Reusability and Scalability of Models

Benjamin A. Allan and Arthur W. Westerberg
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

Abstract

Object-oriented, equation-based modeling systems (ASCEND, Omola, gPROMS, VeDa and oth-
ers) can be very helpful in producing small novel mathematical models, i.e. involving a few tens

to few hundreds of equations. These systems have so far not been shown to improve the speed of
creating large, novel models involving several tens of thousands of equations, the kind that must
be based on the application or modification of libraries. We present declarative modeling formal-
isms which aid the library user both in correct application and correct modification of complex
library models.

Compile times become an issue when a researcher or process designer is frequently recompiling a
large model or when a synthesis program is constructing many hundreds to thousands of alterna-
tive process models. We report progress in developing automatic compilation algorithms which
reduce times from minutes to seconds by taking into account the rich hierarchical semantics of
user-written object definitions.

We find that many of the same formalisms which aid in model application and modification also
significantly improve compiler speed and diagnostic services. We also find that discovery of the
anonymous types of compiled objects allows for large reductions in CPU time and core memory
usage. Preliminary results indicate that interactive, interpreted modeling systems may soon
become as fast as less flexible batch systems which rely on very rich libraries of precompiled
binary modules.

Introduction

Equation-based modeling systems have been investigated as tools to improve the efficiency of the
modeling process, particularly in the uncharted situations routinely faced by process researchers
and process designers. We illustrate a common modeling process in Figure 1. This process can
describe nearly any form of modeling or research. In this paper, we focus on the creation and use

of computational models, a significant piece of “overall modeling” for many chemical engineers.

Goal: Maximize understanding gained by decision makers
Subject to: insufficient time, insufficient resources

Ask new question -
Specify new program to test hypotheses. %
If step 2 is impossible, find new tools or go to 1.
Check assumptions.

Create new program. s
If step 5 failed, go to 2 or go to Exit.
Execute program.

If step 7 failed, go to 2.

Transform program output.

10 Check additional assumptions.

11. If steps 9 or 10 failed:

Change transformations and go to 9.
or
Change program and go to 5.
or
Change hypotheses and go to 2.
or
Change question and go to 1.
Else
Answer obtained. Proceed to next question.
Exit: Write report.

©CooNoOh~wWNE

Figure 1 An iterative modeling process.

Interactive equation-based systems improve the efficiency of the steps shown in bold by:

interpreting object-oriented and hierarchical model description languages at interactive
speeds. This eliminates the compile-link-run cycle of traditional programming languages.

providing exact gradients. This eliminates the CPU requirements and numerical errors of
computing finite difference gradients, a task which can significantly slow simulation and opti-
mization algorithms.

allowing many models to be represented by one compiled object which can be interactively

configured in many ways by setting flags. This eliminates compiling a separate model for each
configuration.

» expressing flowsheet superstructure representations, which a solution engine can manipulate
automatically in an optimization process. This eliminates time spent performing manual case
studies.

» allowing the user to apply general purpose solvers or model reformulation tools for distinct
problem classes to the same model representation. This eliminates writing a different program
to solve each problem. For example, creating an initial value formulation of a differential-
algebraic system just to initialize a separate boundary value problem is not necessary.

» allowing the user interactive access to all sub-models, so that each part can explored in the
process of discovering overall initialization and solution strategies. This eliminates compiling
separate, small models when subproblems prove difficult or behave surprisingly in the larger
context, as they frequently will.

Most interactive equation-based systems make gains in one or more of these areas by accepting
losses in others. The most common sacrifice (as some regard it) in object-oriented systems is the
loss of familiar linear information structuring that is common to spreadsheets and the styles of
FORTRAN frequently seen in computing courses for undergraduate chemical engineers. These
systems provide few if any hooks for new users from traditional backgrounds to grab during the
paradigm shift to declarative, object-oriented modeling. As a result many new modelers simply
give up on using advanced modeling tools.

