
Equation-based modeling

1

 August, 1994
Eqn size parameters: 10 8 5 14 10

EEEEqqqquuuuaaaattttiiiioooonnnnaaaallll----bbbbaaaasssseeeedddd pppprrrroooocccceeeessssssss mmmmooooddddeeeelllliiiinnnngggg
by

Arthur W. Westerberg
Peter C. Piela1

Department of Chemical Engineering
 and the Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

These notes discuss two different approaches to process modeling,
the sequential modular approach and the equational-based
modeling approach, with an emphasis on the latter. We explore
in detail the advantages and difficulties with equational-based
modeling and show that using good modeling practice eases
many of the difficulties for creating, debugging and solving
complex chemical process models.

Introduction

In these notes, we are going to discuss process modeling. Two distinctly
different approaches exist which chemical engineers use for the modeling of
processes: the "sequential modular approach" underlying most of the
commercially available modeling systems and the "equation-based approach."
The equation-solving approach has a long history in research and only some
commercial success in the last few years. Each approach has its advantages
and disadvantages. These notes are intended to show how one can infuse the
equation-solving approach with many of the advantages of the sequential
modular approach, thus making it a much more competitive approach than it
has been in the past.

We shall start by examining the sequential modular approach. For this
approach, we shall examine the two main issues that occupied the earlier
literature during its coming of age: how to select the order in which to solve
the unit operation models used to define a flowsheet and how to converge the
overall process model when it contains recycles streams.

The equation-based approach to modeling follows. There are two reasons to
explore it in detail. First, the creators of a sequential modular modeling system
have to develop the models for each of the units in that environment. These
creators must approach this problem by developing the equations for each
unit and then develop a robust approach for solving them; i.e., they must be

1 Currently at AspenTech, Cambridge, MA

Equation-based modeling

2

users of equation-based approaches for this subproblem. Secondly, the
equation-based approach is itself a powerful way to solve a complete process
model.

The emphasis for the equation-based approach will be on strongly separating
the statement of the model from the debugging and solving of it. Thus we
consider first how to state what is to be true at the solution (i.e., the equations
for the model) and what can be said "declaratively" about solving it and
secondly, and quite separately, the activities in finding a solution.

An equational-based model is a quantitative one described by algebraic and
possibly ordinary and partial differential equations. We use equational-based
models to determine the quantitative behavior of artifacts. For example, for a
really simple problem, we may wish to determine the amount of metal required
in constructing a cylindrical shaped tank given its diameter and height. The
equations, based on simple geometry, state the needed relationships in terms of
suitable variables. Solving would then involve giving values for some of the
variables and computing the rest of them. For a more difficult problem, we
may wish to determine the performance of a flash unit, and, for an even more
difficult example, we may wish to compute the motion of a robot arm with time.

Models can become quite large and often very complex in their structure.
None of us would be surprised to discover that correctly formulating and
solving a large model is difficult. What we might not appreciate is that even
small models can confound us with their subtle complexities. These notes are
not a recipe for modeling. Rather they describe many of the difficulties we
have found when modeling chemical processes. We shall pass along those
ideas we believe can make such modeling less difficult. We shall also discuss
issues involved in debugging and solving these models.

Debugging is inherently an interactive process. One typically attempts to
solve a model and discovers the attempt fails. At this point a modeler must
become a detective to find what is causing failure. Detectives look everywhere
for clues and often have insights into the problem while walking home after
work or at 2:00 am when trying to sleep. We shall discuss the types of tools that
can aid in discovering what went wrong. Finally, it is important that failure is
not the fault of the numerical methods for solving them so these must be as
solid as possible. We shall discuss ideas related to good solution procedures.

The general outline for these notes will be first to discuss sequential modular
modeling. When we switch to equation-based approaches, we shall discuss
issues relating to stating a model and then to solving one assuming the model
is well-posed. With these issues understood, we shall talk about the debugging
of these models.

Sequential modular modeling - flowsheeting

Description

Sequential modular modeling underlies most of the flowsheet simulation
programs developed since Kellogg announced their flexible flowsheeting
program in 1958. The approach they and almost everyone following took was
for skilled modelers to develop Fortran subroutines to model each of the

Equation-based modeling

3

various types of unit operations that we use to construct complete processes.
There are subroutines for the flash unit, distillation columns, absorbers, a
variety of reactor types, compressors, pumps, valves, and so forth. One
constructs a complete process model by wiring up an appropriate set of these
building blocks. The flowsheeting system then solves the total process model
by calling each of the unit models in turn, according to how they are wired
together, iterating where necessary to coverge complex process models.

The clients for sequential modular flowsheeting systems are all those people
who wish to develop the heat and material balances for chemical processes.
These include process engineers, sales persons (who may have minimal
technical training), PhD researchers, and the like. The systems must work and
must warn of failure when they do not. Ideally they can suggest why they fail
when they do in terms the user is likely to understand.

The main assumption for each unit subroutine in such systems is that its input
streams are fixed and that it will compute the flows, temperature and pressure
for each of the streams leaving the unit. Virtually all unit models, except for a
stream mixer, require one to specify other parameters to fix their operation.
For example, a conventional flash unit requires one to specify two other
things about it, such as the temperature and pressure at which it operates or
the heat added/ removed and the pressure, in order for it to be a well-posed
model. We call the former an isothermal flash computation while the latter is
a variant of an adiabatic flash computation.

The developers of these unit models include all sorts of special tricks in them
to make these computations robust. Of highest priority is that a unit model will
converge when there is a solution for its underlying equations and that it fail
reasonably when there is not. These tricks include developing initial guesses
from which the equations typically converge. There are detectors in many of
these codes to discover lack of convergence and then tests to decide what to try
next to gain convergence. Each is often like a mini-expert system, containing
every bit of knowledge a modeler knows and learns about such a model to make
it work. Most of the code in such routines is to assure this robustness.

EEEExxxxaaaammmmpppplllleeee

The easiet way to understand this approach is to work our way through a
simple example process [Westerberg, et al, p131-8, 1978]. We shall be
describing a hypothetical flowsheeting system.

Fig. 1 is a simple flowsheet for the conversion of propylene to 2-hexene by the
reaction

2 propylene (CH3CH=CH2) --> 2-hexene (CH2=CH(CH2)3CH3)

The propylene feed is at 150 oC and 20 bar. It contains 2 mole% propane. Our
goal is to investigate the performance of this process. In particular we would
like to understand if the flash unit is a good enough separation device or if we
should replace it with a distillation column.

Equation-based modeling

4

Our flowsheeting system allows us to build the model interactively using a
computer workstation on which we can place icons for each type of unit and
"wire" these icons together with streams.

compressor
simple
splitter

flash

reactor
mixer

propylene
feed

bleed

heater

hexene
product

recycled
unreacted
propylene

Fig. 1. Simple flowsheeting example

We use the graphical user interface to pull icons for each type of unit from a
menu onto our workspace, placing them roughly as shown above. We ask the
system to draw each stream connecting two units by clicking on the output
node of one unit and the input node of another. In a matter of few minutes we
have the above drawing on the computer screen. From this drawing, the
flowsheeting system knows the existence of all our streams and units and how
they are interconnected.

Our flowsheeting system next asks us the components we wish to use in our
simulation. Different streams can have different species in them so we pick a
stream and pick the species for it from a list the system offers to us. If a unit
insists on the same species in two or more of its associated streams, it will
propagate what we pick to these streams. For example, the compressor will
insist that the species that enter must be exactly those that leave. The mixer
can have different species in its input streams. The species for the output
stream, on the other hand, must be all the species entering.

We must also pick the physical property methods we want the system to use. In
our system, these options can vary from unit to unit. For a start we pick ideal
for all units. The system will use ideal mixing models for vapor and liquid
mixture Gibbs free energies, enthalpies and volumes (the information it will
need to compute vapor/liquid equilibrium in the flash, effect of pressure
changes for the compressor, and heat balances throughout).

The system analyzes our flowsheet and tells us the flowsheet has a recycle in
it. It tells us we will have to guess conditions for one recycle stream before we
start our computations. It lists the candidate streams from which we select the
one we wish to guess: the compressor output, the reactor feed, the flash feed,

Equation-based modeling

5

the simple splitter feed or the compressor feed. We pick the compressor output
which we will later be asked guess.

Next we will have to select the unit model to use for each unit shown on our
flowsheet. The sequential modular flowsheeting system will have in it one or
more models for each of the types of unit it supports. If there are two or more
models for a type of unit, they will typically range from simple to complex in
their implementation. For example, the flash unit may have three models one
could use for it. The first will be a simple component splitter where the we tell
the model that 98% of the propylene and propane entering are to exit in the
top vapor stream and 99% of the hexene in the bottom liquid stream. The
second might be a constant relative volatility flash unit. For this type of flash
unit we can either specify the relative volatilities for the species or ask the
system to estimate them using Raoult's Law at a given temperature and
pressure. Finally there will always be a rigorous flash model which uses the
physical property library to compute nonideal equilibrium K-values and
nonideal mixture enthalpies.

We select a unit, say the flash. The system gives us a menu of the three models
we can use for it. We pick the rigorous flash model. The system then asks that
we specify two added parameters out of a list of possibilities; we choose to
specify the fraction of the incoming feed that will leave in the vapor stream
(e.g., 50 mole%) and the pressure.

For the reactor unit, we pick a model that allows us to specify that 80% of the
propylene entering will convert as it passes through this unit.

We repeat this activity for all remaining units.

The system now asks us for the needed input to fix the computation and for it to
establish starting guesses. It first asks for the feed stream specifications; we
tell it the flowrate, composition, temperature, pressure and that we think it is a
liquid, which the system verifies. It asks for guesses for the flowrates,
composition, temperature, pressure and phase (it had better be vapor) for the
compressor output. Next it goes from unit to unit to ask for the operating
parameters it needs to complete each unit model specification. It also asks for
guesses of some of the variables for which it believes the user guesses will aid
it to converge the total flowsheet model.

The flowsheeting system now solves the model. It does this by solving the
mixer first as it knows the feed stream and has a guess for the recycle stream
entering it. From that computation it know the reactor feed. It solves the
reactor, then the flash, the heat exchanger, the simple splitter and finally the
compressor. It compares the compressor output to that guessed. If these do not
agree, it reguesses the recycle and repeats the solving of the units in the
sequence done above. It tells us IN LARGE PRINT it was successful in
converging the flowsheet in 23 interations. We interactively go from stream
to stream and unit to unit to see the values associated with each. We find that
the numbers produced look plausible as we investigate them. We ask for a
print out of the total flowsheet.

We are now ready to play with our model. We can choose to do many different
things with it. We first change from ideal to nonideal models for evaluating
physical properties, choosing the methods an associated expert system

Equation-based modeling

6

suggests to us. The expert system examines the species involved, asks us our
intentions (do we want speed or do we want accuracy, for example), and
suggest the options.

We resolve successfully and the numbers still look good. Now we wonder the
effect of changing several of the parameters on the performance of the
process. For example, we might wonder what is the impact of altering the
fraction of the feed to the simple splitter which exits in the bleed stream. We
set up a series of computations to be carried out one after the other where this
parameter varies from a tenth of a percent to 20 percent. After running these
cases, we ask the system to plot several of the variable values vs. the fraction
we bleed from the process.

We decide the flash unit is not giving us a pure enough hexene product. We
replace the flash unit with a small distillation column and start our
simulations over again. Our first model for the column is a shortcut one
capable of estimating the number of trays needed and the reflux flows needed
for ideal behavior. After we switch to a rigorous column model, we need to
play with the number of trays and feed tray location as well as the reflux ratio
to get it to perform well. We find this to be a tedious exercise. We do not
replace the bleed stream as we know separating propylene and propane is
very difficult.

We next add computations for each of the units which estimate their capital
investment and operating expenses. When we also add the value of the feed
and product streams and things like the background interest rate for our
company, we are able to compute the present worth of the process for each of
the alternative ways we choose to run it. Now we are ready to turn on an
optimizer that we find is available with the flowsheeting system.

We first ask for the plant requiring the minimum investment. After playing
for a while, we solve and find the model is trying to converge to a plant with
zero flows. That reminds us we forgot to place a production constraint on the
process which we then add.

We will stop our example at this point as it has served its purpose.

CCCCoooommmmppppuuuuttttaaaattttiiiioooonnnnaaaallll ccccoooonnnnttttrrrroooolllllllleeeerrrrssss

Often in a simulation we wish for the model to produce a value for a variable
that we find is computed by the flowsheet model. For example, we may wish to
solve our flowsheet to give us a hexene product which is 99% hexene. We
decide to adjust the bleed fraction to attain this purity. It is not clear to us if
we can adjust the bleed fraction enough to affect purtity this much, but we
intend to try. One way is, of course, to set up a series of computations where we
adjust the bleed fraction until we get the desired purity. We can also ask the
flowsheeting system to carry out this search for us automatically.

We ask for a computation controller to be added to the model. We connect its
measured variable to the hexene product stream and, in particular, to the mole
fraction of hexene in it. We connect the variable it is to manipulate to the unit
parameter we previously fixed that tells the simple splitter the fraction of its
input stream it is to give to the bleed stream. We are asked for the target value

Equation-based modeling

7

for the hexene mole fraction (0.99), an initial guess for the bleed fraction, the
maximum step size to use to adjust it and maximum and minimum values to
allow for the bleed fraction when searching.

When solving the model, the flowsheeting system automatically adjusts the
bleed fraction while monitoring the hexene mole fraction in the flash liquid
product stream. The computational controller uses a special search algorithm
based on the secant method to reguess the bleed fraction as it attempts to
converge the model to the value we desire. In this case it fails to get the mole
fraction where we ask it to be.

Flowsheet ordering

There are three issues we will investigate in this section: partitioning,
precedence ordering and tearing. We shall define these concepts by applying
them to an example flowsheet found in the literature [Leesley, p624, 1982]. See
Fig. 2.

PPPPaaaarrrrttttiiiittttiiiioooonnnniiiinnnngggg aaaannnndddd pppprrrreeeecccceeeeddddeeeennnncccceeee oooorrrrddddeeeerrrriiiinnnngggg

We would like to solve the flowsheet in Fig. 2 in the most efficient manner
possible. If we look closely at it, we see that we can compute units A, B, C, D and
E are in a recycle loop and will certainly have to computed together. A still
closer look and we see we must add units F and G to the group. It appears that
this group of six units can be solved first as we see no streams recycling from
later units back to any of these units. To complete our analysis will take some
careful examination. The units that we have to solve as a group are called
partitions and finding these groups partitioning, while the order we must
solve them is a precedence ordering. The grouping is unique; the ordering
may or may not be, depending on the particular flowsheet we are examining.

This example is simple enough that we would have little trouble seeing the
partitions and the ordering for them. Some flowsheets have tens to hundreds
of units in them, and it is difficult to find the partitions in them and the
ordering for those partitions. Fortunately a simple algorithm exists to find the
partitions and a precedence ordering [Sargent and Westerberg, 1964]. It
proceeds as follows for this example.

Start with any unit, unit I for example. Put it on a list we shall call list 1.

List 1: I

Extend list 1 by tracing output streams starting with the end object on the list
1. We continue until we find a unit repeating or until there is no output to
trace. We find the following trace.

List 1: IJKLMNL

We discovered this sequence by noting that I has an output to J which has an
output to K which has an output to L which has an output to M which has an
output to L which has an output back to L. Unit L repeats. There is a loop that
traces from L to M to N to L. These units must be in a group. Merge them into a
group and treat them as a single entry on list 1.

Equation-based modeling

8

solvent A
makeup

reactant

solvent B
makeup

hydrocarbon
stream

still

flash

separator

scrubber

bi-product

still

preheated hydrocarbon
stream

product

purge

flash

purge

reactor
A

B

C

DE

F

G

H

I

J

K

L
M

N

O

P

Q R

S

Fig. 2. Example flowsheet for partitioning and precedence ordering

List 1: IJK{LMN}

Continue tracing.

List 1: IJK{LMN}OPK

Equation-based modeling

9

Unit K repeats. There is a loop from the group K to group {LMN} to O to P to K.
Group the units in this loop, getting

List 1: IJ{KLMNOP}

Continue tracing outputs

List 1: IJ{KLMNOP}SQRJ

Unit J repeats, giving

List 1: I{JKLMNOPSQR}

When we try to continue tracing outputs, we discover that the units in the last
group have no streams leaving from them to other units in the flowsheet. We
remove this group from list 1 and place it on list 2.

List 2: {JKLMNOPSQR}

We cross off all these units from the flowsheet. We are done analyzing them.
Returning to list 1

List 1: I

we look for more outputs from unit I. None exist that do not go to units
removed from the flowsheet already. We remove unit I from list 1, place it at
the head of list 2, and cross it off the flowsheet.

