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The ASCEND modeling language

Molar stream example

We shall start our description of the ASCEND modeling language by presenting some
examples.  Let us start with the model of what superficially seems a simple concept: a
stream characterized only by the flows for the components in it.  We will build on this
model to construct that for some simple unit operations and then for a total flowsheet.

Molar stream

To model a simple molar stream, we must decide on the concepts on which it is to be
constructed.  A molar stream is one for which one lists only the molars flowrate and the
mole fraction for each of the components in it as well as a total flowrate.

We shall apply some hard learned knowledge about modeling streams and insist that the
intensive properties for a stream be collected together into a single concept we shall call
its state.  Then a stream will be its state plus its extensive properties.  Intensive variables
are those that are not quantity dependent.  Here the only intensive variables are those
describing the composition of the stream, i.e., the mole fractions for each of the
components.  The molar flowrates and the total molar flowrate are extensive variables
whose values would double if we were to double the size of the stream.

We will call this collection of intensive variables for a molar stream a molar mixture.
This model is in Fig. 1.  In it we define a set of mole fractions, one for each member of a
set of component names.

Model structure

Declarative

This model has a number of statements in it that we need to discuss.  It is headed by a line
stating we are defining a new model for ASCEND.  The next two lines define the parts in
the model and what type of thing each is.   One item is a set of components names, each
of which is of type symbol.   A symbol is a built-in type in ASCEND; it is an unbroken
sequence of up to 36 alphanumeric characters enclosed within two single quotes.  For
each member i in this set of components, we define a variable y[i] whose
interpretation is to be the mole fraction for that species in the stream.  It is of type
fraction.  The definition for fraction is in the library file called atoms.lib which is
available as a separate document.  Atoms.lib contains all definitions for a large number of
different variable types and should be referenced before starting the writing of a model.

Fig. 2 shows a typical variable type definition, one for molar_rate.  One can define a new
type of variable at any time by including a new atom definition.  An atom definition may
be thought of as the most elementary model definition in ASCEND and is used solely to
define variable types.  All other type definitions in ASCEND are called models.

The definition for the type molar_rate illustrates the idea of inheritance, a key capability
of the ASCEND language.   We see that molar_rate is a refinement of a previously
defined type solver_var.  Basically one can define a model or an atom to inherit all the
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statements of a previously defined model or atom and then add further statements to
complete the new type definition.  Thus the new item is everything the older one is plus
more.

MODEL mixture;

components                      IS_A set OF symbol;
        y[components]                  IS_A fraction;

        SUM(y[i] | i IN components) = 1.0;

  INITIALIZATION
    PROCEDURE clear;
        y[components].fixed := FALSE;
    END clear;

    PROCEDURE specify;
        y[components].fixed := TRUE;
        y[CHOICE(components)].fixed := FALSE;
    END specify;

    PROCEDURE reset;
        RUN clear;
        RUN specify;
    END reset;

END mixture;

Figure 1.  An ASCEND model for the intensive variables in a molar stream

ATOM molar_rate REFINES solver_var
DIMENSION Q/T
DEFAULT 100.0{lb_mole/hour};
lower_bound := 0.0{lb_mole/hour};
upper_bound := 1e50{lb_mole/hour};
nominal := 100.0{lb_mole/hour};

END molar_rate;

Figure 2.  Definition of the variable type molar_rate

Returning to our mixture model, the mole fractions must add to unity.  We add this
constraint using the SUM function which is built into ASCEND.  The sum function adds
together all of its arguments; there is no limit on the number of arguments it  may have.

Procedural

So far everything is simple.  We now see a section of the model entitled
INITIALIZATION, and, in this section, we find several PROCEDURE definitions.  Any
set of procedures may be included.   A modeler can ask that the ASCEND system to
execute these procedures at any time and in any order while debugging and solving.
They are executed ONLY on request.  They are true procedures; the statements execute in
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order and the value of a variable on the left-hand-side of a statement is replaced by the
value of the expression on the right.

The particular procedures included here are based on experience and are becoming a
standard for all models we write.  Let us make this standard into a modeling rule as
follows.

Good modeling practice in ASCEND: Attach
procedures clear, specify and reset (and scale) to all
models created in ASCEND as a part of good modeling
practice.

Doing so will force a modeler to consider these issues carefully.  Also, from our
experience in creating and debugging models, these issues, once resolved, are an
excellent starting place for all other uses of a model.

Associated with every computable variable in ASCEND is a boolean flag indicating if its
value is to be fixed or not when solving.  If TRUE, the variable value is held at its current
value while solving; if FALSE its value is computed using the equations defining the
model.  In the clear procedure we set the flags for all computable variables to FALSE.

In the specify procedure, we set exactly enough of the flags to TRUE to make the model
square (i.e., n equations in n unknowns).   This model has exactly one equation.  The
fixed flag for each of the compositions is set to TRUE except for one which can be
computed.  The CHOICE function selects exactly one of the elements in the set
mentioned, the choice being arbitrary.

The reset procedure runs the clear procedure and then the specify procedure to return the
model fixed flags to a known standard state.

Finally,  we use the scale procedure to allow extensive variables to be scaled according to
their current values.  This model only contains intensive variables so the scale procedure
is empty.  As a part of good modeling practice, we do insist that the procedure exists even
if it is empty.  Scaling resets the values for the nominal attribute of a variable.  Do not set
this value to zero or leave it at zero when, for example, defining a new type of variable.

Molar stream example

We are now ready to create the molar stream model, Fig. 3.

The molar stream model contains a part called state whose type is a molar mixture, a type
we just defined.  It also has variables to represent the total molar flowrate for the stream
and the molar flows for each of the stream components.

We see our first ARE_THE_SAME statement.  The set of component names defined for
the stream and the set of component names inside the state are to be exactly the same set.
In the current version of ASCEND, these sets are stored in the exact same storage
locations.  The one set has two names in the molar stream model: components and
state.components.
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MODEL molar_stream;

components IS_A set OF symbol;
state IS_A mixture;
Ftot,f[components] IS_A molar_rate;

components, state.components ARE_THE_SAME;

FOR i IN components CREATE
f_def[i]: f[i] = Ftot*state.y[i];

END;

INITIALIZATION

    PROCEDURE clear;
RUN state.clear;
Ftot.fixed := FALSE;
f[components].fixed := FALSE;

    END clear;

    PROCEDURE seqmod;
RUN state.specify;
state.y[components].fixed := FALSE;

    END seqmod;

    PROCEDURE specify;
RUN seqmod;
f[components].fixed := TRUE;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
FOR i IN components DO

  f[i].nominal := f[i] + 0.1{mol/s};
END;
Ftot.nominal := Ftot + 0.1{mol/s};

    END scale;

END molar_stream;

Figure 3.  An ASCEND model for a molar stream

The approach is that one can attach to any instance within a part by constructing a
qualified name for it.  The name has the structure:

part_name.inner_instance_name
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Qualified names

ASCEND allows access into parts within a model through the use of qualified names.
We placed a design requirement on the language that the users of a model definition
would define the interface to that model; i.e., users, and not the model creator, would be
able to select which variables within a model they wish to access.  In this manner the
same model definition can satisfy different uses without itself being touched.

Such a naming scheme can be repeated to any depth, allowing us to go, so to speak, to the
bottom-most layers of a model and use an instance appearing there at the outer-most
level.

We used qualified names in the model molar_stream above.  This model contains a part
called state which is an instance of the model mixture.  Mixture has a part called
components, the set of names for the components in it.  Molar_stream also has a set
called components, and we wanted these two sets to be the same set.  We needed a means
to name the set called components within the part called state which we did by
constructing the name

state.components

and using it in an ARE_THE_SAME statement.