Another example of the loss of familiar language usage occurs in the ASCEND system. The
domain-specific iconographic language of flowsheets is not supported because there is no univer-
sally accepted mapping to lines and icons from arbitrarily structured hierarchical models written

in a general-purpose, text-based language.

In the first section on improving understanding and reuse of models, we introduce a new object
passing formalism which offers new users a smoother transition path into declarative modeling
and which aids in modification and reuse of model source code libraries. We demonstrate that the
same information which helps the user can be used to reduce the time required to compile (instan-
tiate) large objects.

A critical feature of this formalism is that the objects constructed form directed acyclic graphs
(DAGS), not simple trees. A similar formalism has been seen as useful in procedural program-
ming languages with varying degrees of object orientation such as C++, Eiffel, and Java. The pri-
mary implication of the DAG structure in mathematical modeling systems is that it allows
redundant equations to be eliminated easily and it allows independent solution of any part of the
overall model. Secondarily, connecting equations,reagtor.flow_rate out = sep-
arator.flow_rate_in , which can become unwieldy in very large models, are not needed.

In the second section on discovering similar objects, we introduce a general method to regain the
speed and compactness of machine code while retaining the flexibility of the interactive systems.

ASCEND Il (Piela, 1989), initially sacrificed the extreme speed and compactness of compiled
machine code to obtain a flexible representation which supports interactive model respecification
and the solution of any arbitrary subproblem. The general method we propose requires determin-
ing theanonymous typef each compiled object. Models written in reusable libraries generally
leave constants which determine the final size of the compiled model unspecified, such as the
number and identity of chemical species in a stream or the number of stages in a distillation col-
umn. Two tray objects compiled from the same model (or class) are of distorgtmous type

unless the constants specified to each at compilation time are identical.

The ideas we present are experimentally verified here and elsewhere (Allan, 1997) to allow inter-
active manipulation of 20,000 or more equations. The experiments have been conducted in the
ASCEND IV} system (Abbott, 1996, Allan, 1997, Allan, et al, 1997).

Improving understanding and reuse of models is good for
users and for compilers

In this section we highlight several modeling language features (Allan, 1997) which we find make
it easier to reuse and modify declarative models in any language. The most important of these is a
version of object passing which we have not seen described elsewhere in the object-oriented liter-
ature. Model reuse and modification are further supported by modeling ideas which were present
but not highlighted in ASCEND Il (Piela, 1989, Abbott, 1996) and by concepts similar to ideas in
the realm of object-oriented software design (Meyer, 1992a). We shall see that application of
these features in defining ASCEND IV leads to greater than 60% reduction of compilation times
over comparable ASCEND Ill models, even though significant optimizations in the ASCEND IV
implementation remain to be performed. Limited testing of ASCEND IV with undergraduate and
graduate students indicates that it is highly reusable. Gains in compilation time help in model
reusability by allowing more experiments to be conducted in the time available for modeling
activities.

Concept: Object passing

Mathematical models for a piece of chemical process equipment or for a thermodynamic mixture
can be quite complicated. Users of any piece of software generally desire clear, simple interfaces,
at least until the software in question needs to be used for an application different from the origi-
nal designer’s vision. The user of a mathematical model may need to modify the internal mathe-
matical structure, such as adding reaction terms to the mass and energy balances of a flash unit to
obtain a reactor. Even if the model is adequate as received, the interface to the model needs to
state concisely all the use requirements so that the user need not read a thick manual which may
not even exist. These requirements need to be stated in a way which is understood by the user and
easily verified by the compiler in the final application (Meyer, 1992a). We illustrate such an inter-

1. ASCEND 1V is free, documented software available for Windows and UNIX systems via http://
www.cs.cmu.edu/~ascend.

face in Figure 2, using the ASCEND |V syntax.

