_A set OF symbol_constant;

species :== ['A','B','C','D'];

reactants[rxns] IS_A set OF symbol_constant; (* species in each rxn_j *)

reactants[1] :== ['A','B','C'];

reactants[2] :== ['A','C'];

reactants[3] :== ['A','B','D'];

reactions[species] IS_A set OF integer_constant;

FOR i IN species CREATE (* rxns for each species i *)

reactions[i] :== [j IN rxns SUCH_THAT i IN reactants[j]];

END FOR;

(* Define sparse stoichiometric matrix. Values of eta_ij set later.*)

FOR j IN rxns CREATE

FOR i IN reactants[j] CREATE

(* eta_ij --> mole i/mole rxn j*)

eta[i][j] IS_A real_constant;

END FOR;

END FOR;

production[species] IS_A molar_rate;

rate[rxns] IS_A molar_rate; (* mole rxn j/time *)

FOR i IN species CREATE

gen_eqn[i]: production[i] =

SUM[eta[i][j]*rate[j] | j IN reactions[i]];

END FOR;

END set_example;

"|" is shorthand for
SUCH_THAT.

The array eta has only 8 elements, and we defined those eleme
a set for each reaction. The equation needs to know about the s
reactions for a species i, and that set is calculated automatically
the model’s first FOR/CREATE statement.

| The | symbol is the ASCEND III notation for SUCH_THAT. We
noted that "|" is often read as "for all", which is different in that "f
all" makes one think of a FOR loop where the loop index is on t
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 184

er
igned

itself
ol

 as

ed

only
not

f a

. If
s

left of an IN operator. For example, the j loop in the SUM of
gen_eqn[i] above.

19.2.3 CONSTANTS

ASCEND supports real, integer, boolean and character string
constants. Constants in ASCEND do not have any attributes oth
than their value. Constants are scalar quantities that can be ass
exactly once. Constants may only be assigned using the :==
operator and the RHS expression they are assigned from must
be constant. Constants do not have subparts. Integer and symb
constants may be used in determining the definitions of sets.

Explicit refinements of the built-in constant types may be defined
exemplified in the description of real_constant. Implicit type
refinements may be done by instantiating an incompletely defin
constant and assigning its final value.

Sets could be considered constant because they are assigned
once, however sets are described separately because they are
quite scalar quantities.

real_constant Real number with dimensionality. Note that the dimensionality o
real constant can be specified via the type definition without
immediately defining the value, as in the following pair of
definitions.

CONSTANT declaration
example:

CONSTANT molar_weight REFINES real_constant DIMENSION

M/Q;

CONSTANT hydrogen_weight REFINES molar_weight :==

1.004{g/mole};

integer_constant Integer number. Principally used in determining model structure
appearing in equations, integers are evaluated as dimensionles
reals. Typical use is inside a MODEL definition and looks like:

n_trays IS_A integer_constant;

n_trays :== 50;

tray[1..n_trays] IS_A vl_equilibrium_tray;

symbol_constant Object with a symbol value. May be used in determining model
structure.

boolean_constant Logical value. May be used in determining model structure.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

185 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

he

sed
cts

l
ase

,
efore

al.

 is

risk
e

Setting constants

:== Constant and set assignment operator.

It is suggested, but not
required, that names of all
types that refine the built-
in constant types have
names that end in
_constant.

LHS_list :== RHS;

Here it is required that the one or more items in the LHS be of t
same constant type and that RHS is a single-valued expression
made up of values, operators, and other constants. The :== is u
to make clear to both the user and the system what scalar obje
are constants.

19.2.4 VARIABLES

There are four built-in types which may be used to construct
variables: symbol, boolean, integer, and real. At this time symbo
types have special restrictions. Refinements of these variable b
types are defined with the ATOM statement. Atom types may
declare attribute fields with types real, integer, boolean, symbol
and set. These attributes are NOT independent objects and ther
cannot be refined, merged, or put in a refinement clique
(ARE_ALIKEd).

ATOM The syntax for declaring a new atom type is

ATOM atom_type_name REFINES variable_type

«DIMENSION dimension_expression»

«DEFAULT value»; (* note the ; *)

«initial attribute assignment;»

END atom_type_name;

DEFAULT,
DIMENSION, and
DIMENSIONLESS

The DIMENSION attribute is for variables whose base type is re
It is an optional field. If not defined for any atom with base type
real, the dimensions will be left as undefined. Any variable which
later declared to be one of these types will be givenwild card
dimensionality (represented in the interactive display by an aste
(*)). The system will deduce the dimensionality from its use in th
relationships in which it appears or in the declaring of default
values for it, if possible.

solver_var is a special
case of ATOM and we
will say much more
about it in Section 19.6.1.

ATOM solver_var REFINES real DEFAULT 0.5 {?};

lower_bound IS_A real;

upper_bound IS_A real;

nominal IS_A real;

fixed IS_A boolean;
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 186

ich

nit

e
 be

the

nt

gs
lly

rs

e
ent
g

later
e

fixed := FALSE;

lower_bound := -1e20 {?};

upper_bound := 1e20 {?};

nominal := 0.5 {?};

END solver_var;

The default field is also optional. If the atom has a declared
dimensionality, then this value must be expressed with units wh
are compatible with this dimensionality. In thesolver_var
example, we see a DEFAULT value of 0.5 with the unspecified u
{?} which leaves the dimensionality wild.

real Real valued variable quantity. At present, all variables that you
want to be attended to by solver tools must be refinements of th
type solver_var. This is so that modifiable parametric values can
included in equations without treating them as variables. Strictly
speaking, this is a characteristic of the solver interface and not
ASCEND language. Each tool in the total ASCEND system may
have its own semantics that go beyond the ASCEND object
definition language.

integer Integer valued variable quantity. We find these mighty convenie
for use in certain procedural computations and as attributes of
solver_var atoms.

boolean Truth valued variable quantity. These are principally used as fla
on solver_vars and relations. They can also be used procedura
and as variables in logical programming models, subject to the
logical solver tool’s semantics. (Comparesolver_boolean and
boolean_var in Section 19.6.)

symbol *4* Symbol valued variable quantity. We do not yet have operato
for building symbols out of other symbols.

Setting variables

:= Procedural equals differs from the ordinary equals (=) in that it
means the left-hand-side (LHS) variables are to be assigned th
value of the right-hand-side (RHS) expression when this statem
is processed. Processing happens in the last phase of compilin
(INSTANTIATION on page 177) or when executing a method
interactively through the ASCEND user interface. The order the
system encounters these statements matters, therefore, with a
result overwriting an earlier one if both statements have the sam
the same LHS variable.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

187 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

e of
T

ation
 at

 are

 is
nts

f a
Note that variable assignments (also known as “defaulting
statements”) written in the declarative section are executed only
after an instance has been fully created. This is a frequent sourc
confusion and errors, therefore we recommend that you DO NO
ASSIGN VARIABLES IN THE DECLARATIVE SECTION.

Note that := IS NOT =. We use an ordinary equals (=) when defining a real valued equ
to state that the LHS expression is to equal the RHS expression
the solution for the model. We use == for logical equations.