In the procedures, we accessed the fixed attribute for variables when we wanted to select
which variables are to be fixed during a computation.  An example was

f[components].fixed := TRUE;

which is interpreted as fixing the molar flowrates for the whole set of components.

Constant relative volatility flash example

Fig. 4 is a simple relative volatility flash model.  It uses the previously defined concept of
a stream in its definition.  It could be interesting to compare the equations it will generate
to the ten we listed for the simple two component model earlier.

Homework 8

1.  Create an ASCEND model to compute the mass of metal in a thin walled
cylindrical tank shown the following figure.  The tank has flat ends.  Wall
thickness is t.

L

D
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2. Write an ASCEND model for the two-species flash model we used earlier to
describe modeling.  Include all parts for it.
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MODEL flash;

feed,vap,liq IS_A molar_stream;

feed.components,
vap.components,
liq.components ARE_THE_SAME;

alpha[feed.components],
   ave_alpha IS_A factor;

vap_to_feed_ratio IS_A fraction;

vap_to_feed_ratio*feed.Ftot = vap.Ftot;

FOR i IN feed.components CREATE
cmb[i]: feed.f[i] = vap.f[i] + liq.f[i];
eq[i]:  vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i];

END;

INITIALIZATION

PROCEDURE clear;
RUN feed.clear;
RUN vap.clear;
RUN liq.clear;
alpha[feed.components].fixed := FALSE;
ave_alpha.fixed := FALSE;
vap_to_feed_ratio.fixed := FALSE;

    END clear;

PROCEDURE seqmod;
alpha[feed.components].fixed := TRUE;
vap_to_feed_ratio.fixed := TRUE;

    END seqmod;

    PROCEDURE specify;
RUN seqmod;
RUN feed.specify;

    END specify;

 PROCEDURE reset;
RUN clear;
RUN specify;

 END reset;

PROCEDURE scale;
RUN feed.scale;
RUN vap.scale;
RUN liq.scale;

    END scale;

END flash;

Figure 4.   Simple flash model written in the ASCEND language
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Complete simple flowsheet example

Fig. 5a-h gives the code (plus the models mixture, molar_stream and flash above) for an
entire simple flowsheet.  We add models for a mixer, a reactor and a splitter.  The model
flowsheet configures the entire flowsheet, shown in Fig. 5a.  Test routines complete the
model.  We also add a computational controller to allow us the specify the degree of
conversion for the reaction in the reactor in terms of component B.

Note that comments in ASCEND start with (* and end with *).  You should be able to
read the code for this model and understand it without further explanation.

Merging to configure complex models

Another important concept in modeling is the ability to configure a complex model by
putting a number of simpler parts together to form the model.  The model called
flowsheet in Fig. 5e illustrates the power of this form of configuration.  It declares first
that there are to be four parts to the flowsheet: a mixer called m1, a reactor called r1, a
flash called fl1 and a splitter called sp1.  The mixer is to have two inputs while the splitter
has two outputs.  We configure the flowsheet by merging streams using the ASCEND
operator called ARE_THE_SAME.  The output stream from the mixer is exactly the
same stream as the feed to the reactor.  Making them the same is done in ASCEND
during compilation by assigning the same storage locations for the same variables in both
streams.  Also, ASCEND allows only one of the two models to create its equations to
avoid the production of redundant equations.

(*
The following example illustrates equation based modeling using the
ASCEND system.  The process is a simple recycle process.

                                          -------
                                         |       |
                   ----------------------| split |----> purge
                  |                      |       |
                  |                       -------
                  |                          ^
                  v                          |
                -----      ---------      -------
               |     |    |         |    |       |
         ----->| mix |--->| reactor |--->| flash |
               |     |    |         |    |       |
                -----      ---------      -------
                                             |
                                             |
                                              ----->  C

This model requires: "system.lib"
    "atoms.lib"

*)

Figure 5a.  Diagram of simple flowsheet for simple flowsheet example
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MODEL mixer;

n_inputs IS_A integer;
feed[1..n_inputs], out IS_A molar_stream;

feed[1..n_inputs].components,
out.components ARE_THE_SAME;

FOR i IN out.components CREATE
  cmb[i]: out.f[i] = SUM(feed[1..n_inputs].f[i]);

END;

INITIALIZATION

    PROCEDURE clear;
RUN feed[1..n_inputs].clear;
RUN out.clear;

    END clear;

    PROCEDURE seqmod;
    END seqmod;

    PROCEDURE specify;
RUN seqmod;
RUN feed[1..n_inputs].specify;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
RUN feed[1..n_inputs].scale;
RUN out.scale;

    END scale;

END mixer;

Figure 5b.  Mixer model for flowsheet example
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MODEL reactor;

feed, out IS_A molar_stream;
feed.components, out.components ARE_THE_SAME;

turnover IS_A molar_rate;
stoich_coef[feed.components] IS_A factor;

FOR i IN feed.components CREATE
out.f[i] = feed.f[i] + stoich_coef[i]*turnover;

END;

INITIALIZATION

    PROCEDURE clear;
RUN feed.clear;
RUN out.clear;
turnover.fixed := FALSE;
stoich_coef[feed.components].fixed := FALSE;

    END clear;

    PROCEDURE seqmod;
turnover.fixed := TRUE;
stoich_coef[feed.components].fixed := TRUE;

    END seqmod;

    PROCEDURE specify;
RUN seqmod;
RUN feed.specify;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
RUN feed.scale;
RUN out.scale;
turnover.nominal := turnover.nominal+0.0001 {kg_mole/s};

    END scale;

END reactor;

Figure 5c.  Reactor model for simple flowsheet example
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MODEL splitter;

n_outputs IS_A integer;
feed, out[1..n_outputs] IS_A molar_stream;
split[1..n_outputs] IS_A fraction;

feed.components,
out[1..n_outputs].components ARE_THE_SAME;

feed.state,
out[1..n_outputs].state ARE_THE_SAME;

FOR j IN [1..n_outputs] CREATE
out[j].Ftot = split[j]*feed.Ftot;

END;

SUM(split[1..n_outputs]) = 1.0;

INITIALIZATION

    PROCEDURE clear;
RUN feed.clear;
RUN out[1..n_outputs].clear;
split[1..n_outputs-1].fixed := FALSE;

    END clear;

    PROCEDURE seqmod;
split[1..n_outputs-1].fixed := TRUE;

    END seqmod;

    PROCEDURE specify;
RUN seqmod;
RUN feed.specify;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
RUN feed.scale;
RUN out[1..n_outputs].scale;

    END scale;

END splitter;

Figure 5d.  Splitter model for simple flowsheet example
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MODEL flowsheet;

m1 IS_A mixer;
r1 IS_A reactor;
fl1 IS_A flash;
sp1 IS_A splitter;

(* define sets *)

m1.n_inputs := 2;
sp1.n_outputs := 2;

(* wire up flowsheet *)

m1.out, r1.feed ARE_THE_SAME;
r1.out, fl1.feed ARE_THE_SAME;
fl1.vap, sp1.feed ARE_THE_SAME;
sp1.out[2], m1.feed[2] ARE_THE_SAME;

INITIALIZATION

 PROCEDURE clear;
RUN m1.clear;
RUN r1.clear;
RUN fl1.clear;
RUN sp1.clear;

    END clear;

    PROCEDURE seqmod;
RUN m1.seqmod;
RUN r1.seqmod;
RUN fl1.seqmod;
RUN sp1.seqmod;

