
ASCEND IV

Advanced System for Computations in ENgineering Design

A portable mathematical modeling environment.
Release 0.8

Sept 26, 1997

Authors:
The research group of Arthur Westerberg

Department of Chemical Engineering, Carnegie Mellon University
Benjamin Allan, Vicente Rico-Ramirez, Mark Thomas, Kenneth Tyner

Other Helpful People Too Numerous To Mention Here

Sponsors 1993-1997:
Computer Aided Process Design Consortium
Institute for Complex Engineered Systems

National Science Foundation grant for the Engineering Design Research Center
US Department of Energy

We are deeply indebted to the authors and contributors at large who created Tcl/Tk. Many thanks
Dr. Osterhout!

Keywords:

ASCEND, CONOPT, EDRC, FORTRAN, GAMS, GNU license, GUI, ICES, LSODE, Leven-
berg-Marquardt, MINLP, NLP, Newton, ODE, Tcl, Tk, UNIFAC, boundary value, chemical engi-
neering, collocation, complex engineered system,, conditional modeling, copyleft, degrees of
freedom, design, design research cente,r distillation, dynamic, engineering design, free software,
freeware, initial value, initialization, interactive, large-scale, linear algebra, linear equations,
mathematical modeling, mixed integer, modeling system, nonideal thermodynamics, nonlinear
program, object oriented, optimization, ordinary differential equation, Pitzer vapor, reactive distil-
lation, scalable, scaling, simulation, solving, structural analysis, Wilson liquid.

2

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpLOP.doc

Documentation Bird’s Eye View

ASCEND IV 1
Advanced System for Computations in ENgineering Design 1
Documentation Bird’s Eye View 2
Documentation Detail Map 4
A typical scenario for running the ASCEND system 16
Getting Started with ASCEND 20
Script 22
Library 32
Merged into library 42
Browser 46
Solver 56
The Data Probe Window 68
ASCPLOT 74
Display slave 82
ASCEND Units 84
The ASCEND Toolbox 88
The System Utilities Window 92
Font Selection Dialog 100
The Print Dialog 104
Solved simple modeling problems with ASCEND 108
A Conditional Modeling Example: Representing a Superstructure 114
A Simple Chemical Engineering Flowsheeting Example 138
The ASCEND predefined collection of models 156
The ASCEND IV language syntax and semantics 158
Units library 218
Brief History of ASCEND 232

3

Last modified: September 26, 1997 3:45 pm

4

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

Documentation Detail Map

A typical scenario for running the ASCEND system 16
Getting Started with ASCEND 20
:: Philosophy 20
- Getting the ASCEND system and installing it 20
- Starting ASCEND 21

o ASCENDDIST 21
o ASCENDHELP 21
o ASCENDLIBRARY 21

Script 22
Figure ASCEND’s Script Window. 22

:: The Script Menu Bar 23
- Script File Menu 23

o New File 23
o Read File 23
o Import File 23
o Save 23
o Save As 23
o Buffer List 23

- Script Edit Menu 23
o Write selection 23
o Select all 23
o Remove statements 23

- Script Execute Menu 24
o Statements selected 24

- Script toolbox menu 24
- Script Help menu 24

o On ASCEND/TCL Scripts 24
o On SCRIPT 24

:: SCRIPT Grill Menu 24
o Record actions 24

:: The Script Language 24
- Summary 24

o <arg> 25
o <a1,a2> 25
o <a1 a2> 25
o [a1] 25
o [a,b] 25
o qlfdid 25
o qlfpid 25
o {} 25

- Quick reference: 25
o ASSIGN 25
o BROWSE 25

5

Last modified: September 26, 1997 3:52 pm

o CLEAR_VARS 25
o COMPILE 25
o DELETE 25
o DISPLAY* 25
o INTEGRATE 25
o MERGE 25
o PLOT 26
o PRINT 26
o PROBE 26
o READ 26
o REFINE 26
o RESTORE* 26
o RESUME 26
o RUN 26
o SAVE* 26
o SHOW 26
o SOLVE 26
o WRITE 26

- Commands 26
o ASSIGN 26
o BROWSE 26
o CLEAR_VARS 26
o COMPILE 26
o DELETE 27
o DISPLAY 27
o INTEGRATE 27
o MERGE 27
o OBJECTIVE 27
o PLOT 27
o PRINT 28
o PROBE 28
o READ 28
o REFINE 28
o RESTORE 28
o RESUME 29
o RUN 29
o SAVE 29
o SHOW 29
o SOLVE 29
o WRITE 29
o 29

:: Script Window Bindings 29
o M1 30
o M1-Drag 30
o Shift-M1[-Drag] 30
o Double-M1 30

6

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

o Double-M1-Drag 30
o Triple-M1 30
o Triple-M1-Drag 30
o M2 30
o M2-Held-Down 30
o M3 30
o Control-M1 30
o Control-k 30
o Control-w 30
o Meta-w 30
o Control-y 30
o Meta-y 30

Library 32
Figure ASCEND Library Window. 32
Figure Data structure used to store type defini-

tions. 33
:: Menu Bar 34
- The file Menu 34

o Read types from file 34
o Close window 34

- The Edit Menu 34
o Create simulation 34
o Delete Simulation 35
o Delete all types 35
Figure The Create Simulation Dialog 35

- The Display Menu 35
o Code 35
o Ancestry 35
o Refinement hierarchy 35
o External Functions 35
o Hide Type 35
o UnHide Type 35
o Hide/Show Fundamentals 36
Figure Select the fundamental type to Hide or

Unhide. 36
- The Find Menu 36

o Type by name 36
Figure The Library’s Find Type dialog. 36
o Type by fuzzy name 37
o Pending statements 37
o To Display 37
o To Console 37
o To File 37

- The View Menu 37
- The export Menu 37

o Simulation to Browser 37

7

Last modified: September 26, 1997 3:52 pm

o Simulation to Solver 37
o Simulation to Probe 38

- The help Menu 38
o On LIBRARY 38

:: Type Refinement Hierarchy Window 38
Figure The Type Refinement Window. 38
Figure The Parts window displays the parts. 39
Figure The Hierarchy Roots Window. 40

Merged into library 42
:: Sims Window 42

Figure 42
Figure 43

- The Edit menu 43
- The Pendings menu 44
- The Export menu 44
Browser 46

Figure ASCEND’s Browser window. 46
:: The Menu Bar 47
- BROWSER Edit Menu 47

o Run method 47
o Clear Vars 47
o Set value 47
o Read values 48
o Refine 48
o Merge 48
o Compile 48
o Resume Compilation 48
o Create Part 48

- BROWSER Display menu 49
o Attributes 49
o Relations 49
o Cond Rels 49
o Log Rels 49
o Cond Log Rels 49
o Whens 49
o Plot 50
o Statistics 50

- BROWSER Find menu 50
o By name 50
o By type 50
o Aliases 52
o Where created 52
o Clique 52
o Eligible variables 52
o Relations 53
o Operands 53

8

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

o Parents 53
o Pendings 53

- BROWSER view menu 53
o Suppress Atoms 53
o Display Atom Values 53
o Check Dimensionality 53
o Hide Names 53
o UnHide Names 53

- BROWSER Export menu 53
o to Solver 53
o Many to Probe 54
Figure Filtering instances sent to the Probe 54
o Item to Probe 54

- BROWSER Help menu 54
o On BROWSER 54

Solver 56
Figure Solver Window 56

:: The Solver Menu Bar 57
- Solver Edit Menu 57

o Remove instance 57
o Select objective 57

- Solver Display Menu 57
o Status 57
o Unattached variables 57
o Unincluded relations 57
o Incidence matrix 57
Figure The Incidence Matrix 58

- Solver Execute Menu 58
o Solve 58
o Single step 58
o Integrate 58

- Solver Analyze menu 58
o Reanalyze 58
o Debugger 58
o Overspecified 59
o Find dependent eqns. 59
o Find unassigned eqns. 59
o Evaluate unincluded eqns. 59
o Find vars near bounds 59
o Find vars far from nom 59

- Solver Export Menu 60
o to Browser 60
o to Probe 60

:: Solver Button Bar 60
o Solver Select Button 60
o Solver Options Button 60

9

Last modified: September 26, 1997 3:52 pm

o Halt Button 60
- General parameters page 60

Figure General Parameter Page 61
:: Available Solvers 62
- QRSlv 63
:: Debugger 64

Figure The Debugger Window 65
The Data Probe Window 68
:: Overview 68

Figure Probe window 68
:: The File menu 69
- New buffer 69
- Read file 69
- Save 69
- Save as 70
- Print 70
:: The Edit Menu 70
- Remove Selected names 70
- Remove all names 70
- Remove UNCERTAIN names 70
- Copy 70
:: The View Menu 70
:: The Export Menu 71
- to Browser 71
- to Display 71
:: The Probe Filter 71

Figure Probe import filter 72
ASCPLOT 74
:: Plot maker 74

Figure The Ascend Plot Window 74
- The Edit Menu 75
- The Execute Menu 75

Figure The Create Data Window 76
- The Display Menu 77

Figure The Graph Generics Window 78
Figure Complete Plot 79

:: Navigation 80
Figure Phase Diagram 81

Display slave 82
:: Overview 82

Figure Display slave window 82
:: The File Menu 83
- Print 83
- Close window 83
:: The View Menu 83
- Show comments in code 83