List 2: I{JKLMNOPSQR}
List 1:

List 1 is empty. Pick any unit in the flowsheet and place it onto list 1, say unit
F.

List 1: F

Tracing outputs we get

List 1: FH

where we stop as H has no outputs except to units we already crossed out (and
put onto list 2). Remove H from list 1 and place it as the head of list 2.

List 2: HI{JKLMNOPSQR}
List 1: F

Start tracing from F again, getting

List 1: FGCDEABC

Unit C repeats. Group it with the units between it two occurrences.

List 1: FG{CDEAB}

Equation-based modeling

10

Continue tracing

List 1: FG{CDEAB}F

Group F and G with the other units

List 1: {FGCDEAB}

We find there are no other outputs to trace. Remove this last group from List 1,
place it at the head of list 2, and remove these units from the flowsheet.

List 2: {FGCDEAB}HI{JKLMNOPSQR}
List 1:

There are no more units to place on list 1 so we are done. List 2 is our list of
partitions in a precedence ordering. We can first solve the partition
{FGCDEAB}, then unit H, then unit I and finally the remaining partition
{JKLMNOPSQR}.

This algorithm works no matter which unit we start with on list 1. It gives a
unique set of partitions - i.e., the units grouped together. However, the
precedence order among the partitions may not be unique. Here it is,
however. An example of nonuniqueness is, if there were two units, T and U
each feeding reactor B from the outside, we could compute T first and then U or
the reverse.

TTTTeeeeaaaarrrriiiinnnngggg

The next issue is how we might solve each of the partitions containing more
than a single unit. We have two such partitions in our last problem. We can
illustrate an approach by examining the larger partition. The first is very
simple, and we leave it as a homework problem for the reader.

We repeat this part of the flowsheet here in Fig. 3. We see a number of units in
this part of the flowsheet for which a single stream enters and a single stream
leaves. We can remove these units, Fig. 4, as they add nothing to the topology
of the underlying network. Finally we straighten out the lines and redraw it
as Fig. 5, where we label the streams.

Comparing Figs. 4 and 5, we see that if we were to choose to tear stream 8 (the
connection between units S and K) we could tear any one of the actual streams
along the path between those two units.

We shall look at two different algorithms to find a set of streams we can tear.
Barkley and Motard (1973) proposed the first, Upadyhe and Grens the second.
The first is very simple and looks for the fewest tear streams. The second looks
for a set of tear streams which have better convergence characteristics.

Barkley and Motard Algorithm

In this algorithm we first convert the flowsheet into one the places the
streams on the nodes and the units on the edges, what we can call a dual

Equation-based modeling

11

representation; see Fig. 6. What we shall now look for are stream loops, e.g.,
streams 1, 2, 7 and 8 are in a loop. One of them has to be torn to break this loop.
Our goal is to find the fewest we need to tear to break all stream loops.

J
K

L
M

N

O

P

Q R

S

Fig. 3. The second partition for the flowsheet in Fig. 2. All streams and units
outside this partition are removed.

We proceed by listing each stream and its inputs. If a stream has only one
input stream feeding it, we remove it from the network and replace it by its
single input, leading to columns 3 and 4 in the Table 1 and (a) in Fig. 7. All
stream loops containing a stream with a single input must be torn and can be
torn by tearing that single input stream.

We can place any stream which now feeds itself onto the list of tear streams as
it is in a self loop. We find stream 2 in this category. Remove it from the
problem, getting columns 5 and 6 in the above table.

Equation-based modeling

12

K

L
M

O

S

Fig. 4. A reduction of the second partition shown in Fig. 3. This reduction is
formed by removing all units which have a single input/single

output stream.

K L M

O

S

1 2

3

4
5

6

7
8

Fig. 5. The underlying topology for the partition in Fig. 4. The streams are
now labeled to aid our analysis of this partition for tearing

Equation-based modeling

13

1

2

5

7

8

3

4 6

L

O

M

S

K

L
L

L

O

M

S

K

Fig. 6. Dual network for partition in Fig. 5

Table 1 Finding minimum tear streams for example problem using Barkley-
Motard algorithm

first pass second pass third pass fourth pass
stream inputs stream inputs stream inputs stream inputs

1 5,8 1 4,8 1 4,8 1 1
2 1,3 2 1,2
3 2
4 1,3 4 1,2 4 1
5 4
6 4
7 2
8 6,7 8 2,4 8 4

We find streams 4 and 8 now have only one input. Replace them by their
respective inputs streams in the problem, getting columns 7 and 8 above. We
find stream 1 is in a self loop. It must be torn. Remove it from the problem.
We are as there are no remaining streams in the problem.

Streams 1 and 2 form a minimum tear set.

There are problems where the above algorithm stalls as there will be no self
loops and no streams with a single input. In this case, one can tear a stream
which, if torn, will create a unit with a single input. If there are several
options, one can choose to tear the stream which is listed as an input the most
number of times. At this point there are no guarantees that one will produce a
minimum tear solution.

Equation-based modeling

14

1

2

8

4

1 8

4

1
self loop

self loop

(a) (b)

(c)

Fig. 7. Network reduction implied by Barkley-Motard Algorithm. (a) Network
corresponding to first reduction when removing first set of

streams having a single input (columns 3 and 4 in Table 1). (b)
Network after removing stream 2 which is in a self loop (columns
5 and 6). (c) Network after removing second set of streams (unit

8 first and then unit 4) with single inputs, leading to stream 1
being in a self loop (columns 7 and 8).

Upadyhe and Grens Algorithm

Upadyhe and Grens [197x] noted there are families of tear sets that one might
expect to have better convergence properties. Westerberg and Motard [19xx]
developed a branch and bound algorithm for finding such tear sets efficiently
both in terms of time taken and space required on the computer; it was the
algorithm that the Aspen simulator used until 1994.

First we find all information loops in the partition. We do this by a stream
tracing algorithm which is closely related to the stream tracing algorithm we
used to partition the flowsheet. We will illustrate this algorithm by applying
it to this example problem.

Start with any unit in the partition, for example unit K.

K -(1)->L-(2)->M-(3)->L

Equation-based modeling

15

Unit L repeats. The two streams, 2 and 3, which connect the two appearances
of unit L are placed on a list of loops, List 3.

List 3: {2,3}

Start with the unit just before the repeated one trace any alternate paths from
it.

K -(1)->L-(2)->M-(3)->L
 |

 -(7)->S-(8)->K

K repeats. Place {1,2,7,8} on the list of loops.

List 3: {2,3}, {1,2,7,8}

Back up to S and look for an alternate path leaving from it. There is none.
Back up to M. Again there is no unexplored path leaving. Back up to L. This
time there is another path. Continue with it.

K -(1)->L-(2)->M-(3)->L
 | |
 | -(7)->S-(8)->K
 |
 -(4)->O-(5)->K

K repeats. Place {1,4,5} on the list of loops.

List 3: {2,3}, {1,2,7,8}, {1,4,5}

Back to O for any alternate paths, which there is.

K -(1)->L-(2)->M-(3)->L
 | |
 | -(7)->S-(8)->K
 |
 -(4)->O-(5)->K

 |
 -(6)->S-(8)->K

Again K repeats. Place {1,4,6,8} on the list of loops.

List 3: {2,3}, {1,2,7,8}, {1,4,5}, {1,4,6,8}

Return to S, to O, to L and finally to K, none of which have any alternate paths
eminating from them. Since we have returned to the first unit on the list, we
are done. There are four loops for this partition. We list them in a loop
incidence array as shown in Table 2.

We now look for a set of streams which, if removed from the partition, will
remove (tear) all loops. We want each loop removed exactly one time if
possible. The loop incidence array aids in this process. For example, if we
remove stream 1, loops 2, 3 and 4 are removed from the partition. Stream 3 will
then remove loop 1. Each loop is broken precisely one time which is our goal.

Equation-based modeling

16

Streams 1 and 3, therefore, are a tear set for this partition. Other tear sets are
steams 2 and 4 and streams 3, 5, 6 and 7. This last set has four streams in it.
There are reasons we might prefer to minimize the number of streams
required making it less desirable as a tear set.

Table 2 Loop incidence array for partition

Stream
Loop

1 2 3 4 5 6 7 8

1 x x
2 x x x x
3 x x x
4 x x x x

It turns out we can find a whole family of tear sets. Find a first tear set, say
streams 1 and 3. Now look for a unit, all of whose outputs are in that set. At
least one will exist for which this will be true. We see that unit K is such a unit
as stream 1 is its only output. Replace its output streams in the tear set with all
of its input streams. Here we replace stream 1 by stream 5 and 8, getting the
tear set 3, 5, 8; i.e., we get

{1,3} -[K]->{3,5,8}

We can repeat this until the entire family of "equivalent" tear sets is found.
We will explain why we call them "equivalent" in a moment. Stream 8 is the
only output from unit S. Replace stream 8 by steams 6 and 7; i.e.

{3,5,8}-[S]->{3,5,6,7}

The remaining steps are done similarly, generating

{3,5,6,7}-[M]->{2,5,6}-[O]->{2,4}-[L}->{1,3} (where we started)
 |
 -[O]->{3,4,7}-[M]->{2,4} (seen before)

There are no more sets which we can generate for this family. Among all
these tear sets, we can choose among those that contain only two tears, namely
sets {1,3} and {2,4}, rejecting the rest as candidates.

This "family" of tear sets is thus: {{1,3}, {3.5.8}, {3,5,6,7}, {2,5,6}, {2,4}, {3,4,7}.
Let us remove one of these tear sets and partition and precedence order the
units in this example. Choosing tear set {1,3} we see that we can compute unit
L, which provides us with streams 2 and 4. We can compute units O and M in
either order next, giving us streams 5, 6 and 7. That allows us to compute S and
finally unit K. Fig. 8 shows the partial ordering that characterizes this
precedence ordering for these units. It takes a 2-dimensional graph as shown
in this figure to really show the precedence order for a group of units. We can
see why the order is not necessarily unique. It can be either the ordering
LOMSK or the ordering LMOSK.

Let's examine why we said all these tear sets are in the same family. We must
tear all the outputs for the last unit in any ordering, here for unit K. If we
move unit K to the beginning from the end of the ordering (i.e., form either

Equation-based modeling

17

KLOMS or KLMOS), its output streams are no longer torn. However, all its
inputs, streams 5 and 8, are. Since we have not moved units L and M relative to
each other, stream 3 is still torn. The new tear set is {3,5,8}, the second tear set
we discovered above. The algorithm above for finding all tear sets in the same
family then moves unit S from the end to the beginning getting SKLOM or
SKLMO (tear set {3,5,6,7}, then either unit M followed by O (getting MSKLO and
then OMSKL) or unit M followed by O (getting (OSKLM and then MOSKL). We
generate the remaining tear sets discovered above.

KL

M

O

S

1

2

3

4 5

6

7

8

tear

tear

Fig. 8. Precedence order for partition in Fig. 5 when tearing streams 1 and 3

Suppose we choose to solve our flowsheet using successive substitution. We
choose a tear set and guess values for each stream in it. Suppose we choose
tear set {1,3}. We can then compute the units in the order LOMSK. We now
have newly computed values for streams 1 and 3. We simply use them and start
through the units again, getting

LOMSK LOMSK LOMSK.......

Suppose that instead of starting with L, we guess the streams needed to start
with K in front (streams {3,5,8}). The successive substitution order would be

K(LOMS K)(LOMS K)(LOMS K.......

where the parentheses emphasize that we are really using the same ordering
as above except we started with unit K. Guess streams {3,5,8} and then compute
unit K, getting stream 1. Now treat this computed value as the guess we use for
the ordering LOMSK. We would reproduce the same numbers for our
computations as we attempt to converge these units using successive
substitution. Therefore, the tear sets in the same family have the same
numerical behavior when using successive substitution, a point made by
Upadyhe and Grens [197x].

Let's choose a tear set that puts a double tear into one of the loops. Returning
to the loops listed in Table 1, such a tear set would be streams {1,2} where loop
2, {1,2,7,8}, is torn twice while the rest are torn one time. Note, it involves only
two streams so from the point of view of involving the fewest streams, it
appears to be a good tear set.

Equation-based modeling

18

We can compute unit M first (its input stream, stream 2) is guessed. That gives
us streams 1 (guessed) and 3 (just computed) which allows us to compute L.
Continuing we find the order for computing the units is MLOSK as shown in
Fig. 9.

1

KLM O S

2

3 4
5

6

7

8

Fig. 9. Double tearing a loop

The impact of double tearing loop 2, highlighted in Fig. 9, is now evident. To
solve, we guess streams 1 and 2 and compute once through all the units in the
order shown. The new value that unit L computes for stream 2 impacts the
next computation for stream M, but this computation is based on the old value
for stream 1. The new value for stream 1 will impact the next computation for
L but not for unit M. It impacts only unit L and the units following when we
compute through the units the second time. Its new value will not impact unit
M until we compute that unit a third time. This delays the transfer of
information around this loop by one pass through the unit computations.
Upadhye and Grens argued that such a delay slows the rate of convergence for
successive substitution. It is for this reason we do not want tear sets that tear
any loop more than one time. If we triple tear a loop, we will see the delay
extend to two passes through the unit computations, and so forth.

An example where we cannot tear all the loops only one time each is shown in
Fig. 10 We can write down all the loops for this example directly (although the
reader might want to try the above loop detection algorithm to verify that we
have them all).

All columns have two incidences in them so we can pick any one to be first.
Pick stream 1. We would mark streams 2, 3, and 4 as ones we do not wish to
choose so we will not double tear loop 1. Similarly, we mark stream 8 to avoid
double tearing loop 3. That leaves us with streams 5, 6 and 7 only to tear the
remaining loops. Symmetry of this problem say we can pick any one of these
so we pick stream 5. To avoid double tearing loop 2 we mark streams 6, 7, and 8
(a second time) as ones we should not tear. All the streams are now marked as
ones we do not wish to tear; loops 4 and 5 remain intact. To tear them we must
choose two streams: one from the pair streams 2 and 7 and one from the pair
streams 3 and 6. If we pick streams 2 and 3, we will triple tear loop 1. If we
choose streams 6 and 7, we triple tear loop 2. Picking either streams 2 and 6 or
streams 3 and 7 double tears both loops 1 and 2. As we argued above, we prefer
double tearing loops to triple tearing them, so we choose either of the latter
two options. Because of problem symmetry, we will always find we must at

Equation-based modeling

19

least double tear two loops or triple tear one loop, no matter how we choose to
carry out the tearing.

1

3

4 5

6

8

A

27

B

CD

Fig. 10. Example where all loops cannot be torn exactly once

Table 3 Loop incidence array for partition in Fig. 10

Stream
Loop

1 2 3 4 5 6 7 8

1 x x x x
2 x x x x
3 x x
4 x x
5 x x
6 x x

Convergence algorithms

When we tear streams to solve a group of units which are in a single partition,
we have talked already of the possibility of converging them by using the
newly computed value as the next guess. Experience has shown that such a
convergence scheme will often converge, especially for partitions not
containing reactors. Motard and Gena [197x] discuss why. We may, however,
also put in special algorithms to do the reguessing. In this section we shall
explore such algorithms. We can find many papers in the flowsheeting
literature describing such algorithms which were written in the 1960s and
1970s. First let us explore computational controllers again for a moment, with
the purpose of bringing the reguessing algorithms together with those for
computational controllers.

IIIImmmmpppplllliiiicccciiiitttt vvvvssss.... eeeexxxxpppplllliiiicccciiiitttt iiiitttteeeerrrraaaattttiiiioooonnnn llllooooooooppppssss

We note that there is something different about the convergence loop we set
up when using a computational controller and that we set up when
converging a recycle stream. For a process stream, we start with a guess for

Equation-based modeling

20

the stream and ultimately end up with a computed set of values for that same
stream. We use the difference between what we guess and what we compute to
be an error that tells us if we should carry out more iterations. The computed
values for the stream could become our new guess for them. We noted thtat the
method that uses these computed values as the new guess is called the
successive substitution method.

A computational controller, on the other hand, adjusts one parameter to drive
another to a desired value. We could not use the computed value for the
measured variable as the next guess for the manipulated variable. One cannot
use the successive method for this case.

We distinguish between these two types of convergence loops as being explicit
(guess a set of values for some variables and compute new values for these
same variables) or implicit (guess a set of values for a set of variables and
compute values for a different set of variables). In the former the error is the
change between what we guess and what we calculate using that guess while
in the latter the error is the difference between what we calculate and what
we specify that we want as the value.