    END seqmod;

    PROCEDURE specify;
RUN seqmod;
RUN m1.feed[1].specify;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
RUN m1.scale;
RUN r1.scale;
RUN fl1.scale;
RUN sp1.scale;

    END scale;

END flowsheet;

Figure 5e.  Code for simple flowsheet



ASCEND Modeling Language

13

MODEL controller;

fs IS_A flowsheet;
conv IS_A fraction;
key_components IS_A symbol;
fs.r1.out.f[key_components] = (1 -

conv)*fs.r1.feed.f[key_components];

INITIALIZATION

    PROCEDURE clear;
RUN fs.clear;
conv.fixed := FALSE;

    END clear;

    PROCEDURE specify;
RUN fs.specify;
fs.r1.turnover.fixed := FALSE;
conv.fixed := TRUE;

    END specify;

    PROCEDURE reset;
RUN clear;
RUN specify;

    END reset;

    PROCEDURE scale;
RUN fs.scale;

    END scale;

END controller;

Figure 5f.  Code for controller
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MODEL test_flowsheet REFINES flowsheet;

m1.out.components := ['A','B','C'];

INITIALIZATION

    PROCEDURE values;
m1.feed[1].f['A'] := 0.005 {kg_mole/s};
m1.feed[1].f['B'] := 0.095 {kg_mole/s};
m1.feed[1].f['C'] := 0.0 {mole/s};

r1.stoich_coef['A'] := 0;
r1.stoich_coef['B'] := -1;
r1.stoich_coef['C'] := 1;

fl1.alpha['A'] := 12.0;
fl1.alpha['B'] := 10.0;
fl1.alpha['C'] := 1.0;
fl1.vap_to_feed_ratio := 0.9;
fl1.ave_alpha := 5.0;

sp1.split[1] := 0.01;

fl1.liq.Ftot := m1.feed[1].f['B'];
    END values;

END test_flowsheet;

Figure 5g.  Test code for simple flowsheet

MODEL test_controller REFINES controller;

fs IS_REFINED_TO test_flowsheet;
key_components := 'B';

INITIALIZATION

    PROCEDURE values;
RUN fs.values;
conv := 0.07;

    END values;

END test_controller;

Figure 5h.  Code to test controller
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Inheritance and deferred binding in modeling

The flowsheet example illustrates inheritance (using the REFINES operator) in
ASCEND.  It does not illustrate deferred binding, another of the modeling concepts we
feel is necessary in equation-based modeling.  Model and atom definitions in ASCEND
can establish a refinement hierarchy of definitions.  For example, Fig. 6 gives the code for
five related models.  There is a model hierarchy implied in these statements which we can
express either using the indented format of Fig. 6 or in graphical form as shown in Fig. 7.
The indenting in Fig. 6 is strictly a matter of style in displaying the code.

MODEL a;
statements defining model a

END a;

MODEL b REFINES a;
  statements defining model b
END b;

MODEL c REFINES a;
  statements defining model c
END d;

MODEL d REFINES a;
    statements defining model d

END d;

MODEL e;
  statements defining model e
END e;

Figure 6.  Sample code to establish a model hierarchy

In the hierarchy in Figs. 6 and 7, c has both b and a as ancestors in the refinement
hierarchy.  d also has a as an ancestor, but it is a refinement which is incompatible with b
and c.  We use inheritance in ASCEND for two reasons.  First, it is efficient to be able to
state that a model contains all the code used to define another.  One avoids rewriting the
repeated code.  This use is not the important reason, however.
Second, and much more important, is that we know that models b and c are everything
model a is and more; thus any model that has a part of type a in it can use a part of type b
or type c as the actual part when we compile the model.

Changing the type of a part is called deferred binding (using the IS_REFINED_TO
statement) and is what we believe is one of the important modeling concepts required in
equational-based modeling.

A common mechanism for accomplishing deferred binding without explicitly using the
IS_REFINED_TO statement occurs when we configure using merging
(ARE_THE_SAME).  The output stream from a reactor may be a liquid stream with the
Unifac model defining its thermodynamic properties.  We know the exit stream type
within the context of the reactor as that is what the reactor produces.  On the other hand,
we have created the flash unit with the intention that it can accept any type of stream as
an input.  Thus we only require that it is a molar stream.  If the liquid stream model is a
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refinement of molar_stream (as it is in our library defining stream types), then, when we
effect the merge, the ASCEND system compiler will make the stream into a model of the
more refined type before it does anything else in the process of merging.

a

b

c

d

e

refines

refinesrefines

Figure 7.  Diagram of the model hierarchy implied by code in Fig. 6

Running an ASCEND model through the interactive interface

Preliminaries

Definitions

Local machine the computer sitting on your desk
ASCEND host machine the computer on which ASCEND is

running

Conventions in following text

Bold face used for window names
Italics used for button labels
Courier font used for instructions

Buttons standards

Left mouse button the normal button to use unless directed
to use another one

Middle mouse button often has no response when used.  If
used when opening a drop down window
to show command options, allows you to
keep the drop down window open and
move it around on the screen.

Right mouse button opens a help window for the object at
which one is pointing
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Remote login

The ASCEND system uses X-windows to display its windows.  You can run ASCEND
remotely from the machine on your desk provided it supports X-windows and is
networked to the ASCEND host machine.  The following commands are typical of those
needed to log into the remote computer.

xhost +name_of_ascend_host_machine
telnet name_of_ascend_host_machine
setenv DISPLAY name_of_your_local_computer:0.0

The first command tells your local machine to accept X-windows input from the
ASCEND host machine.  The third command tells the ASCEND host machine to direct
any X-windows output to your machine.

If the emacs (gnu-emacs) editor is available, the following command will start it up for
you.  You will need an editor to enter your own models into the system.

emacs&

The amphersand (&) causes the system to return control to you to run unix commands in
your login window while starting up emacs in another window.  If you have installed an
ASCEND mode within the emacs editor, type

meta-X ascend-mode
meta-X abbrev-mode

while in the emacs editor to invoke it.

Setting up the ASCEND system

We solve an ASCEND model by starting up the ASCEND interface.  We assume that
someone has installed the ASCEND system already.  A typical file system hierarchy for
installing is as follows.

/usr/local/ascend the main ASCEND subdirectory
/usr/local/ascend/bin binary files
/usr/local/ascend/lib compiled library objects
/usr/local/ascend/man user man pages and help files
/usr/local/ascend/help ASCEND help files
/usr/local/ascend/include ASCEND source code
/usr/local/ascend/TK source code for TK objects (objects used

to create and drive the interface for
ASCEND)

/usr/local/ascend/models ASCEND model definition libraries
/usr/local/ascend/models/README text document on model libraries (it is a

good idea to read all README
documents)

/usr/local/ascend/models/libraries holds .lib files
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/usr/local/ascend/models/examples holds .asc and corresponding .s files for
models one can run as is (without adding
any further ASCEND model code)

/usr/local/ascend/models/old contains old libraries and examples
subdirectories

/usr/local/ascend/model/pendings contains possible new or modified .lib,
.asc and .s files which, if demand is
there, will used to update the files in the
current libraries and examples
subdirectories

It is a good idea to create a file hierarchy within one's personal subdirectory that mimics a
part of this structure.  We typically have the following subdirectories set up for keeping
our personal model definitions, where we keep the model definitions in the subdirectory
asc and the scripts to run them in the subdirectory s.  The subdirectory library is to keep
any new library models one might be creating with the intent to add them to the system
libraries later.