10

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

- Font 83
- Open automatically 83
:: Title line 83
ASCEND Units 84
:: The Menu Bar 84

o Units vs dimensions 84
o Typical use 84

- UNITS Edit Menu 85
o Set precision 85
o Read file 85
o Write file 85

- UNITS Display Menu 85
o Show all units 85
o SI(MKS) 85
o US Engineering 85
o CGS 85

- UNITS Help Menu 85
o An essay on units vs dimensions 85
o On UNITS 86

The ASCEND Toolbox 88
Figure The ASCEND Toolbox window. 88

:: Exit 89
:: Ascplot 89
:: Help 89
:: Utilities 89
:: Bug Report 89
The System Utilities Window 92
:: Overview 92

Figure The System Utilities window manages
ASCEND’s interaction with the operating system and with other pro-
grams. 92
:: Variables 93
- WWW Root URL 93
- WWW Restart Command 94
- WWW Startup Command 94
- ASCENDLIBRARY Path* 94

- Scratch Directory 95
- Working Directory 95
- Plot Program Type 95
- Plot Program Name 95
- Text Edit Command 95
- Postscript Viewer 96
- Spreadsheet Command 96
- Text Print Command 96
- PRINTER Variable* 96

- ASCENDDIST Directory* 96

11

Last modified: September 26, 1997 3:52 pm

- TCL_LIBRARY Environment Variable* 97

- TK_LIBRARY Environment Variable* 97

:: Buttons 97
- OK 98
- Save 98
- Read 98
- More 98
- Help 98
Font Selection Dialog 100
:: Overview 100

Figure The font selection dialog. 100
:: Font Menu 101
:: Style Menu 101
:: Cancel Button 101
:: OK Button 101
:: Current Font Sample 102
:: Font Sampler Area 102
:: Point Size Slider 102
:: Current Font Selection 102
:: Setting the Default Font 102
The Print Dialog 104
:: Overview 104

Figure The print dialog. 104
:: Settings 104
- Destination 104
- Printer 106
- Name of file 106
- Enscript flags 106
- User print command 106
:: Buttons 107
- OK 107
- Help 107
- Cancel 107
Solved simple modeling problems with ASCEND 108
:: Roots of a polynomial 108
- Problem statement 109
- Answer 109
:: Numerical integration of tabular data 110
- Problem statement 110
- Answer 111
A Conditional Modeling Example: Representing a Superstructure
114

Figure Superstructure used in the example of the
application of the when statement114
:: The WHEN Statement 114
:: The Problem Description 116

12

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

:: The Code 116
A Simple Chemical Engineering Flowsheeting Example 138
:: The problem description 138
:: The code 139
The ASCEND predefined collection of models 156

o system.lib 156
o atoms.lib 156
o Typical use of library files 157
o Examples and scripts 157

The ASCEND IV language syntax and semantics 158
:: Preliminaries 159
- Punctuation 160

o keywords: 160
o (* *) 161
o () 161
o { } 161
o [] 162
o . 162
o .. 162
o : 162
o :: 162
o ; 162

- Basic Elements 162
o L 163
o M 163
o T 163
o E 163
o Q 164
o TMP 164
o LUM 164
o P 164
o S 164
o C 164

- Basic Concepts 169
:: Data Type Declarations 172

o UNIVERSAL 172
- Models 173

o MODEL 173
o foo 173
o bar 173
o column(n,s) 173
o flowsheet 174

- Sets 174
o :== 174
o UNION[setlist] 175
o + 175

13

Last modified: September 26, 1997 3:52 pm

o INTERSECTION[] 175
o * 175
o - 175
o CARD[set] 175
o CHOICE[set] 175
o IN 176
o SUCH_THAT (* 4 *) 176
o | 177

- Constants 177
o real_constant 177
o integer_constant 178
o symbol_constant 178
o boolean_constant 178
o :== 178

- Variables 178
o ATOM 178
o DEFAULT, DIMENSION, and DIMEN-

SIONLESS 179
o real 179
o integer 179
o boolean 179
o symbol 180
o := 180
o DATA (* 4+ *) 180
o 181

- Relations 181
o =, >=, <=, <, >, <> 182
o MAXIMIZE, MINIMIZE 182
o + 182
o - 182
o * 182
o / 182
o ^ 183
o - 183
o ordered_function() 183
o SUM[term set] 183
o PROD[term set] 183
o MAX[term set] 184
o MIN[term set] 184

- Derivatives in relations (* 4+ *) 184
- External relations 184
- Conditional relations (* 4 *) 184
- Logical relations (* 4 *) 184
- NOTES (* 4+ *) 185
:: Declarative statements 185

o IS_A 186

14

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascend-helpTOC.doc

o IS_REFINED_TO 186
o ALIASES (* 4 *) 186
o ALIASES/ISA (*4*) 187
o WILL_BE (* 4 *) 187
o ARE_THE_SAME 187
o WILL_BE_THE_SAME (* 4 *) 187
o WILL_NOT_BE_THE_SAME (* 4 *) 187
o ARE_NOT_THE_SAME (* 4+ *) 187
o ARE_ALIKE 187
o FOR/CREATE 187
o SELECT/CASE (*4*) 188
o CONDITIONAL (*4*) 188
o WHEN/CASE (* 4 *) 188
o IS_A 188
o IS_REFINED_TO 189
o ALIASES (* 4 *) 189
o ALIASES/ISA (*4*) 190
o WILL_BE (* 4 *) 191
o ARE_THE_SAME 191
o WILL_BE_THE_SAME (* 4 *) 193
o WILL_NOT_BE_THE_SAME (* 4 *) 193
o ARE_NOT_THE_SAME (* 4+ *) 194
o ARE_ALIKE 194
o FOR/CREATE 195
o SELECT/CASE (*4*) 195
o CONDITIONAL (*4*) 196
o WHEN/CASE (* 4 *) 196

:: Procedural statements 196
o METHODS 196
o ADD METHODS IN type_name; (*4+*)

196
o REPLACE METHODS IN type_name;

(*4+*) 197
o METHOD 197
o FOR/DO statement 198
o IF 198
o SWITCH (* 4+ *) 199
o CALL 199
o RUN 199

:: Parameterized models 199
- The parameter list 200
- The WHERE list 201
- The assignment list 201
- Refining parameterized types 201
:: Miscellany 202
- Variables for solvers 202

15

Last modified: September 26, 1997 3:52 pm

o solver_var 202
o lower_bound 203
o upper_bound 203
o nominal 203
o fixed 203
o generic_real 203
o solver_semi, solver_integer,

solver_binary 203
o ivpsystem.lib 204

- Supported attributes 204
o (* 4+ *) 204

- Single operand real functions: 204
o exp() 204
o ln() 204
o sin() 204
o cos() 204
o tan() 204
o arcsin() 205
o arccos() 205
o arctan() 205
o erf() 205
o sinh() 205
o cosh() 205
o tanh() 205
o arcsinh() 205
o arccosh() 205
o arctanh() 205
o lnm() 205
o abs() 206

- Logical functions 206
o SATISFIED() (*4*) 206

- UNITS definitions 206
Units library 218
:: Units 218
:: The basic units in an extended SI MKS system 218
:: Units defined in measures.a4l, the default system units li-
brary of atoms.a4l. 219

16

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

CHAPTER1 A TYPICAL SCENARIO FOR RUNNING

THE ASCENDSYSTEM

The ASCEND system is a modeling environment. We have designed it
to allow modelers to pose, debug and solve or optimize models
described by up to of the order of a hundred thousand nonlinear
algebraic equations on a conventional UNIX workstation or PC running
Windows NT4 or Windows 95. The ASCEND system comprises three
major parts: the ASCEND modeling language for posing models, the
ASCEND interactive environment to allow users to compile, debug and
execute models, and a suite of solvers and optimizers.

You would typically proceed as follows to use the ASCEND system for
modeling.

1. Using your favorite text editor (e.g., xemacs1), you will create a
model of the problem you wish to solve in the ASCEND
modeling language. ASCEND models are type definitions. Each
model typically includes a declaration of the parts from which it
is constructed, including variables, instances of previously
defined types and arrays of any of these. Each model also
includes the equations it adds to the model definition over and
above those equations that its parts will provide. Finally if you
abide by our advice on model writing, you will also write three or
four methods that you will later run interactively on the compiled
model instance to prepare it to be solved.

If the model is particularly complex, you will probably create
your model using types defined earlier by yourself and others.
For chemical process flowsheet models, we provide a library of
types. We also provide a file that contains most of the types of
variables and constants anyone would use to construct a model.

2. Start up the interactive ASCEND user interface by typing
‘ascend’ on the Unix shell command line or double clicking on
the ASCEND icon on a PC. A number of different tool sets, each
represented by a special window, open up on the screen. The one
you will likely focus on at first is the SCRIPT window. In this

1. Xemacs is a very powerful text editor which is widely used on UNIX workstations. It is available for free
for both UNIX workstations and PCs through the WWW (search on xemacs).

17 A TYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

Last modified: September 26, 1997 3:59 pm

window under Tools, you will open whichever tool window you
want to work with at first, probably the LIBRARY tool set which
provides tools to load text files containing ASCEND models.
You will likely move and/or resize these windows.

3. Using a tool in the LIBRARY tool set, you will load the files
containing the previously defined types of which your model
makes use. You will open last the file containing the model you
have just written. Unless you are incredibly skilled and/or lucky,
you will see several error messages indicating that you have not
correctly posed your model as the system attempts to load your
new file. Moving back to your favorite editor you will correct
syntax errors discovered by this file loading process, attempt
again to load, make more corrections, etc.