Both these types of computational loops require iteration to solve. The explicit
loop allows us to use successive substitution to reguess values; the implicit loop
does not.

To see that the above really makes a difference, look again at the recycle loop
for our process to manufacture hexene as shown in Fig. 1. We indicated that
any of the streams around the loop could become the one we guess to get
started. This is possible because the loop is an explicit loop. We are forced to
tear an implicit loop in only one place -- between the measured and the
manipulated variables.

It is worthwhile looking at the similarities as well as the differences between
these forms of iteration. We can form the abstract concept of an information
stream. Such a stream is formed by merging the measurement passing to a
controller followed by the value it passes to the manipulated variable.
Conversely, when we tear a process stream, we can mentally place a unit
between the two torn parts that represents the convergence block we intend
to use to reguess the stream value for the next iteration. Fig. 11 illustrates the
similarity we are trying to establish here. The computational controller is
playing the role of the convergence block for an information stream.

We gain two conceptually useful ideas here. Thought of in this manner, a
computational controller becomes a stream in our flowsheet on which we can
use the tearing algorithms we presented above. The key difference is that we
must choose such a stream to be in the tear set when we are selecting which
streams to tear because we cannot use successive substitution to converge such
an information stream.

The other conceptual gain is that we may merge the computational controller
algorithm with that used for the convergence block for streams, an idea we
shall now explore. Thus we may converge all the tear streams and controllers
in a single partition simultaneously using the same convergence method.

Equation-based modeling

21

convergence
block

computational
controller

information stream

process stream

Fig. 11. Simularities between information streams and process streams

TTTThhhheeee ccccoooonnnnvvvveeeerrrrggggeeeennnncccceeee pppprrrroooobbbblllleeeemmmm ffffoooorrrr fffflllloooowwwwsssshhhheeeeeeeettttssss

We can characterize the convergence problem for a flowsheet as the solving
of a set of n nonlinear equations in n variables.

 h(xguess) = 0

where the equations are

h(xguess) =

xguess − xcalc for process streams
y

calc
− y

setpoint
 for controlled variables

For process streams, variables x are those characterizing it such as its
flowrate, compositions, temperature and pressure. For a computational
controller, xguess is the manipulated variable while ycalc is variable whose
value we wish to drive to the specified value ysetpoint.

We shall discuss numerical methods to converge a set of simultaneous
nonlinear equations in a later section after we first discuss developing the
equations for a model in the next section.

Modeling - an example

What is a model

A model is much more than a set of equations. To be truly useful, we need to
know, among other things, its purpose, the assumptions on which it is based
and (considering its purpose) how we intend to decide if it is a good model.

Equation-based modeling

22

Let us create a simple model, that of a simple binary flash unit, to see many of
the issues involved.

DDDDeeeessssccccrrrriiiippppttttiiiioooonnnn ooooffff iiiittttssss ppppuuuurrrrppppoooosssseeee

To create a model we need first to describe its purpose. For example, consider
that we wish to create a steady-state model for a binary flash model. We intend
to use the model to study the separation of different mixtures of two species
versus their relative volatility. In particular, we are curious about how large
the relative volatility has to be for a simple flash separator unit to give us 99%
recovery of the light species in the vapor stream while giving us a 99%
recovery of the heavy species in the liquid stream.

This model is likely a very simple one to construct. For example, we will not
need to couple it with a physical properties estimation package. It should
consist of only a few equations, perhaps around 10 to 20 of them. If our
purpose had been to predict azeotropic behavior between acetone and
chloroform, the modeling problem would be very different and decidedly more
difficult.

A significant part of the model is, therefore, a description of its purpose.
Without it the modeler has little guidance as to the fidelity required for it. Also
the purpose is the best first document to give to someone else when explaining
a model.

DDDDeeeessssccccrrrriiiippppttttiiiioooonnnn ooooffff iiiittttssss uuuunnnnddddeeeerrrrllllyyyyiiiinnnngggg pppprrrriiiinnnncccciiiipppplllleeeessss aaaannnndddd aaaassssssssuuuummmmppppttttiiiioooonnnnssss

We shall assume the flash operates as an equilibrium flash. The underlying
principles and assumptions for such a model are quite simple. We can model it
using component material balances and a means to express equilibrium in
terms of relative volatility. We characterize the species involved only by their
relative volatility; there is no need to identify the exact species, therefore. We
do not need a heat balance nor a momentum balance.

Explicitly stating these assumptions helps clarify the nature of the model we
shall produce. We can measure these against the description of its purpose
above to pass judgment on them.

CCCCrrrriiiitttteeeerrrriiiiaaaa ttttoooo aaaasssssssseeeessssssss iiiittttssss ssssuuuucccccccceeeessssssss

We would like to be able to specify a feed for the flash and its relative
volatilities. The desired output should be the composition of the top and bottom
products. We would like answers to be accurate to at least three significant
places. Just what that might mean for convergence tolerances, we shall have
to discover when we do manage to solve our model.

We also want it to solve rapidly, i.e., perhaps within a fraction of a second.
However, we have no need for this requirement. If the model does take longer
than this, it should make us wonder if we stated it correctly. As we learn more
about the model, we will likely revise these criteria for assessing its success.

Equation-based modeling

23

IIIIttttssss ddddeeeeffffiiiinnnniiiinnnngggg eeeeqqqquuuuaaaattttiiiioooonnnnssss

We can now start to write the equations we expect will be needed. This process
is iterative in nature as we are likely to change our minds on how to structure
the equations several times as we write them. Much of the restructuring is to
make it clearer to us that we are writing just the right equations, neither
writing more than we should nor forgetting any. This emphasis on creating
an elegant form for the model may be frowned upon by many. The argument
many modelers make is that of expediency: it is good enough as long as it
works. Our bias is in the other direction. An elegant model is easier to
examine and mentally check for correctness. A small crude model is okay, but
this approach is fraught with danger if the model is large.

Fig. 12 illustrates a simple flash unit.

V, y
i

L, x i

F, z
i

Fig. 12. A flash unit

The defining equations are first the component material balances. There are
two species so we write two of them. We do have to decide whether to write
them in terms of molar flows

 f1 = v1 + l1; f 2 = v2 + l2 (1,2)

where f, v and l are molar flow rates e.g., {gm_moles/s}. We could also write
the material balances in terms of mole fractions, z, y and x, and overall stream
flows, F, V and L.

 z1F = y1V + x1L ; z2F = y2V + x2L
The former equations are linear in the variables we used to write them.
Experience suggests this form is better for solving so we shall select it. To
have this linearity in the equations, we pose the following general guideline
for modeling processes.

Modeling rule: Express material balances in terms of
molar or mass flows.

Equation-based modeling

24

We express equilibrium using relative volatilities as follows. This form is a
generalization of the form we might remember from when we were first
taught about relative volatilities (substitute a2=1 and x2 = 1-x1 to get the more
familiar form).

y1 =

a1
a1x1 + a2x2

x1 (3)

y2 =

a2
a1x1 + a2x2

x2 (4)

We just wrote two such relationships. At this point we might wonder to
ourselves if we are allowed to write two of them. After all, in our first course
on distillation, we wrote only one equilibrium equation for the more volatile
species. We put this thought aside for the moment with a mental flag set to
return to it as we proceed. Also, we just wrote these equations in terms of mole
fractions rather than molar flows. At the moment this appeals, but we may
wonder if we will end up liking it. Again we put this question aside to be
considered later.

There are other equations we know are likely to play a role. First the mole
fractions for our problem have to sum to unity:

 x1 + x2 = 1; y1 + y2 = 1 (5,6)

Also, if we intend to use molar flows for the two components as well as mole
fractions, we need to define their interrelationship to each other. We write

x1 =
l1
L

; x2 =
l2
L

; y1 =
v1

V
; y2 =

v2

V
(7,8,9,10)

Note that we related all mole fractions to their respective molar flows. We may
wonder if we have the right to do so. Our reason is that we want to treat all
components equally when writing equations. We would definitely want this
symmetry to occur if this were a model for more than two components.

Do we need to define L and V? Summing eqns 7 and 8 and applying eqn. 5
gives:

l1 + l2
L

= 1

which implicitly defines L. Summing eqns 9 and 10, together with 6, also
implicitly define V. We do not need to write extra equations to define L and V.
They are the "scale factors" that make the mole fractions defined by eqns. 7 to
10 add to unity.

Equation-based modeling

25

DDDDiiiidddd wwwweeee wwwwrrrriiiitttteeee ttttoooooooo mmmmaaaannnnyyyy eeeeqqqquuuuaaaattttiiiioooonnnnssss????

We have written ten equations here (excluding the second form for the
material balances). Are they all independent? Did we forget any? Are they
correct equations for our problem? We have little doubt they are each correct,
but we should have serious doubts that they are all necessary and/or that we
did not forget any.

To decide if we wrote too many equations, let us see if we can derive any we
wrote from others we wrote. Adding the two equilibrium equations, we get

y1 + y2 =

a1x1 + a2x2
a1x1 + a2x2

= 1

This equation says that the vapor mole fractions sum to unity without our
having to say they do. We should remove either one of the equilibrium
equations or the equation summing the vapor mole fractions to unity. We
might select to remove the second equilibrium equation; however, this may
insult our sense of symmetry for the problem. On the other hand, removing
the statement that the mole fractions add to unity also bothers us as it means
that we must treat the vapor stream different from the liquid stream leaving
the flash unit.

Another approach, similar to our experience above with L and V, is to rewrite
the equilibrium equations as follows, introducing a new variable a to scale
the equations.

y1 =

a1
a

x1 (3')

y2 =

a2
a

x2 (4')

If we sum these two equations, we get

 a = a1x1 + a2x2

Now we can leave both of these equilibrium equations and both of the
equations indicating that the mole fractions add to unity. This is more
satisfying because of its symmetry in defining things. The new variable a
will, when solved for by the model, yield the value shown by the last equation
above. This last equation cannot be a part of the model if all the other
equations are. However, we do see an easy way to make an initial guess for it.
It must be somewhere between the two relative volatilities, a1 and a2.

The last, and definitely satisfying characteristic for this model, is that we see
that the y values are proportional to the x values with the relative volatilities
being the constants of proportionality, a nice interpretation for this form of
expressing equilibrium.

We still do not know if the model is correct, but we might be ready to try using
it anyway. If it "works," we will assume it is correct.

Equation-based modeling

26

SSSSeeeelllleeeeccccttttiiiinnnngggg wwwwhhhhiiiicccchhhh vvvvaaaarrrriiiiaaaabbbblllleeeessss ttttoooo ffffiiiixxxx aaaannnndddd wwwwhhhhiiiicccchhhh ttttoooo ccccoooommmmppppuuuutttteeee

To solve the flash unit, we count the variables used in the model, discovering
there are 15 of them: y1, y2, x1, x2, a1, a2, a , f1, f2, l1, l2, v1, v2, L and V. As
noted, we wrote 10 equations. To make this problem a square one (i.e., one with
an equal number of unknown variables and equations), we can select five
variables and provide values for them. In the problem description, we stated
that we wanted to specify the feed fully which happens if we specify f1 and f2.
Also we can specify the two relative volatilities. If our analysis for degrees of
freedom is correct, we can also chose one more. Let us require that the total
liquid flow leaving the unit equal half the flow of the feed entering, i.e., we
add the equation

L = 0.5F (11)

This specification is one that most chemical engineers would think reasonable
for a flash unit.

CCCChhhheeeecccckkkkiiiinnnngggg iiiiffff mmmmooooddddeeeellll wwwwiiiillllllll ssssoooollllvvvveeee

For a problem as simple as this one, we can now attempt to solve the equations
mentally to see if the model "works."

1. Fix f1 and f2 to 1 {gm_mole/s} each.

2. Fix a1 to 2 and a2 to 1.

3. From eqn. 11, we compute L = 1 {gm_mole/s}.

4. We can go no further using the equations as they are now written. We
must do some algebra (often difficult or impractical to do) or some
guessing and iterating. Let us guess l1 = 0.4 {gm_mole/s} (less than half
the more volatile species will exit in the liquid product) .

5. We can use the following five equations in the order indicated to
compute

eqn 7 --> x1 = 0.4
eqn 5 --> x2 = 0.6
eqn 1 --> v1 = 0.6 {gm_mole/s}
eqn 8 --> l2 = 0.6 {gm_mole/s}
eqn 2 --> v2 = 0.4 {gm_mole/s}

6. We are stuck again. Some simple algebra will, in fact, rescue us. We can
actually compute a using the definition given earlier to be

a = a1x1 + a2x2 = 2(0.4) +1(0.6) = 1.4

and V

Equation-based modeling

27

V = v1 + v2 = 0.6 + 0.4 = 1{gm_ mole / s}

Neither of these two equations are in our set so they should replace two
which are, e.g., eqns 6 and 9.

7. We can now use the following eqns to compute

eqn 3' --> y1 = 0.57143
eqn 4' --> y2 = 0.42857

We note these add to unity automatically as we used the right value for
a in step 6. This observation justifies our replacing eqn 6 when we
used the definition we did in step 6 for a .

7. We have one unused equation left and no unevaluated variables. Earlier
we guessed l1. We can use the leftover equation as an error function
whose value would be zero had we guessed the right value for l1.
Evaluating the error between the LHS and RHS of eqn 10, we get

y2 -
v2

V
= 0.57143 -

0.4
1

= 0.17143

which is not zero.

8. We need now to return to step 4 where we guessed a value for l1. We
should reguess it until the error in step 7 is reduced to zero.

If we do this we shall find the solution finally to be

f1=1 {gm_mole/s}
f2=1 {gm_mole/s}
a1=2
a2=1

for the variables whose values we fixed and

L= 1.00000 {gm_mole/s}
V= 1.00000 {gm_mole/s}
l1=0.41421 {gm_mole/s}
l2=0.58579 {gm_mole/s}
v1=0.58579 {gm_mole/s}
v2=0.41421 {gm_mole/s}
x1=0.41421
x2=0.58579,
y1=0.58579
y2=0.41421
a =1.41421

for the variables that we need to calculate. The solution procedure seems to
work and give reasonable answers. For a problem as simple as this one, we

Equation-based modeling

28

shall assume, therefore, that the equations are correct. We seem to have a
well-posed model.

Our purpose in creating the above solution procedure was not to solve the
equations this way but to demonstrate that we might have a correct model. In
fact, what we are really trying to discover is if we have an obviously incorrect
model.

HHHHoooommmmeeeewwwwoooorrrrkkkk 1111

1. Consider computing the mass of metal required to construct a thin walled
cylindrical vessel as shown in Fig. 13. Wall thickness is t. Write the
description of purpose, the underlying principles and assumptions, the
criteria for success and the defining equations for the model. Check the
model to see if it appears to "work."

L

D

Fig. 13. A simple tank

2. Repeat question 1 for a closed fixed volume vessel containing water and
water vapor as shown in Fig. 14. One can estimate the vapor pressure for
water using the Antoine equation (Reid et al, 1977):

P

water
sat {mm Hg} = exp(18.3036 -

3816.44
T {K} - 46.13

)

water

water
vapor

Fig. 14. A simple boiler

Solving the equations using Newton's method

One can solve the equations for our binary flash model numerically using
Newton's method. Newton's method linearizes the equations and solves the
linear equations as a way to approximate the solution to the nonlinear ones.
Fig. 15 illustrates the method for a single equation in one unknown. Guessing

Equation-based modeling

29

the unknown, x, at x0, the method evaluates h(x0) as well the slope of the
function, (dh/dx)x0 at x0. A linear equation that goes through the function at
x0 is:

y (x) = h(x0) +
dh
dx
é

ë
ê

ù

û
ú
x 0

(x - x0)

h(x)

h(x), y

h(x*)=0

x*

x0xnext

x

y = h(x0)
+(dh/dx)xo

(x-x0
)

Fig. 15. Newton method for one equation in one unknown

Solving for x when y is set to zero gives us the next guess for an x that will
solve h(x)=0.

xnext = x0 -
dh
dx
é

ë
ê

ù

û
ú
x 0

-1

h(x0) º x0 + Dx0

To solve the ten equations above using Newton's method requires us to
linearize all ten equations, which we can do as follows. Remember that we
have fixed f1, f2 ,L, a1 and a2 to get a set of ten equations in ten unknowns.

We first look at linearizing eqns 1 and 2. We repeat them here for
convenience.

 f 1 = v 1 + l1 ; f 2 = v 2 + l2 (1,2)

Equation-based modeling

30

Since f1 is fixed, linearizing eqn 1 gives:

 f 1 = v1 + Dv1 + l1 + Dl1

which we rearrange to put the unknowns (the perturbations for the
variables) to the left-hand- (LHS) side while putting the known terms to the
right.