~/ascend/models/examples/asc
~/ascend/models/examples/s
~/ascend/models/libraries

It is very useful to add the following alias to your .chsrc file:

alias ascend /usr/local/ascend/bin/ascend3c

that will allow you to start the ASCEND system by simply typing in

ascend -c

when you wish it to start.  The "-c" is an option that causes the system to give you access
to some shell commands while running ASCEND1.  For example, it does not support wild
carding.

Running the ASCEND system

Start the ASCEND system.  A number of windows will appear on your screen.  The first,
the small Ascend IIIc window,  announces that one has started the ASCEND system.
The animal icon in that window is the head of the animal known as a gnu, to remind you
that ASCEND is distributed under a gnu licensing agreement.

Viewing the GNU license and warranty

To see the GNU license and warranty, click on the GNU window with the right mouse
button to bring up the on-line help system.  In the left window of the Ascend Help
window,  double click (left mouse button) on the entry GLOBAL/notices/GNU to display
the subdirectories under that subdirectory.  Then double click on the file entitled

GLOBAL/notices/GNU:GNU_License.

The warranty is

1 The ASCEND system uses TK/Tcl for creating its interface.  The shell commands are those TK allows.
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GLOBAL/notices/GNU:GNU_warranty.

Setting the utility paths

Examine the window labeled toolbox.  It has a first row of buttons  labeled utilities, help
and exit and a second row of buttons labeled LIBRARY, SIMS, BROWSER, SOLVER,
PROBE, UNITS, DISPLAY and SCRIPT.  These latter set of buttons identify the various
tool kits available through the interface.  It might be a good idea to open up each tool kit
and move the window to a convenient location on your screen.

Click on the utilities button in the toolbox to open the ASCEND Utility Settings
window.  For the subdirectories as described above, the following are prototypes for the
paths/commands you need to define for this tool.  Type path names and commands on
one line (even if we shown them on two or more lines here).

ASCENDIST dir /usr/local/ascend
ASCENDHELP path /usr/local/ascend/man/help
ASCENDLIBRARY path /usr/local/ascend/models
 /library/examples:

/usr/local/ascend/models
/library/libraries

Scratch directory /usr/tmp
ASCENDUNITS dir /usr/local/ascend/lib
Working Directory ~/
Text edit command /usr/local/bin/emacs19
Postscript viewer /usr/local/bin/ghostview
Bug mail command xterm-T Mailing_Bug_Report

-geometry+200+200 -e Mail -s
"ascend3c bug"
ascend+bugs@edrc.cmu.edu

Hit the More button to see the remaining settings.

Plot program name /usr/local/bin/xgraph
Plot file type xgraph   (plainplot and gnuplot are

also supported)
Text print command lpr

(*if you would like to have the print
output show up in a file, use the
command
cat>>tmp.file
*)

PRINTER myprinter
Help mail command xterm-T Ask_Experts_Mail -e Mail

ascend+bb@edrc.cmu.edu
TCL_LIBRARY /usr/local/ascend/lib
TK_LIBRARY dir /usr/local/ascend/lib
Font Selector /usr/ucb/bin/xfontsel
Spreadsheet command (* your choice here *)
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After entering these in, be sure to hit the Save button to save them if you wish them
saved.

Example 1: Running the simple flowsheet model

We shall solve the simple flowsheet example that is defined in Figs. 4, 5 and 6.  We
assume you have started the ASCEND system as described above.

Running a script

¥ (Optional.  In the emacs editor, open the file you are about to use by executing an
instruction similar to the following (modify this as needed to account for where
the examples subdirectory is actually stored in your ASCEND installation):

ctrl-x ctrl-f /usr/local/ascend/models/examples/simple_fs.asc

The editor will now contain the file of ASCEND code that defines the simple
flowsheet model we discussed earlier in this document.  You will not be able to
change the contents of this file as it will be read only.  Browse this model.)

¥ Click on the button labeled SCRIPT in the toolbox to open the SCRIPT tool kit
(if it is not already opened).

¥ Open the file "simple_fs.s" within the SCRIPT window by mousing the Edit
button and picking the Read file command.  A File select box will open.  The file
"simple_fs.s" is located in the examples subdirectory.  You may wish to resize the
script font size if it is hard to read.

¥ Lines preceded by a pound sign (#) are comments.  Skip past them and highlight
the instruction starting from the

set library

instruction through to the end of the

READ $examples/simple_fs.asc;

instruction by "dragging" the mouse over them.  Execute the highlighted
instructions by clicking on Execute in the header of the SCRIPT tool kit and then
on Statements selected.  ASCEND loads the libraries indicated in the highlighted
instructions and then the model (simple_fs.asc) into the LIBRARY tool kit.

(Hint:  If you wish to highlight a single instruction in the SCRIPT took kit, triple
click anywhere in that instruction.)

¥ Continue with the next instruction in the SCRIPT (i.e., highlight it and then
mouse on Statements selected under the Execute button) and observe what
happens as it executes .  ASCEND will compile an instance of test_controller,
calling it tc.
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¥ Select tc in the SIMULATIONS tool kit, click on Export and then to Browser.
You have just exported the compiled model to the BROWSER where you can
look at it.

¥ At the bottom of the BROWSER window is a button labeled Atom Values.
Clicking on it toggles whether the system will display variable values or variable
type.  Click on it a two or three times while watching the entry for conv in the
RHS window change between

conv = 0.5

and

conv IS_A fraction

Turn this button on as it is usually more useful to display the values for variables.
The value of 0.5 is the system default value for this variable.  (We have found
zero to be a dangerous default value.)

¥ Run the next instruction in the SCRIPT which runs the values procedure in tc.
To display the code for this procedure, return to the LIBRARY tool kit, pick the
model test_controller, and under the Display tool set pick Code (i.e., click in turn
on LIBRARY in the toolbox, on test_controller in the right window in the
LIBRARY tool kit, on Display in the tool sets listed at the top of the LIBRARY
tool kit and finally on Code in the window that drops down).

You can prove to yourself that the system has run the values procedure.  First note
that the value for conv is now 0.07.  Is that the value it should be?  The real
question is: Can you get the code for the values procedure to display?  Note
first that tc IS_A test_controller (look in the SIMULATIONS
window).  Pick in turn test_controller,  Display and, Code in the LIBRARY tool
kit.  In the procedure values, conv is indeed set to 0.07.  The values
procedure executes the procedure fs.values to set many other values for this
example problem.  Looking above in the code, note that fs IS_A
test_flowsheet.  You need to display the code for test_flowsheet to
see its values procedure.  Can you do that?)   Almost the entire model for
test_flowsheet is the values procedure for it.  Note that the contents of
the DISPLAY can be scrolled.  For convenience, you can also enlarge the
DISPLAY window and move it to a more convenient position.

¥ Pick any item listed in the right hand window of the BROWSER - e.g., fs.  Note
ASCEND places it into the LHS window and makes it the current object.
Continue exploring the entire model.  Does it make sense to you?  Check other
values that were to be initialized.  Were they?

¥ Prove that the model is "wired" up correctly.  Pick tc as the current object by
clicking on it in the LHS window.  Next pick fs, then m1, then feed, then [2].  The
current object is now tc.fs.m1.feed[2].    Under Find (third tool set at top of
BROWSER), pick Aliases.  The window that opens displays two different names.
Both these names are for the current object.  The first says that the second feed to
the mixer m1 is also the second output stream from the splitter sp1.  Is this right?
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Try showing that the entire flowsheet is correctly wired up by looking at all the
input and output streams to all the units in tc.fs.