4. Once your new model description can pass the loading process
without errors, you will compile a simulation for it. Again there
could be errors.

5. You will export this compiled simulation to the BROWSER tool
set so you can look at the model, examining all its parts. If there
were compiler errors, you may use tools in this tool set to aid you
to find exactly what you have done wrong in posing the model.

For example, if it is a particularly complex model, you will
methodically examine it to see if you have configured it as you
wanted.

6. Once you are through inspecting the model and have removed all
the errors that of which you are aware, you will prepare the model
to be solved. This you will do by asking the system to execute the
methods you should have written to go with your model
description. If you abide by the style of modeling that we
strongly advocate, your model will have these methods attached
to it -- written before your first atttempt to compile it. These
methods will be for setting initial values for the variables, for
scaling the variables, and for setting the “fixed” flags for a
sufficient number of variables to make the model instance well-
posed. To be well-posed means a number of things, among them
that the model has the same number of variables to be calculated
as equations available for calculating them.

7. You will next export the model to the SOLVER tool set. When
importing a model, the SOLVER tool set analyzes the model to
discover how many variables and equations are in its description.
If it is not an optimization problem, the SOLVER looks to see if it
is well-posed and, if not, will issue warning messages and open
up an interactive tool provided to aid you to make it well-posed
right then and there. What you learn while using this tool you

18

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/using_ascend.fm5

will likely encode right away into the model description so the
next time you compile this model, it will become well-posed
without this interactive step.

8. You can interactively choose among the available solvers and will
most likely choose our nonlinear equation solving solver. With
fingers crossed, you will ask the solver to start solving.

9. Whether or not it solves successfully, you will likely return to the
BROWSER to inspect the results as you can view the value for
every variable and equation residual in the model using the
BROWSER. If the solving process fails, you can select tools both
in the BROWSER and the SOLVER to look for the likely
problem. For example, you may have posed your problem and its
initial conditions such that the solution is out of bounds. A tool
will tell you if the SOLVER has driven any of the variables in the
model to their bounds. Another will tell you if some of your
variables are poorly scaled. Yet another will investigate the
model to see it if is locally singular, and if it is, that tool will
report to you exactly which equations (by name) have given it
reason to believe that to be so. (In the near future, this tool will
also tell you that you should change what you are fixing and what
you are calculating to remove this singularity, if such a move
would prove useful. It will give you a list of variables from which
to choose for each of these trades.)

10. You may wish to see the output in units different from those
currently used. Opening the UNITS tools set will allow you to
change wholesale from SI to American Engineering and/or to
change individual units such as those for pressure from bars to
atm.

11. You may have opened the SCRIPT tool set before loading the
model files. Before doing all the above steps within ASCEND,
you may then have activated a tool to record all the steps you will
subsequently take to load, compile, initialize and solve the model.
This tool will construct a script from the steps it sees you taking.
You wlil likely then edit this script, for example to delete some of
the missteps you have taken, and then save it. You may also pick
out any of the steps in the script and execute them at any time
rather than look for the tools in the tool set windows. You would
use a script to aid you to repeat all the above steps quickly while
you are debugging a model. You will also prepare a script to hand
your model to someone else to execute. Indeed, your first
experience with ASCEND may be to run a script that someone
else has provided so you can be sure to run your first example
successfully.

19 A TYPICAL SCENARIO FOR RUNNING THEASCENDSYSTEM

Last modified: September 26, 1997 3:59 pm

CHAPTER2 GETTING STARTED WITH ASCEND

2.1 PHILOSOPHY

Our goal is to create a set of very powerful modeling/solving tools. A
side effect is that users can often find uses for the tools we did not
anticipate. Another is that, while we have tried to build a user interface
that lets every user from beginner to expert use our tools (or theirs
combined with ours!) in a comfortable fashion, we have almost
certainly erred on the side of giving the user too much control.
Knowing that to be the case, the user should fearlessly dive in and try to
use the system, at first by doing some of the simple problems we have
provided in this documentation. The first step, of course, is to start the
system up, the purpose of this section.

2.1.1 GETTING THE ASCEND SYSTEM AND INSTALLING IT

ASCEND is available through our Web page. Using your web browser,
go the URL

http://www.cs.cmu.edu/~ascend/Home.html

Follow the instructions (the ftp link) there to download ASCEND.

Installing the UNIX
version

If you are downloading a version to run on a UNIX workstation, then
find someone who is a UNIX expert to help you. The process will
involve transferring the source files for ASCEND along with a MAKE
file. The MAKE file will allow a UNIX specialist to compile ASCEND
and get it ready for use. There are detailed instructions that come with
this version to help in installing it. (Your expert’s expertise may be
very minimally required for installing it on most systems.)

21 GETTING STARTED WITH ASCEND

Last modified: September 26, 1997 4:06 pm

Installing the PC
version

If you are downloading to a PC running under either NT or Windows
95, you will be downloading ASCEND4.zip. Uncompress using
WinZip, double click on install.exe and follow the instructions.

2.1.2 STARTING ASCEND

2.1.2.1 FOR PC USERS ONLY

On the PC, simply double click on the ASCEND icon.

2.1.2.2 FOR UNIX USERS ONLY

The ASCEND IV interface is an open system written in TCL on top of
several libraries of C code. The users are expected to customize it to
suit their individual tastes.

We assume users are at least aware of the existence of environment
variables and X resources. If you are not, contact your UNIX expert or
the person who installed ASCEND on your system.

Environment
Variables

Normally, if you are running onUNIX your system administrator will
have set up a shell script to let you run ASCEND simply by typing
ascend . To see if this is true, try typing
ascend -h
If this doesn’t work, you may need to define the following environment
variables in your.login (or perhaps.profile) file, or if you can
find the ASCEND binary, it will frequently run without requiring a
shell script.

ASCENDDIST points to the directory where the ASCEND code has been installed.

setenv ASCENDDIST /usr1/ballan/asc4/test

ASCENDHELP points to the ASCEND help file tree on your system. The tree does not
have to reside with the rest of the distribution, though it may. This
should have been configured for you when was installed.

ASCENDLIBRARY is a colon-separated list of directories where ASCEND looks for files
which are required by other files or which are read into ASCEND from
a script without giving a complete path name. If you do not define
ASCENDLIBRARY, the system will make guesses that usually work.

setenv ASCENDLIBRARY $ASCENDDIST/models/examples:$ASCENDDIST/models/libraries

CHAPTER3 SCRIPT

The Script Utility (see Figure 3-1) allows us to record the process of solving a model, or any other
user interface process. Once this process is recorded in the form of a script, the script can be
repeated either fully or in part. The solution process for a given model can be communicated to
another modeler by distributing a script saved to a file. Following is an outline of the various
menus and buttons on the script window along with a library of the ASCEND commands which
can be recorded.

Figure 3-1 ASCEND’s Script Window.

23 SCRIPT

Last modified: September 26, 1997 4:08 pm

3.1 THE SCRIPT MENU BAR

3.1.1 SCRIPT FILE MENU

The script file menu provides several functions for managing script
files. The script utility may contain multiple scripts but will only
display one at any given time. Upon startup a scratch workspace is
provided

New File Request a buffer name and creates a new buffer with this name.

Read File Requests a filename through the file selection box and proceeds to load
this file (which is assumed to contain ASCEND Script and/or Tcl
statements) into a new Script window buffer. No error checking is
performed on the loaded file.

Import File Requests a filename through the file selection box and appends the text
contained in this file to the end of the current buffer.

Save Saves the text in the current script buffer window to the current script
file (indicated by the filename at the bottom of the script window). The
existing file is overwritten.

Save As Request a filename through the file selection box and saves the text in
the current script buffer window to this file. If the specified file exists,
it is overwritten.

Buffer List A list of scripts used in the current ASCEND session is displayed at the
bottom of the file menu. A script can be redisplayed in the script
window by selecting it from the buffer list.

3.1.2 SCRIPT EDIT MENU

Write selection Saves theselected (highlighted) text to a file which is specified through
the file selection dialog box. Selecting text is discussed in Section 3.4.

Select all Selects (highlights) all text in the window.

Remove
statements

Removes (cuts) theselected text. The removed text is NOT saved for
later pasting.

SCRIPT GRILL MENU 24

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

3.1.3 SCRIPT EXECUTE MENU

Statements
selected

This button takes the selected text, breaks it into statements delimited
by any semicolons (;) that appear in the selection, and executes each
statement in the Tcl global environment.

3.1.4 SCRIPT TOOLBOX MENU

This menu has exactly the same content as the ASCEND toolbox
window. See the chapter corresponding to the toolbox for details.

3.1.5 SCRIPT HELP MENU

On ASCEND/TCL
Scripts

The highlighted selection is executed when you click
Script.Execute.Selected_statements. The selection is broken into
statements at semicolons. Each statement is sent to Tcl for execution.
If the statement doesn’t return any errors, it is unhighlighted and the
next statement is processed. The # character is the Tcl comment. It is
most often used at the beginning of a line, and its effect stops at the end
of a line. The SCRIPT automatically wraps lines too long for the
window.