Tabular assignments (* 4+ *) Assigning values en masse to arrays of variables that
defined associatively on sets without order presents a minor
challenge. The solution proposed in ASCEND IV (but not yet
implemented as we’ve not had time or significant user demand)
to allow a tabular data statement to be used to assign the eleme
of arrays of variables or constants. The DATA statement may be
used to assign variables in the declarative or methods section o
model (though we discourage its use declaratively for variable
initialization) or to assign constant arrays of any type, including
sets, in the declarative section. Here are some examples:

DATA (* 4+ *) MODEL tabular_ex;

lset,rset,cset IS_A set OF integer_constant;

rset :== [1..3];

cset :== rset - [2];

lset :== [5,7];

a[rset][cset] IS_A real;

b[lset][cset][rset] IS_A real_constant;

(* rectangle table *)

DATA FOR a:

COLUMNS 1,3; (*order last subscript cset*)

UNITS {kg/s}, {s}; (* columnar units *)

(* give leading subscripts *)

[1] 2.8, 0.3;

[2] 2.7, 1.3;

[3] 3.3, 0.6;

END DATA;

(* 2 layer rectangle table *)

CONSTANT DATA FOR b:

COLUMNS 1..3; (* order last subscript rset *)

(* UNITS omitted, so either the user gives value in the

table or values given are DIMENSIONLESS. *)

(* ordering over [lset][cset] required *)

[5][1] 3 {m}, 2{m}, 1{m};
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 188

s

tion
n.

lity.

e of

n a

 are
ops
ts.
[5][3] 0.1, 0.2, 0.3;

[7][1] -3 {m/s}, -2{m/s}, -1{m/s};

[7][3] 4.1 {1/s}, 4.2 {1/s}, 4.3 {1/s};

END DATA;

END tabular_ex;

For sparse arrays of variables or constants, the COLUMNS and
(possibly) UNITS keywords are omitted and the array subscript
are simply enumerated along with the values to be assigned.

19.2.5 RELATIONS

Mathematical expression: The syntax for a mathematical expression is any legal combina
of variable names and arithmetic operators in the normal notatio
An expression may contain any number of matched rounded
parentheses, (), to clarify meaning. The following is a legal
arithmetic expression:

y^2+(sin(x)-tan(z))*q

Each additive term in a mathematical expression (terms are
separated by + or - operators) must have the same dimensiona

An expression may contain an index variable as a part of the
calculation if that index variable is over a set whose elements ar
type integer. (See the FOR/CREATE and FOR/DO statements
below.) An example is:

term[i] = a[i]*x^(i-1);

Numerical relations The syntax for a numeric relation is either

optional_label: LHS relational_operator RHS;

or

optional_label: objective_type LHS;

Objective_type is eitherMAXIMIZE orMINIMIZE . RHS and
LHS must be one or more variables, constants, and operators i
normal algebraic expression. The operators allowed are defined
below and in Section 19.6.3. Variable integers, booleans, and
symbols are not allowed as operands in numerical relations, nor
boolean constants. Integer indices declared in FOR/CREATE lo
are allowed in relations, and they are treated as integer constan
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

189 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.

r

d

rt

ic
Relational operators:

=, >=, <=, <, >,
<>

These are the numerical relational operators for declarative use

Ftot*y['methane'] = m['methane'];

y['ethanol'] >= 0;

Equations must be dimensionally correct.

MAXIMIZE,
MINIMIZE

Objective function indicators.

Binary Operators: +, -, *, /, ^. We follow the usual algebraic order of operations fo
binary operators.

+ Plus. Numerical addition or set union.

- Minus. Numerical subtraction or set difference.

* Times. Numerical multiplication or set intersection.

/ Divide. Numeric division. In most cases it implies real division an
not integer division.

^ Power. Numeric exponentiation. If the value of y in x^y is not
integer, then x must be greater than 0.0 and dimensionless.

Unary Operators: -,ordered_function()

- Unary minus. Numeric negation. There is no unary + operator.

ordered_function (
)

unary real valued functions. The unary real functions we suppo
are given in section Section 19.6.3.

Real functions of sets of
real terms:

SUM[term set] Add all expressions in the function’s list.

For the SUM, the base type real items can be arbitrary arithmet
expressions. The resulting items must all be dimensionally
compatible.

An examples of the use is:
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 190

 a

ple:

n

n

e
use
ng
 to

nce
SUM[y[components]] = 1;

or, equivalently, one could write:

SUM[y[i] | i IN components] = 1;

Empty SUM[] yields
wild 0.

When a SUM is compiled over a list which is empty it generates
wild dimensioned 0. This will sometimes cause our dimension
checking routines to fail. The best way to prevent this is to make
sure the SUM never actually encounters an empty list. For exam

SUM[Q[possibly_empty_set], 0{watt}];

In the above, the variablesQ[i] (if they exist) have the
dimensionality associated with an energy rate. When the set is
empty, the 0 is the only term in the SUM and establishes the
dimensionality of the result. When the set is NOT empty the
compiler will simplify away thetrailing 0 in the sum.

PROD[term set] Multiply all the expressions in the product’s list. The product of a
empty list is a dimensionless value, 1.0.

Possible future functions: (Not implemented - only under confused consideration at this
time.) The following functions only work in methods as they are
not smooth function and would destroy a Newton-based solutio
algorithm if used in defining a model equation:

MAX[term set] (* 4+ *) maximum value on list of arguments

MIN[term set] (* 4+ *) minimum value on list of arguments

19.2.6 DERIVATIVES IN RELATIONS (* 4+ *)

Simply put, we would like to have general partial and full
derivatives usable in writing equations, as there are many
mathematically interesting things that can be said about both. W
have not implemented such things yet for lack of time and beca
with several implementations (see gPROMS and OMOLA, amo
others) already out there we can’t see too many research points
be gained by more derivative work.

19.2.7 EXTERNAL RELATIONS

We cannot document these at the present time. The only refere
for them is [[abbottthesis]].
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

191 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 be
 used

f

es

1

ce

r on
19.2.8 CONDITIONAL RELATIONS (* 4 *)

The syntax is CONDITIONAL list_of_relation_statements END
CONDITIONAL;

A CONDITIONAL statement can appear anywhere in the
declarative portion of the model and it contains only relations to
used as boundaries. That is, these real arithmetic equations are
in expressing logical condition equations via the SATISFIED
operator. See LOGICAL FUNCTIONS on page 215.

19.2.9 LOGICAL RELATIONS (* 4 *)

Logical expression An expression whose value is TRUE or FALSE is a logical
expression. Such expressions may contain boolean variables. I
A,B , andlaminar areboolean , then the following is a logical
expression:

A + (B * laminar)

as is (and probably more clearly)

A OR (B AND laminar)

The plus operator acts like an OR among the terms while the tim
operator acts like an AND. Think of TRUE being equal to 1 and
FALSE being equal to 0 with the 1+1=0+1=1+0=1, 0+0=0, 1*1=
and 0*1=1*0=0*0=0. IfA = FALSE, B=TRUE andlaminar is
TRUE, this expression has the value

FALSE OR (TRUE AND TRUE) -->TRUE

or in terms of ones and zeros

0 + (1 * 1) --> 1.

Logical relations are then made by putting together logical
expressions with the boolean relational operators == and !=. Sin
we have no logical solving engine we have not pushed the
implementation of logical relations very hard yet.

19.2.10 NOTES (* 4 *)

Within a MODEL(or METHOD) definition annotations (hereafter
called notes) may be made on a part declared in the MODEL, o
Last modified: June 20, 1998 10:58 pm

DATA TYPE DECLARATIONS 192

n

e of

ed

 the

at a
its
ame
only

ks
all
the MODEL (or METHOD) itself. Short notes may be made whe
defining or refining an object by enclosing the note in "double
quotes." Longer notes may be made in a block statement.

Each note is entered in a database with the name of the file, nam
MODEL, name of METHOD if applicable, and the language (a
kind of keyword) in which the note is written. Users, user
interfaces, and other programs may query this database for
information on models and simulations. The block notes may
include code fragments in other languages that you wish to emb
in your MODEL or any other kind of text.