¥ To see how the values procedure is picked through the interface, make tc the
current object.  Then under Edit pick Initialize.  A window opens listing the
available procedures you can pick to run.  If you do not see a values procedure,
did you make tc the current object?  Pick values and OK (or Cancel as the values
procedure already executed).

¥ Make the current object tc.

¥ Under Export, pick to SOLVER.  The SOLVER window opens (move it to a
convenient spot) along with a window labeled Eligible that lists a number of
variables.  Can you decide why this window might have opened?  Remember,
ASCEND has tools to tell you of errors you might be making.  Hit Cancel for this
window.  We will return to this issue momentarily.

Read the information displayed at the bottom of the SOLVER window.  This
model has 43 relations, of which 43 are equalities which are included and none
are inequalities.  It has 55 variables and all are mentioned in at least one of the 43
included relations (i.e., there are no unattached variables).  All 55 of the variables
are free to be computed (their fixed flags are equal to FALSE).

To see a fixed flag, return to the BROWSER and pick tc.conv to be the current
object.  On the RHS will be its parts including one called fixed which has a value
FALSE.

Returning to the SOLVER tool kit, the last information entry says this model is
under specified by 12.  It is telling you that you need to fix (specify) 12 variables
before the problem is a well-posed one comprising 43 equations in 43 unknowns.

Now can you figure out why the Eligible window dropped down when you sent
this model to the SOLVER?  Yes, it was telling you that you need to fix one of
the variables listed to start the process of fixing the 12 variables needed to make
this problem well posed.

To get the Eligible window to reappear, You will need either (1) to return to the
BROWSER tool set and re-export to the SOLVER or (2) use the SOLVER's
Import button to restart the degrees of freedom analysis.

Pick tc.conv.  The Eligible window disappears for a split second and reappears
asking for you to fix another variable.  Hit Cancel at this point as this is not the
way you need to proceed to pick variables to fix.  Note, the model is now
underspecifed by 11 variables.

¥ Run the reset procedure for tc (either by returning to the SCRIPT or by returning
to the BROWSER and finding and executing it).  Run it from the SCRIPT to be
sure you make no errors this time.   The numbers change immediately in the
SOLVER window, indicating now that 12 of the variables are now fixed, leaving
43 which are free.  The system is square - it has 43 equations in 43 variables.
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¥ Solve the model by running the next instruction in the SCRIPT.  Alternatively,
you can pick the Execute tool set in the SOLVER and under that the Solve tool.

¥ Explore the model in the BROWSER, examining the values for all the variables.

Changing what is fixed and resolving

At this point you are ready to have some real fun with ASCEND.  You can reset values
for some of the fixed variables and resolve.  You can change the status of a variable from
fixed to free or vice versa and solve again.  The following instructions will lead you
through doing this latter type of analysis.

¥ Make tc.fs.fl1.liq.f['c'] the current object in the BROWSER.

¥ Note that its fixed attribute is FALSE (RHS window in the BROWSER).   That
means ASCEND computed it.  Let's try fixing this variable and then altering its
value and resolving.

Double click on the fixed attribute (in the RHS window) using the middle button.
The value for fixed will toggle to TRUE.  Because the model was well-posed
already, ASCEND drops a window called Overspecifed listing a number of
currently fixed variables, one of which you need to unfix to make the model well-
posed again.  Enlarge this window or scroll it to see all the options.  Pick tc.conv
and then OK in that window.  Note that  ASCEND has altered the fixed flag for
tc.fs.fl1.liq.f['c'] to TRUE.

¥ Under the Edit tool set, pick Set value.  The value 431.938 should be displayed.
Edit it to a nearby value, say 420.0.  Make tc.fs.fl1.liq.f the current object and
verify that the value of ['C'] is 420 mole/s.

¥ Resolve the model.  The model will very quickly resolve.

Using the PROBE

By now it should be evident that you would like to monitor some of the variable values
while changing others.  You can use the PROBE tool set to aid in this monitoring.  Try
the following.

¥ Make the current variable in the BROWSER, tc.fs.fl1.liq.f['c'] and export it to the
PROBE (Use the instruction Item to Probe under the Export tool set in the
BROWSER).  Also export tc.conv.  (As time progresses, you can change which
variables are in the PROBE.  Note there are five different PROBE collections
which you can construct for display.)

¥ Pick the first variable displayed in the PROBE (yes, click on it).  Export it to the
BROWSER where it now becomes the current object.

¥ Alter its current value to 400.0 (Edit, Set value).  Note it immediately has this
value by watching the PROBE.
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¥ Move the BROWSER, SOLVER and PROBE tool sets (you may want to resize
the PROBE) so they do not overlap each other on the screen.  You will want to
watch all three.

¥ Note the value of tc.conv and then solve the model.  Note how tc.conv changes
from 0.0672556 to 0.0628319.

Clearing and starting again

Okay, now you can do a lot of playing with this model.  Try anything you would like to
do.  You cannot hurt the model nor the ASCEND system.  If all else fails, you can start
again by doing the following.

¥ Open SIMS (the SIMULATION tool kit).

¥ Select tc and, under the Edit tool set, Delete it.

¥ Return to the SCRIPT and run all the instructions starting with the COMPILE
instruction .

Alternatively you can recompile it yourself by opening the LIBRARY and
highlighting test_controller.  Under Create, pick Compile.  Enter the name
tc (unless it is the name the system offers to you already).  Hit OK.  The
SIMULATION tool kit opens with the compiled object tc.  Export to the
BROWSER and, if you like, to the SOLVER.

Putting variables values in the spreadsheet

ASCEND will be able to put values into a spreadsheet so you can see them all and
manipulate them.  This option is not yet implemented.

Debugging tools

There is a debugging tool in ASCEND which allows you to examine the solving activity
in more detail.

Altering SOLVER attributes

¥ Click on the radiator like icon next to the word SOLVER.  You will see a list of
solvers.  Pick the one called Slv.  The system opens a window displaying for you
an list of attributes for the Slv solver.  You can alter any of these by simply
editing it.  For example, altering the detailed solving info. required attribute will
cause ASCEND to output lots of output into the window in which you started the
ASCEND system.

Viewing the incidence matrix for the model

¥ In the SOLVER tool kit, under the Display tool set, pick the tool Incidence
matrix.  The system opens up a window labeled INCIDENCE and displays a
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matrix containing dark squares and possibly some x's.  This matrix has one row
for each equation in the model and one column for each variable.  The squares and
x's indicate that an equation contains an explicit mention of that variable in it.

The system shows incidences for unfixed variables as squares and x's for fixed.

To get us back to a standard state, return to the BROWSER and make tc the
current object.  Under the Edit tool set, pick Initialize and run the reset procedure.
This procedure fixes 12 variables and makes the problem square.  The first 43
columns of the incidence matrix will now contain squares and the last 12 x's.
Mouse on any position you wish in the incidence matrix.  The corresponding
equation and variable internal numbers and names and block number show up in
the fields at the top of the window.

ASCEND partitions and precedence orders the equations and variables when
solving them.  It does this step as soon as the problem is square -- so it is already
done here.  A partition is a block of k (k>1) equations in k variables which has to
be solved simultaneously when solving the problem.  A precedence order is the
order in which the system can solve the blocks, one after the other, to solve the
entire problem.

Start at the upper left and mouse the diagonal incidences one after the other.  The
first equation and variable are in block 0.  The next 30 equations and variables are
in block 1.  The next four are in block 2, and so forth.  ASCEND will solve the
first equations first and then the first 30 equations simultaneously for the 30 new
variables they introduce to the problem.  Then it will solve the next four equations
for the four new variables these equations introduce, and so on.