On SCRIPT

3.2 SCRIPT GRILL MENU

Record actions When the record function is activated a log of interface events with
defined ASCEND Script commands is appended to the end of the
current script window buffer. Most, but not all, interface events have
corresponding script commands. The record function can be turned on
and off by toggling the pull down button on the grill menu or the record
button at the bottom of the script window.

3.3 THE SCRIPT LANGUAGE

3.3.1 SUMMARY

Script keywords are commands defined for ASCEND (in CAPS) which
may be used on the commandline or in the Script. Keywords are
actually Tcl functions which encapsulate one or more of the C

25 SCRIPT

Last modified: September 26, 1997 4:08 pm

primitives and other Tcl procedures, so that the user can conveniently
emulate button presses. A working knowledge of tcl is not necessary to
benefit from the Script’s functionality; however, the tcl literate user will
be able to create very powerful scripts.

Each keyword takes 0 or more arguments. The use of arguments is
given in the following syntax:

<arg> indicates the use ofarg is required.

<a1,a2> indicates that the use of eithera1 or a2 is required

<a1 a2> indicates use of botha1 anda2 required. Usually written
<a1> <a2>

[a1] indicates the use ofa1 is optional.

[a,b] indicates that eithera or b is optional, but not both.

qlfdid is short for ‘QuaLiFieD IDentifier’

qlfpid is short for ‘QuaLiFied Procedure IDentifier’

OF, WITH, TO, and other args in all CAPS are modifiers to the
keyword which make it do different things.

{} It is generally best toenclose all object names and units in {braces}
to prevent Tcl from performing string substitution.

3.3.2 QUICK REFERENCE :

ASSIGN Sets the value of something atomic

BROWSE Exports an object to the browser

CLEAR_VARS Sets all the fixed flags to FALSE

COMPILE Compiles a simulation of a given type

DELETE Deletes a simulation or the type library

DISPLAY* Displays something

INTEGRATE Runs an IVP integrator

MERGE Performs an ARE_THE_SAME

THE SCRIPTLANGUAGE 26

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

PLOT Creates a plot file

PRINT Prints one of the printable windows

PROBE Exports an object to the probe

READ Reads in a model, script, or values file.

REFINE Performs an IS_REFINED_TO

RESTORE* Reads a simulation from disk.

RESUME Resumes compiling a simulation

RUN Runs a procedure

SAVE* Writes a simulation to disk

SHOW Calls a unix plot program on a file from PLOT

SOLVE Runs the solver

WRITE Writes values in Tcl format to disk

 * Items not yet implemented.

3.3.3 COMMANDS

ASSIGN ASSIGN <qlfdid> <value> [units]

Sets the value of atom ‘qlfdid’ from the script. If value is real, it is
required to give a set of units compatible with the dimensions of the
variable. If the variable has no dimensions yet, ASSIGN will fix the
dimensions.

BROWSE BROWSE <qlfdid>

Exports qlfdid to the browser, displaying it as the current instance in the
browser.

CLEAR_VARS CLEAR_VARS <qlfdid>

Sets the value of the fixed flag to FALSE for all the variables on qlfdid.

COMPILE COMPILE <simname> [OF] <type>

27 SCRIPT

Last modified: September 26, 1997 4:08 pm

Build a simulation of the type given with name simname. You can get
away with leaving out OF or spelling it wrong.

DELETE DELETE <TYPES,simname>

The modifier TYPES will cause all simulations to be deleted. If a
simulation name (simname) is specified only that simulation will be
deleted.

DISPLAY DISPLAY <kind> [OF] <qlfdid>

How qlfdid is displayed varies with kind. kinds are: VALUE
ATTRIBUTES CODE ANCESTRY

INTEGRATE INTEGRATE {qlfdid args}

Runs an integrator on qlfdid. There are several permutations on the
syntax. It is best to have solved qlfdid before hand to have good initial
values.

INTEGRATE qlfdid (assumes LSODE and entire range)

INTEGRATE qlfdid WITH (assumes entire range)

INTEGRATE qlfdid FROM n1 TO n2 (assumes lsode)

INTEGRATE qlfdid FROM n1 TO n2 WITH integrator

Requires:

• n1 < n2

• qlfdid be of an integrable type (a refinement of ivp.)

MERGE MERGE <qlfdid1> [WITH] <qlfdid2>

ARE_THE_SAME qlfdid1 and qlfdid2 if possible.

OBJECTIVE OBJECTIVE

Semantics of OBJECTIVE that will be supported are unclear as no
OBJECTIVE other than the declarative one is yet supported. Not
implemented yet

PLOT PLOT <qlfdid> [filename]

Writes plot data from qlfdid, which must be a plottable instance, to
filename.

THE SCRIPTLANGUAGE 28

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

PRINT PRINT <PROBE,DISPLAY>

Prints out the text currently in the Probe or Display.

PROBE PROBE ONE qlfdid

Exports the item qlfdid to the Probe.

PROBE ALL qlfdid

PROBE qlfdid

Exports items found in qlfdid matching the current specifications of
Visit in the Browser. By default, all variables and relations.

Items always go to currently selected probe context.

READ READ [FILE,<VALUES,SCRIPT>] <filename>

Loads a file from disk. Searches for files in directories (Working
directory):.:$ASCENDLIBRARY unless a full path name is given for
filename.

The modifier FILE is used to indicate that the file contains ASCEND
source code (ASCEND source code files normally have a .asc
extension).

The modifier VALUES is used to indicate that the file contains variable
data written by WRITE VALUES (These files normally have a .values
extension).

The modifier SCRIPT is used to indicate that the file is a script file to be
loaded at the end of the Script window (Script files normally have a .s
extension).

If neither VALUES nor SCRIPT are found, FILE will be assumed.
Note: You will get quite a spew from the parser if you leave out the
SCRIPT or VALUES modifier by accident.

REFINE REFINE <qlfdid> [TO] <type>

Refines qlfdid to given type if they are conformable.

RESTORE RESTORE <file>

Reloads a simulation from disk

29 SCRIPT

Last modified: September 26, 1997 4:08 pm

RESUME RESUME <simname>

Reinvokes compiler on simname.

RUN RUN <qlfpid>

Run the procedure qlfpid as if from the browser Initialize button.

SAVE SAVE <sim> [TO] <filename>

Filename will be assumed to be in Working directory (on utils page)
unless it starts with a / or a ~. Not implemented yet.

SHOW SHOW <filename,LAST>

Invokes the plotter program on the filename given or on the file LAST
generated by PLOT.

SOLVE SOLVE <qlfdid> [WITH] [solvername]

Exports qlfdid to the solver and attempts to solve it with the default
solver (usually QRSlv) or the solver indicated by the optional
solvername argument. Solvername must be given as it appears on the
menu buttons. Bugs: Should use current solver rather than default.

WRITE WRITE <kind> <qlfdid> <file> [args]

Write something (what sort of write indicated by kind) about qlfdid to a
file. args may modify as determined by kind. At present only VALUES
is supported. SYSTEM (for solver dump) would be nice.

WRITE VALUES filename.

Filename must be a full path name or in the pwd, also known as ‘.’ .

3.4 SCRIPT WINDOW BINDINGS

In the event binding descriptions that follow, M1 is short for mouse-
button-1 (the left mousebutton), M2 is the middle button, and M3 is the
right mouse button. On machines with no middle button, M3 is still the
right mouse-button and M2 is unavailable.

SCRIPTWINDOW BINDINGS 30

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/script.fm5

M1 repositions the cursor.

M1-Drag selects text.

Shift-M1[-Drag] extends the selection.

Double-M1 selects the nearest word.

Double-M1-Drag selects the nearest word and those you drag over, whole words at a
time.

Triple-M1 selects the nearest line.

Triple-M1-Drag selects the nearest line and those you drag over, whole lines at a time.

M2 does nothing.

M2-Held-Down has an effect similar to the scrollbar.

M3 does nothing.

Control-M1 Starts another part of a disjoint selection.

UNIX bindings: The text widgets in ASCEND share a common stack of cut/copy/paste
text pieces. This is a CMU extension of the text bindings, not default
Tk behavior, and it is EMACS-like, but not EMACS (EMACS uses a
ring, not a stack.) When the stack is empty, Paste does nothing. This is
a design decision. The Tcl function ascPopText can be changed to
behave differently.

Control-k Cuts text to the end of the current line, putting it on the stack.

Control-w Cuts the selected text, putting it on the stack.

Meta-w (e.g. diamond-w on most Sun keyboards) Copies the selected text onto
the stack.

Control-y Pastes the most recent text added to the stack, and removes it from the
stack.

Meta-y Not supported.

MSW bindings: The standard Control-X, Control-C, Control-V bindings of Microsoft
Windows clipboard apply to text widgets. The UNIX text stack is not
available.

31 SCRIPT

Last modified: September 26, 1997 4:08 pm

CHAPTER4 LIBRARY

The Library window (Figure 4-1) in ASCEND allows the user to readtypes into the ASCEND
system from files,compile types into instances, and delete types.

Types are the templates used to create simulations. They come in two
flavors: ATOM, which has a value associated with the instance name
when it is instantiated, and MODEL, which has no value. ATOMs,
further, come in vanilla and UNIVERSAL flavors. Universal atoms
have a single compiled instance which is global to all simulations
created.

Figure 4-1 ASCEND Library Window.

33 LIBRARY

Last modified: September 26, 1997 4:08 pm

Both ATOMS and MODELS are defined in source files. By convention,
source files are named with the endings.asc and .lib, though other
extensions may be used.