Short notes should be included as you write any model to clarify
roles of parts and variables. All short notes have the language
'inline.' Here are some examples of short notes:

L[1..10] "L[i] is the length of the ith rod"

IS_A distance;

thetaM "angle between horizon and moon",

thetaJ "angle between horizon and jupiter"

IS_A angle;

car.tires "using car in Minnesota, you betcha"

IS_REFINED_TO snow_tire;

In the second IS_A statement concerning two angles, we see th
short note in double quotes goes with the name immediately to
left. We also see that the note comes before the comma if the n
is part of a list of names. In the third statement, we see that not
simple names but also qualified names may be annotated.

Longer notes are made in block statements of the form below.
These blocks can appear in a METHOD or MODEL. These bloc
can also be written separately before or after a model as we sh
see.

NOTES

'language or keyword' list.of, names {

free-form block of text to store in the database

exactly as written.

}

some.other.name {

 this note has the same language or keyword as the

first since we didn't define a new keyword in single

quotes before the name list.

}

'another language' some.other.name {
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

193 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

e of

ke

d

ation

 the
 en espanol

}

'fortran' SELF {

This model should be solved with subroutine LSODE.

This note demonstrates that "SELF" can be used to

annotate the entire model instead of a named part.

}

END NOTES;

Notes made outside the scope of a model definition look like on
the following:

ADD NOTES IN name_of_model;

'language or keyword' list.of, names {

 more text

} (* more than one note may be made in this block if

desired. *)

END NOTES;

ADD NOTES IN name_of_model METHOD name_of_method;

'language or keyword' SELF {

This method proves Fermat's last theorem and makes

toast.

}

'humor' SELF {

ASCEND is not expected to make either proving FLT or

toasting possible.

}

END NOTES;

We can add notes to the database before or after defining the
annotated model. This is handy for several reasons including:

• Lengthy notes mixed with model and method code can ma
that code very hard to read.

• Separate notes describing a family of models can be loade
and browsed before loading that library family.

• Users other than the author of a model can annotate that
model without fear of introducing typographical errors into
the model.

These advantages come with a disadvantage that all document
has. If you change the model, you ought to change the
documentation at the same time. To make finding these
documentation locations in need of change easier, the name of
file containing each note is included in the loaded database.
Last modified: June 20, 1998 10:58 pm

DECLARATIVE STATEMENTS 194

ctly

and

ve
The
f an

of

ents
s in
le

s a part
S/

ts
H

,

 on

 C

e

Experience has shown that even documentation embedded dire
in models or in other computer programs gets out-dated if the
person changing the program is in a hurry and is not required to
document properly as part of the task at hand. Neither ASCEND
nor any other software system can eliminate the garbage code
documentation that results from undisciplined modeling.

19.3 DECLARATIVE STATEMENTS

We have already seen several examples that included declarati
statements. Here we will be more systematic in defining things.
statements we describe are legal within the declarative portion o
ATOM or MODEL definition. The declarative portion stops at the
keyword METHODS if it is present in the definition or at the end
the definition.

Statements Statements in ASCEND terminate with a semicolon (;). Statem
may extend over any number of lines. They may have blank line
the middle of them. There may be several statements on a sing
line.

Compound statements Some statements in ASCEND can contain other statements a
of them. The declarative compound statements are the ALIASE
IS_A, CONDITIONAL, FOR/CREATE, SELECT/CASE, and
WHEN/CASE statements. The procedural compound statemen
allowed only in methods are the FOR/DO, FOR/CHECK, SWITC
(* 4 *) and the IF statements. Compound statements end with "END
word ; ", whereword matches the beginning of the syntax block
e.g.END FOR.and they can be nested, with some exceptions
which are noted later.

CASE statements are
here, finally!

(*4*) WHEN/CASE, CONDITIONAL, and SELECT/CASE
handle modeling alternatives within a single definition. The easy
way to remember the difference is that the first picks which
equations to solve WHEN discretevariables have certain values,
while the second SELECTs which statements to compile based
discreteconstants. (* 4 *) SWITCH statements handle flow of
control in methods, in a slightly more generalized form than the
language switch statement.

Type declarations are not
compound statements.

MODEL and ATOM type definitions and METHOD definitions ar
not really compound statements because they require a name
following their END word that matches the name given at the
beginning of the definition. These definitions cannot be nested.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

195 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

nd

ach

iled

 to

is
an

he

 an
nt of

es
e
 of

en

ues

 of
ASCEND operator
synopses:

We’ll start with an extremely brief synopsis of what each does a
then give detailed descriptions. It is helpful to remember that an
instance may have many names, even in the same scope, but e
name may only be defined once.

IS_A Constructor. Calls for one or more named instances to be comp
using the type specified. (* 4 *) If the type is one that requires
parameters, the parameters must be supplied in () following the
type name.

IS_REFINED_TO Reconstructor. Causes the already compiled instance(s) named
have their type changed to a more refined type. This causes an
incremental recompilation of the instance(s). IS_REFINED_TO
not a redefinition of the named instances because refinement c
only add compatible information. The instances retain all the
structure that originally defined them. (* 4 *) If the type being
refined to requires arguments, these must be supplied, even if t
same arguments were required in the IS_A of the originally less
refined declaration of the instance.

ALIASES (* 4 *) Part alternate naming statement. Establishes another name for
instance at the same scope or in a child instance. The equivale
an ALIASES in ASCEND III is to create another part with the
desired name and merge it immediately via ARE_THE_SAME
with the part being renamed, a rather expensive and unintuitive
process.

ALIASES/IS_A
(*4*)

Creates an array of alternate names for a list of existing instanc
with some common base type and creates the set over which th
elements of the array are indexed. Useful for making collections
related objects in ways the original author of the model didn’t
anticipate. Also useful for assembling array arguments to
parameterized type definitions.

WILL_BE (* 4 *) Forward declaration statement. Promises that a part with the giv
type will be constructed by an as yet unknown IS_A statement
above the current scope. At present WILL_BE is legal only in
defining parameters. Were it legal in the body of a model,
compiling models would be very expensive.

ARE_THE_SAME Merge. Calls for two or more instances already compiled to be
merged recursively. This essentially means combining all the val
in the instances into the most refined of the instances and then
destroying all the extra, possibly less refined, instances. The
remaining instance has its original name and also all the names
the instances destroyed during the merge.
Last modified: June 20, 1998 10:58 pm

DECLARATIVE STATEMENTS 196

ion
e

ed
inct
sent
ed.

ts
et

s a

nts
.

e

ns

or
re
s
es
WILL_BE_THE_SAME
(* 4 *)

Structural condition statement restricting objects in a forward
declaration. The objects passed to a parameterized type definit
can be constrained to have arbitrary parts in common before th
parameterized object is constructed.

WILL_NOT_BE_THE_S
AME (* 4 *)

Structural condition statement restricting objects in a forward
declaration. We apologize for the length of this key word, but we
bet it is easy to remember. The objects passed to a parameteriz
type definition can be constrained to have arbitrary parts be dist
instances before the parameterized object is constructed. At pre
the constraint is only enforced when the objects are being pass

ARE_NOT_THE_SAME
(* 4+ *)

Cannot be merged. We believe it is useful to say that two objec
cannot be merged and still represent a valid model. This is not y
implemented, however, mainly for lack of time. The
implementation is simple.

ARE_ALIKE Refinement clique constructor. Causes a group of instances to
always be of the same formal type. Refining one of them cause
refinement of all the others. Does not propagateimplicit type
information, such as assignments to constants or part refineme
made from a scope other than the scope of the formal definition

FOR/CREATE Indexed execution of other declarative statements. Required for
creating arrays of relations and sparse arrays of other types.