There is a better way to find the blocks than this which we shall examine next.
However, it is often very useful to see a display of the structure of the equations
as shown here.  Note, you can discover the fixed variables quite easily by
mousing on the columns containing an x.

Running the debugger tool

¥ In the SOLVER, under Analyze, pick Debugger.  You can now pick a variable, an
equation, or a block of equations by number and examine it.  For example, enter
the integer 0 (zero) in the window just below the word Variable: and hit the
button Name just below this value.  The message

tc.fs.sp1.split[2] 0.99

will appear in the xterm window from which you started the ASCEND system
(way back where you typed "ascend -c" to start ASCEND).  This window is the
standard output for ASCEND where the compiler puts out it messages, and so
forth.  This message about variable 0 is telling you the name and value of the
variable that ASCEND has called variable number 0. (Numbering of variables and
equations starts with 0 in the Debugger.)  Hitting the Attributes button gives no
added information for variables.   The Export button allows you to export this
variable to the BROWSER or the PROBE.

 What is variable 10?
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Try finding all you can about the third equation.  Note, it too can be exported to
the BROWSER and PROBE.

Now find out about block 0 (1 equation and variable) and then block 1 (30
equations and variables).

Let's put the variables for this block into the PROBE.  First open the PROBE and
open the second probe window (click on 2 at the bottom).  This window should be
empty.  Return to the Debugger and hit the Export to probe button under the
Block: options.  The first 30 entries is a list of the equations in this block.  The last
30 are the variables and their values.

You can also get the Debugger to show you the residuals for the equations in this
block.  Hit the Equations button and then the Residuals button in the drop down
window that appears.  The system lists the residuals in the standard output
window (the xterm mentioned above).  If you are trying to solve a hard model and
it will not converge, the Debugger allows you to find which equations are not
converging.

Finally at the bottom you can do things to all the variables and equations in the
system.

Explore the features of the Debugger by trying them.

Find dependent equations

In the SOLVER under analyze is the tool to find dependent equations.  Find dependent
eqns. looks for equations that are causing the problem to be structurally or numerically
singular.  When checking for numerical singularity, it examines the linearized equations
the solver Slv solves at each Newton iteration.  If it finds an equation it cannot pivot (all
alternative pivots in it are too small), it lists the equation and tells you the linear
combination of the other linearized equations which give this one.

It only tells you the equation numbers so you must use the debugger tool (see just above)
to discover which equations are involved.  If the equations are nonlinear, this dependence
is only local.  One only has the first clue of a problem.  Try altering the values given to
the fixed variables in such a way that the system computes different values for the
variables in the equations involved in this linear dependence.  If the problem persists and
the exact same equations are still dependent, have your second clue that you have a
nonlinearly dependent equations in your model.  Next alter what is fixed and what is
unfixed among some of the variables in these equations.  If the problem still persists
among the exact same equations, look for a dependent equation.  It is particularly easy to
spot it the system reports only a few equations all with small integer coefficients in the
dependency is it finding.  For example, it might continually tell you that equation 5 is -1*
equation 3.

Other Analyze tools

Under the Analyze tool set in the SOLVER are three other tools that can aid in
debugging.   Over-specified analyzes the SOLVER object and produces a list of
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variables, one of which you must release for the system to be square.  If more than one
has to be released, you must release one by picking one on the list and then reanalyze
using Over-specified again.

Evaluate unincluded eqns. evaluates the residuals for all the equations which were not
included while solving and reports those which are not satisfied.

Other tools to become available

Many other tools will exist in ASCEND.  Their functionality is suggested by their names.
If not implemented, they will always be grayed out as buttons when you look at them.
We welcome suggestions for new tools.  Development in concert with users is one of the
hallmarks of the ASCEND system.

Example 2:  Executing a library model

We shall now try a much more difficult task using ASCEND: picking a model in the
ASCEND library and testing it.  The model is simple_column found in the file (assuming
the file system structure given earlier):

/usr/local/ascend/models/libraries/column.lib

Open up this model using the editor so you can explore it.

We proceed as follows.

¥ First we will need to create a test model for the model simple_column.  We open a
new file in the editor, calling it "test_simple_column.asc" in which we shall
construct this model.

There is no documentation to read about this model.  All our information about the model
is in the ASCEND code itself.  So this exercise is a test of our ability to read this code
and make sense of it.  Looking at the code we first note that the simple_column model is a
refinement of a tray_stack model.  We see that the tray_stack model is in the same
library; we should also look at it.

In simple_column, we see a variable called feed_loc which is of type integer.  We guess
this to mean the tray number onto which we place the feed.  The second statement seems
to be defining slack variables for an overmaterial balance, one per component.

The next few statements refer to the trays, starting with tray[1] which is refined to be a
condenser.  It appears we are numbering from the top of the column down.  The tray
pointed to by feed_loc is refined to be a simple_feed_tray, supporting our earlier
conjecture.  The tray pointed to by ntrays is refined to be a reboiler, and all other are set
to be of type simple_tray.  So a simple column has a single feed tray.  We guess that it
has products withdrawn from only the condenser and reboiler as the rest are simple trays.
Overall, that seems logical.

Who defined the variable ntrays?  It is not defined in this model so it must be a part of the
model tray_stack.  We can check and discover that it is.  We also note the existence of the
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set called components.  It is of type symbol.  It must be a list of the components in the
column.

We can now start to construct the test routine.  We place the following statements into the
file test_simple_column.asc.  The procedures are there because we are following the
good style this document strongly advocates.

MODEL test_simple_column;

c IS_A simple_column;

c.ntrays := 10;
c.feed_loc := 5;

   c.components := ['A','B','C'];

INITIALIZATION

PROCEDURE clear;
RUN c.clear;

END clear;

PROCEDURE specify;
RUN c.specify;

END specify;

PROCEDURE reset;
RUN clear;
RUN specify;

END reset:

PROCEDURE values;
END values;

      PROCEDURE scale;
RUN c.scale;

END scale;

END test_simple_column;

Writing the values procedure

Remember that the procedure called values has to provide values for all the fixed
variables for the model.  We have not finished it as we do not know which variables the
author of this model (Bob Huss) decided to fix.  We could guess, but that looks hopeless
(and it is).  We could also try to trace recursively through the specify procedures.

Trying that, we see that the simple_column specify procedure first runs its own seqmod
procedure.  Okay, so we switch our attention to that procedure.  It first runs the seqmod
procedures for all the trays.  One by one we need to examine the models for the trays.
The top tray is a condenser.  Where is its model?

We do not find it in this library, but, at the top of this library, Bob has listed all the
libraries this library needs.  One is called flash.lib.  Looking in there we find the
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condenser definition.  (Our sanity is beginning to slip and our stomach is churning.  This
approach is not looking very promising, but we persist.)

We locate the condenser model (we see it refines the VLE_flash model).  We find its
seqmod procedure.  The first thing this procedure does is run the specify procedure for
VLE.  Huh?  What is VLE?  It is not in this model.  Oh, yes, it could be in the VLE_flash
model definition.  At this time, we look around the room and suggest that it is time for
coffee.

Of course, we headed down this path here only to show how hopeless it is.  There must
be a better way.

Finding things by type

Why not let ASCEND tell us which variables Bob has fixed?  Can it?  There is a tool in
the Find tool set within the BROWSER tool kit that is called By type.  In other words,
the name suggests we can find things by type.  To find by type means that we can locate
any part within the compiled model by describing its attributes.  We want to find all the
variables (all are of base type solver_var) in the compiled model which have their fixed
flag set to TRUE.