In the ASCEND Library window, source files appears in the upper left
box. On the other hand, the types defined in the highlighted source file
appear in the upper right box. A double-button2 in either box will
compile the highlighted type definition. It doesn’t reselect. The upper
left box should perhaps have double-button2 bound to reread the
selected source module. The ASCEND fundamental type such as
integer, real, etc., are not shown in the library window, since their
definition is performed internally, not by using a specific source file.
The lower box of the ASCEND Library window contains the name of
the simulations that have been compiled and can be run.

The data structure used to store type definitions is sketched in
Figure 4-2.

Type Library

type desc 1

type desc 2 type desc 3

Notes: type desc3 has a refinement ptr to type desc 2
 type desc2 has a refinement ptr to type desc 1

 The problem is when type desc 2 is being redefined
 by reloading a new module.

Figure 4-2 Data structure used to store type definitions.

MENU BAR 34

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

4.1 MENU BAR

The menu bar on the Library window has seven entries: File, Edit,
Display, Find, View, Export and Help.

4.1.1 THE FILE MENU

Read types from
file

This loads type definitions into the system. The file selection dialog is
used to select a source file.

The names of types are unique within the system. A new definition of a
type overwrites the old definition of a type in all cases. If the new
definition and the old definition were read from files of the same name,
this overwrite will be done silently. If the new definition comes from a
different file, the overwrite will be done noisily.

This is incorrect, but perhaps is as it ought to be.Existing types
which refined or had parts that were of the old type definition will now
refine or have parts which are of the new type. e.g. If you reread
system.asc (and hence solver_var) everybody in the interface library
who pointed at the old solver_var type will now point at the new
solver_var type.

Instances already compiled using the definitions that have been
overwritten will continue to point at a copy of the old definition the
system has squirreled away somewhere. These squirreled away copies
will not necessarily be the same as what is in the interface type library
if you have reread a file with a newer type definition. This may cause
refinement of the old instance to fail. In general if you redefine a type,
you will probably want to reinstantiate things that depend on that type.

Close window It just closes the ASCEND’s Library window.

4.1.2 THE EDIT MENU

Create
simulation

Create (or instantiate) a simulation based on a type definition. Anytime
that the compile button is selected, the compile dialog window shown
in Figure 4-3 will ask for the name which will be used to identify the
simulation. All simulation created can be seen and in the lower box of
the ASCEND Library window. This box can contain any number of
simulations.

There is a second way to create a simulation through theScript
window. This option is explained in the ASCEND Script window
document.

35 LIBRARY

Last modified: September 26, 1997 4:08 pm

Delete
Simulation

Once a simulation has been loaded into the lower box of the Library
window, it can easily be removed by selecting this option from theEdit
menu.

Delete all
types

Destroys all simulations and deletes all types. This option has no effect
in the fundamental definitions.

4.1.3 THE DISPLAY MENU

Most of the options in the Display Menu will be enabled only if a type
definition has been selected, this is because the tasks performed in the
menu are implicitly associated with a type definition.

Code Displays the source code of the selected type in the ASCEND Display
Window.

Ancestry Allows the use of the Type Refinement Hierarchy Window. See the
section corresponding to this topic.

Refinement
hierarchy

Displays the refinement hierarchy of the selected type in the ASCEND
Display window.

External
Functions

It reports any external function defined from a loaded package library.
The list of external functions (if any) is displayed in the window from
which ASCEND IV was started

Hide Type Any type definition which is selected to be hidden will be ignored for
browsing purposes. Internally, the selection of this option consists in
setting to zero a binary flag included in the type description of the
highlighted type definition.

UnHide Type Reverses the action of “hiding” a type. As a consequence, such a type
will be considered for browsing purposes. Hide Type and UnHide Type
are never enabled at the same time (for the same type definition)

Figure 4-3 The Create Simulation Dialog

MENU BAR 36

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

because they have opposite meaning. The default for all the type
definitions (except fundamentals) is to be “unhidden”.

Both Hide Type and UnHide Type have two selections as a submenu.
The user can ask for the un/hiding of only theselected type, or for the
un/hiding of the selectedtype and its refinements.

Hide/Show
Fundamentals

This special option is given because fundamental types do not appear as
definitions in the ascend libraries, but we still may want to able/enable
such types for browsing purposes. When this button is selected, the
window shown in Figure 4-4 will be used to perform the desired hiding
or unhiding of any of the fundamental types.

4.1.4 THE FIND MENU

Type by name Finds a type by its name.

Figure 4-4 Select the fundamental type to Hide or Unhide.

Figure 4-5 The Library’s Find Type dialog.

37 LIBRARY

Last modified: September 26, 1997 4:08 pm

Type by fuzzy
name

Finds all type names that match a word (provided by the user) in any
fuzzy way. For instance, the name column could give as a result the
following list: demo_column, mw_demo_column, plot_column, etc.
The fuzzy name is defined in a dialog window similar to that used in
the Find Type by name option.

Pending
statements

There are three selections under the Pending Statements submenu,
these areTo Display, To Console, andTo File. Pendings in a
simulation are relations that have not yet been fully processed by
ASCEND’s compiler. It is the modeler’s job to correct the pending
relations in order to arrive at a fully functional simulation. Corrections
may be made by either creating a model which refines the current
model or by editing ASCEND code and starting over. This option gives
the user access to information about the type and location of the
pending statements.

To Display By selecting theTo Display option, all of the simulation pendings are
displayed in theDisplay window.

To Console By selecting theTo Console option, all of the simulation pendings are
displayed in the window from which ASCEND IV was started.

To File By selecting theTo File option, theFile select box is opened and the
user is asked to enter the name of the file in which to save the model
pendings.

4.1.5 THE VIEW MENU

This option has the same application in all of the ASCEND windows
and is explained as a general tool in a companion document.

4.1.6 THE EXPORT MENU

There are three selections under this submenu, these areSimulation to
Browser, Simulation to Solver, andSimulation to Probe.

Simulation to
Browser

By selecting theSimulation to Browser option, the simulation
highlighted in the lower box of the Library window is loaded into the
Browser. From theBrowser, the model can be explored in more detail.

Simulation to
Solver

By selecting theSimulation to Solver option, the simulation
highlighted in the lower box of the Library window is loaded into the
Solver. (Note that exporting to the solver causes a degrees of freedom
analysis to be carried out.)

TYPE REFINEMENT HIERARCHY WINDOW 38

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

Simulation to
Probe

By selecting theSimulation to Probe option, all of the variables of the
simulation highlighted in the lower box of the Library window are
loaded into theProbe. This is not recommended as there are usually
more variables in a model than the user would wish to view at one time.
However, if the user does wish to look at all of the variables and their
current values, theSimulation to Probe option can be useful.

4.1.7 THE HELP MENU

On LIBRARY Brings up a browser pointing to the information provided in this
document.

4.2 TYPE REFINEMENT HIERARCHY WINDOW

The type tree is a directed acyclic graph (DAG) based on the type
hierarchy currently defined in the interface Library. Selection of the
option Display Ancestry for any selected type gives the entire
refinement hierarchy for that type, by enabling the use of the window
shown in Figure 4-6.

The current focus in the hierarchy is indicated by a rectangle around the
type name and the Current type.

The buttons on the left in the type window operate on the currently
selected type:

Figure 4-6 The Type Refinement Window.

39 LIBRARY

Last modified: September 26, 1997 4:08 pm

‘Atoms’ shows the types of ATOMic parts in the selected type
definition. It also shows the incremental code for the type. You can
select from the part types list to look at a different hierarchy.

‘Code’ shows the internally stored code of the selected type. The
expressions, both algebraic and logical, are in reverse Polish notation.
This is different from the way the code of the Library Display Code
button shows it. Comparison of the two is sometimes a useful
debugging tool.

‘Parts’ (Figure 4-7)shows the types of MODEL parts in the selected

type definition. It also shows the incremental code for the type.

The ‘<<<‘ (or backtrack) button backs up to the previously displayed
type hierarchy, if there is one.

‘Roots’ (Figure 4-8) shows the existing root types, that is, the existing
types which are not refinements of anything.

While ASCEND is building the graph, you may see a spew in the
window from which ASCEND was started about orphaned types. This
means there are types in the Library which are refinements of older
types which are no longer in the Library.

While ASCEND is getting the Atom or Model parts list for a type, part
types names which are undefined will be spewed.

Figure 4-7
The Parts window displays the parts.

TYPE REFINEMENT HIERARCHY WINDOW 40

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library.fm5

When an older type is replaced in the Library by a new one of the same
name, the old one is squirreled away where types that refined it can still
see it. The only way to get current types to look at the new definition
without touching the source files for the current types is to delete all
types and reread the entire Library.

Figure 4-8 The Hierarchy Roots Window.

41 LIBRARY

Last modified: September 26, 1997 4:08 pm

CHAPTER5 MERGED INTO LIBRARY

5.1 SIMS WINDOW

TheSims window, short for Simulations window, contains the name of
the simulations that can be run. We can see in Figure that there are three
major menus and theHelp menu available through the Sims window.

Figure 5-1

The menus are theEdit , Pendings, andExport menus. There are two
ways a simulation can be created. The first way is manually through the
Library window. Assume for the moment that you are running a reactor
model and the following libraries and models have been loaded into the
Library window.

ivpsystem.lib;

atoms.lib;

components.lib;

H_G_thermodynamics.lib;

stream.lib;

reactor.lib;

test_reactor.asc;

By highlighting test_reacotr.asc, the following options appear in the
right hand side section of theLibrary window.