FOR/CHECK Indexed checking of the conditions (WHERE statements) of a
parameterized model.

SELECT/CASE (*4*) Select a subset of statements to compile. Given the values of th
specifiedconstants, SELECT compiles all cases that match those
values. A name cannot be defined two different ways inside the
SELECT statement, but it may be defined outside the case
statement and thenrefined in different ways in separate cases.

CONDITIONAL (*4*) Describe bounding relations. The relations written inside a
CONDITIONAL statement must all be labelled. These relations
can be used to define regions in which alternate sets of equatio
apply using the WHEN statement.

WHEN/CASE (* 4 *) When logicalvariables have certain values, use certain relations
model parts in defining a mathematical problem. The relations a
not defined inside the WHEN statement because all the relation
must be compiled regardless of which values the logical variabl
have at any given moment.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

197 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

rds

plied
s

e
of

d
d
ou

, if

tion
e

of

 on

es
h

lled
Reminder: In the following detailed statement descriptions, we show keywo
in capital letters. These words must appear in capital letters as
shown in ASCEND statements. We show optional parts to a
statement enclosed in double angle brackets (« ») and user sup
names in lower-caseitalic letters. (Remember that ASCEND treat
the underscore (_) as a letter). The user may substitute any nam
desired for these names. We use names that describe the kind
name the user should use.

Operators in detail:

IS_A This statement has the syntax

list_of_instance_names IS_A
model_name«(arguments_if_needed)»;

The IS_A statement allows us to declareinstances of a giventype to
exist within a model definition. Iftype has not been defined (loade
in the ASCEND environment) then this statement is an error an
the MODEL it appears in is irreparably damaged (at least until y
delete the type definitions and reload a corrected file). Similarly
the arguments needed are not supplied or if provably incorrect
arguments are supplied, the statement is in error. The construc
of the instances does not occur until all the arguments satisfy th
definition oftype.

If a name is used twice in WILL_BE/IS_A/ALIASES statements
the same model, ASCEND will complain bitterly when the
definition is parsed. Duplicate naming is a serious error. Labels
relations share the same name space as other objects.

IS_REFINED_TO This statement has the syntax

list_of_instances IS_REFINED_TO

type_name «(arguments_if_needed)»;

We use this statement to change the type of each of the instanc
listed to the typetype_name. The modeler has to have defined eac
member on the list of instances. Thetype_name has to be a type
which refines the types of all the instances on the list.

An example of its use is as follows. First we define the parts ca
fl1, fl2 and fl3 which are of type flash.

fl1, fl2, fl3 IS_A flash;
Last modified: June 20, 1998 10:58 pm

DECLARATIVE STATEMENTS 198

ons
an

pe

 any

he

S
e, e.g.

ce
ES

h

 of b
ned

: if
Assume that there exists in the previously defined model definiti
the type adiabatic_flash that is a refinement of flash. Then we c
make fl1 and fl3 into more refined types by stating:

fl1, fl3 IS_REFINED_TO adiabatic_flash;

This reconstruction does not occur until the arguments to the ty
satisfy the definitiontype_name.

ALIASES (* 4 *) This statement has the syntax

list_of_instances ALIASES instance_name ;

We use this statement to point at an already existing instance of
type other thanrelation , logical_relation , orwhen. For
example, say we want a flash tank model to have a variable T, t
temperature of the vapor-liquid equilibrium mixture in the tank.

MODEL tank;

feed, liquid, vapor IS_A stream;

state IS_A VLE_mixture;

T ALIASES state.T;

liquor_temperature ALIASES T;

END tank;

We might also want a more descriptive name than T, so ALIASE
can also be used to establish a second name at the same scop
liquor_temperature .

An ALIASES statement will not be executed until the RHS instan
has been created with an IS_A. The compiler schedules ALIAS
instructions appropriately and issues warnings if recursion is
detected. An array of aliases, e.g.

b[1..n], c ALIASES a;

is permitted (though we can’t think why anyone would want suc
an array), and the sets over which the array is defined must be
completed before the statement is executed. So, in the example
and c, the array b will not be created until a exists and n is assig
a value. b and c will be created at the same time since they are
defined in the same statement. This suggests the following rule
you must use an array of aliases, do not declare it in the same
statement with a scalar alias.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

199 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

ay
be

ce is

gh

and

es

e list

not

is
The ALIASES RHS can be an element or portion of a larger arr
with the following exception. The existing RHS instance cannot
a relation or array of relations (including logical relations and
whens) because of the rule in the language that a relation instan
associated with exactly one model.

ALIASES/IS_A
(*4*)

The ALIASES/IS_A statement syntax is subject to change, thou
some equivalent will always exist. We take a set of
symbol_constant or integer_constant and pair it with a
list of instances to create an array. For the moment, the syntax
semantics is as follows.

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OF
settype ;

or

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OFsettype
WITH_VALUE (value_list_matching_settype);

aset is the name of the set that will be created by the IS_A to
index the array of aliases. If
value_list_matching_set_type is not given, the
compiler will make one up out of the integers (1..number of nam
in list_of_instances) or symbols derived from the
individual names given. If the value list is given, it must have the
same number of elements as the list of instances does. The valu
elements must be unique because they form a set. The list of
instances can contain duplicates. If any of these conditions are
met properly, the statement is in error.

ALIASES/IS_A can be used inside a FOR statement. When this
occurs, the definition ofaset must be indexed and it must be the
last subscript ofalias_array_instance . The statement must
look like:

array_instance[FOR_index][aset[FORindex]]
ALIASES (list_of_instances) WHERE
aset[FORindex] IS_A set OFsettype WITH_VALUE
(value_list_matching_settype);

Here, as with the unindexed version, the WITH_VALUE portion
optional.
Last modified: June 20, 1998 10:58 pm

DECLARATIVE STATEMENTS 200

ent
,
n
at

t
lled

r

 of

e

 as

 of
t

e in
If this explanation is unclear, just try it out. The compiler error
messages for ALIASES/IS_A are particularly good because we
know it is a bit tricky to explain.

WILL_BE (* 4 *) instance WILL_BE type_name ;

The most common use of this forward declaration is as a statem
within the parameter list of a model definition. In parameter lists
list_of_instances must contain exactly one instance. Whe
a model definition includes a parameter defined by WILL_BE, th
model cannot be compiled until a compiled instance at least as
refined as the type specified bytype_name is passed to it.

(* 4+ *) The second potential use of WILL_BE is to establish tha
an array of a common base type exists and its elements will be fi
in individually by IS_A or ARE_THE_SAME or ALIASES
statements. WILL_BE allows us to avoid costly reconstruction o
merge operations by establishing a placeholder instance which
contains just enough type information to let us check the validity
other statements that require type compatibility while delaying
construction until it is called for by the filling in statements.
Instances declared with WILL_BE are never compiled if they ar
not ultimately resolved to another instance created with IS_A.
Unresolved WILL_BE instances will appear in the user interface
objects of type PENDING_INSTANCE_model_name. Because of
the many implementation and explanation difficulties this usage
WILL_BE creates, it is not allowed. The ALIASES/IS_A construc
does the same job in a much simpler way.

ARE_THE_SAME The format for this instruction is

list_of_instancesARE_THE_SAME;

All items on the list must have compatible types. For the exampl
Fig. 1, consider a model where we define the following parts:

a1 IS_A A;

b1 IS_A B;

c1 IS_A C;

d1 IS_A D;

e1 IS_A E;

Then the following ARE_THE_SAME statement is legal

a1, b1, c1 ARE_THE_SAME;
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

201 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

.”

e

all
type

f
o
 by
c.,
while the following are not

b1, d1 ARE_THE_SAME;

a1, c1, d1 ARE_THE_SAME;

b1, e1 ARE_THE_SAME;

When compiling a model, ASCEND will put all of the instances
mentioned as being the same into an ARE_THE_SAME “clique
ASCEND lists members of this clique when one asks via the
interface for the aliases of any object in a compiled model.