Proceeding as follows, we shall now use ASCEND to help us write the values procedure
for our test model.

¥ Start the ASCEND system (if already in the ASCEND system,  return to the
LIBRARY tool kit and run the instruction Delete all types under the Edit tool
set.)

¥ Open the SCRIPT tool kit and set it to record instructions (push the button on the
bottom so it read Record On.

¥ Next return to the LIBRARY tool kit and load the following libraries:

system.lib
atoms.lib
plot.lib
components.lib,
H_G_thermodynamics.lib
stream.lib
flash.lib
column.lib

(Note, these are listed at the beginning of the column.lib description as being
required for using the column.lib.)  If you have been watching the SCRIPT tool
set, you will note that the system is writing a script for you which will allow you
to repeat all these steps using it later.

¥ Load our newly created file "test_simple_column.asc."

¥ Next compile test_simple_column, calling the compiled object "tsc."

¥ In the tool kit SIMULATIONS, select tsc and export it to the BROWSER.
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¥ In the BROWSER under the Edit tool set, select Initialize.  Select reset and then
OK.  The column specify routine has now set the fixed flag for all the variables
that Bob fixed to make his column model well posed.

¥ Export tsc to the SOLVER.  It has 303 included equalities and 349 variables.
One of the variables is unattached, meaning it is not used in any of the equations.
That is not a problem; the solver will ignore it.  The reset procedure has set the
fixed flag for 45 variables to TRUE.    The SOLVER reports the model is square.
The system has found it can use the 303 equations to solve for the remaining 349 -
1 - 45 = 303 variables.  This discovery is based only on the structure of the
equations (i.e., the equations have a legal transversal (output set assignment)).
They may, however, be numerically singular, something not detected by this
preanalysis.

¥ At this point, turn off the record instruction in the SCRIPT tool kit.

¥ Go to the PROBE and pick an empty window (or clear the current one).

¥ Go back to the BROWSER and run the tool By type in the Find tool set.  You are
going to use this tool to have the system find for you the names of 45 variables
that Bob has fixed with his version of the reset procedure.

The Find by type window will open.  It has four user input windows in it, into
which you enter the type of item you wish the system to find in the first window.
For example, if you wished to find all items of type VLE_flash (all trays are of
this base type), enter VLE_flash and ask it to do the search.  If the type is not a
solver_var, the other windows should be empty.

If the type is solver_var, you can further screen which items of that type you
wish to find.  The system bases the search on the attribute2 whose name you enter
in the second window and whose value you enter into the third window.    Make
sure the fourth window is empty unless you wish the search to be over a range of
numerical values when the attribute of type REAL.  In this case the third window
contains the lower bound for the range and the fourth the upper bound.  An empty
fourth window indicates that the search is for the value in the third window; a
nonempty fourth window means the search is to be over a range of values.

The windows have default values in them of solver_var, fixed, TRUE and
empty, respectively.  Accept the default values as they pose exactly the search you
wish to execute; i.e., find all items of base type solver_var whose fixed flag is
set to TRUE.

¥ Export all the variables that the system found to the PROBE.

The PROBE contains all the variables that Bob fixed for his model.  The instruction

tsc.c.trays[1 ].alpha['A'] = 1.00000

2 Note that one special attribute is the value of any REAL (solver_var is a refinement of REAL).  It is
known as VALUE (all capital letters).
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shows up for all trays and for all species (it is a good idea to double check that it shows
up for ALL trays and ALL species).  We can compactly add instructions in the values
procedure of our test model to set the relative volatilities for all the species on all the
trays.  The instructions:

c.trays[1..c.ntrays].alpha['A'] := 2.0;
c.trays[1..c.ntrays].alpha['B'] := 1.5;
c.trays[1..c.ntrays].alpha['C'] := 1.0;

do that.  Note, that the tsc part of the instruction is removed as we are adding this
instruction into our test model of which tsc is a compiled instance.  Also, note that we
must refer to ntrays as c.ntrays.  Not labeling an item with its part name,  here "c," is
perhaps the most common error one makes when programming in ASCEND.

As we account for setting the value for each variable, it is convenient to delete it from the
PROBE.  We delete a variable from the PROBE by picking the variable and using the
Remove selection instruction under the Edit tool set.  We shall continue until we have
looked at all variables listed in the PROBE.

The instruction

tsc.c.trays[6].cmo_ratio =  1.00000

shows up for only trays 2, 3, 4, 6, 7, 8 and 9.  Bob apparently has set it for all the
simple_trays.  We need to know what this variable is before we can decide how to set it.
(One way is to call up Bob Huss and ask him (412-268-5212).  Another is to play
detective on the models and try to find where it is defined.  Returning to the document
listing the libraries, we look for the model simple_tray.  It is located in flash.lib.  This
model defines cmo_ratio  as a factor (a dimensionless real) and uses it in what looks like
a material balance.  If we set cmo_ratio to one, the material balance says the total liquid
flow into the tray equals the total liquid flow leaving.  Ah, cmo must stand for constant
molar overflow!

So why is this variable there?  Why not just write that the total liquid molar flow into the
tray equals the total liquid molar flow leaving?  Perhaps ours is not to understand.  On the
other hand, we know that the use of a constant molar overflow assumption replaces a heat
balance for a stage.  A plausible answer is that Bob wants his simple_column model to be
more general.  For example, if he adds a heat balance to the equations defining the tray,
then the liquid flow in would not generally equal that out.  To allow this to happen, he
could add in the heat balance (taking away a degree of freedom for the model) and then
give it back by making cmo_ratio a computed variable.

We set the cmo_ratio for all the simple_trays to 1.0.

c.trays[2..c.feed_loc-1].cmo_ratio := 1.0;
c.trays[c.feed_loc+1..ntrays-1].cmo_ratio := 1.0;

tsc.c.reduce is more of a mystery.  Bob really should add a comment on what it is.
(Shame on him, right?)  On asking him, he uses it to aid in numerically closing the heat
balance for a tray when one is included in later refinements of the tray models.
Supposedly it can be set to any value desired here.
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c.reduce := 1.0;

We notice next that the reflux_ratio is fixed.  We see that it is a variable within the first
tray which we know is a simple_condenser.  Looking at the simple_condenser model in
flash.lib, we see that reflux_ratio has the standard definition.  The reflux in the column
(the stream liquid['liquid']) has a total flow equal to the reflux_ratio time the distillate top
product flow.  When looking at that equation, we note it mentions a possible vapor
product.

In the list of fixed variables in the PROBE, we see next one called

tsc.c.trays[1].VLE.phi['vapor'].