43 MERGED INTO LIBRARY

Last modified: September 26, 1997 4:10 pm

reactor_control

reactor_test

td_reactor_test

If you highlight reactor_test option and selectCompile from the
Create menu, a window appears that allows the user to enter the name
of the simulation. In this case, we will simply call the simulation t1.
Figure shows this window.

Figure 5-2

Once the simulation name has been entered, select the OK button. Once
this is complete, we see that

t1 IS_A reactor_test

has been added to theSims window. TheSims window can contain any
number of simulations.

The second way to create a simulation is through theScript window.
Assuming that the necessary libraries and models have been loaded into
theLibrary window, simulation t1 above can be created by executing
the following line in the Script window.

set model t1;

We see that the second option is not only faster, but it is more
convenient.

5.1.1 THE EDIT MENU

There are three selections available in theEdit menu, these areDelete,
Save, andRestore.

5.1.1.1 DELETE

Once a simulation has been loaded into theSims window, it can easily
be removed by selecting theDelete option from theEdit menu.

SIMS WINDOW 44

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simulations.fm5

5.1.1.2 SAVE

This option is currently not functional.

5.1.1.3 RESTORE

This option is currently not functional.

5.1.2 THE PENDINGS MENU

There are three selections under thePendings menu, these areTo
Screen, To Display, andTo File. Pendings in a simulation are relations
that have not yet been fully processed by ASCEND’s compiler. It is the
modeler’s job to correct the pending relations in order to arrive at a
fully functional simulation. Corrections may be made by either
creating a model which refines the current model or by editing
ASCEND code and starting over. The Pendings menu gives the user
access to information about the type and location of the pending
statements.

5.1.2.1 TO SCREEN

By selecting theTo Screen option from thePendings menu, all of the
simulation pendings are displayed in the window from which ASCEND
IV was started.

5.1.2.2 TO DISPLAY

By selecting theTo Display option from thePendings menu, all of the
simulation pendings are displayed in theDisplay window.

5.1.2.3 TO FILE

By selecting theTo File option from thePendings menu, theFile select
box is opened and the user is asked to enter the name of the file in
which to save the model pendings.

5.1.3 THE EXPORT MENU

There are three selections under theExport menu, these areto
Browser, to Solver, andto Probe.

45 MERGED INTO LIBRARY

Last modified: September 26, 1997 4:10 pm

5.1.3.1 TO BROWSER

By selecting theto Browser option from theExport menu, the
simulation is loaded into theBrowser. From theBrowser, the model can
be explored in more detail. This is covered more thoroughly in the
Browser section of the documentation.

5.1.3.2 TO SOLVER

By selecting theto Solver option from theExport menu, the
simulation is loaded into theSolver. (Note that exporting to the solver
causes a degrees of freedom analysis to be carried out.)

5.1.3.3 TO PROBE

By selecting theto Probe option from theExport menu, all of the
variables of the simulation are loaded into theProbe. This is not
recommended as there are usually more variables in a model than the
user would wish to view at one time. However, if the user does wish to
look at all of the variables and their current values, theto Probe option
can be useful. More on this is covered in the Probe section of the
documentation.

CHAPTER6 BROWSER

The Browser window (Figure 6-1) provides the means with which to view the parts of a
simulation. When a simulation is exported to the Browser, the name of the simulation appears in
the Browser’s upper left box and the child instances of the simulation appear in the upper right
box. Selecting a child instance in the right box will move the instance to the bottom of the stack
in the left box and display it’s children in the right box. The instance tree can be traversed in this
manner until an atom (usually a variable) resides at the bottom of the stack in the left box and it’s
attributes appear in the right box. Selecting a member of the stack in the left box will clear any
lower instances on the stack and display the selected instance’s children in the right box.

Figure 6-1 ASCEND’s Browser window.

47 BROWSER

Last modified: September 26, 1997 4:08 pm

A subset of the instances appearing in the upper right box as well as the values of these instances
appear in the Browser’s lower box. Which subset of instances appears in the lower box is
controlled by the user by clicking in some of the options given in the bar at the bottom of the
Browser window. In Figure 6-1 RV has been selected. RV stands forRealVariables. Therefore,
the child instances of fl1 which are real variables and the values of these real instances are shown
in the lower box. Other options in the bar at the bottom of the Browser window, which can be
simultaneously selected, are DV (Discrete Variable), RR (Real Relations), LR (Logical
Relations), RC (Real Constants) and DC (Discrete Constants). Selecting an instance in the lower
box with the right button of the mouse will have the same effect as selecting the same instance in
the upper right box. On the other hand, selecting an instance in the lower box with the left button
of the mouse will bring up the “Set Value” Dialog box, which will give the user the option of
modifying the value of the selected instance. More about the “Set Value” option will be given in
the following section of this document.

6.1 THE MENU BAR

The menu bar on the Browser window has six entries: Edit, Display,
Find, View, Export, and Help.

6.1.1 BROWSER EDIT MENU

Run method If the instance in the left box has one or more methods available, Edit -
>Run Method will be available for selection. Selecting Run Method
will display the Methods Selection Window containing a list of
available methods for the current Browser instance. A method is
selected by clicking it’s name (only one method can be selected at a
time). Depressing the OK button will run the selected method.
Depressing the Show button will display the code for the selected
method. Depressing the Cancel button will close the Method Selection
Window without running any method.

Clear Vars In ASCEND, the type solver_var and all its refinements constitute a
variable for solution purposes. Each variable has a boolean, named
“fixed”, as one of its children. When a variable’s fixed boolean, or
fixed flag as it is commonly called, is set to False, the variable is
considered an output variable (i.e. the solver will determine its value).
The Clear Vars method sets the fixed flag of every variable which is a
child of the current Browser instance to False.

Set value When the current Browser instance is a real, symbol, integer, or
boolean Edit->Set Value will be available for selection. Selecting Set
Value displays the Set Value Dialog box. The value (and units in the
case of reals) may be set by filing in the value (and units) fields of the
Set Value Dialog box and depressing the OK button. Depressing the

THE MENU BAR 48

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

Cancel button closes the Set Value Dialog box. Booleans are assigned
simply by double clicking the mouse button 2 on their name when it
appears in the right browser box.Write values

Selecting Edit->Write Values saves the attribute values of all atoms
which are descendents of the current instance to a file. A file select box
is displayed so a new file may be created or an old file over written.
The attribute values are written to the selected file along with their path
names relative to the current instance. The first line of the file specifies
the path from the simulation to the current instance.

Read values Reads the values from a file previously saved by Write Values. Values
files are read using full path names (including the simulation name).
The simulation for which values are being read does not necessarily
have to be in the Browser (but it should exist). The first line a values
file may be edited in order to read values to an instance with a path
name other than the path indicated in the file.

Refine Refines the current Browser instance to a given type. Edit->Refine may
only be selected if the Library contains types which are refinements of
the current Browser instance type. Selecting Edit->Refine displays the
eligible types for the refinement of the current part in the Refinement
dialog box. Selecting a type and depressing OK refines the current type
to the selected type. Depressing Show displays the ASCEND code for
the selected type. Depressing the Cancel button closes the Refinement
dialog box without making any refinements.

Merge ARE_THE_SAME the current part (left side of the Browser) with
another given part. Do not ARE_THE_SAME parts from 2 different
simulations. You cannot merge parts of atoms being atomic with
anything. The dialog box will ask for the name of the instance that you
want to merge with the instance highlighted in the left box of the
browser.

Compile Submenu containing Resume Compilation and Create Part.

Resume
Compilation

Attempts to process any pending statements in the simulation in the
Browser. It does not matter where in the simulation you have browsed
to, Resume always starts at the top.

Create Part This is a feature of the PASCAL version only. The proper way to add a
part to a simulation is to create a refinement of the original model in a
new file, read in that definition, and refine the simulation up to that new
model.

49 BROWSER

Last modified: September 26, 1997 4:08 pm

6.1.2 BROWSER DISPLAY MENU

Attributes Display the attributes of a real variable. Other functionality may be
added later to this button.

Relations Display all the relations at or below the current point in the Browser.
Relations get arbitrary names unless explicitly named by the user in
code. The arbitrary name, at the moment consists of ParentName_n
where n is the number of the nth relation in the MODEL ParentName.
If this name is not unique, enough letters a-z get added to make it
unique. When the instance highlighted in the left box of the Browser is
a real variable, this option will display all of the relation in which such
a variable is incident.

Cond Rels Display all the conditional relations at or below the current point in the
Browser. Conditional Relations do not have to be satisfied. They are
used as boundaries in conditional programming. The arbitrary name of
a conditional relation is obtained in the same way as any other relation,
but in general, the name of a conditional relation must be provided by
the user, since the operator SATISFIED requires such a name.

Log Rels Display all the logical relations at or below the current point in the
Browser. Logical Relations get arbitrary names unless explicitly named
by the user in code. The arbitrary name of a Logical Relation follows
the same pattern as that of real relations. When the instance highlighted
in the left box of the Browser is a boolean variable, this option will
display all of the logical relation in which such a boolean variable is
incident.

Cond Log Rels Display all the logical relations at or below the current point in the
Browser. Conditional Logical Relations do not have to be satisfied.
They are used as conditions to check in conditional programming.The
arbitrary name of a conditional logical relation is obtained in the same
way as any other logical relation, but in general, the name of a
conditional logical relation must be provided by the user, since the
operator SATISFIED requires such a name.