Merging any other item with a member of the clique makes it th
same as all the other items in the clique, i.e., it adds the newly
mentioned items to the existing clique.

ASCEND merges all members of a clique by first checking that
members of the clique are type compatible. It then changes the
designation of all clique members to that of the most refined
member.

Figure 1. Diagram of the model type hierarchy A,B,C,D,E

It next looks inside each of the instances, all of which are now o
the same type, and puts all of the parts with the same name int
their respective ARE_THE_SAME cliques. The process repeats
processing these cliques until all parts of all parts of all parts, et

A

C

D

E

B

refines refines

refines
Last modified: June 20, 1998 10:58 pm

DECLARATIVE STATEMENTS 202

g
r a

 a
If a

ned
nts

and
in
 by

tial
ch

f

are their respective most refined type or discovered to be type
incompatible.

There are now lots of cliques associated with the instances bein
merged. The type associated with each such clique is now eithe
model, an array, or an atom (i.e., a variable, constant, or set). If
model, only one member of the clique generates its equations.
variable, it assigns all members to the same storage location.

Note that the values of constants and sets are essentiallytype
information, so merging two already assigned constants is only
possible if merging them does not force one of them to be assig
a new value. Merging arrays with mismatching ranges of eleme
is an error.

WILL_BE_THE_SAME
(* 4 *)

There is no further explanation of WILL_BE_THE_SAME.

WILL_NOT_BE_THE_S
AME (* 4 *)

There is no further explanation of WILL_NOT_BE_THE_SAME.

ARE_NOT_THE_SAME
(* 4+ *)

ARE_NOT_THE_SAME will be documented further when it is
implemented.

ARE_ALIKE The format for this statement is

list_of_instance_names ARE_ALIKE;

The compiler places all instances in the list into an ARE_ALIKE
clique. It checks that the members are formally type compatible
then it converts each into the most refined type of any instance
the clique. At that point the compiler stops. It does not continue
placing the parts into cliques nor does it merge anything.

There are important consequences of modeling with such a par
merge. The consequences we are about to describe can be mu
more reliably achieved by use of parameterized types,when the
types are well understood. When we are exploring new ways of
modeling, ARE_ALIKE still has its uses. When a model and its
initial uses are understood well enough to be put into a reusable
library, then parameterization and the explicit statement of
structural constraints by operators such as
WILL_NOT_BE_THE_SAME should be the preferred method o
ensuring correct use.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

203 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

eler
t
ice

r
 or

ams

t

t
o

n
t of
al

s
n

E in

 of
o
es

 of

ks
at
One consequence of ARE_ALIKE is to prevent extreme model
misuse when configuring models. For example, suppose a mod
creates a new pressure changing model. The modeler is not ye
concerned about the type of the streams into and out of the dev
but does care that these streams are of the same final type. Fo
example, the modeler wants both to be liquid streams if either is
both to be vapor streams if either is. By declaring both to be stre
only but declaring the two streams to be alike, the modeler
accomplishes this intent. Suppose the modeler merges the inle
stream with a liquid outlet stream from a reactor. The merge
operation makes the inlet stream into a liquid stream. The outle
stream, being in an ARE_ALIKE clique with the inlet stream, als
becomes a liquid stream. Any subsequent merge of the outlet
stream with a vapor stream will lead to an error due to type
incompatibility when ASCEND attempts to compile that merge.
Without the ARE_ALIKE statement, the compiler can detect no
such incompatibility unless parameterized models are used.

Another purpose is the propagation of types through a model.
Altering the type of the inlet stream through merging it with a
liquid stream automatically made the outlet stream into a liquid
stream.

If all the liquid streams within a distillation column are alike, the
the modeler can make them all into streams with a particular se
components in them and with the same method used for physic
property evaluation by merging only one of them with a liquid
stream of this type. This isthe primary example which has been
used to justify the existence of ARE_ALIKE. We have observed
that its use makes a column library very difficult to compile
efficiently. But since we now have parameterized types to help u
keep the column library semantically consistent, ARE_ALIKE ca
be left to its proper role: the rapid prototyping of partially
understood models. We have yet to see anyone use ARE_ALIK
a prototyping context, however.

Finally, because ARE_ALIKE does not recursively put the parts
ARE_ALIKEd instances into ARE_ALIKE cliques, it is possible t
ARE_ALIKE model instances which have compatible formal typ
but incompatibleimplicit types. This can lead to unexpected
problems later and makes the ARE_ALIKE instruction a source
non-reusability.

FOR/CREATE The FOR/CREATE statement is a compound statement that loo
like a loop. It isn’t, however, necessarily compiled as a loop. Wh
FOR really does is specify an index set value. Its format is:
Last modified: June 20, 1998 10:58 pm

PROCEDURAL STATEMENTS 204

tion
nce
 the

d in

are

r

ary

ified

m
nt
FOR index_variable IN set CREATE

list_of_statements;

END FOR;

This statement can be in the declarative part of the model defini
only. Every statement in the list should have at least one occurre
of the index variable, or the statement should be moved outside
FOR to avoid redundant execution. A correct example is

FOR i IN components CREATE

a.y[i], b[i] ARE_THE_SAME;

y[i] = K[i]*x[i];

END FOR;

FOR loops can be nested to produce sparse arrays as illustrate
ARRAYS CAN BE JAGGED on page 173. IS_A and ALIASES
statements are allowed in FOR loops, provided the statements
properly indexed, a new feature in ASCEND IV.

SELECT/CASE (*4*) Declarative. Order does not matter. All matching cases are
executed. The OTHERWISE is executed if present and no othe
CASEs match. SELECT is not allowed inside FOR. Writing FOR
statements inside SELECT is allowed.

CONDITIONAL (*4*) Both real and logical relations are allowed in CONDITIONAL
statements. CONDITIONAL is really just a shorthand for setting
the $boundary flag on a whole batch of relations, since $bound
is a write-once attribute invisible through the user interface and
methods at this time.

WHEN/CASE (* 4 *) Inside each CASE, relations or model parts to be used are spec
by writing, for example, USE mass_balance_1;. The method of
dealing with the combined logical/nonlinear model is left to the
solver. All matching CASEs are included in the problem to be
solved.

19.4 PROCEDURAL STATEMENTS

METHODS This statement separates the method definitions in ASCEND fro
the declarative statements. All statements following this stateme
are to define methods in ASCEND while all before it are for the
declarative part of ASCEND. The syntax for this statement is
simply

METHODS
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

205 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

s,

fter
ing
e
thod

e
ady
e

d.

ady
e
s

e
e of
ted
as

ely,
with no punctuation. The next code must be a METHOD or the
END of the type being defined. If there are no method definition
this statement may be omitted.

METHOD definitions for a type can also be added or replaced a
the type has been defined. This is to make creating and debugg
of methods as interactive as possible. In ASCEND III an instanc
must be destroyed and recreated each time a new or revised me
is added to the type definition. This is a very expensive process
when working with models of significant size.

The detailed semantics of method inheritance, addition, and
replacement of methods are given at the end of this section.