Is this somehow related to the permitted vapor product at the top?  Believing it is, we set
it to zero (when the model solves, we must check out this conjecture).

c.trays[1].VLE.phi['vapor'] := 0.0;

We see that the distillate total liquid flow out is fixed.  This makes sense.  It is a common
specification for a column.  We see also that the feed flows for each of the species are all
fixed.  Again, that makes sense.  We add statements to specify them using a rule of thumb
noted earlier that a normal sized chemical process has a feed flow about 1 kg/s.  A typical
molecular rate is 100 kg/kg_mole so we can have a feed about the normal size if we use
the values for the flow of about 0.01 {kg_mole/s}.

c.trays[feed_loc].input['feed'].f['A'] := 0.01 {kg_mole/s};
c.trays[feed_loc].input['feed'].f['B'] := 0.01 {kg_mole/s};
c.trays[feed_loc].input['feed'].f['C'] := 0.01 {kg_mole/s};

One could also let ASCEND do these computations for you by entering the values as:

1.0 {kg/s*kg_mole/100.0/kg}

We would like our column to produce A at the top and B and C at the bottom, so we can
now choose a value for the distillate top flow.  To separate A from B and C, one would
set the distillate top flow to the molar flow of A in the feed.  The distillate will not be
pure as the column is not infinite in size nor will we use an infinite reflux ratio, but this
value is the best setting for its flow.

c.trays[1].liqout['distillate'].Ftot :=
c.trays[feed_loc].input['feed'].f['A'];

Next we spot a variable called q which is set for tray 5.  Textbooks typically call the
thermal quality of the feed to a column q, where q is the fraction of the feed which joins
the liquid stream going down the column; 1-q is the fraction that joins the vapor stream.
We look around for the definition of q.  It is referenced as

tsc.c.trays[5].q

which makes it a variable belonging to the type simple_feed_tray (which is the type for
tray[5]).  Locating simple_feed_tray in flash.lib, we see it introduces q and uses it in a
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material balance exactly as we expected.  We set q to 1.0 so all the feed will be treated as
saturated liquid.

The final variable we need to specify has the name

tsc.c.trays[10].vapsplit['vapor_product']

which will again require some educated guessing.  It seems to be the vapor split for the
vapor product in the reboiler.  We look at the reboiler model in flash.lib.  It is not there.
The reboiler model refines the VLE_flash model; we look at it (again, in the flash.lib).
We find the variable about a third of the way into the model definition (somewhat before
the INITIALIZATION section).  It is defined as an array over the set vapout.  A few
statements later it is used in an equation.  Close examination of the equation suggests it is
a material balance.  It seems to be the fraction of the vapor produced in the flash that exits
in a particular vapor output stream.  The stream is called vapor_product here; we want no
vapor product from the reboiler, so we set this value to zero.

The meanings for some of these variables are at best conjectures on our part at this time.
We will take our chances that we have them right.  The final values section for our model
becomes:

   PROCEDURE values;

      c.reduce := 1.0;
      c.tray[1].reflux_ratio := 2.0;
      c.tray[1].VLE.phi['vapor'] := 0.0;

      c.tray[2..c.feed_loc-1].cmo_ratio := 1.0;
      c.tray[c.feed_loc+1..c.ntrays-1].cmo_ratio:= 1.0;

      c.tray[1..c.ntrays].alpha['A'] := 2.0;
      c.tray[1..c.ntrays].alpha['B'] := 1.5;
      c.tray[1..c.ntrays].alpha['C'] := 1.0;

      c.tray[c.feed_loc].q := 1.0;
      c.tray[c.feed_loc].input['feed'].f['A'] := 0.01 {kg_mole/s};
      c.tray[c.feed_loc].input['feed'].f['B'] := 0.01 {kg_mole/s};
      c.tray[c.feed_loc].input['feed'].f['C'] := 0.01 {kg_mole/s};

      c.tray[1].liqout['distillate'].Ftot :=
c.tray[c.feed_loc].input['feed'].f['A'];

      c.tray[c.ntrays].vapsplit['vapor_product']:= 0.0;

   END values;

(This version is the result of attempting to run it and then removing the syntax errors
from it.  Even with experience, we made all sorts of errors (like calling it feed_loc instead
of c.feed_loc).)

¥ Using the editor, add these statements to the definition of our model
test_simple_column in the file test_simple_column.asc.

Solving the model
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¥ In the tool kit SIMULATIONS, delete tsc.

¥ Return to the SCRIPT, pick the last three instructions and execute them (READ
FILE test_simple_column.asc, COMPILE tsc, and RUN {tsc.reset}).  The READ
FILE instruction will replace the previous file of the same name IF the time stamp
on the file to be read is newer than the time stamp of the one already there, else
the system ignores this instruction.  Since you have edited and replaced this file
since last reading it in, it gets replaced.  You can of course display this file from
the LIBRARY if you wish to be certain which version is now there.

¥ Start recording in the SCRIPT again.

¥ Return to the BROWSER and run the values procedure for the model.  Export tsc
to the SOLVER and solve.  If all was done correctly, it will solve quickly (ours
did when we tested it).

Plotting the values

It would be very useful to plot the values that this column model has produced.  Look
again into the file column.lib using the editor.  You will find a model called plot_column
which is just before the simple_column model.  It  contains the part

col IS_A tray_stack;

Now we shall see the power of defining models using a refinement hierarchy.  A major
purpose of defining one model as a refinement of another is that the system then knows
that the more specialized model can replace the less specialized one in any model in
which it exists.  The simple_column model refines tray_stack also, and your
column, c in the above, is a simple_column.  It is a specialization of a
tray_stack, therefore.

Suppose we include in your test_simple_column model a part we call plotcol and
declare it to be a plot_column:

plotcol IS_A plot_column;

We next add the statement

plotcol.col, c ARE_THE_SAME;

What has happened here?  Is this legal?  Yes, it is because plotcol.col and c are
both of type tray_stack, the latter being a refinement of tray_stack.

Inside the plotcol model are two items of type plt_plot_symbol.  The system can plot any
item of this type.  To get a plot proceed as follows:

¥ Edit in the above two statements into the test_simple_column .asc
model definition.  They should follow the statement defining c as a simple
column.

¥ In the SIMULATION tool kit, delete tsc.
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¥ Return to the SCRIPT and run the instructions that read in and compile
test_simple_column.asc, the instruction that run reset and values for it,
and finally the instruction that solves it.

¥ Return to the BROWSER and make tsc.plotcol the current object.  Under Edit,
run the Initialize tool and select plot_values.  Bob's procedure for this maps values
from the column model into the variables we are about to plot.

¥ Make the current object in the BROWSER tsc.plotcol.plotx.  Under DISPLAY,
select Plot (which is now allowed as the current object is one the system knows it
can plot).  A plot will appear on your screen showing the liquid composition up
and down the column.  Remember that trays are numbered from the top so the top
of the column is to the left on this plot.

¥ Repeat the last instruction but make tsc.plotcol.ploty the current object to see the
vapor compositions.

Checking conjectures on the meanings of the variables

Now would be a good time to verify all the conjectures about the meaning of the
variables.  We can check the following by browsing the model.

1. Is there a vapor product from the condenser and, if so, does it have a zero flow
rate as we wanted?

2. Is there a vapor product from the reboiler and, if so, does it also have a zero flow
as we wanted?

3. Does the liquid flowing down the column increase in flow rate as it passes by the
feed tray by an amount equal to the feed flow rate (0.03 {kg_mole/s})?  It should.

4. Does altering the value of the variable tsc.c.reduce seem to alter any of the
solution values?  It is not supposed to if our understanding is correct.

5. Is the column wired up as expected?

Converting the column model to a rigorous one interactively

We can interactively modify the types of the parts included in this model, incrementally
converting it into a rigorous column model which uses nonideal thermodynamic models
to evaluate the physical properties of the three species.  To accomplish this latter
conversion, we have to associate the species with actual ones in the components.lib.  The
interactive incremental compile statements are included in the BROWSER under the
Edit tool set.

Exploring the buttons
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You should explore all the buttons in the interface methodically.  If you do the exploring
with the small sample problems above, you can do little harm to anything even if you
goof.

Note, if the core dumps, be sure to issue the instruction

rm core

to get rid of the very large file it has created (unless you know how to use a core dump to
diagnose a problem).