 -Dv1 - Dl1 = -(f 1 - v1 - l1)

As with the case of a single equation in one unknown considered above, the
right hand side is the negative of the original equation (rewritten so it is in
the form f(x)=0 by subtracting its right hand side from its left hand side). If it
is zero, then the original equation is satisfied. We, therefore, use the right
hand side of the perturbation equations to detect convergence.

If we then use the values we guessed for the first pass earlier through the
equations for all the variables above, we can evaluate the right hand side to
get

 -Dv1 - Dl1 = -(1 - 0.6 - 0.4) = 0
(1")

Linearizing eqn 2 gives

 - Dv 2 - Dl2 = -(f 2 - v 2 - l2) = -(1 - 0. 4 - 0. 6) = 0 (2")

We can rearrange equation (3') to a form that is easier to linearize by
multiplying through by a :

 ay1 = a1x1 (3')

Linearizing (and remembering that a1 is fixed) gives:

ay1 + D(ay1) = ay1 + aDy1 + y1Da

= a1x1 + D(a1x1) = a1x1 + a1Dx1

Rearranging to put the perturbation variables to the left hand side gives:

 aDy1 + y1Da - a1Dx1 = -(ay1 - a1x1)

We substitute in current values for the variables, getting:

1.4Dy1 + 0.57143Da - 2Dx1

= -(1.4*0.57143- 2*0.4) = 0 (3")

Equation-based modeling

31

We could continue with the remaining equations, and, hopefully, the approach
is clear. When done, one will have ten lllliiiinnnneeeeaaaarrrr equations (1" to 10") in ten
perturbation variables, Dy1, Dy2, Dx1, Dx2, Da ,D l1, Dl2, Dv1, Dv2 and V. One can
solve these using Gaussian elimination. The next guesses for each of the
variables are the current values plus these perturbations. If all the right-
hand-sides are zero, we have solved the equations.

The equations are then relinearized at this new point, again getting a solution
for the perturbations, which are again added to the then current variable
values. If one is successful, the method converges, usually quite quickly.

HHHHoooommmmeeeewwwwoooorrrrkkkk 2222

1. Linearize the remaining equations for the two component flash model.
Guess the original point to be the values determined above. Set up the
Newton equations and solve the linear equations that result for the next
guess for all the variables.

2. Repeat for the equations for the cylindrical vessel defined in problem 1 of
the first set of homework problems.

3. And repeat again for the closed vessel contain water and water vapor
(Homework 1, problem 2).

IIIImmmmpppprrrroooovvvveeeedddd NNNNeeeewwwwttttoooonnnn bbbbaaaasssseeeedddd ssssoooollllvvvviiiinnnngggg mmmmeeeetttthhhhooooddddssss

One must often have an extremely good estimate of the answer to get close
enough that the Newton method for solving nonlinear equations will
converge. There are many things one can do numerically to increase the
"ball" of convergence. We summarize a few of them here.

Line search

One option is to take a full Newton step and see if that point leads to a reduction
in the sum of squares of the functions (remember that our goal is for the
functions to be zero so this sum of squares measures how far we are from
satisfying our goal). If it does not, then the approach is to shorten the step
until one finds a point where such a reduction does occur.

Levenberg/Marquardt search

If one is going to shorten the step taken from that of a full Newton step, the
direction to search should move more in the direction of steepest descent , the
direction where one reduces the sum of squares of the functions most rapidly
if one were to take an extremely short step. This is the idea behind methods
first developed independently by Levenberg (194x) and Marquardt (195x). Fig.
16 illustrates.

Shown in this figure are the larger oval contours where the sum of squares of
the functions are constant. Assume we are currently at the point shown in the
lower left. We show circles surrounding this point of constant step length. We
compute two directions: the Newton direction and the direction of steepest

Equation-based modeling

32

descent. If the functions are linear, the Newton step will point precisely to the
point where the functions are all zero, both in terms of the direction taken
and the length of the step, so we show it pointing here close to the point where
the sum of the functions is zero. One can prove that the steepest descent
direction is orthogonal to the contour lines, which is how we show it here.
The curve starting from the end of the Newton step back toward the starting
point and moving always closer to the steepest descent direction as the
distance from the starting point shortens is the Levenberg/Marquardt
direction.

steepest
descent

direction

Newton
direction

Levenberg-Marquardt
curve

sum of squares
of errors in
functions

Point where
equations solveCircles of

equal step
length

Current
point

Shi
2=10

Shi
2=5

Shi
2=20

Fig. 16. Levenberg/Marquardt steps

If our goal is to take a step of fixed length - say to one of the circles surround
the current point, then the size of the step is on the Levenberg/Marquardt
trajectory. To see this, move around one of these circles to the point where the
sum of squares of the functions is minimized on it. If one were to illustrate
this trajectory in more than two directions, it would move out of the plane
defined by the Newton and steepest descent directions.

We use a modification of this method in the ASCEND system (Westerberg and
Director, 197x). The modification keeps the step taken in the plane defined by
the two directions and, as a result, retains the sparsity and numerical
conditioning of the original problem. The original Levenberg/Marquardt
method is twice as dense and has a condition number the square of that for the
original problem (which makes it a worse condition number).

Equation-based modeling

33

Trust region/linear programming

Another approach is to put constraints on the maximum size of the step one is
willing to take. These constraints form what is called a trust region. To
compute a step to take, we can linearize each function, hi, writing

hi (x + Dx) » hi (x) +

¶hi
¶x jj

å Dx j = pi - ni for all i

 -aj £ Dx j £ aj for all j.

where pi and ni are positive numbers. If we do not satisfy the linearization, at
least one of these two will be nonzero.

Then we form the linear objective

Min (pi

i
å + ni)

which attempts to drive the deviations to zero. The trust region constraints
bounding the step size can prevent us from driving the deviations to zero. Note
that since both pi and ni must be positive, at most one of them will be away
from zero with this objective. With a simple transformation on the Dxi, one
can make all of this into a linear program where one minimizes by choice of
the Dxi, pi and ni . Solving gives the "best" direction in which to move subject
to remaining within the bounds we put on the step sizes. The best value is
when pi and ni are both zero, in which case we compute a Newton step. One
can also add bounds on the variables themselves to this formulation. Bullock
and Biegler (199x) explored this approach to computing directions for solving
nonlinear equations and found it works very well.

Continuation methods

The last class of methods we shall briefly discuss here is the class of
continuation methods. To get the idea, suppose we evaluate the functions at
some initial guess, getting each equal to hi(x0) (i.e., the value of hi at the
initial guess, x0). Rather than attempting to drive the functions all the way to
zero, we could try to move them a small way toward zero, say to 0.9hi(x0) for
each hi. In other words we solve

 hi (x) - 0.9hi (x0) = 0

Our hope is that by staying close to where we started we are within the ball of
convergence for the method we are using to converge the equations. If we
succeed in solving with 0.9, we reduce it to 0.8 and repeat, finally reducing the
multiplier to 0, at which point we have solved our original equation. One can
see two issues here even for this approach: (1) just how fast can one reduce
the multiplier and (2) this approach is a lot more work so we would likely use it
only if we fail to converge without using continuation. The use of a multiplier
as shown here is a form of algebraic continuation method. There are two
other forms worth mentioning. One is to convert the problem into a problem
of solving differential equations in "time" where each step attempts to move

Equation-based modeling

34

closer to where the functions are zero. The speed with which one can reduce
the multiplier now is a problem for the integration package to decide.

Another is to use what are called natural continuation formulations. As an
example, chemical engineers often write nonideal vapor/liquid equilibrium in
the following form:

yi =

g i f i
0

fi P
xi

where gi is an activity coefficient,

f

i
0 a standard state fugacity which is close

to being the vapor pressure for the pure component i, fi is a fugacity
coefficient, P is the pressure, and yi and xi are mole fractions. The nonideality
is in the activity and fugacity coefficients. We can alter this relationship by
adding in the factor t as follows:

yi =

g i
fi

æ

è
ç

ö

ø
÷

t f
i
0

P
xi

and creep up numerically on the solution by letting t move slowly from 0
(where the nonideal behavior is suppressed) to 1 where we solve the original
problem. Taylor (198x) suggested this last approach and demonstrated how
well it worked by solving some really difficult reboiled absorber problems.

SSSSccccaaaalllliiiinnnngggg

Convergence is detected when the right hand sides to the linearized equations
are all very small. However, what is small depends on the scaling used.
Scaling also affects the numerical performance of many convergence
algorithms.

Interestingly, Newton's method is scale invariant for an infinitely accurate
computer. To be scale invariant means that the computed step does not depend
on how the scaling used for the variables and equations. We can see this to be
the case by examining the Newton equations after we have rescaled by
dividing each variable and each equation by a nominal value for it.

Our original functions are

 h(x) = 0

We expand these equations in a Taylor series to first order to obtain the Newton
equations (using matrix/vector notation), getting

h(x + Dx) » h(x) +
¶h

¶ xT

é

ë
ê
ê

ù

û
ú
úx

Dx = 0

Equation-based modeling

35

The latter part can be rearranged to give us Dx in the form we usually associate
with the Newton method:

¶h

¶ xT

é

ë
ê
ê

ù

û
ú
úx

Dx = -h(x)

Scaling the variables says that we divide each variable by its nominal value.
We can accomplish this by premultiplying the vector of variables by a
diagonal matrix (only the diagonal has nonzero terms), where the diagonal
element is the reciprocal of the nominal value of the variables.

We can see this with the following example where we rescale the vector of
variables x. The nominal value for x1 is 10 and for x2, 0.3. We call the newly
rescaled variables y.

1
10

0

0
1

0.3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

x1

x2

é

ë
ê

ù

û
ú =

1
10

x1

1
0.3

x2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
y1

y2

é

ë
ê

ù

û
ú

In a similar fashion we can rescale the functions by premultiplying them by a
diagonal matrix. The resulting equations become:

 Dh h(D x D x
-1 x) = Dh h(D x y) = 0

where

y = D x

-1 x .

If we carry out a Taylor series expansion on these to first order to derive the
Newton equations for them, we get:

Dh h(y + D y) » Dh h(y) + Dh
¶h

¶ xT

é

ë

ê
ê

ù

û

ú
ú
x

¶ x

¶ yT

é

ë

ê
ê
ê

ù

û

ú
ú
ú

D y

= Dh h(y) +
¶h

¶ xT

é

ë

ê
ê

ù

û

ú
ú
x

D x D x
-1
Dx

ì

í
ï

î
ï

ü

ý
ï

þ
ï

= Dh h(y) +
¶h

¶ xT

é

ë

ê
ê

ù

û

ú
ú
x

Dx
ì

í
ï

î
ï

ü

ý
ï

þ
ï
= Dh 0

Multiplying the last row above through by the inverse of

Dh gives us back

our original Newton equations. Thus the Newton method will compute the
same step whether we have scaled or not.

Equation-based modeling

36

Most other numerical methods are not scale invariant. Broyden's method and
the steepest descent methods are not, for example. Thus altering the scale for
these methods will alter the steps taken.

Computers have finite accuracy and as a result there is an impact of scaling
even on Newton's method. The accuracy of solving linear equations on a finite
word length computer can be strongly affected by the pivot sequence one
selects. For example, if we do all computations to four digits of accuracy (using
rounding), the solution to the following equations changes with the pivot
sequence used.

1 10-6

10-6 1

é

ë
ê
ê

ù

û
ú
ú

x1

x2

é

ë
ê

ù

û
ú =

1
2

é

ë
ê
ù

û
ú

Pivoting on the large elements (1) leads to x1=1 and x2=2. Pivoting on the small
elements (10-6) leads to x1=1 and x2 equals zero. The 2 on the RHS has no affect
on the solution. The first is the correct solution.

Scaling of equations as a part of solving them numerically has been the theme
of many publications. The general consensus is that scaling should be done
based on physical arguments. Automatic scaling often leads to inappropriate
scaling. We can offer an argument for this observation. Suppose one is
computing a model in which some of the variables are mole fractions. How
should they be scaled? We might at first glance decide that their nominal
values should all be unity. However, suppose one of the species is a trace
species whose values is in parts per billion and that its value is being
calculated very specially to allow us to maintain an accurate number in that
range. Scaling by unity is totally incorrect for this variable. In another case
one part per billion may be effectively zero to us.

If the variables and equations are properly scaled, then we can use absolute
measures to decide on what is small. Suppose all variables are scaled to be near
to 1.0 in value. Then we can test the change to the rescaled variable to decide
on the magnitude of a change in it. We often consider a change of 10-8 to be
small. Similarly, suppose that equations are rescaled so all terms that are added
or subtracted to form them are of magnitude 1.0. Then a small error is again
discernible by its absolute value. We often consider an equation to be
converged if the magnitude of its error is of the order of 10-8.

We argue that scaling has to be done as follows.

Scale all variables so their values are near to unity. We define the nominal
value of a variable as the positive number by which we shall divide that
variable to rescale it. It is easy to select a nominal value for an absolute
temperature. We can choose room temperature (about 300 {K}). Similarly, it is
often easy to scale pressures by dividing by a nominal value of 10 {atm}. Mole
fractions typically have a nominal value of unity.

Mass and energy flows are not so easy. Flows can vary by many orders of
magnitude in the same problem.

Equation-based modeling

37

A good rule of thumb for flows in chemical processes is that a typical process
feed flow is about 1 {kg/s}. A large one, such as a coal liquefaction process, is
about 30 {kg/s}. Internal flows in columns will generally be no more than ten
times their feed flow. We generally rescale by performing two or three
iterations in an attempt to solve them using an initial nominal value
equivalent to 1 {kg/s}. Then we reset the nominal value to be the larger of the
magnitude of the actual flowrate or 0.01 {kg/s}.

To rescale equations, we evaluate each of the terms which are
added/subtracted to form it, using nominal values for all the variables.
Generally this will lead to a rescaling by unity.

Let us examine scaling for eqn 1 in the above model using these guidelines.
We repeat eqn 1 for convenience.

 f 1 = v 1 + l1 (1)

All the variables in it are molar flows. The feed flow f1 is fixed for the
problem and is the sum of the other two. f1 has a fixed value of 1
{gm_mole/s}. This value, therefore, is an excellent nominal value to use for all
three flows. Divide each flow by 1 {gm_mole/s}.

If none of the flows is known in this equation, then we could proceed as
follows. Assume the molecular weight of the material is about 100 g/mole.
Then 10 mole is 1 kg. Set the nominal value for flowrate to be 10 {gm_mole/s}.
After performing two Newton iterations, reset the nominal value to the larger
of the flow and 0.1 {gm_mole/s}.

Let us suppose we have rescaled this equation. It then has the form:

f1

1 {gm _mole / s}
= v1

1 {gm _mole / s}
+ l1

1 {gm _mole / s}

If we assign nominal values to each of the variables above, each term is unity.
We use unity as the factor by which we rescale this equation.

One more example is eqn 3 as we rewrote it to linearize it just above:

 ay1 = a1x1 (3')

Relative volatilities tend to be near to unity (say, from 1/3 to 3). We can set the
nominal value for them to 1.0. The nominal value for mole fractions is also 1.0.
The terms will also evaluate to unity if nominal values are used for all the
variables. Thus we rescale the equation by dividing it by 1.0.

HHHHoooommmmeeeewwwwoooorrrrkkkk 3333

1. Develop appropriate scaling for the rest of variables and equations for the
two component flash model. Guess the original point to be the values
determined above. Set up the Newton equations and solve the linear
equations that result for the next guess for all the variables.

Equation-based modeling

38

2. Repeat for the variables and equations for the cylindrical vessel defined in
problem 1 (Homework 1, problem 1; Homework 2, problem 2).

3. And repeat again for the closed vessel contain water and water vapor
(Homework 1, problem 2; Homework 2, problem 3).

4. Prove that the solution changes depending on the pivot sequence for the
problem when all arithmetic is done to 4 significant digits with rounding.
Show that the solution does not depend on the 2 on the right-hand-side if
one pivots using the smaller numbers.

1 10-6

10-6 1

é

ë
ê
ê

ù

û
ú
ú

x1

x2

é

ë
ê

ù

û
ú =

1
2

é

ë
ê
ù

û
ú

Solving when derivatives are not available explicitly
GGGGeeeennnneeeerrrraaaalllliiiizzzzeeeedddd sssseeeeccccaaaannnntttt

Assume we are solving

 h(x) = 0, n equations in n unknowns

by guessing x at several points; i.e., we compute

x h(x)

x0 h(x0)
x1 h(x1)

xn h(xn)

where each h(x i) ¹ 0 or else we would have solved the equations.