MODEL VL_Flash(
feed WILL_BE stream;
n_overheads IS_A integer_constant;
vapor[1..n_overheads] WILL_BE stream;
n_bottoms IS_A integer_constant;
liquid[1..n_bottoms] WILL_BE stream;
) WHERE (
feed, vapor[1..n_overheads], liquid[1..n_bottoms]
WILL_NOT_BE_THE_SAME;
FOR i IN [1..n_overheads] CREATE
feed.species == vapor[i].species;
END FOR,;
FOR j IN [1..n_bottoms] CREATE
feed.species == liquid[j].species;
END FOR,;

Figure 2 The interface to VL_Flash, a flash unit.

The interface syntax for the VL_flash model type is not extremely different from interfaces in
object-oriented procedural languages like Eiffel (Meyer 1992b). We must, however, keep in mind
that ASCEND and similar mathematical modeling systems are not procedural, so the semantics of
this interface are not precisely those of an Eiffel interface. ASCEND and similar modeling sys-
tems do nohide substructures, in particular variables may be accessed from any enclosing scope
when formulating equations at higher levels. Eiffel and other traditional object-oriented software
construction languages use interfaces to hide information.

MODEL test_flowsheet;
feedl1 IS_A stream(species);
offgas[1] IS_A stream(species);
product[1] IS_A stream(species);
solvent_degasser IS_A VL_Flash(feed1,1,offgas,1,product);
species IS_A set OF symbol_constant;
species :== ['methane’,’hydrogen_sulfide’,’heptane’];
END test_flowsheet;

Figure 3 A test driver for VL_Flash

In defining the model VL_Flash, we require the user to provide a feed stream and arrays of prod-
uct streams. The ranges for the arrays are to be specified as constant values. The idiom used to
state these requirements is not so different from common procedural languages as to leave new
users completely lost. The user does not need to read the equations coded in the body of the model

to determine what the VL_Flash is if the model name and argument names are well chosen. The
compiler need not attempt to execute statement 5 in Figure 3 until all the required argument
objects and values are available. If the modeling language supports inheritance, then it is reason-
able to accept a more refined subclass of the type specified in the model interface, since the more
refined subclass furnishes at least the expected attributes of the specified type.

If the user is unfamiliar with the model, writing a test driver is not particularly hard. The driver in
Figure 3 is easily derived once one understanddMiat. BE means a passed object is required
and/S_A statements means a constant value is required. This makes it reasonable to construct a
simulation and explore it interactively without first reading extensive documentation or tracing
through model source code. The primary benefit of software encapsulation, easy reuse, is obtained
without frustrating the user who needs to examine or to modify the code in detail at some later
time.

It may seem unusual that both feed and product streams must be supplied to a unit model. This
illustrates the first of the two sources of savings in compilation time. The streams in and out of the
flash unit enter or exit the flowsheet from some hypothetical, unmodeled reservoir or they are
shared with another unit in the flowsheet. Any object, such as the stream, which is shared in dif-
ferent contexts should be created once and then be passed to all the sharing contexts. This style of
modeling eliminates the lost compiler work caused by creating two streams in separate units and
then merging them through some compilation process. The savings are even greater if a shared
object is used in many different contexts, as is the case with a model which represents the set of
chemical species in use throughout a flowsheet.

The object hierarchies created by passing objects as described above are DAGs. We illustrate this
with the code and graph shown in Figure 4. The names specified for parts are shown on the links
of Figure 4. The stream exiting the reactor and entering the flash is constructed and passed to both
units. The stream or either of the two units can be solved alone or as part of the flowsheet since
each model object in the graph can be isolated with all its subtree. The same DAG structure is
obtainable in the data structures of any language which has implicit or explicit passing of pointers,

MODEL FlowSheet;
Stream1 IS_A stream;
Reactor IS_A patrtial_reactor(Stream1);
Flash IS_A partial_flash(Stream1);
END FlowSheet;

Figure 4 (a)

such as FORTRAN, C++, or Java.

Reactor

Figure 4 Directed acyclic graph of two units and their connecting stream.