ADD METHODS IN
type_name; (*4*)

This statement allows new methods to be added to an already
loaded type definition. The next code must be a METHOD or th
END METHODS; statement. If a method of the same name alre
exists intype_name , the statement is in error. If other types refin
type_name then the addition follows the method inheritance
rules. Any type which inherited methods fromtype_name now
inherits the methods added totype_name . If a refinement of
type_name already defines a method ADDed totype_name ,
then the existing method in the more refined type is not disturbe

REPLACE METHODS
IN type_name;
(*4*)

This statement allows existing methods to be replaced in an alre
loaded type definition. The next code must be a METHOD or th
END METHODS; statement. If a method of the same name doe
not exist intype_name , the statement is in error. If other types
refinetype_name then the replacement follows the method
inheritance rules. Any type which inherited the old method now
inherits the replacment method instead.

ADD METHODS IN
DEFINITION MODEL;

This statement allows methods to be added globally. It should b
used very sparingly. Library basemodel.a4l contains the exampl
this statement. Methods in the global model definition are inheri
by all models. There is no actual global model definition, but it h
a method list for practical purposes.

Initialization routines:

METHOD A method in ASCEND must appear following the METHODS
statement within a model. The system executes procedural
statements of the method in the order they are written.

At present, there are no local variables or other structures in
methods except loop indices. A method may be written recursiv
Last modified: June 20, 1998 10:58 pm

PROCEDURAL STATEMENTS 206

the

text
ed,
 and
 a
he

t to

 it
but there is an arbitrary stack depth limit (currently set to 20 in
compiler/initialize.h) to prevent the system from crashing on
infinite recursions.

Specifically disallowed in ASCEND III methods are IS_A,
ALIASES, WILL_BE, IS, IS_REFINED_TO, ARE_THE_SAME
and ARE_ALIKE statements as these “declare” the structure of
model and belong only in the declarative section.

(* 4+ *) In the near future, declarations of local instances (which
are automatically destroyed when the method exits) will be
allowed. Since methods are imperative, these local structure
definitions are processed in the order they are written. Local
structures are not allowed to shadow structures in the model con
with which the method is called. When local structures are allow
it will also be possible to define methods which take parameters
return values, thereby making the imperative ASCEND methods
rapid prototyping tool every bit as powerful and easy to use as t
declarative ASCEND language.

The syntax for a method declaration is

METHOD method_name;

«procedural statement;» (*one or more*)

END method_name;

Procedural assignment The syntax is

instance_name := mathematical_expression;

or

array_name[set_name] := expression;

or

list_of_instance_names := expression.

Its meaning is that the value for the variable(s) on the LHS is se
the value of the expression on the RHS.

DATA statements (DATA (* 4+ *) on page 187) can (should,
rather) also appear in methods.

FOR/DO statement This statement is similar to the FOR/CREATE statement except
can only appear in a method definition. An example would be

FOR i IN [1..n_stages] DO

T[i] := T[1] + (i-1)*DT;

...
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

207 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

tax

,
ase
ar

t

at

 of
END FOR;

Here we actually execute using the values of iin the sequence
given.So,

FOR i IN [n_stages..1] DO ... END FOR;

is an empty loop, while

FOR i IN [n_stages..1] DECREASING DO ... END FOR;

is a backward loop.

IF The IF statement can only appear in a method definition. Its syn
is

IF logical_expression THEN

list_of_statements

ELSE

list_of_statements

END IF;

or

IF logical_expression THEN

list_of_statements

END IF;

If the logical expression has a value of TRUE, ASCEND will
execute the statements in the THEN part. If the value is FALSE
ASCEND executes the statements in the optional ELSE part. Ple
use () to make the precedence of AND, OR, NOT, ==, and != cle
to both the user and the system.

SWITCH (* 4 *) Essentially roughly equivalent to the C switch statement, excep
that ASCEND allows wildcard matches, allows any number of
controlling variables to be given in a list, and assumes BREAK
the end of each CASE.

CALL External calls are not presently well defined, pending debugging
the EXTERNAL connection prototype originally created by Kirk
Abbott.

RUN This statement can appear only in a method. Its format is:

RUN name_of_method ;
Last modified: June 20, 1998 10:58 pm

PARAMETERIZED MODELS 208

t
ned
 the

the
ed

.

l be
odel
or

RUN part_name.name_of_method ;

or

RUN model_type :: name_of_method ;

The named method can be defined in the current model (the firs
syntax), or in any of its parts (the second syntax). Methods defi
in a part will be run in the scope of that part, not at the scope of
RUN statement.

Type access to methods: Whenmodel_type:: appears, the type named must be a type that
current model is refined from. In this way, methods may be defin
incrementally. For example:

MODEL foo;

x IS_A generic_real;

METHODS

METHOD specify;

x.fixed:= TRUE;

END specify;

END foo;

MODEL bar REFINES foo;

y IS_A generic_real;

METHODS

METHOD specify;

RUN foo::specify;

y.fixed := TRUE;

END specify;

END bar;

19.5 PARAMETERIZED MODELS

Parameterized model definitions have the following general form

MODEL new_type(parameter_list;)

«WHERE (where_list;)»

«REFINES existing_type «(assignment_list;)»»;

19.5.1 THE PARAMETER LIST

A parameter list is a list of statements about the objects that wil
passed into the model being defined when an instance of that m
is created by IS_A or IS_REFINED_TO. The parameter list is
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

209 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

 put
eeks

es

,
s

e

e

ave

eate

k
py

nts

f

nt,
mal
designed to allow a complete statement of the necessary and
sufficient conditions to construct the parameterized model. The
mechanism implemented is general, however, so it is possible to
less than the necessary information in the parameter list if one s
to confuse the model’s reusers. To make parameters easy to
understand for users with experience in other computer languag
(and to make the implementation much simpler), we define the
parameter list as ordered. All the statements in a parameter list
including the last one, must end with a ";". A parameter list look
like:

MODEL test (

x WILL_BE real;

n IS_A integer_constant;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE widget;

);

Each WILL_BE statement corresponds to a single object that th
user must create and pass into the definition oftest . We will
establish the local namex for the first object passed to the
definition oftest . n is handled similarly, and it must preceed th
definition ofp[1..n] , because it defines the set for the arrayp.
Constant types can also be defined with WILL_BE, though we h
used IS_A for the exampletest .

Each IS_A statement corresponds to a single constant-valued
instance or an array of constant-valued instances that we will cr
as part of the model we are defining. Thus, the user oftest must
supply an array of constants as the third argument. We will chec
that the instance supplied is subscripted on the set [1..n] and co
the corresponding values to the array p we create local to the
instance oftest .

WILL_BE statements can be used to pass complex objects
(models) or arrays of objects. Both WILL_BE and IS_A stateme
can be passed arguments that aremore refined than the type listed.
If an object that isless refined than the type listed, the instance o
parameterized modeltest will not be compiled. When a
parameterized model type is specified with a WILL_BE stateme
NO arguments should be given. We are only interested in the for
type of the argument, not how it was constructed.
Last modified: June 20, 1998 10:58 pm

PARAMETERIZED MODELS 210

nts
 a
ts
 a

ized

is

e

ter
e
n

ng
ft

ent
any
ype
s,

 of
 a
fore

ese
19.5.2 THE WHERE LIST

We can write structural and equation constraints on the argume
in the WHERE list. Each statement is a WILL_BE_THE_SAME,
WILL_NOT_BE_THE_SAME, an equation written in terms of se
or discrete constants, or a FOR/CHECK statement surrounding
group of such statements. Until all the conditions in the WHERE
list are satisfied, an object cannot be constructed using the
parameterized definition. If the arguments given to a parameter
type in an IS_A or IS_REFINED_TO statement cannot possibly
satisfy the conditions, the IS_A or IS_REFINED_TO statement
abandoned by the compiler.