We assume

 h = A x + b

Then for each i, we can write

 Dhi = hi - hi -1 = A(xi - x i -1)

giving

 Dh1, Dh2, L, Dhn[] = A Dx1, Dx2, L, Dxn[]

which we can write in vector/matrix form as

 DH = A DX

where we can solve for the coefficient matrix

Equation-based modeling

39

 A = DH DX -1

Since we choose the steps we can create a matrix DX which has an inverse.
We compute the vector of constants b as follows

 b = hn - A xn

Finally, we want to choose the next value for x such that

 h* » A x * +b = 0

Solving, we get

 x * = -A -1b = -A -1(hn - A xn) = xn - A -1hn

or

 Dx * º x * -xn = -A -1hn = DX DH -1hn

One proceeds when applying this method to replace a previous x with this new
one. Usually one replaces the oldest vector, but sometimes this replacement
will lead to a singular matrix DH so we must then replace a different previous
vector.

Since we are replacing only one vector in this matrix by another, one often
uses rank one updates methods to maintain the inverse for the matrix DH .

RRRRaaaannnnkkkk oooonnnneeee uuuuppppddddaaaattttiiiinnnngggg

We can derive the Sherman-Morris/Householder formula for rank 1 updating
by the following approach. Assume we have have the following matrix of four
matrices where those matrices on the diagonal are square. We append an
appropriately partitioned identity matrix. If we then do a block gaussian
elimination on this matrix and also carry out the same operations on the
appended identity matrix, we convert the identity matrix into the inverse of
the original matrix.

A B
C D

é

ë
ê
ê

ù

û
ú
ú

I 0
0 I

é

ë
ê
ê

ù

û
ú
ú

r1

r2

Step 1 of a block gaussian elimination (we suppress underlining of matrices in
the following)

I A -1B A -1 0
0 D -CA -1B -CA -1 I

¢r1 = A -1r1

¢r2 = r2 -C ¢r

Step 2 of the above gaussian elimination

Equation-based modeling

40

I 0 A -1 + A -1B (D -CA -1B)-1CA -1 -A -1B (D -CA -1B)-1

0 I -(D -CA -1B)-1CA -1 (D -CA -1B)-1
¢¢r1 = ¢r1 - A -1B ¢¢r

¢¢r2 = (D -CA -1B)-1 ¢r2

Let us repeat the above elimination process, but this time we shall start by
pivoting in the second row, second column first. We might expect that we
should get the identical result, but we do not.

A - BD -1C 0 I -BD -1

D -1C I 0 D -1

¢r1 = r1 - B ¢r2

¢r2 = D -1r2

Continuing with step 2 of the elimination, we get

I 0 (A - BD -1C)-1 -(A - BD -1C)-1BD -1

0 I -D -1C(A - BD -1C)-1 D -1 - D -1C(A - BD -1C)-1BD -1
¢¢r1 = (A - BD -1C)-1 ¢r1

¢¢r2 = ¢r2 - D -1C ¢¢r1

If we examine the two different forms for the element that is sitting in the
first row, first column of the inverse for the above two cases, we see their
form is very different. However, they must represent the same thing. We
have derived the following equality (known as the Sherman-
Morris/Householder formula).

 (A - BD -1C)-1 = A -1 + A -1B (D -CA -1B)-1CA -1

We note that the matrix on the left-hand-side is the inverse of the matrix A
modified by subtracting a term from it. The right-hand-side has the inverse
for A with a term added to it. Let us consider the special case which leads to a
rank one update formula.

Let B=u a column vector

C=vT a row vector
D=1 a scalar

which corresponds to the matrix

A u
vT 1

é

ë
ê

ù

û
ú

for which we get the following rank one update formula.

(A -uvT)-1 = A -1
+

A -1uvT A -1

1 - vT A -1u

We note that A is modified by adding the outer product of two vectors. An outer
product produces an nxn matrix which is at most of rank one - thus the name
for the formula. The inverse embedded within the second term of the
Sherman-Morris/Householder formula for this case is a scalar. As such we can
factor it out and put it into the denominator, as we have done here.

Equation-based modeling

41

Example

Suppose we wish to find the inverse of a slightly modified identity matrix
where we find a one in the first column of the second row.

Amod =

1 0 0
1 1 0
0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

1 0 0
0 1 0
0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
- (-1)

0
1
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0[] = A -uvT

We show how this matrix can be related to the identity matrix by adding in a
rank 1 update. The one in the second row of the column vector establishes
which row we are modifying while the one in the first column of the row
vector establishes the column. Using the rank one update formula above
(noting that the inverse of the identity matrix is the identity matrix), we get

Amod
-1

=

1 0 0
0 1 0
0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
+

(-1)
0
1
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0[]

1 + 1 0 0[]
0
1
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

1 0 0
-1 1 0
0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

HHHHoooommmmeeeewwwwoooorrrrkkkk 4444

1. Develop a rank two update formula. Describe what it says in words and
then find the inverse to the following matrix

1 0 0
0 1 2
0 3 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
.

BBBBrrrrooooyyyyddddeeeennnn''''ssss mmmmeeeetttthhhhoooodddd

Another method to converge our equations is to update the coefficient matrix
for the Generalized secant method by using a rank one update that satisfies
only the latest computed point while making the least change to this matrix.
In other words we want A k+1to satisfy

 Ak +1Dxk = Dhk

while also satisfying

 Ak +1 = Ak +uk v k
T

uk and vk are vectors. Note, the second term on the right-hand-side is a vector
outer product resulting in an nxn matrix.

Equation-based modeling

42

We want to minimize the change to A , i.e., we wish to minimize the norm of the
change. This norm is bounded as follows.

uk v k

T

2
£ uk 2

v k 2
= (uT u)(vT v)é
ëê

ù
ûú

1
2

Carrying out this optimization leads one to the following algorithm.

Algorithm

1. Have Ak to start (for example, start with A 0=I or estimate A0 using
numerical perturbation).

2. Compute the next Dxk from

 Dxk = Ak
-1hk -1

3. Compute hk º h(xk -1 + Dxk). If

hk small enough, stop.

4. Estimate

 Ak +1 = Ak +uk v k
T

where

uk =
Dhk - Ak Dxk

Dxk
T
Dxk

Note that uk is proportional to the error in using the existing matrix A to Dhk.

and

 v k = Dxk

Note that this vector is in the direction of the step just taken.

5. Increment k to k+1 and repeat from step 2 .

Good and poor model formulations

Earlier, when developing the model for a binary flash unit, we wondered if we
should perhaps reformulate the equilibrium relationships in terms of molar
flows rather than in terms of mole fractions. We could substitute the
definitions of mole fractions in terms of component molar flows into
equilibrium eqns 3' and 4' to get

Equation-based modeling

43

 av 1(l1 + l2) = a1l1(v 1 + v 2); av 2(l1 + l2) = a2l2(v 1 + v 2)

If we do this, we can then eliminate completely any mention of mole fraction
in our model. Is this a good idea?

It is NOT a good idea for the following reason. If we look closely at these last
two equations, we see that they can be satisfied at two spurious points which
are not solutions for the original equations. If all the vapor flows are zero,
they are satisfied; similarly if all liquid flows are zero, they are also satisfied.
These roots are spurious roots introduced by the way we stated the equilibrium
equations. Superficially we do not seem to have altered the model. In fact we
have in a very subtle way. In doing so we have introduced two spurious roots.

One lesson we can draw here is that these things happen when modeling. In
other words, modeling can be a treacherous activity.

However, there is another lesson to be extracted from this example that is
particular to expressing equilibrium between phases. Stating equilibrium
between phases is the writing of relationships among intensive variables. It
should not be expressed in terms of the molar amounts of the species which
are extensive variables. To explain, consider the process of cooling a mixture
such that it passes from the vapor phase through the two phase region to the
liquid phase. In particular, consider that last bubble of vapor disappearing
just as the mixture becomes all liquid. The amount of material in the vapor
phase goes to zero. The mole fractions characterizing that bubble do not. Mole
fractions are the limits in this case of a ratio of molar flows, all of which are
heading to zero. Mole fractions are well defined numbers. Equilibrium
equations involving them should never be written in terms of the molar
amounts of the species as the equations lose their meaning in this limiting
process.

Modeling rule: Express thermodynamic equilibrium
in terms of mole fractions and not in terms of molar
amounts.

Modular versus equation-based approaches to modeling

In the modeling done above, we captured the model in two distinct forms. In
one we presented the model as the equations defining it, that is, as eqns 1 to 8.
In the second, we presented the model as the equations as well as the steps to
solve it (used above to discover if the model formulation is obviously
defective). The form we need to prepare of course depends on the
environment we intend to use to solve the model. The equation solving
approach separates the equations from solving them. The sequential modular
approach to modeling, which is used in most flowsheeting systems (such as
Aspen or Pro/II), falls into this latter class of approaches. In the modular
approach, the model is in the form of a subroutine that will provide a solution
to a model given values for a prescribed set of variables. The equations are
embedded into the code within the subroutine. Since the equations and the
code to solve them are intertwined, it is quite difficult to retrieve the
underlying equations from the code at a later date.

Equation-based modeling

44

In the equation-solving approach, it is assumed that the modeling
environment provides the capability to solve any model we give to it. It is easy
to solve the simple model we just developed; virtually any equation-solving
environment will have little difficulty in doing so. Unfortunately, many
models are less well-behaved in this respect. Large interconnected models,
such as those for a distillation column or a multieffect evaporative process,
can be very difficult to solve; they require assistance from the modeler to get
to a solution.

We can list a number of relative advantages and disadvantages for these two
approaches to modeling.

¥ The equation-solving approach requires only the statement of the
equations to define the model, an activity which is about 20% of the effort
to define the equations and then write a subroutine that can solve them as
required by the modular approach.

¥ Given the equations, the use of the model for many different purposes is
straight forward. For example, it is easy to convert an equational-based
model so it can be used within an optimization environment even though it
was originally developed to be solved as "square" set of equations. It is not
as easy to move a modular model from a solving-only environment to an
optimization one.

To write the code for a modular model, the modeler has to decide which
variables are to be fixed and, by default, which are then to be computed from
the model. For example, in a traditional sequential modular flowsheeting
model for a unit operation, the system assumes the modeler has selected to fix
all the feed streams into the model along with a sufficient set of unit
parameters to fix the performance of the unit. The subroutine then must
compute the output streams from the unit. Preselecting which variables must
be fixed has the following advantage and disadvantage for anyone
subsequently using such a model.

¥ The user of the model has does not have to select which variables to fix for
the model to be well posed.

¥ The user of the model cannot select variables to be fixed other than those
selected by the person creating the model.

Selecting variables to fix is a difficult task, especially for a large model.
Imagine looking at 5000 equations and trying to discover that last variable to
fix (or the one too many that is fixed and should not be). It is a task that has
caused many to dislike the equation-solving approach to modeling. We deduce
the following requirement for any effective equation-solving environment:

Modeling environment requirement: A modeling
environment must allow a modeler to aid a user of a
model to select a legitimate set of variables to be
fixed.

Finally, there is the following real advantage for the modular approach.

Equation-based modeling

45

¥ To solve really tough models requires more than just a statement of the
equations from the modeler. Also needed are good initial guesses (often
obtained by sneaking up on the solution), proper scaling and so forth. The
modular approach allows the modeler considerable flexibility in sneaking
up on a solution and in scaling, with perhaps 90% of the code in such a
model being to get close enough to the solution that the nonlinear solving
methods can converge.

The last advantage that is attributed to the modular approach cannot be lost in
an equation-based approach. We suggest, therefore, the following
requirement in the creation of such systems.

Modeling environment requirement: An equation-
based approach must provide the modeler with the
means to aid a subsequent user in the process of
getting a good initial guess for the solution.

Declarative vs. procedural parts of a model

In the equation-based approach to modeling, one declares the variables and
the equations that hold among them. These form the declarative part of a
model. Setting the initial guesses for the variables can be either declarative or
procedural. Sneaking up on the solution as a precursor to solving is almost
certainly procedural. If the above guideline is valid, an equational-based
model must have both parts in its statement.

Modeling problems

We shall spend some time examining many of the modeling problems exposed
in the above example. Our main thesis is that modeling is really difficult. No
one should underestimate the problems involved. The first issue we consider is
that of not writing redundant equations.

Writing redundant equations

One of the very difficult issues in modeling is determining if one has written a
redundant equation. We shall illustrate how easy this is to do by showing two
rather subtle examples. We have no general method to cure this problem. Our
goal here is simply to show how easy it is to do.

SSSSiiiimmmmpppplllleeee ssssttttrrrreeeeaaaammmm sssspppplllliiiitttttttteeeerrrr pppprrrroooobbbblllleeeemmmm

The first example we shall show for creating redundant equations is in the
modeling of a simple stream splitter. This model appears to be very straight
forward, but virtually everyone modeling it has, at some time, written too
many equations in its formulation and been confounded in trying to find out
why.

Equation-based modeling

46

Let us create the model for the splitter shown in Fig. 17. It has one feed stream
and nout output streams. Each stream is characterized by the following
variables.

Ftot total molar flowrate
fi, i=1..ncomp molar flows for each of the components
yi, i=1..ncomp mole fraction for each of the components

The equations we can very naturally write for a stream defined in terms of
these variables are the following.

Ftot = f i

i =1

ncomp

å

 f i = yi Ftot for i = 1Lncomp

By adding up the second set of equation over all components and comparing to
the first, we discover that we can derive that the mole fractions add to unity.
We must not write this as an independent equation.

We have 2ncomp+1 variables and ncomp+1 equations for each stream. Thus a
simple stream such as this has ncomp degrees of freedom for it. If we fix the
molar flowrates for each of the species, we know that we have completely
specified this stream.

splitter

Fig. 17. Simple stream splitter

(A way to think about these streams, then, is to allow ourselves to have all
these variables for them, knowing we shall write the above equations in terms
of these variables and leave ourselves with ncomp degrees of freedom for it.)

There are nout streams leaving and one stream entering the splitter. We can
model the splitter by equating all the composition variables in all the streams:

sin . yi = sout j . yi for i = 1Lncomp , j = 1Lnout

Equation-based modeling

47

where sin.yi is a composition variable for the inlet stream, etc. Note that we
label the stream variables by placing the stream identifier as a qualifier at the
beginning of the variable names.

We also need to write the following equations to describe how the inlet stream
splits.

sout j . Ftot = s j *sin . Ftot for j = 1Lnout

where the splits sj must sum to unity:

s j

j =1

nout

å = 1

Our intuition tells us that we can specify all the splits except for one (the last is
1 less the sum of the others). We should also be able to fix the feed stream;
namely, we can specify the molar flows for each of the components in it.

If we write all these equations and make these specifications, we will discover
to our chagrin that the problem is overspecified. It isn't just a little
overspecified; rather, it has nout too many specifications or there are nout too
many equations written or some combination of both these problems.

What went wrong? This number seems surprisingly large.

For each stream we can derive the equation that its mole fractions add to unity,
as we noted above. Equating all the mole fractions means that we need this
equation only one time, but it exists nout + 1 times. It is implied nout too many
times.

How do we cure this problem? One possibility is that we equate all but one of
the mole fractions for the streams. Another is that we eliminate the equation
relating Ftot to the molar flows of the components for all the output streams.
This last option is not a preferred one as this equation belongs to our concept
of a stream, a concept we wish to keep intact. Thus we can adopt the first cure.
The real point to be made here is that we wrote far too many equations and
hardly noticed we did it when modeling. We have seen modelers searching for
hours to find this error (and sometimes we have been those modelers).

TTTThhhheeee ccccoooonnnncccceeeepppptttt ooooffff aaaa ssssttttaaaatttteeee

Another way to cure the problem for the splitter is to rethink the basic
modeling concepts we use for streams. Motivated by this example, let us define
the concept of the state of a stream as all the variables and all equations we
can write among them that define its intensive characteristics. In this case we
define the state in terms of

yi, i=1..ncomp mole fraction for each of the components

and the relationship that these add to unity:

Equation-based modeling

48

yi

i =1

ncomp

å = 1

A stream is then a state and a flowrate. We can add the variable

Ftot total molar flowrate

to complete our stream definition. For convenience we can add the individual
flows for the components

fi, i=1..ncomp molar flows for each of the components

and an equal number of equations to define them

 f i = yi Ftot for i = 1Lncomp

On closer examination we note that we cannot add that Ftot is the sum of the
individual flows for each of the components since we can derive this equation
from those already written.

It would seem we have done almost exactly what we did before, but there is a
subtle difference which we shall now exploit when developing a splitter
model. This time we write our model to say that the states for all the streams
are equal; thus there is only one state with only one equation that says the
mole fractions add to unity. We augment this model with the equations

sout j . Ftot = s j *sin . Ftot for j = 1Lnout

s j

j =1

nout

å = 1

We now get no error in counting the degrees of freedom.