Concept: Argument checking

We now turn to the statements in the WHERE block of the MODEL interface in Figure 2. These
statements are conditions on the arguments provided. These are siaskertonsn Eiffel pro-
gramming, but differ in that the conditions can only refer to constant properties of the arguments.
Conditions written in terms of variables are disallowed because , though they might be satisfied at
compilation time, they can change soon after, thereby leaving an incorrect model. If the argu-
ments provided violate these conditions, then the compiler can issue appropriate warnings and
stop. This saves CPU time which might otherwise be wasted on attempting to assemble and diag-
nose the incorrectly specified data structures. More importantly, this checking gives the user much
more precisely targeted warnings and errors, leading to much reduced model debugging time.

This condition checking prevents any misuse of the model that is anticipated by the model author.
In our example, the same stream must not be passed to two slots in the interface, as this violates
the author’s assumptions about mass balance. As end users occasionally report cases of unusual
model misuse (which are generally indicative of unstated assumptions in the model), the main-
tainer of a library model can add additional conditions to prevent future misuse.

Concept: Reusable polymorphism

Polymorphism, the specialization of a basic object definition into subclasses for different particu-
lar applications is much discussed in the object-oriented literature. The issue also manifests in
mathematical modeling languages. Our experience with ASCEND Il has shown that many users,
even users with substantial expertise, are wary of creating more refined types (new sub-classes)
even when detailed examples of the use of the ASCEND inheritance operators are provided. Users
are not confident that they will be able to meet all the unstated assumptions that went into the
super-class design and into the models which have been based on existing refinements. Even the
graphical type hierarchy display (class browser) added late in the development of ASCEND llI

does not make users sufficiently comfortable with their understanding of the thermodynamics
library to attempt modifications. Something as simple as adding another vapor pressure correla-
tion put off all our users. It appears that we have overcome some of this reluctance by applying the
object passing formalisms already discussed and by creating a clear syntax for selecting among
structural alternatives.

MODEL liquid_mixture(
species IS_A set OF symbol_constant;
mixing_rule IS_A symbol_constant;
) WHERE (
mixing_rule IN ['Wilson’,/UNIFAC’] == TRUE;
);

SELECT (mixing_rule)
CASE ‘Wilson’:

Wilson_mix IS_A Wilson_liquid(species);
CASE ‘UNIFAC’:

UNIFAC_mix IS_A UNIFAC_liquid(species);
END SELECT;

END liquid_mixture;

Figure 5 SELECT code

The declarative SELECT statement syntax illustrated in Figure 5 looks enough like procedural
code dispatching to calculation subroutines that a modeler of almost any ability can understand
and imitate it. Adding a new liquid mixture correlation becomes a matter of adding another CASE
and defining the corresponding model which has the same arguments as the other correlations.
The modeliquid_mixture has no refinements, but it is essentially polymorphic in behavior.
There are several liquid correlations which are selected among by the vatoengf rule

which is supplied when an instanceligi/id_mixture Is compiled.

This part selection formalism seems more comfortable for many modelers. The examples of other
options are all gathered in the containliggid _mixture and the similarity of the interfaces

to Wilson_liquid andUNIFAC liquid strongly suggests that the same objects should be
passed to any recipe for calculating mixture properties. In addition, this formalism allows the
compiler to construct each object using its final form rather than constructing an object in super-
class form then later expanding it according to the subclass finally selected.

Similarly, a formalism (general functions, (Westerberg and Benjamin, 1985)) for representing
solution-time model structure alternatives less restrictive than substitution of one equation for
another equation in the same variables helps users express dynamic polymorphism. The
ASCEND syntax for general functions (the WHEN statement) is described more fully elsewhere
(Ramirez et al, 1997, Zaher, 1995,). General functions allow the user to combine several related
models into one and switch among them interactively.