Whens This option is enabled for instances of models, relations, booleans,
symbols, and integers. For the case of a model instance, this button will
display not only all the when instances defined as parts of such a
model, but also the when instances which include such a model in one
of their CASEs. Distinction is made between those two possibilities.
For relation, boolean, symbols and integer instances, this option
displays the when instances which include such relation, symbol, etc.,
either in one of their CASEs or in the list of conditional variables.

THE MENU BAR 50

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

When instances are useful for the conditional configuration of a
problem and always get arbitrary names.

Plot Invokes a plotting program, if allowable, on the current object. The
type of plot generated is controlled by the Utilities page variables
Plot.type and Plot.program.

Statistics Prints out some information about the object tree in the Browser
starting from the current point and going downward.

6.1.3 BROWSER FIND MENU

By name Search for an instance with a given qualified name and go there. The
name of the instance to search for is defined in the dialog. This option
may be useful for jumping around in the instance tree.

By type You can search for objects of any particular type with certain attributes.
The allowable searches are best explained by examples as shown in
Table 6-1. The search is loosely matched, i.e. any object that is of the

Table 6-1 Examples of the performance of the Find by type option

Type Attribute Low Value High Value Explanation

unit Find all parts that are units.
solver_var fixed Find all refinements of solver_var

with a part fixed
solver_var fixed TRUE Find all refinements of solver_var

with a part fixed where
fixed==TRUE

stream Ftot 4 Find all streams with part Ftot
where value is 4+ epsilon

stream Ftot 4 10 Find all streams with part Ftot
where 4 <= Ftot <= 10

relation VALUE 0 Find all relations with a residual
0 + epsilon

symbol VALUE ACH Find all symbols where VALUE is
‘ACH’

symbol VALUE ACH ACZ find all symbols where ‘ACH’ <=
VALUE <= ‘ACZ’

51 BROWSER

Last modified: September 26, 1997 4:08 pm

type given, OR a refinement of the type given and matches the attribute
qualifications, will be on the list of items found.

If there are no matches, there is no results box: just a message in the
command line or a popup error message.

The results of the Find appear in a box and you can export 1 or more of
the results in the box to the Browser or the Probe by selecting them and
clicking on Browser or Probe. When you have finished exporting items
to wherever you like, click on OK. The rest of the interface will ignore
you until you dismiss the box.

Notes:

• Clear any of the extra fields not required for your search before
you hit OK. We will usually find nothing that matches if there are
extra search parameters hanging around that don’t make sense.

• VALUE is a special keyword for dealing with atomic types.
Variables and symbols have a value internally but not a child
named VALUE. Similarly, relations have a residual but not as an
accessible part at the moment.

• Symbols and integers will be matched exactly if only a low value
is given. The matching of symbols given a low and high value is
done lexically according to the collating sequence of the machine
in use.

• Frequently what you really want to see is the name of a set of
things of a given type. (E.g. number 8 where you want to know
what components are in a flowsheet.) Find will return the
instances though, not their common parent. Simply export one to
the Browser and then click up a level to see the set of components
in use.

• You can tab between fields in the Find by Type widget.

• You can select a type name in the library, call up the Find by Type
search in the Browser, put the mouse cursor over the Type entry

component_constant Find all parts that are
component_constants

symbol_constant VALUE UNDEFINED Find all undefined
symbol_constants. Works for all
types with a value.

Table 6-1 Examples of the performance of the Find by type option

Type Attribute Low Value High Value Explanation

THE MENU BAR 52

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

and hit Ctrl-Y to copy name of the type selected in the library.
This works on most window managers. If you get something
other than the type name you expected, just hit Ctrl-U to empty
the entry and type the name in yourself.

• Epsilon is about 1e-8 in terms of the SI units for any real quantity.

Aliases Find all the other names that the current object has in the simulation.
For example, assume that you have named a simulation as fs. Assume
further that the output stream from the mixer, m1, is merged with the
input stream for the reactor, r1. Then, that stream is an object with two
different names. Suppose you are looking at r1.feed as the current
object. Asking for aliases will give the list

fs.r1.feed

fs.m1.output

If you pick one of the aliases, it can be exported to the BROWSER, the
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements and by passing them into a
parameterized MODEL, not only by merging.

Where created Find the other names that the current object was CONSTRUCTED
under. If an object is shown as being created under 4 names, it means
that once there were 4 objects and that 3 were destroyed in merge
(ARE_THE_SAME) statements to reach the current unity. (Merging is
expensive).

 If you pick one of the names, it can be exported to the BROWSER, the
SOLVER or the PROBE. Alternate names for objects can also be
created by ALIASES statements or by passing them into a
parameterized MODEL, but these names do not appear in the list of
creations.

Clique Find all the instances that ARE_ALIKE with the current one. The
instances shown are bound together so that if the formal type of one is
changed, they are all upgraded with the first. Parameterized objects
cannot be ARE_ALIKE’d because when parameters exist the formal
type requires outside information (the parameters) in order to check
that it is being used in a valid way.

Eligible
variables

Find real variables eligible to be fixed. If the solver is occupied by the
same simulation, this query is thrown to the Solver. If not, the degrees
of freedom are analyzed as if the current model were exported to the
Solver.

53 BROWSER

Last modified: September 26, 1997 4:08 pm

Relations Not implemented. See Export for ways to find relations and send to the
Probe.

Operands Not implemented.

Parents Not implemented.

Pendings Pendings has been moved to the Library window.

6.1.4 BROWSERVIEW MENU

The first three options in the View menu are toggles that determine your
preferences when browsing instances:

Suppress Atoms This button toggles whether or not to show atomic instances in the
upper right box of the Browser window.

Display Atom
Values

This button toggles whether to display values or to display the types of
atoms in the child box (upper right side) of the Browser. For the case of
relations, the residual shown with the relation is the last computed by
the solver and not the residual at the current values of the variables.

Check
Dimensionality

This switch turns warnings about relation inconsistency off and on. In
principle it should not be necessary, but for the quick and dirty model it
is sometimes handy.

Hide Names This option has a similar functionality from that of Hide Types in the
ASCEND Library windows. That is, it will hide or unhide instances for
browsing purposes. The difference, however, is that this option hides by
name, not by type. To clarify, it is quite different to hide instances of
name fs from to hide instances of type test_flowsheet.

UnHide Names Reverses the effect of the command Hide Names. By default, all the
names are “unhidden”, therefore, this option is used only after some of
the names has been hidden.

The final options in the View menu correspond to general features in
the View menu of any of the ASCEND windows, and they are
explained in a companion document.

6.1.5 BROWSER EXPORT MENU

to Solver Checks the model for exportability (must be of type MODEL without
any pending compilation) and sends it to the Solver.

THE MENU BAR 54

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/browser.fm5

Many to Probe Sends the child instances of the current part being browsed to the
Probe. The types of instances sent to the Probe are selected in the
filtering window shown in Figure 6-2. Every switch toggles whether or

not to export each of types to the Probe.

Item to Probe Exports the instance on the left box of the Browser to the Probe.

6.1.6 BROWSER HELP MENU

On BROWSER Brings up a browser pointing to the information provided in this
document.

Figure 6-2 Filtering instances sent to the Probe

55 BROWSER

Last modified: September 26, 1997 4:08 pm

CHAPTER7 SOLVER

The purpose of theSolver Utility shown in Figure 7-1 is to provide support for the numerical
solving and debugging of an imported instance. To this end the Solver allows the user to access
numerical solvers and analysis functions and displays statistical and status information for the
problem being solved. The upper section of the solver window contains a menu bar; buttons for
selecting numerical solvers, solver options, and halting the solver; a label containing the name of
the current instance (or problem being solved); and a label containing the type of the current
instance. The remainder of the Solver window is devoted to providing statistics about the
problems relations and variables along with a description of the problem’s state.

Figure 7-1 Solver Window

57 SOLVER

Last modified: September 26, 1997 4:08 pm

7.1 THE SOLVER MENU BAR

The menu bar on the Solver window has seven entries: Edit, Display,
Execute, Analyze, View, Export, and Help.

7.1.1 SOLVER EDIT MENU

Remove instance Removes the current instance from the solver.

Select
objective

Provides a list of objectives from which one may select. The selected
objective will be used in any subsequent optimizations until another
objective is selected.

7.1.2 SOLVER DISPLAY MENU

Status Shows the internal status of the
Solver along with the largest block
scaled residual vector two-norm.

Unattached
variables

Shows variables not incident in any of the relations in the current
system being solved.

Unincluded
relations

Shows relations not in the current system being solved.

Incidence
matrix

Incidence matrix shows the incidence of variables in relations (See
Figure 7-2). Clicking mouse-1 (left button) on the matrix displays the
names and numbers of the relation/variable at that coordinate, whether
that coordinate is occupied or not. A box is drawn around the
partitioned block containing the selected coordinate and the block
number is displayed. The selected block or the entire incidence matrix
may be printed by selecting the PrintBlock or the Print button
respectively. The scale of the incidence matrix can be changed by
sliding the magnification bar and depressing the Redraw button.
Depressing the OK button will close the INCIDENCE window.

Drawing large dense matrices may take a while. Drawing matrices on
problems bigger than about 1000x1000 may be prohibitively expensive
on slow machines. The row/column ordering is that done by the
selected solver, except that fixed vars and unincluded relations are
moved to the edges.