What we have done is combine variables and equations into the concept of a
state. We extended out thinking beyond just equating variables; the equation
characterizing the state must be dealt with when making the states equal. We
recognize it should only be generated once.

The notion of a state carries over to the holdup within vessel which we need
when we develop dynamic models. A holdup is a state and an amount
{kg_mole} while a stream is a state and a flowrate {kg_mole/s}. We can equate
the state of a holdup to that of the stream leaving the vessel when developing a
dynamic model. Thinking in this manner should reduce some subtle modeling
errors arising from writing redundant equations as we just did above.

This lesson is sufficiently important that we should make it into a modeling
rule.

Equation-based modeling

49

Stream modeling rule: A stream should always have
its state as a single concept within it. Its state
contains all its intensive variables and all the
equations that we can write among them. A stream
is then a state and a total flowrate.

TTTToooottttaaaallllllllyyyy rrrreeeeccccyyyycccclllliiiinnnngggg ccccoooommmmppppoooonnnneeeennnntttt pppprrrroooobbbblllleeeemmmm

Another diabolical example of writing too many equations occurs when
modeling a refrigeration cycle where the refrigerant totally recycles in the
process. None is lost nor is any added to the cycle. In this problem we write
exactly the right set of equations for each of the unit models. It is the wiring
together of them that gets us into trouble. Fig. 18 is a diagram for a
refrigeration process.

Condenser

Evaporator

CompressorValve

(1)

(2) (3)

(4)

Fig. 18. Refrigeration process

The equations we write include

Fcond,in = Fcond,out (=
1
) Fvalve,in = Fvalve,out (=

2
)

Fevap,in = Fevap,out (=
3
) Fcomp,in = Fcomp,out (=

4
) Fcond,in

There are four material balances, one for each unit, and four connection
equations to wire the model together. These lead to a statement that the first
flow is equal to the last which is, unfortunately, the first flow again. We have
one too many equations here.

Equation-based modeling

50

So how do we cure this one? We must not write one of these equations. We can
suppress one of the connection equations which is hardly an elegant answer
but an expedient one.

One might argue that this problem does not occur for a traditional
flowsheeting system. Unfortunately it does occur, but it is easily not noticed.
A conventional flowsheeting system would tell the modeler who put this
flowsheet together that it has a recycle stream in it, which it does. The way to
solve a flowsheet with a recycle is to "tear" the recycle by guessing one of the
streams, say the one marked with a (1) in Fig. 18. What will happen is that, no
matter what flow we guess, that flow satisfies the model. Our problem in this
case is not that the model does not solve but rather that we will fail to
recognize the flow is a degree of freedom which we are free to fix.

Totally recycling species in a flowsheet will always give rise to this problem,
one where the configuration of the model from well-posed parts leads to a
redundant material balance equation. If we totally recycle "pressure" or
"heat," we can encounter a similar problem.

HHHHoooommmmeeeewwwwoooorrrrkkkk 5555

1. Describe two other examples of processes where one or more components
are completely recycled. Discuss the solving of models for these processes
using a conventional flowsheeting system.

2. Develop a model for a mixer where the streams are described by a state and
a total flowrate.

3. Extend the model for a stream by adding mass fractions and total mass flow.
Assume the existence of molecular weights for each of the components.
Test out your model on paper by using it to replace the stream model in the
stream splitter example earlier. Do you have this model right (probably
not)?

Avoiding divides by zero

The form in which one writes an equation can affect its behavior when one is
solving it numerically. Consider, for example, solving the following simple
equation numerically

 f (T) = 10 - e
3
T = 0

for T using Newton's method. Analytically the solution is

3
T

= ln10

or

T = 3

ln10
= 1.303

Applying Newton's method

Equation-based modeling

51

¶f
¶T
é

ë
ê

ù

û
ú
T
DT = e

3
T (-3

T 2) = -f (T) = -(10 - e
3
T)

or

DT = (10 - e
3
T)T

2

3e
3
T

and guessing 0 < T < 2.115 will give convergence. Otherwise T goes negative
and diverges to negative infinity. The plot of f(T) vs T in Fig. 19 makes this
behavior evident.

Let us make the following minor change to the form of the problem statement.
Defining x as

x = 3

T

we set up the following equivalent problem to solve

f1(x ,T) = 10 - ex = 0

f 2(x ,T) =Tx - 3 = 0

which solves from any initial guess for x and T.

0
-10 -5 0 5 10

f(T)

T

2.11
5

-20

10

Fig. 19. Plot of 10 - e
3
T vs . T

What happened? The second form avoids the divide by zero that is in the first
form and which causes the "pole" at T=0 that appears in Fig. 19 - i.e., the

Equation-based modeling

52

discontinuity in the function f(t). A plot of the transformed functions f1(x,T)
and f2(x,T) vs x and T shows monotone behavior and is easy for the Newton
method to solve.

Consider a second example.

 f (x) = ln(x) - 5 = 0

Here the function is defined only for x strictly greater than zero. If we form
the Newton equations for this function, we get:

¶f
¶x
é

ë
ê

ù

û
ú
x
Dx =

1
x
Dx = -f (x) = -(ln(x) - 5)

The partial derivative has a divide by zero when x reaches zero. If one expects
x to solve at values near to zero, this function is dangerous numerically.
Consider the following transformation.

Let

 y = ln(x)

and solve the following two equations instead of the original one

x - e y = 0

y - 5 = 0

These two equations are well behaved and are easy to solve using the Newton's
method.

We derive from these simple examples a rule we use throughout all of our
models when we wish to solve them numerically.

Modeling rule: Avoid the divide operator in both the
model equations and in the forming of the partial
derivatives needed by the Newton method if the
divisor has any chance of approaching zero.

HHHHoooommmmeeeewwwwoooorrrrkkkk 6666

1. Convert the following functions so that there is no divide operator in the
functions and their Newton equations.

a.

f1(x , y , z) =

exp(
x

y 2 - 5
)

z
+ 7 = 0

Equation-based modeling

53

b.

f 2(n, p) = (n - 47)

p
= 0

c.

f 3(z ,t) =

5ln(1
z

)

t2
+

2z
t

+
3z 2

t1.5
= 0

Determining number of degrees of freedom

There are two theorems that deal with determining the degrees of freedom
when equilibrium is assumed. One is the phase rule that tells us how many
degrees of freedom there can be among the intensive variables characterizing
the various phases. There is another less well know theorem by Duhem (his
other theorem) that tells us the degrees of freedom when we also know the
quantity of the material with which we start. Thus it deals with extensive
variables, too. The theorem says (Prigogine and Defay, 1954)

"Whatever the number of phases, of components or
of chemical reactions, the equilibrium state of a
closed system, for which we know the total initial
masses of each component, is completely determined
by two independent variables."

An intuitive proof is to collect a kilogram of the material, fix the temperature
and volume and let it sit for an infinite amount of time until it comes to
equilibrium. We know the original amounts of each of the components in the
material. The final temperature and volume are the two independent variables
we set. Equilibrium could be any number of phases and after the result of any
number of reactions.

EEEEqqqquuuuiiiilllliiiibbbbrrrriiiiuuuummmm ssssttttrrrreeeeaaaammmm

A direct corollary of this theorem is that an equilibrium stream has precisely
ncomp+2 degrees of freedom. Thus if a stream is assumed to be an equilibrium
stream, we completely fix it if we specify the amounts of the species in it
(originally) and its temperature (or, better, its enthalpy) and its pressure.

We first characterize the state of a stream using the following variables:

yi, i= 1, 2, .. ncomp mole fractions for each component
T temperature
P pressure
H enthalpy per mole
S entropy per mole
G Gibbs free energy per mole

and then add the flow variables

fi, i= 1, 2, .. ncomp molar flows for each component
Ftot total molar flow

Equation-based modeling

54

What this corollary says is that only ncomp+2 of these variables are
independent. This allows us to think in the following manner.

Declare a stream to have ncomp+2 degrees of
freedom and assume that any variable which
describes it is then available.

If we know the composition, temperature and pressure of a stream, we know
(in principle) all its intensive molar properties. We can make (ncomp-1)+2
specifications here. To add the extensive properties, we need only specify the
total flow at which point we can compute all of its extensive properties (total
enthalpy flow {kJ/s}, total entropy flow {kJ/(s*K)}, etc.). The total degrees of
freedom is again ncomp+2

EEEEqqqquuuuiiiilllliiiibbbbrrrriiiiuuuummmm ffffllllaaaasssshhhh uuuunnnniiiitttt

We can use these ideas to fix the degrees of freedom for a flash unit. We do our
accounting in Table 4.

Table 4. Determining the degrees of freedom for an equilibrium flash unit

Item Net new
equations

Net new
variables

3 streams 3(ncomp+2)

One material balance/component ncomp

Heat balance with heat input Qin 1 1

Equilibrium: equal fugacities for each
component in product streams, equal
temperature and pressure

ncomp+2

Specification of entire feed ncomp+2

Net degrees of freedom (subtract net new
equations from net new variables) 2

This accounting, if correct, says we have two degrees of freedom for the flash
unit. We can specify its temperature and pressure or its pressure and the heat
input, for example. The former is called an isothermal flash calculation while
the latter is a variation of an adiabatic flash calculation (an adiabatic flash
computation assumes the heat input is exactly zero).

SSSSiiiimmmmpppplllleeee ssssttttrrrreeeeaaaammmm sssspppplllliiiitttttttteeeerrrr

Let's repeat for a stream splitter. Table 5 organizes our calculations. The
result indicates that we can specify the feed and all but one of the splits. This
result agrees with our intuition.

Equation-based modeling

55

We can use the final line in a table such as this to summarize the effect of
including the type of concept the table represents.

SSSSttttrrrreeeeaaaammmm mmmmiiiixxxxeeeerrrr

Table 6 summarizes the degrees of freedom analysis for a stream mixer.

FFFFlllloooowwwwsssshhhheeeeeeeetttt

The sequential modular mind-set

If we have analyzed all the units that are used to construct a complex model,
can we then get the degrees of freedom right for the overall model? The
answer is that often we can. We shall use a complex flowsheet as our example.
The ideas extend to other types of complex models.

Table 5. Determining degrees of freedom for a stream splitter

Item Net new
equations

Net new
variables

nout+1 streams (nout+1)*
(ncomp+2)

States are all equal (T, P, and all
compositions)

nout*
(ncomp+2)

Removal of all but one equation summing
compositions to unity

-nout

Split on flows (nout new split variables and
nout equations) nout nout

Splits add to unity 1

Specification of entire feed ncomp+2

Net degrees of freedom (subtract net new
equations from net new variables)

nout-1

To handle a flowsheet, we can adopt a sequential modular mind-set to our
thinking in order to develop the degrees of freedom correctly. We will
discover the degrees of freedom first for all the parts with the following
restriction

¥ Discover the degrees of freedom for a unit where the feeds to the unit
are fixed.

¥ Wire together the flowsheet.

Equation-based modeling

56

¥ Count the number of totally recycling components (neither enter nor
leave the flowsheet)

¥ The degrees of freedom are those for each of the units (assuming the
feeds were fixed in doing the counting) plus those required to fix the
feeds to the entire flowsheet less one for each recycling component.

Table 6. Determining degrees of freedom for a stream mixer

Item Net new
equations

Net new
variables

nin+1 streams (nin+1)*
(ncomp+2)

Specification of all feeds nin*
(ncomp+2)

One material balance/component ncomp

Energy balance 1

Specify outlet pressure 1

Net degrees of freedom (subtract net new
equations from net new variables)

0

Let us apply these ideas to the configuration in Fig. 20. The structure is that of
a five tray distillation column. We shall use the table format as we did for the
previous examples (see Table 7).

For a column we argue intuitively that we are able to specify the following:

¥ Total number of trays

¥ Feed tray location

¥ Feed

¥ Reflux ratio

¥ Distillate top product flow

¥ Pressure of the condenser

Two of these are fixed for the column in Fig. 20, namely, the total number of
trays and the feed tray location. That leaves us with three specifications plus
that required to set the feed. Our intuition and this analysis agree.

Spreadsheet mind-set

There is an entirely different mind set one can adopt to get the degrees of
freedom correct for a complex computation. We can call it the spreadsheet

Equation-based modeling

57

mind-set. In this approach one lists the variables one is willing to specify.
Then one adds an equation at a time to the model, with each equation
introducing one new variable to the problem which is immediately computed.
This is the style of programming one uses when programming a spreadsheet.
There is immediate checking that the equation adds information to the
problem. Also one gets to look at the numbers produced to see that they make
sense.

When one adds an equation that introduces two variables which have not yet
been computed, either one must immediately select one to be specified or one
deliberately introduces a variable to be guessed and subsequently iterated. We
shall not illustrate this mind-set here but simply note it. It works very well on
a number of problems, a statement borne out by the effectiveness of
spreadsheet modeling.

flash

flash

flash

flash

flash

mixer

mixer

mixer

heat

heat

heat

heat

heat

feed

distillate

bottoms

Fig. 20. Distillation column built of flash and mixer units

Equation-based modeling

58

An aid for selecting the set of fixed variables

Let us suppose we have developed a model and believe it to be a correct one in
the sense that it contains no redundant equations nor is it missing any. We
wish to solve the model. Assume the model comprises n equations in n+m
variables, where m is greater than zero, a situation which is always true for
engineering models. A first task is to make the model square, i.e., to select a
set of m variables which are to be fixed when solving. A very effective aid
exists which can help one in this activity. Based on the structure of the
equations, it is able to report to a modeler which variables are no longer
eligible to be fixed. The modeler picks one which is eligible. The eligible set
changes as another variable is fixed, requiring that the modeler use the aid
again to pick the next one. This aid does not detect poor choices based on the
numerical behavior of the model; none-the-less, this aid is very useful. We
will discuss how to discover and overcome numerical problems later.

Table 7. Degrees of freedom for the model configured from parts (Fig. 20)

Item Net new
equations

Net new
variables

5 flash units @ 2 each 10

3 mixer units @ 0 each 0 0

Column feed ncomp+2

Pressure drop from tray to tray (for
example, assume all pressures are equal)

4

3 adiabatic trays (Qin=0) 3

Net degrees of freedom (subtract net new
equations from net new variables)

(ncomp+2)
+3

To explain the aid, let us consider the set of five equations in six variables
whose incidence matrix we display in Fig. 21. We show only the structure for
them, represented as an incidence matrix. The meaning is that function f1 has
variables x1, x2 and x5 explicitly mentioned in it. Based on the structure of the
equations, our goal is to detect which variables are legal candidates yet to
selected to be fixed.

xxxx1111 xxxx2222 xxxx3333 xxxx4444 xxxx5555 xxxx6666
f1 xxxx xxxx xxxx
f2 xxxx xxxx
f3 xxxx xxxx xxxx
f4 xxxx
f5 xxxx xxxx

Fig. 21. Incidence matrix for small example problem

Equation-based modeling

59

We start by assigning to each equation a variable which appears in it subject
to the restriction that we assign a variable to no more than one equation. Such
as assignment we call an output assignment for the equations. For a small set
of equations we can readily accomplish such an assignment by trial and error
by hand. In Fig. 22, we place an asterisk (*) to indicate such as assignment for
these equations. The assignment is not unique in general. We only need one
of the many that might be possible.

xxxx1111 xxxx2222 xxxx3333 xxxx4444 xxxx5555 xxxx6666
f1 xxxx**** xxxx xxxx
f2 xxxx xxxx****
f3 xxxx xxxx**** xxxx
f4 xxxx****
f5 xxxx xxxx****

Fig. 22. An output set assignment for equations

Any variable not yet assigned is one that we can now fix (based only on the
structure of the equations). Thus we could select x5. However, there are
others possible. We could trade x5 for x1 by assigning x5 to equation f1 and
unassigning x1. Then x1 would be the left over variable.

With x1 unassigned, we see it could be traded for x2 by making it the output
variable for f3 and while unassigning x2. Similarly x1 could be traded for x6
using eqn. f5. We see a path being traced from the incidences for the
unassigned variables that move horizontally to an assigned incidence (x5 to x1
in f1), then vertically to an unassigned incidence, then to an assigned
incidence, etc., until the path terminates which it will always do on an
assigned variable. We can call such a path a Steward path as it was first used
by Steward (1962) to aid in developing an output assignment for a set of
equations.

The ideas behind the following extremely simple and very fast algorithm
should now be evident. It is only a matter of seconds of computer time to
analyze several thousand equations.