For example, a column model can be compiled with rigorous thermodynamics and full energy

balance equations included. If this column is modeled using general functions that dynamically
turn off and on enthalpy models and equilibrium equations, then the user can select dynamically
among mass-balance, mass-balance with energy balance errors calculated, and full energy bal-
ance. The general function formalism can also be mapped automatically to various discrete opti-
mization formulations (Ramirez et al, 1997). Again, this dynamic polymorphism saves the user
time by avoiding recompilation of detailed models after simple ones are first explored.

Concept: Graphical presentation of the object passing formalism

The graphical presentation of interconnections among models frequently provides insight into
their proper manipulation and expected behavior. Abstract line-and-box representations are com-
mon to virtually every engineering discipline. Unfortunately, workers in any two fields seldom
agree on just what a line and a box represent. One approach we are investigating is illustrated in
Figure 6. We map all objects as icons, and we stmwectiongcommon parts passed through
interfaces) as small boxes on the edges of icons. Each edge box is connected by a line to the icon
of the object being passed. If more detail about a given icon is required, its box can be exploded
interactively to show another level of complexity.

Reactor Stream1 Flash

Figure 6 A lines and boxes representation of object passing corresponding to the DAG of
Figure 4.

Presently we are testing this representation on paper and blackboard rather than in software. This
graphical representation needs to be similar enough to the diverse engineering drawing conven-
tions that an engineer from any discipline can quickly connect it to his or her particular conven-
tions. At the same time, this graphic presentation must be sufficiently different from the particular
conventions that the semantics do not become confused among them. Obtaining a representation
with such ideal properties is still a formidable challenge.

Concept: Compiler instruction scheduling

An unexploited property of ASCEND lll is that each compiled equation belongs to exactly one
containing object. Further, the details of the form are determined entirely by the combination of
the equation’s symbolic form and the structure of other objects in the same containing object.
Thus, compiling equations could be deferred until all compilation of the model and variable
object structures is finished. This allows the detection of all model structure errors to be carried

out before any CPU time is wasted on building the equations in an erroneous model. Similarly,
compilation of each equation need be attempted only once. If compilation fails, then some vari-
able simply does not exist and the user can be informed precisely what is wrong. We decouple the
compilation of equations from the compilation of models in ASCEND IV. This eliminates com-
piler retry of erroneous equations and saves the user time while new model constructions are
being debugged.

Result: Improved modeling productivity

While it is difficult to measure the effects of all the language features described above on the time
spent interactively debugging, several users have reported that they are significantly more produc-
tive. In one instance, an undergraduate reported creating workable reboiler, condenser, and distil-
lation tray models in three hours by mimicking and extending the style of a basic one feed-two
product vapor-liquid flash we provided.

Next we present a more concrete test of our compiler improvements. As noted previously, compi-
lation of equations can be separated into a second pass. In Table 1 we show compiler statistics for
the flowsheet shown in Figure 7. This flowsheet contains 17,500 equations. The process separates
C3 hydrocarbons: propadiene, propylene, and propane, and it is derived from Abbott (1996). The
times here are for first pass model construction only. We describe the second pass equation compi-
lation performance in the second section.

Table 1: Pass one model structure compilation time under SunOS/Sparc 5 110MHz

17,500 No object Obiect User
equation C3 passing or j€ directed
) passing)
splitter copy object copy
CPU seconds 68.9 30.1 20.5

The first entry is the time to compile this flowsheet as written in the ASCEND lll idiom, a subset
of that available in ASCEND IV. The second entry is the time to compile an equivalent flowsheet
written in the object-passing, condition-checking, idiom highlighted in this section. The third
entry is the time to compile the flowsheet in the ASCEND lll idiom using the expert, manually
directed copying of prototypical objects as described by Abbott (1996). This entry indicates that
the ASCEND IV compiler performance could be further enhanced by incorporating automatic

10

copying of objects in pass one.

N>

Column 2 - 164 trays

Column 1 - 30 trays ’

Figure 7 C3s distillation with 194 theoretical trays and 17,500 equations.