We have not created a WILL_BE_ALIKE statement because
formal type compatibility in ASCEND is not really a meaningful
guarantee of object compatibility. Object compatibility is much
more reliably guaranteed by checking conditions on the structur
determining constants of a model instance.

19.5.3 THE ASSIGNMENT LIST

When we declare constant parameters with IS_A, we can in a la
refinement of the parameterized model assign their values in th
assignment list, thus removing them from the parameter list. If a
array of constants is declared with IS_A, then we must assign
values to ALL the array elements at the same time if we are goi
to remove them from the parameter list. If an array element is le
out, the type which assigns some of the elements and any
subsequent refinements of that type will not be compilable.

19.5.4 REFINING PARAMETERIZED TYPES

Because we wish to make the parameterized model lists repres
all the parameters and conditions necessary to use a model of
type, we must repeat the parameters declared in the ancestral t
when we make a refinement. If we did not repeat the parameter
the user would be forced to hunt up the (possibly long) chain of
types that yield an interesting definition in order to know the list
parameters and conditions that must be satisfied in order to use
model. We repeat all the parameters of the type being refined be
we add new ones. The only exception to this is that parameters
defined with IS_A and then assigned in theassignment_list
are not repeated because the user no longer needs to supply th
values. A refinement of the modeltest given in Section 19.5.1
follows.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

211 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

s
at all

o

at

ng
MODEL expanded_test (

x WILL_BE real;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE better_widget;

r[0..q[0].k] WILL_BE gizmo;

ms WILL_BE set OF symbol_constant;

) WHERE (

q[0].k >= 2;

r[0..q[0].k].giz_part WILL_BE_THE_SAME;

) REFINES test(

n :== 4;

);

In expanded_test , we see that the type of the arrayq is more
refined than it was intest . We see that constants and sets from
inside passed objects, such asq[0].k , can be used to set the size
of subseqent array arguments. We see a structural constraint th
thegizmo s in the arrayr must have been constructed with the
samegiz_part . This condition probably indicates that the gizm
definition takesgiz_part as a WILL_BE defined parameter.

19.6 MISCELLANY

19.6.1 VARIABLES FOR SOLVERS

solver_var Solver_var is the base-type for allcomputable variables in the
current ASCEND system. Any instances of an atom definition th
refines solver_var are considered potential variables when
constructing a problem for one of the solvers.

Solver_var has wild card dimensionality. (Wild card means that
until ASCEND can decide what its dimensionality is, it has none
assigned. ASCEND can decide on dimensionality while compili
or executing.) In system.a4l we define the following parts with
associated initial values for each:

Attributes: type default

lower_bound real 0.0

upper_bound real 0.0

nominal real 0.0
Last modified: June 20, 1998 10:58 pm

MISCELLANY 212

e
e

ble
as
d
t

ich

emi-
er
les.

 that

s

4l

er

ses

ad
fixed boolean FALSE

lower_boundandupper_bound are bounds for a variable which ar
monitored and maintained during solving. The nominal value th
value used to scale a variable when solving. The flagfixed indicates
if the variable is to be held fixed during solving. All atoms which
are refinements of solver_var will have these parts. The refining
definitions may reassign the default values of the attributes.

The latest full definition of solver_var is always in the file
system.a4l.

generic_real One should not declare a variable to be of type solver_var. The
nominal value and bound values will get you into trouble when
solving. If you are programming and do not wish to declare varia
types, then declare them to be of type generic_real. This type h
nominal value of 0.5 and lower and upper bounds of -1.0e50 an
1.0e50 respectively. It is dimensionless. Generic_real is the firs
refinement of solver_var and is also defined in system.a4l.

Kluges for MILPs Also defined in system.a4l are the types for integer, binary, and
semi-continuous variables.

solver_semi,
solver_integer,
solver_binary

We define basic refinements of solver_var to support solvers wh
are more than simply algebraic. Various mixed integer-linear
program solvers can be fed solver_semi based atoms defining s
continuous variables, solver_integer based atoms defining integ
variables, and solver_binary based atoms defining binary variab

Integers are relaxable. All these types have associated boolean flags which indicate
either the variable is to be treated according to its restricted
meaning or it is to be relaxed and treated as a normal continuou
algebraic variable.

Kluges for ODEs We have an alternate version of system.a4l called ivpsystem.a
which adds extra flags to the definition of solver_var in order to
support initial value problem (IVP) solvers (integrators).
Integration in the ASCEND IV environment is explained in anoth
chapter.

ivpsystem.a4l Having ivpsystem.a4l is a temporary, but highly effective, way to
keep people who want to use ASCEND only for algebraic purpo
from having to pay for the IVP overhead. Algebraic users load
system.a4l. Users who want both algebraic and IVP capability lo
ivpsystem.a4l instead of system.a4l. This method is temporary
because part of the extended definition of ASCEND IV is that
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

213 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

a
tes
ing

ute
 the

ired
ent
differential calculus constructs will be explicitly supported by the
compiler. The calculus is not yet implemented, however.

19.6.2 SUPPORTED ATTRIBUTES

(* 4+ *) The solver_var, and in fact most objects in ASCEND IV, should
have built-in support for (and thereby efficient storage of) quite
few more attributes than are defined above. These built-in attribu
are not instances of any sort, merely values. The syntax for nam
one of these supported attributes is:
object_name.$ supported_attribute_name.

Supported attributes may have symbol, real, integer, or boolean
values. Note that the$ syntax is essentially the same as the
derivative syntax for relations; derivatives are a supported attrib
of relations. The supported attributes must be defined at the time
ASCEND compiler is built. The storage requirement for a
supported boolean attribute is 1 bit rather than the 24 bytes requ
to store a run-time defined boolean flag. Similarly, the requirem
for a supported real attribute is 4 or 8 bytes instead of 24 bytes.

19.6.3 SINGLE OPERAND REAL FUNCTIONS :

exp() exponential (i.e., exp(x) = ex)

ln() log to the base e

sin() sine. argument must be an angle.

cos() cosine. argument must be an angle.

tan() tangent. argument must be an angle.

arcsin() inverse sine. return value is an angle.

arccos() inverse cosine. return value is an angle.

arctan() inverse tangent. return value is an angle.

erf() error function (not available from Microsoft Windoze)

sinh() hyperbolic sine

cosh() hyperbolic cosine
Last modified: June 20, 1998 10:58 pm

MISCELLANY 214

 as

lue
me

, P.

ed

n
est
tanh() hyperbolic tangent

arcsinh() inverse hyperbolic sine

arccosh() inverse hyperbolic cosine

arctanh() inverse hyperbolic tangent

lnm() modified ln function. This lnm function is parameterized by a
constant a, which is typically set to about 1.e-8. lnm(x) is defined
follows:

ln(x) for x > a

(x-a)/a + ln(a) for x <= a.

Below the value a (default setting is 1.0e-8), lnm takes on the va
given by the straight line passing through ln(a) and having the sa
slope as ln(a) has at a. This function and its first derivative are
continuous. The second derivative contains a jump at a.

The lnm function can tolerate a negative argument while the ln
function cannot. At present the value of a is controllable via the
user interface of the ASCEND solvers.

Operand dimensionality
must be correct.

The operands for an ASCEND function must be dimensionally
consistent with the function in question. Most transcendental
functions require dimensionless arguments. The trigonometric
functions require arguments with dimensionality of plane angles
ASCEND functions return dimensionally correct results.