¥ Assign output variables to equations

¥ Find all variables reachable from unassigned variables by a Steward
path using the following steps

1) mark unassigned variables
2) mark equations containing marked non-output variables
3) mark output variables for marked equations
4) repeat from (2) until no further changes

Applying the above algorithm to our problems yields the results shown in Fig.
23. Step 1 directs us to mark x5. Step 2 says we should then mark f1. Step 3

Equation-based modeling

60

says to mark x1. Step 4 directs us back to step 2 which says we should mark f3
and f5. Step 3 then says to mark x2 and x6. Returning to step 4, we can add no
marks and algorithm terminates. We can select any one of the marked
variables to fix. Note that variables x3 and x4 cannot be selected.

To see why, select x3 as fixed and attempt then to assign an output set
assignment. It will not be possible. If an output set assignment is not possible,
the equations are guaranteed to be singular in the remaining variables. Since
the decision is based on structural considerations, this type of singularity is
called a structural singularity.

xxxx1111
####3333

xxxx2222

####3333

xxxx3333 xxxx4444 xxxx5555
####!!!!

xxxx6666

####3333
f1 #2 xxxx**** xxxx xxxx
f2 xxxx xxxx****
f3 #2 xxxx xxxx**** xxxx
f4 xxxx****
f5 #2 xxxx xxxx****

Fig. 23. Markings to find eligible variables to be fixed. Variables x3 and x4 are
not eligible.

Estimating reasonable values for the fixed variables

The next step in the many required to find a solution for our model is to
provide reasonable values for the variables we selected to be fixed. The model
is parametric in these values. We could have selected to fix the recovery of the
light key in the top product for a 10 tray distillation column to be 99% when,
with that number of trays, the column cannot provide a recovery exceeding
80% at total reflux conditions.

To find reasonable values is imperative as otherwise the computations just
wander, neither converging nor diverging. We can conjecture that the
equations are becoming more and more singular as one gets closer and closer
to the solution. As such it might be possible to discover this problem by
detecting this singularity, a topic we shall return to shortly. If we can
discover such a singularity, then we shall show how we can develop an aid to
suggest altering our choice of what is fixed and what is computed to stabilize
the calculations. Again, appealing to our intuition, such an aid could direct us
to fix the reflux ratio in the column and compute the recovery. This latter
computation is much more likely to converge. We would like the aid to be
general purpose and not one especially tailored to the solving of distillation
column models (where its knowledge is more like that in an expert system for
columns).

Equation-based modeling

61

Getting the equations to solve

NNNNaaaattttuuuurrrraaaallll ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnnssss ttttoooo ccccrrrreeeeeeeepppp uuuupppp oooonnnn ssssoooolllluuuuttttiiiioooonnnn

One way to get reasonable values for the fixed variables is to use what we
might call natural specifications for the problem first just to get a solution to
the equations. In other words, first pick to fix a set of variables for which we
can supply reasonable values from which the problem is likely to converge.
For a column, fixing the reflux flow is a much safer specification to make
than fixing the recovery of the light key component. After converging the
column one can then attempt to place a recovery specification, but, to be safe,
it should be only a bit tighter than that found when getting the first solution
to the column. If the just slightly tighter recovery specification works, then
one knows that one can ask for a recovery specification. If it does not, the
failure could be telling you that you are not able (from a numerical point of
view) to select product recovery as a fixed variable. Tightening it up even
more leads either to a successful solution or a recovery that the column
calculation cannot reach (suggesting perhaps that neither can the column).

Again playing detective with such a problem, one might return to specifying
the reflux flow. A possible move is to increase it slightly, resolve, examine the
recovery, increase it again, resolve and so forth. The recovery will approach
a limit beyond which the column cannot go.

SSSSoooollllvvvviiiinnnngggg tttthhhheeee mmmmooooddddeeeellll bbbbyyyy ppppaaaarrrrttttssss

Another approach to solving complex models is to break them apart and solve
the parts first. Then put the parts together two or three at a time, perhaps,
resolve, and continue until the whole model is solved. Suppose we wish to
solve a flowsheet containing recycles. We could guess the recycles and solve
each unit one at a time in a forward sequence through the flowsheet until one
has solved all the units. Then one could add the recycle to the flowsheet and
attempt a solution from there.

Another case of solving part and then the whole is a strategy to solve a
column. One could linearly interpolate all the component flows from the top to
the bottom as well as the temperature profile throughout the column. Then
one could solve each tray at the given temperature and pressure for fixed
input streams to the tray. Allowing the heat into the tray to be away from zero
releases the heat balance for the tray. Once one has solved all the trays, one
can attempt to solve the entire column.

SSSSoooollllvvvviiiinnnngggg aaaabbbbssssttttrrrraaaaccccttttiiiioooonnnnssss ooooffff tttthhhheeee mmmmooooddddeeeellll aaaannnndddd tttthhhheeeennnn tttthhhheeee ddddeeeettttaaaaiiiilllleeeedddd
mmmmooooddddeeeellll,,,, ppppeeeerrrrhhhhaaaappppssss iiiitttteeeerrrraaaattttiiiivvvveeeellllyyyy

Another approach is to model a column assuming constant molar overflow on
each tray and constant relative volatilities. Such a model, in our experience,
always solves rather quickly if one specifies the reflux flow and the distillate
top product flow. Then one can perform tray by tray computations fixing for
each tray the input flows, the temperature and the pressure using rigorous
physical property calculations. From these computations, one can extract new
estimates for the relative volatilities and repeat the entire computational

Equation-based modeling

62

sequence until the relative volatilities do not change from iteration to
iteration.

Because we believe that all these approaches should be possible for a model, we
add the following requirement for an equational-based modeling
environment, which is a stonger statement than one we made earlier about the
environment allowing a modeler to aid in establishing initial conditions for a
model. We now see it is a much more involved activity than we implied earlier.

Requirement for equational-based modeling
environment: The environment must allow a
modeler to creep up on the solution in almost any
way desired so the modeler can gain experience in
solving the model and can then encode this
experience in the final model description.

TTTTyyyyppppeeeessss ooooffff bbbbeeeehhhhaaaavvvviiiioooorrrr wwwwhhhheeeennnn ssssoooollllvvvviiiinnnngggg

Equations which fail to solve display many different types of behavior. They
may diverge, they may drift very slowly or they may even display what
appears to be random cycling. Chaos is one cause for this last behavior.
Consider trying to solve the following deceptively simply looking equation
using a numerical approach based on successive substitution.

 xk +1 = 4axk (1- xk)

Table 8 indicates the behavior of this function.

Table 8. Cyclic and chaotic numerical behavior of a simple function

x0 a cycle values
0.2 0.6 0.583 (converges)
0.2 0.8 0.513, 0.799
0.2 0.87 0.395, 0.831, 0.487. 0.869
0.2 0.8925 0.810, 0.548, 0.884, 0.366,

0.828, 0.506, 0.892, 0.343,
0.804, 0.561, 0.879, 0.380,
0.841, 0.480, 0.890, 0.347

0.2 0.95 chaos, nothing repeats
ever

Using a successive substitution method we guess x0 and use the above equation
to compute x1, then x2, and so forth until xk+1 equals xk. Depending on the
initial guess made and the value of a, we get very different behavior.

HHHHoooommmmeeeewwwwoooorrrrkkkk 7777

1. Show that the values above do occur. Repeat the behavior for 50 to 100
interations. Try to find a point where the cycle is even longer than 16
points but is not yet chaotic.

Equation-based modeling

63

NNNNuuuummmmeeeerrrriiiiccccaaaallll ssssiiiinnnngggguuuullllaaaarrrriiiittttyyyy

We offer here a recipe for thinking about numerical problems one might
encounter in a model. In each case we have a model that will not solve. The
following are in the order each should be checked.

Too many slightly poor pivot choices to reduce fill

In solving a set of nonlinear equations numerically using a Newton based
method, the inner problem is to solve a set of linearized equations as we have
seen above. To solve large problems involving hundreds to a few tens of
thousands of equations, one must use sparse matrix methods in the linear
equation solver. For numerical stability, one should strive to select the largest
pivot possible in the equations yet to be pivoted while solving. However, one
wants to do the least work possible by choosing pivots to minimize fill - i.e.,
minimize the number of new nonzero elements the method creates when
doing the elimination process to solve them. A nonzero will ultimately require
more additions and multiplications to complete the factorizing. There is always
a trade that has to be made. How much smaller will one allow the pivot to be
than the largest one available so that one can get less fill in the matrix. These
codes contain a tolerance often set to something in the range 0.1 or even
smaller meaning that the pivot can be 10 or more times smaller than the
largest and still be selected.

Some problems have a diabolical behavior. The following is one. Here we
compute the location for node points when developing a two dimensional
finite element grid such as when analysing the heat flow in an object with a
complex shape. We place 4n grid point all around the edges. We then join the
edge grid points as shown in Fig. 24 and write equations so that the location of
the x and y coordinates for a point are the average of those of its four
neighboring points. To make that clearer, the equations are

xi = 0.25 x j
j Îneighbors

å

yi = 0.25 y j
j Îneighbors

å

These all linear equations have coefficients of 1 and -0.25 (when rearranging
the equations to equal zero by subtracting the RHS from the LHS). There is no
really small coefficient in the set. Trying to solve a problem with about 20
interior node points leads to a very strange behavior when using our very
good sparse linear equation solving code. The code is not the issue; the
problem is sort of a worst case actor that destroys anyone's sparse code. It
very often picks a pivot of 0.25 rather than a large pivot to reduce fill. It
solves and reports back an answer. However, substituting the answer into the
equations shows they are nowhere near being satisfied. The residual for an
equations can be of the order of 106 or more. What went wrong? The
continued selection of the slightly smaller pivots just ganged up on the solver.
Changing the tolerance so it must pick the largest pivot each time completely
cures the problem. The problem is not singular.

Equation-based modeling

64

So the first thing one should do is examine the equation residuals for the
linear equation solver. If the errors are large, try changing the selection
criterion for the pivots - make it 0.9999 for example.

Fig. 24. Computing the locations for the grid points in a two-dimensional finite
element mesh

Small pivots when solving

If a problem is ill-conditioned, that ill-conditioning can often manifest itself
in the existence of small pivots when attempting to solve the inner linear
Newton equations. Fig. 25 illustrates what might happen.

0

0 e
1 2

e

Fig. 25. The last pivot for a set of linear equations during a forward gaussian
elimination

Equation-based modeling

65

In this figure, the last pivot is too small to use. Shown also is the right-hand-
side which the method processes along with the coefficient matrix if it is
solving a set of linear equations. There exists an e2 there. How one interprets
what one has depends on its magnitude.

Suppose that e1 is of the order of 10-14. Suppose also so is e2. If we have used
proper scaling, we decide on the magnitude of a number by comparing it to
one. These are small numbers, down in the accuracy limits of many
computers. The last equation says

e1DxN = e2 or DxN =

e2
e1

With both numbers being extremely small, one is looking at rather nice
random number generator here, albeit one that produces modest sized
numbers.

One can show a rather nice interpretation for e2. if we do the following:

¥ remove the last equation from the set

¥ set DxN to zero and solve the previous N-1 equations for the other N-1
Dxi,variables.

¥ substitute these values into the last equation and evaluate its residual

e2 is precisely this residual. In other words, if e2 is small, this last equation is
in fact satisfied. It is locally dependent on the other equations.

If it is large, then the last equation is locally inconsistent with the other
equations. In both cases the extremely small value for e1 says the problem is
singular. In the one case the equation is dependent and could be redundant
while in the latter case it is inconsistent.

How might one cure this problem? Remember that one of our first tasks in
preparing to solve these equations was to select a set of variables to be fixed.
Let's imagine augmenting the coefficient matrix as we perform the gaussian
elimination process with these equations with the columns that correspond to
the fixed variables. We carry out the forward elimination on them as we
proceed to factor the coefficient matrix in the linear equation solver. Fig. 26
illustrates what we would see when we encounter the small last pivot in the
column corresponding to DxN.

We can look under one of these columns for a pivot that is of acceptable size.
The existence of such a pivot suggests we should trade one of the computed
variables for this variable. Let's call this variable Duj . The trade is then to:

¥ move Duj from the set of fixed variables to the set of computed variables

¥ move the variable DxN from the set of computed variables to the set of
fixed variables.

Equation-based modeling

66

It turns out that we do not have to consider only DxN as the variable we can
trade. We can, in fact, exchange Duj for any one of the variables Dxk which
contributed to the creation of the small pivot, e1. One way to look at a set of
linear equations is that it is telling us a combination of the columns that
produces the column on the right hand side, as the following illustrates:

a11 a12 a13

a21 a22 a23

a31 a32 a33

é

ë

ê
ê
ê

ù

û

ú
ú
ú

x1

x2

x3

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

a11

a21

a31

é

ë

ê
ê
ê

ù

û

ú
ú
ú
x1 +

a12

a22

a23

é

ë

ê
ê
ê

ù

û

ú
ú
ú
x2 +

a13

a23

a33

é

ë

ê
ê
ê

ù

û

ú
ú
ú
x3 =

b1

b2

b3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

We want to know which linear combination of the previous N-1 columns equal
this last column; it is precisely these that led to its "demise" of the last column
and the creation of the small pivot. Look again at the last column Fig. 25.
During the forward elimination process we processed it and the RHS in exactly
the same manner. It in fact is acting like a RHS to the first N-1 equations if we
ignore the last row.

0

0 e
1 2

ea

Fig. 26. Result for forward elimination step when columns under the fixed
variables are also processed (but prevented from being used in

the pivoting)

Back substituting with the existing N-1xN-1 upper triangular matrix we
already have will tell us the solution x to the following equations; i.e., it will

tell us what linear combination of the previous N-1 columns equals the last
column. Let us suppose the solution is

ak xk

k =1

N -1

å = aN

where ak is the kth column of the original coefficient matrix but with the last
row removed. Any column whose coefficient xk in the solution is large can be
a column we can trade for Dui discussed above.

Equation-based modeling

67

Ill conditioning

While all small pivots indicate ill-conditioning, not all ill-conditioning shows
up as a small pivot, unfortunately. Consider the following set of linear
equations

1 -2 0 L 0
0 1 -2
0 0 1 -2
M O O

1 -2
0 L 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

x1, x2[] =

0 e

0 0
M 0

M

0
e 0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

where we show two right-hand-side vectors of equal magnitude. Back
substituting on the first column on the right hand side give x1 and on the
second x2 with the result being:

x1, x2[] =

2N -1 e e

0
M M

22 e 0
2e 0
e 0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

The first has a very large magnitude if N is large while the magnitude of the
second is unchanged. A problem where the solution for two right-hand-sides
of the same magnitude can be have a very different magnitude is called ill-
conditioned. If we are solving a set of nonlinear equations using a Newton-
based method and if the linearized Newton equations are ill-conditioned, a
small change in the RHS can lead to very different sized Newton steps.

For this particular example, we cannot spot the ill-conditioning by looking at
the pivots. They are all equal to unity here. In fact the equations fully
precedence order and are solved one at a time by a backward substitution step .
There are none of the usual clues to alert us to a conditioning problem. What
can we do here?

Here the problem is not so easy to cure. We are working on an approach that
can monitor the condition number as one uses QR factorization rather than the
usual L\U factorization. L\U factorization corresponds to standard Gaussian
elimination when solving the linear equations. QR factorization produces an
upper triangular matrix R which has the same condition number as the
original matrix. We have methods based on a paper by G.W. Steward (1992) to
find a column to remove from the problem that will improve the condition
number the most. We have no real experience with it yet, but the cure we are
anticipating is that it will again provide us with an aid that tells us to
interchange the roles of a computed and a fixed variable in a manner that
makes the problem solvable.

Equation-based modeling

68

Conditional models

Dynamic modeling

We shall examine dynamic modeling by looking at water vaporizing in a
heated tank. We shall proceed as before through the steps of creating a model
for this system.

Description of purpose

We wish to model the dynamic behavior of a tank containing boiling water.
We shall remove both hot water and steam as products from the tank. The base
case has the feed water conditions and flow to the tank fixed. Our goal is to run
this vessel at constant pressure and liquid level. We want a simple model
capable of illustrating important issues related to dynamic modeling.

Description of underlying principles and assumptions

We shall assume the liquid and vapor phases are in equilibrium. The tank has
no heat losses through its walls to its environment.

Criteria to assess its success

The model is a success if we can explain several important issues related to
dynamic modeling with it. Of course we would like it to be fast to solve (simple
again).

Its defining equations

The equations might be the following.