Discovering similar objects to improve performance

Virtually all large problems are constructed by repeating small structures which are better under-
stood and adding one or two new features. A column is computed by iterating over a set of trays.
A flowsheet is computed by iterating over a set of columns and other units. A production schedule
is computed by iterating over a set of plants. We can discover these repeated structures automati-
cally, even though they are anonymous, and use that knowledge of structure to reduce memory
and CPU requirements for large models.

We make reductions in compilation time by separating equations into a second compiler pass as
described in the previous section. Far larger gains are available, however, if we can detect the
repeated model structures and compile only one copy of the equation for each kind of structure
discovered. All similar models can share this copy of the equations. Relation sharing is first recog-
nized by Abbott (1996) in the process of user-directed model copying. A user-directed approach
cannot, however, make maximum use of repeated structures and is vulnerable to user misdirec-
tion.

Concept: Anonymous type detection

Unfortunately, as we discussed in the introduction, the formal type (class) of an object does not
completely determine its internal, hierarchical structure. We must detect the anonymous type
(anonymous sub-class) of each object in the model hierarchy in order to identify the repeated
model structures. In the user-directed approach, the user is responsible for understanding anony-
mous type subtleties and identifying important groups of objects sharing like structures.

The results of our first experiment to test the potential impact of this approach are given in

Table 2. In this experiment, we use an optimistic algorithm for determining the anonymous type

of each object. This algorithm checks the formal type of the object being classified and the
already determined anonymous type of each part in the object to determine the object’'s anony-
mous type. Once the anonymous types are determined, we compile and share equation structures

11

as already indicated.

Table 2: Pass two equation compilation time and memory

17,500 equation C3 No_ User dlr_ected Anonymous
. equation equation type guided
splitters (194 trays) . . : :
sharing sharing equation sharing
CPU seconds 83.1 5.4 3.6
Total space required for| 26 14 11
completed model
(megabytes)

By finding the minimum set of unique equations we achieve memory efficiency of the same order
as hand-coded FORTRANSInce the set of unique equations is small, it becomes reasonable to
consider compiling them all the way to machine code, thus reaching the maximum possible func-
tion and gradient evaluation speed. Compiling machine code separately for each of 100,000 equa-
tions will break most compilers outright, and takes hours on any serial processor/compiler
combination of which we are aware. Thus, equation sharing is not just desiralbejuinetd if
equation-based modeling language tools are to be a feasible alternative to large binary libraries of
hand-coded unit operations.

There is an interesting fly in our ointment of high performance
Why did we describe the classification algorithm useapéisistic? We did so because models

compiled with object passing form DAGs and not trees. On a DAG it is not sufficient to check just
the anonymous type of each part in an object when classifying the object. Figure 8 illustrates why

1. While the order is the same, the coefficient is somewhat higher to support the flexibility of interactive
problem specifications and subproblem management.

12

this is the case with the simplest possible example.

Formal
type: B

Figure 8 Counterexample instances to an optimistic classification algorithm on DAGs

According to our optimistic algorithm, the anonymous type of objects al and a2 is the same. al
and a2 are both of formal type A and both have to children of anonymous type B. However, al
and a2 are clearly different data structures with different semantics. Consider an equation in the
definition of A, e.gbl = b2 . This equation relates two variables, b1l and b2, in object al, but
merely states a tautology in object a2. Fortunately, this sort of subtlety does not occur in the flow-
sheeting models we have tested. Indeed, in the example of Figure 2 and Figure 3 this structure is
precluded by the WHERE conditions which state that the stream parts of the flash model will not
be the same object.

Imagine, however, a user trying to find the compiler’s optimization error with a similar structure
buried in a model of 100,000 equations. A compiler must be correct all the time, not just most of
the time. We are presently investigating more rigorous algorithms to detect anonymous types in
the presence of such subtleties. Any mathematical programming system which passes pointers in
the construction of its object data structures needs to recognize the subtle effects of anonymous
type within DAG structures in order to use the equation sharing required for scale-up to large
models.