The operands for ASCEND functions are enclosed within round
parentheses, (). An example of use is:

y = A*exp(-B/T);

Discontinuous functions: Discontinuous functions may destroy a Newton-based solutio
algorithm if used in defining a model equation. We strongly sugg
considering alternative formulations of your equations.

abs() absolute value of argument. Any dimensionality is allowed in an
abs() function.
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

215 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

n
iven.
ot
r

asic

 20

ITS
ntil

r

or

ust

rate
ses
19.6.4 LOGICAL FUNCTIONS

SATISFIED() (*4*) SATISFIED(relation_name,tolerance) returns TRUE if the relatio
named has a residual value less than the real value, tolerance, g
If the relation named is a logical relation, the tolerance should n
be specified, since logical relations evaluate directly to TRUE o
FALSE.

19.6.5 UNITSDEFINITIONS

As noted in 19.1.2, ASCEND will recognize conversion factors
when it sees them as {units). These units are built up from the b
units, and new units can be defined by the user. Note that the
assignment x:= 0.5 {100}; yields x == 50, and that there are no
'offset conversions,' e.g. F=9/5C+32. Please keep unit names to
characters or less as this makes life pretty for other users

One or more unit conversion factors can be defined with the UN
keyword. A unit of measure, once defined, stays in the system u
the system is shut down. A measuring unit cannot be defined
differently without first shutting down the system, but duplicate o
equivalent definitions are quietly ignored.

A UNITS declaration can occur in a file by itself, inside a model
inside an atom. UNITS definitions are parsed immediately, they
will be processed even if a surrounding MODEL or ATOM
definition is rejected. Because units and dimensionality are
designed into the deepest levels of the system, a unit definition m
be parsed before any atoms or relations use that definition. It is
good design practice to keep customized unit definitions in sepa
files and REQUIRE those files at the beginning of any file that u
them. Unit definitions are made in the form, for example:

UNITS (* several unit definitions could be here. *)

ohm = {kilogram*meter^2/second^3/ampere^2};

END UNITS;

The standard units library, measures.a4l, is documented in
Chapter 20.
Last modified: June 20, 1998 10:58 pm

MISCELLANY 216
 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

217 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS
Last modified: June 20, 1998 10:58 pm

	Chapter 19 The ASCEND IV language syntax and seman...
	19.1 Preliminaries
	ASCEND is cAsE sensitive!
	19.1.1 Punctuation
	keywords:

	Minor items:
	Tips:

	3:
	4
	4+
	LHS:
	RHS:
	Simple Names:
	Compound names:
	Groupings:
	« »
	(* *)
	()
	Efficiency tip:

	{ }
	[]
	.
	..
	:
	::
	;

	19.1.2 Basic Elements
	Boolean value
	User interface tip:

	Integer value
	Real value
	Reals stored in SI units
	Dimensionality:
	Name
	L
	M
	T
	E
	Q
	TMP
	LUM
	P
	S
	C
	Example of a dimensionally consistent equation.

	Unit expression
	Units
	Symbol Value
	Sets values
	We will say more about sets in 19.2.2.
	Sets are unordered.

	Arrays
	Arrays can be jagged
	Arrays are also instances
	Not contiguous storage
	Index variable
	Label:
	Lists
	Ordered lists:
	19.1.3 Basic Concepts
	Instances and types
	Implicit types
	Parsing
	Instantiation
	default_self

	19.2 Data Type Declarations
	Type qualifiers:
	UNIVERSAL
	Tip: Don’t use UNIVERSAL variables in relations.

	19.2.1 Models
	MODEL

	Simple models:
	foo
	bar

	Parameterized Models
	column(n,s)
	flowsheet

	19.2.2 Sets
	Set Declaration:
	:==

	Set Operations
	UNION[setlist]
	+
	A+B is shorthand for UNION[A,B]

	INTERSECTION[]
	*
	A*B is shorthand for INTERSECTION[A,B]

	Set difference:
	-
	CARD[set]
	CHOICE[set]
	IN
	SUCH_THAT (* 4 *)
	"|" is shorthand for SUCH_THAT.

	|

	19.2.3 Constants
	real_constant

	CONSTANT declaration example:
	integer_constant
	symbol_constant
	boolean_constant

	Setting constants
	:==
	It is suggested, but not required, that names of a...

	19.2.4 Variables
	ATOM
	DEFAULT, DIMENSION, and DIMENSIONLESS
	solver_var is a special case of ATOM and we will s...

	real
	integer
	boolean
	symbol

	Setting variables
	:=
	Note that := IS NOT =.

	Tabular assignments
	DATA (* 4+ *)

	19.2.5 Relations
	Mathematical expression:
	Numerical relations
	Relational operators:
	=, >=, <=, <, >, <>
	MAXIMIZE, MINIMIZE

	Binary Operators:
	+
	-
	*
	/
	^

	Unary Operators:
	-
	ordered_function()

	Real functions of sets of real terms:
	SUM[term set]

	Empty SUM[] yields wild 0.
	PROD[term set]

	Possible future functions:
	MAX[term set]
	MIN[term set]

	19.2.6 Derivatives in relations (* 4+ *)
	19.2.7 External relations
	19.2.8 Conditional relations (* 4 *)
	19.2.9 Logical relations (* 4 *)
	Logical expression
	19.2.10 NOTES (* 4 *)

	19.3 Declarative statements
	Statements
	Compound statements
	CASE statements are here, finally!
	Type declarations are not compound statements.

	ASCEND operator synopses:
	IS_A
	IS_REFINED_TO
	ALIASES (* 4 *)
	ALIASES/IS_A (*4*)
	WILL_BE (* 4 *)
	ARE_THE_SAME
	WILL_BE_THE_SAME (* 4 *)
	WILL_NOT_BE_THE_S AME (* 4 *)
	ARE_NOT_THE_SAME (* 4+ *)
	ARE_ALIKE
	FOR/CREATE
	FOR/CHECK
	SELECT/CASE (*4*)
	CONDITIONAL (*4*)
	WHEN/CASE (* 4 *)
	Reminder:

	Operators in detail:
	IS_A
	IS_REFINED_TO
	ALIASES (* 4 *)
	ALIASES/IS_A (*4*)
	WILL_BE (* 4 *)
	ARE_THE_SAME
	WILL_BE_THE_SAME (* 4 *)
	WILL_NOT_BE_THE_S AME (* 4 *)
	ARE_NOT_THE_SAME (* 4+ *)
	ARE_ALIKE
	FOR/CREATE
	SELECT/CASE (*4*)
	CONDITIONAL (*4*)
	WHEN/CASE (* 4 *)

	19.4 Procedural statements
	METHODS
	ADD METHODS IN type_name; (*4*)
	REPLACE METHODS IN type_name; (*4*)
	ADD METHODS IN DEFINITION MODEL;
	Initialization routines:
	METHOD

	Procedural assignment
	FOR/DO statement
	IF
	SWITCH (* 4 *)
	CALL
	RUN

	Type access to methods:

	19.5 Parameterized models
	19.5.1 The parameter list
	19.5.2 The WHERE list
	19.5.3 The assignment list
	19.5.4 Refining parameterized types

	19.6 Miscellany
	19.6.1 Variables for solvers
	solver_var

	Attributes:
	lower_bound
	upper_bound
	nominal
	fixed
	generic_real

	Kluges for MILPs
	solver_semi, solver_integer, solver_binary
	Integers are relaxable.

	Kluges for ODEs
	ivpsystem.a4l

	19.6.2 Supported attributes
	(* 4+ *)

	19.6.3 Single operand real functions:
	exp()
	ln()
	sin()
	cos()
	tan()
	arcsin()
	arccos()
	arctan()
	erf()
	sinh()
	cosh()
	tanh()
	arcsinh()
	arccosh()
	arctanh()
	lnm()
	Operand dimensionality must be correct.

	Discontinuous functions:
	abs()

	19.6.4 Logical functions
	SATISFIED() (*4*)

	19.6.5 UNITS definitions