 ¢UT = hF f - hLl - hV v +Q (1)

 ¢MT = f - l - v (2)

 MT = mL + mV (3)

 VL = vLmL , VV = vV mV (4, 5)

VT = VL +VV (6)

 UT =uLmL +uV mV (7)

P (= P

water
sat {mm Hg}) = exp(18.3036 -

3816.44
T {K} - 46.13

) (8)

Equation-based modeling

69

 vL = vL (T) (» 18liter / kg _mole) (9)

vV = vV (T ,P) (»

RT
P

) (10)

 uL =uL (T ,P), uV =uV (T ,P) (11, 12)

 hL = hL (T ,P), hV = hV (T ,P) (13, 14)

 hF = hF (TF ,PF) (15)

where

f, l, v feed, liquid and vapor flowrates {kg_mole/s}

 hF ,hL ,hV partial molar enthalpy for feed and for liquid and vapor
phases, respectively {kJ/kg_mole}

mL, mV molar amounts of liquid and vapor, respectively {kg_mole}

MT total molar holdup in unit {kg_mole}

 ¢MT time derivative of total molar holdup in unit {kg_mole/s}

P, PF pressure in vessel and of feed respectively {mm Hg}

Q Heat flow into the system {kJ/s}

T, TF temperature in vessel and of feed respectively {K}

 uL ,uV partial molar internal energy of liquid and vapar phases
respectively {kJ/kg_mole}

UT total internal energy (holdup) in unit {kJ}

 ¢UT time derivative of total internal energy in unit {kJ/s}

 vL ,vV partial molar volume of liquid and vapar phases

respectively {m3/kg_mole}

VL, VV Volumetric holdup for liquid and vapor phases
respectively, {m3}

VT Total volumetric holdup in unit {m3}

The variables in this problem can be classifed into several kinds.

Equation-based modeling

70

First there are the state variables which are those whose time derivatives
appear. In this model the state variables are MT and UT. State variables are
capacity variables in a dynamic model. They always represent some type of
holdup in the system. A way to think about them is that their values are
virtually always continuous with time provided we do not allow the inputs or
outputs to the system to be modeled using "impulse" functions. If we allow the
feed to be an impulse by letting it be a bucket full of water dumped into the
system within a split second, the moles in the system will take a discontinuous
jump with time. Ruling out such an input (or output), the holdup variables are
continuous. Is the choice of holdup variables unique? The answer is that it is
not. The number is but not the choice. For example, we could have selected to
model the material holdup by selecting the volume of the system to be a state
variable. With some variable substitution, modelers often replace the internal
energy by temperature, making it the second holdup variable.

We need to comment on the use of internal energy in our dynamic energy
balance while the right-hand-side is written in terms of enthalpies. A correct
energy balance has to be in terms of internal energy, not enthalpies. The
first law says that energy is conserved. The difference in the heat brought in
and the work done by the system is accounted for by a change in the internal
energy in the system, not by the change in the enthalpy of the system. The
use of enthalpies on the RHS is also correct. A stream entering the system
brings in its internal energy. It also has to "push" its way into the system,
doing "PV" (pressure-volume) work. Enthalpy accounts for both these terms.
Unfortunately, we must observe that most text books and many articles in the
literature do the energy balance incorrectly. It is a good approximation to do
an enthalpy balance for liquids as DH=DU+D(PV) (if you remember your
thermodynamics) and DPV is very small relative to DU for liquids. It is a major
error to do it for vapor holdups

There are also a number of variables we might classify as being physical
property variables: hF ,hL ,hV , vL ,vV . These are provided by a physical
property package and are a function of the temperature, pressure and
composition (if the system were a multicomponent one). We have very
deliberately represented these variables as (partial) molar quantities. The bar
over them is usually reserved for the molar property of a component in a
multicomponent mixture. As an example, the partial molar volume of water in
a water and ethanol mixture is the contribution to the molar volume of the
mixture {m3/kg_mole} that is made by the water in the mixture. It would be
less than 18 {liters/kg_mole} for the water because adding 1 liter of water to 1
liter of ethanol results in something less than 2 liters of mixture. They do not
mix ideally. When the material is a pure component, one can, but does not
have to, remove the overbar to indicate a pure component. As the two are
equal, we leave it there to guarantee there is no misunderstanding about what
it is.

Why do we use partial molar quantities? We do it because then the equations
we have written have absolutely no approximations due to the physical
properties in them. If we later chose to approximate how to compute these
partial molar quantities, so be it. But there is no good reason to put that
approximation into the model at this point. In other words, we chose not to mix
approximations to estimate physical properties with the other modeling
approximations. We believe that it is much less confusing to do it as a later

Equation-based modeling

71

step. In fact we believe it so strongly that we shall make this idea a rule of
modeling.

Rule of modeling: Use partial molar quantities when
writing a model. If you intend to use approximate
calculations to estimate partial molar quantities, do
it as a separate later step in the modeling.

Other variables in the model are frequently termed independent variables. We
shall use our intuition here to pick these out, but, in a moment, we shall do it
properly. Independent variables are those we manipulate by opening and
closing valves, by turning on and off pumps, or by turning on and off heaters.
They are also variables which we choose to provide as inputs to the problem.
Here we classify Q, f, l and v as potential control variables and TF and PF are
variables we are likely to provide as inputs.

If our model is correct we can compute the remaining variables using the
algebraic equations we wrote; we term them dependent algebraic variables.

Let's now analyze the model to see if it and our intuition in classifying the
variables agree. We have written 15 equations in 24 variables. If we are
correct, then we have a model with 9 degrees of freedom. We intuitively
selected 6 earlier to be independent variables. Why are we off by three?

We can explain two of the three because we did not yet account for the
equations that relate the state variables to their respective time derivatives.
These equations are the numerical integration formulas that will be provided
by the numerical integration package. For example, let us assume that we are
going to integrate these equations using Euler's method:

 MT (k +1) = MT (k) + Dt (k)* ¢MT (k) (16)

 UT (k +1) = UT (k) + Dt (k)* ¢UT (k) (17)

where

 Dt (k) = t (k +1) - t (k)

and t(k) is the kth time point. These equations state that we can compute the
state variables at the k+1st time point using both their values and their time
derivatives at the kth time point.

(Euler's method is an explicit method. The values estimated for the states
depend only on the values for variables at the previous time. Euler's implicit
method (often called the trapezoidal method) computes the states at the k+1st

time step in terms of the average of the derivatives at the k+1st and kth time
step. In other words, the values implicitly involve themselves as we compute
the time derivatives at the k+1st time step in terms of the states at that time.
The equations are:

Equation-based modeling

72

MT (k +1) = MT (k) + Dt (k)*

¢MT (k +1) + ¢MT (k)
2

UT (k +1) = UT (k) + Dt (k)*

¢UT (k +1) + ¢UT (k)
2

Explicit methods are faster but fail to solve stiff systems unless we use
extremely small time steps. Implicit methods require iterative solution at each
time step. They solve stiff problems stably even while using large time steps.)

We are still off by one degree of freedom. After some frustration, counting
and recounting the equations and variables, it occurs to us that we forgot one
specification for the problem. We are using a vessel with a fixed total volume.
Therefore,VT is fixed. (It was, after all, the reason we related the moles of
holdup to the volume - so we could place this specification.) It should be in set
of independent variables. We now have 24 variables, 17 equations and 7
independent variables. The model looks as if it might be correct. Until we
actually do some computations successfully with it, we cannot be sure we have
it right, however.

Solving

We now need to consider how we would solve this model. To march forward in
time, we proceed as follows.

IIIInnnniiiittttiiiiaaaallll sssstttteeeeaaaaddddyyyy----ssssttttaaaatttteeee ((((nnnnooootttt nnnneeeecccceeeessssssssaaaarrrriiiillllyyyy tttthhhheeee iiiinnnniiiittttiiiiaaaallll ccccoooonnnnddddiiiittttiiiioooonnnn))))

We somehow have to establish initial values for the state variables (i.e., the
holdups) in the system. Let's assume we are at steady-state initially. At this
condition the time derivatives for the variables are all zero. We fix the
variables ¢MT and ¢UT to zero.

We have no idea the amounts of material in the vessel nor its internal energy.
What we are willing to state is that we want it to be 50% liquid and 50% vapor
and we want the initial pressure to be 1 atm. We use the model equations to
compute this steady-state. It is question of picking enough variables to give us
15 equations in 15 unknowns for the user model equations (excluding the
integration package equations which are used to relate the variables at the
next time step to those in the previous time step(s)). There are 24 variables; we
need to fix 9. The two state variable derivatives are fixed, as we said, at zero.
We specify another 7 by specifying the feed completely (f, TF,PF), the total
volume of the unit and the volume of liquid (VT, VL), the pressure (P) and
liquid product flow (l). If we have it right, we can now compute an initial
steady-state condition, obtaining values for the temperature, the heat input,
etc..

IIIInnnniiiittttiiiiaaaallll ccccoooonnnnddddiiiittttiiiioooonnnn ffffoooorrrr ssssiiiimmmmuuuullllaaaattttiiiioooonnnn vvvvssss.... ttttiiiimmmmeeee

This steady-state may not be the desired initial state. Often in dynamic
simulation, we would like to "jolt" the system and watch its time response. If
we jolt the system, it will not be in a steady-state to start. We need to compute

Equation-based modeling

73

starting values for the time derivatives of the states which are different from
zero. Many articles perceive this computation to be difficult. They suggest
resetting the setpoints on some very fast control loops and altering the
setpoints. However, it is really straight forward to carry out the needed
computation to get our initial point provided we think about it correctly.

Suppose we would like to make a step change in the inlet flow to see the time
response to it. If we change the inlet flow by stepping it, the states will
remain continuous, so we can let them retain the values just computed from
the initial steady-state. We use the 15 model equations. We fix the states
leaving us with 7 variables to fix to make the system square. This time the
variables selected are those we intend to use as the independent variables for
the simulation. We listed these already: the total feed (f, TF,PF), the heat input
(Q), the outlet flows (l and v), the volume of the unit (VT). All but the feed
flow, f, will retain their values at the just computed steady-state condition. We
make the step change in the feed flow and compute values for remaining
variables including the non-zero time derivatives at the initial condition.

MMMMaaaarrrrcccchhhhiiiinnnngggg ffffoooorrrrwwwwaaaarrrrdddd iiiinnnn ttttiiiimmmmeeee

We are now ready to march forward with time. Fig. 27 illustrates a way to
think about the approach. It is mixture of an equation-solving and a
procedural approach. We give control to the integration package. It decides
on the times and the values for the state variables at which it wants the model
to compute the time derivatives for the states. At each step, it computes error
estimates to control the size of step it should take in time. The smaller the step,
the more accurate the trajectories are (unless round-off error takes over) but
also the more time it takes for the simulation. If the problem is stiff (has some
extremely rapidly decaying states relative to the time span over which one
wants the simulation), one will use implicit numerical methods such as those
based on Gear's ideas. We use the LSODE routine which are available from
Stanford.

The integration method does not have to know about nor, in principle, care
about the algebraic variables, provided their solution is done accurately
enough that one does not mess up the error control or the convergence
properties of the integration method. Typically this means one must control
errors somewhat tighter for solving the user model than the accuracy the
modeler has asked of the integration package (say, 10-9 vs. 10-6 for the
integration package).

At each time t(k) the integration package asked for a solution of the model. We
specify the independent variables as functions of time so we first determine
these at t(k). Then we solve the model equations, getting values for the
algebraic variables and the derivatives of the state variables. We return to the
integration packages with these latter values. It decides where to evaluate the
model next and the cycle continues. Marching forward in time continues until
the model meets some termination criterion. It could quit at a prescribed final
time or when some variables reaches a prescribed value.

Equation-based modeling

74

integration model

user model
at time k

integration model
to step to next time

algebraic variables

state
derivatives
at time k

states at
time k

independent
variables values

at time k

Fig. 27. Coupling a user model to an integration model

IIIInnnnddddeeeexxxx pppprrrroooobbbblllleeeemmmmssss

In the above model, the model equations must be able to compute the time
derivatives for the states given the values for the states. Sometimes we choose
independent variables in such a way that this computation is singular; i.e., it
cannot be done. Often, however, the model really has enough information that
the requested computation is possible. To accomplish it requires we (or the
system) do more work on the model. If this situation occurs, we say the
problem has an index problem. We are in trouble in the above model if we
select the pressure to be an independent variable whose value we intend to
hold constant. This calculation is a valid one to ask for, in principle. However,
the model as formulated will not solve as described above.

To expose one view of this problem, let's examine the incidence matrix (Table
9) for the equations and variables for this model. To keep the matrix
manageable, we will "mentally substitute" the definitions for the physical
properties into the first eight equations and drop their defining equations
(eqns 9 to 15). That means that every time a partial molar quantity appears in
an equation, we will indicate that the equations depends on pressure and
termperature. We shall also drop the columns for the variables which we
know now are to be fixed for the computation: the two states (MT, UT), the feed
(f, TF, PF) and the total volume (VT).

The first two equations must be used to compute the time derivatives for the
state variables (they must be computed, and they appear in no other
equations). We note that when these variables are assigned, the variables l, v
and Q appear in no other equations; they can only get their values by our
choosing them to be among the set of independent variables for the problem
We can readily assign the remaining variables to eqns 3 to 8 as shown
including assigning P. P must be calculated - i.e., not fixed - therefore. The
exact same analysis used to check earlier models to find a proper set of
variables to fix also works here to avoid structurally caused index problems.
The trick is to fix the state variables and choose degrees of freedom to make the
remaining problems square. One must avoid selecting the time derivatives of
the state variables to be among those one fixes.

Equation-based modeling

75

Table 9. Incidence matrix for dynamic boiling water example. Assigned
variables are marked by asterisks before and after the incidence.

eqn \ var l v mL mV ¢MT P Q T ¢UT V L VV

1 X X X X X * X *
2 X X * X *
3 * X * X
4 X X X * X *
5 * X * X X X
6 X * X *
7 X X X * X *
8 * X * X

OOOOvvvveeeerrrrccccoooommmmiiiinnnngggg aaaannnn iiiinnnnddddeeeexxxx pppprrrroooobbbblllleeeemmmm mmmmaaaannnnuuuuaaaallllllllyyyy

Suppose we would like to set the pressure equal to a constant value and solve
our boiling water example. Our intuition tells us we should be able to back
ompute one of the flows out of the system to give us this pressure, e.g., the
vapor flow. Is it possible? It is not without doing some manipulation of the
problem statement. With the current form for the model equations, we must
include pressure among the variables being computed.

An approach is to take the full time derivatives for all but the first two
equations. Then add to these equations that the P'=0 (note it is P' and not P)
along with an initial condition equal to the value desired. The full time
derivatives for Eqns 3 and 7 will create equations containing the time
derivatives of MT and UT in them, respectively. Let's take the time derivative
of eqn 3 to see this:

 ¢MT = ¢mL + ¢mV

Thus these equations offer an alternative from which one can compute these
time derivatives, very likely leaving eqn 1 or 2 available to compute f. The
other extra equation will allow one to compute MT or UT directly. Suppose it is
MT. Then one has a way to compute the value for a state variable MT at any
time point as well as its time derivative ¢MT . There is no reason to compute it
through a numerical integration. The net effect is that one of the state
variables disappears from the problem as a state variable.

Another physical way to think about an index problem is that one loses a state
variable if one can cure the problem. Consider two tanks with an pipe
connecting them that allows flow in either direction. If we leave the valve
open, the tank levels become equal. Suppose the valve resistance goes to zero.
The levels in the two tanks become totally coupled and they act like one level.
The level is a state variable in each tank, but, as the resistance goes to zero,
one become algebraically equal to the other and is no longer a state variable.

Equation-based modeling

76

HHHHoooommmmeeeewwwwoooorrrrkkkk 8888

1. Develop the modeling equations for the above example of water boiling in a
tank where you introduce the concept of a state to characterize the
intensive variable describing the liquid and vapor phases as well as the
feed and product streams. The model you develop should equate the state
for the liquid holdup in the tank to the state of the liquid stream leaving
the tank as well as the state for the vapor holdup to the state of the vapor
stream leaving the tank. Are there any equations associated with the state
in this special case of a pure component? (Think of the physical property
computations to be done.)

References

Bullock, L. and L.T. Biegler,

Levenberg,

Marquardt,

Prigogine, I. and R. Defay, Chemical Thermodynamics (trans. D.H. Everett),
pp187-188, Longman, London (1954).

Reid, R.C., J.M. Prausnitz, and T.K. Sherwood, The Properties of Gases and
Liquids, 3rd Ed., McGraw-Hill, New York (1977).

Steward, D.V., "On an Approach to Techniques for the Analysis of the Structure
of Large Systems of Equations," SIAM Rev., 4444, 321-342 (1962).

Taylor, natural continuation

Westerberg, A.W., and S.W. Director,