Conclusions

In the first part of this paper, we presented new modeling language formalisms which increase the
probability of successful reuse and modification of library models for large applications. We
observe that the same language features which make model reuse easier for the modeler also make
compiler performance substantially better. We note the use of DAG model structures to obtain
scalable modeling systems.

13

In the second section of this paper we introduced the new issue of anonymous type detection in
DAG structures. We suggest the ways in which anonymous type detection can transform today’s
modeling systems with large object-oriented overhead memory and CPU costs suitable only for
small model projects into scalable systems capable of performing on the same level as hand-coded
binary library based flowsheeting systems. Based on promising early results presented here, we
will continue to investigate the anonymous type detection issue. Engineers can look forward to
future large-scale flowsheeting systems with the richness of features available from today’s small-
scale highly interactive, object-oriented, equation-based systems.

Acknowledgments

The member companies of the Computer Aided Process Design Consortium and the National Sci-
ence Foundation through its grant, No. EEC-8943164, to the Engineering Design Research Center
provided the financial support of this project.

14

References

Abbott, K. A. Very Large Scale Modelingh.D. thesis, Carnegie Mellon University, Pittsburgh,
PA USA (1996).

Allan, B. A. A More Reusable Modeling Systdpi.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA USA (1997).

Allan, B. A., V. Rico-Ramirez, M. Thomas, K. Tyner, and A. Westerberg. ASCEND IV: A porta-
ble mathematical modeling environment. ICES technical report, number not yet assigned
(1997). available via http://www.cs.cmu.edu/~ascend/ascend-help-BOOK-21.pdf.

Andersson, MOMOLA - An Object-Oriented Modelling LanguadghD thesis, Lund Institute of
Technology, Department of Automatic Control, Lund, Sweden (1990).

Barton, P. IThe modeling and simulation of combined discrete/continuous procEBédeshesis,
Department of Chemical Engineering, Imperial College of Science, Technology and Medicine,
London (1992).

Marquardt, W. An object-oriented representation of structured process modeiputers and
Chemical Engineeringl6S:5329-S336 (1992).

Meyer, B. Applying 'design by contractEEE Computerpages 40-51 (1992a).
Meyer, B.Eiffel: The LanguagePrentice Hall (1992b).

Piela, P., T. Epperly, K. Westerberg, and A. Westerberg. An object-oriented computer environ-
ment for modeling and analysis: The modeling langu@genputers and Chemical Engineer-
ing, 15(1):53-72 (1991).

Piela, P. CASCEND: An Object-Oriented Computer Environment for Modeling and Analysis
PhD thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania (1989).

Rico-Ramirez, V., B. Allan, and A. Westerberg. Conditional modeling in ASCEND IV. Technical
Report EDRC/ICES TR number not yet assigned, ICES/Engineering Design Research Center,
Carnegie Mellon University (1997).

Westerberg, A. W., K. A. Abbott, and B. A. Allan. Plans for ASCEND IV: Our next generation
equational-based modeling environment. Boston, Massachusetts. ApsenWorld 94 (1994).

Westerberg, A. W. and D. R. Benjamin. Thoughts on a future equation-oriented flowsheeting sys-
tem.Computers and Chemical Engineerii§5):517-526 (1985).

Zaher, J. JConditional Modeling PhD thesis, Department of Chemical Engineering, Carnegie
Mellon University (1995).

15

Piela, 1989

Allan, 1997
Rico-Ramirez et al., 1997
Abbott, 1996

Zaher, 1995

Westerberg and Benjamin, 1985
Allan et al., 1997

Meyer, 1992b

Meyer, 1992a

Piela et al., 1991
Westerberg et al., 1994
Marquardt, 1992
Andersson, 1990

Barton, 1992

16