THE SOLVER MENU BAR 58

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

Figure 7-2 The Incidence Matrix

7.1.3 SOLVER EXECUTE MENU

Solve Solve the current problem as an algebraic or optimization problem
depending on what solver is selected

Single step Perform a single iteration of the system with the solver in question. In
some solvers (e.g. MINOS) there is no iteration mode. For these
selecting single step will result in a full solve attempt.

For QRSlv, an iteration will be a Newton like step if there are many
variables in the current block or if the current block is a blackbox
singleton. Singletons not from blackboxes will be numerically inverted
for solution.

Integrate Invoke the selected integrator (LSODE currently available) on the
problem.

7.1.4 SOLVER ANALYZE MENU

Reanalyze Reanalyzes the current problem.

Debugger Opens a tool which deals with the system as a numbered list of
variables and relations. See Section 7.4, ”Debugger,” on page 64 for
more information about the Debugger.

59 SOLVER

Last modified: September 26, 1997 4:08 pm

Overspecified Finds and displays the variables that can be freed to reduce the degrees
of freedom in an overspecified system.

Find dependent
eqns.

Finds structural or numeric dependencies of a system.

Numeric Dependency.Doesn’t mean much on an unsolved system.
This command inverts one block at a time and checks the blocks for
numeric dependency using the QRSlv solver. Any non-zero
dependency is reported, but those relations with coefficients down
around machine epsilon (1e-16) are probably not dependent. Poorly
scaled problems can appear more singular than they really are.

Structural Dependency.Find the equations or variables involved in a
structural dependency. For systems that should be square, this is similar
to overspecified, but for DAE’s this detects the equations which need to
be differentiated according to Pantelides. The user interface for
reporting the data returned is not complete.

Find unassigned
eqns.

Shows the equations which cannot be assigned by the structural
analysis.

Evaluate
unincluded
eqns.

Evaluates the residuals of unincluded relations and checks them for
convergence. This may not be a wise idea, depending on why the
relations have been excluded.

Find vars near
bounds

This will write variable names passing test

abs(value-bound)/nominal < epsilon (7.1)

to the console. The test is performed first for lower bounds and then for
upper bounds and the results are clearly marked. This can be used for
locating variables which may yield a more tractable problem when
moved to the bound and fixed while freeing another variable. The value
of Epsilon can be set from the Solver’s General parameter page.

Find vars far
from nom

This will write variable names passing test

abs(value-nominal)/nominal > bignum (7.2)

to the console. This test can be used for locating variables which are
poorly scaled and for evaluating where model initialization methods
need improvement. The value of bignum can be set from the General
parameter page.

SOLVER BUTTON BAR 60

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

7.1.5 SOLVER EXPORT MENU

to Browser This button sends the instance currently in the Solver to the Browser.

to Probe This button sends the instance currently in the Solver to the Probe
piecewise, that is all the variables and relations get shipped, not the
instance name itself.

7.2 SOLVER BUTTON BAR

The solver button bar, which is located just below the solver menu,
contains three buttons, the solver select button, the solver options
button, and the halt button.

Solver Select
Button

This button contains the name of the currently selected solver.
Depressing this button reveals a menu of available solvers which can be
selected.

Solver Options
Button

The Options menu on the solver allows the user to view and to change
the settings for the parameters associated with ASCEND’s solvers. A
solver’s parameters may be changed even when the solver is empty of
another solver is selected. Depressing the options button reveals a list
of parameter pages which can be selected for viewing (and editing).

Below, we discuss using the parameter pages and the general solver
parameters; solver specific parameters are discussed below in
Section 7.3, ”Available Solvers,” on page 62.

Halt Button Halts the solver and returns control to the interface as soon as possible.
Not all solvers connected to ASCEND will respond to the halt signal.

7.2.1 GENERAL PARAMETERS PAGE

Selecting General under Options will display the General Parameter
Page (See Figure 7-3).This is where we keep items relevant to the
interface and to the way mathematical specialty functions and utilities
are handled in ASCEND. Following, we will discuss the parameters
that appear on this page.

61 SOLVER

Last modified: September 26, 1997 4:08 pm

Figure 7-3 General Parameter Page

Iterations before
screen update

Because the interface update is sometimes rather time consuming (or
more accurately when the window manager is slow, the interface holds
up the solver) this specifies how many iterations to stay down in the
solver algorithm before returning to the user interface to update
statistics. In the case of floating point errors or solution completion
before the limit is reached, the return and update will happen
immediately rather than waiting for the limit to be reached. For solvers
that don’t truly iterate in an accessible fashion (e.g. MINOS) this
parameter is ignored.

CPU seconds before
screen update

For solvers which do offer access to status information between
iterations, this is the maximum number of cpu seconds before an
interface update. If, while still not done with the number of iterations
given in “iterations before screen update,” the solver algorithm detects
that the cpu seconds limit has expired, then it will return early to update
the interface. At least one iteration will be completed before the clock
is checked.

Modified log epsilon This parameter controls the value for epsilon in the “lnm” function.
Lnm can be used instead of natural log (ln) when the argument is likely
to be very small or to go negative in the solution process. This avoids a
host of floating point errors in initialization and solving of many kinds
of models.

The modified natural log functionf is defined as

AVAILABLE SOLVERS 62

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

The first derivative of this function is continuous. The second derivative
has a jump from 0 to -1/ε2 at x =ε.

Bound check epsilon This is the epsilon parameter used in the [link: to obvious location/Find
vars near bounds] utility under the Solvers Analyze Menu.

Far from nom bignum This is the bignum parameter used in the [link: to obvious location/Find
vars far from nom] utility under the Solvers Analyze Menu.

Integrator state log This is the name of the file for integrator state variable output. It
defaults to y.dat in the current directory.

Integrator
observation log

This is the name of the file for user defined observation output during
integration. It defaults to obs.dat in the current directory.

Integrator log SI units This switch causes the output to be written in SI units or in the user’s
selected interface units.

Integrator log
columns

This option selects how the state and observation logs should be
formatted. We can produce fixed or variable width formats suitable for
import into nearly any other software package.

Overwrite integer logs This switch lets the user control whether integration log files should be
appended or replaced with each run.

Check numeric rank
after solving

When selected the numeric rank will be checked at the solution and a
message will be displayed if the system is rank deficient.

Show block summary When selected the cost statistics (cpu, interations, evaluations) for all
blocks of significant size will be listed to the screen after each solve.

7.3 AVAILABLE SOLVERS

Here is the list of solvers that at one time or another have been
connected to ASCEND:

• Slv

f x()
x() x ε>()∀ln

x
ε
-- 1– ε() x ε≤()∀ln+

=

63 SOLVER

Last modified: September 26, 1997 4:08 pm

• QRSlv

• LSODE

• MINOS

• LSSlv

• Opt (SQP)

• CONOPT

• Make MPS

All of these solvers may not be available in your installation of
ASCEND. A brief description of ASCEND’s primary solver, QRSlv,
follows.

7.3.1 QRSLV

QRSlv is a nonlinear algebraic equation solver based on the paper “A
Modified Least Squares Algorithm for Solving Sparse NxN Sets of
Nonlinear Equations” by A. Westerberg and S. Director (EDRC TECH
REPORT 06-5-79).

7.3.1.1 PARAMETERS

Following is an incomplete list of control parameters for the QRSlv
algorithm. Most users will only change the time limit, iteration limit,
and maximum residual as the default parameter values work quite well.

Time limit The total number of seconds allowed in 1 push of the Solve button.

Iteration limit Total number of iterations in for any single partition in the problem.

Minimum pivot
(epsilon)

the smallest pivot value allowed in the linear solution of a subproblem.

Pivot tolerance pivot selection criterion.

Maximum residual This is the maximum absolute error that QRSlv is allowed to consider
an equation as solved. Self scaling equations will more easily satisfy
this than those that aren’t. E.g. an energy balance (with terms the size
of 10^8) will have a far harder time meeting this convergence criterion
if you do not divide them through by an appropriate constant.

Partitioning If off, entire problem will be solved as a block. Divergence is usually
the result on nonlinear problems of any size above 25 or so.

DEBUGGER 64

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

Detailed info QRSlv spews all sorts of info if you turn this switch on. The utility of
such info is often as much for the authors of slv as for the user. The
volume of info is large. Most of the spew (that to do with singletons
(1x1 blocks) is suppressed if the switch ‘show singletons details’ is off.

Auto-resolve When complete, the solver is supposed to rerun itself for changes of
significance made in the interface if this switch is on.

write to file
SlvLinsol.dat

If this switch is on, a whole set of files named SlvLinsol.dat.X where X
is integer are produced during the solution of the problem. The X
increments for each successive linear system inversion or solution. The
files contain Jacobian and rhs data in machine readable forms for
import to stand-alone solver tools. There are generally quite a lot of
them. X always starts at 0 for a given ascend session and goes up from
there.

show singletons
details

When the ‘detailed solving info required’ switch is ON this switch
controls whether or not full singleton solving information is shown. In
particular, if this is off all direct solve spew is cancelled, leaving that
which usually of interest, the NxN block solution iterations, to be
displayed.

bipartial pivoting An experimental option for stabilizing the RANKI algorithm on hard
problems. It enables searching of both current row and column during
linear factorization. It is somewhat more expensive in terms on fill and
CPU time, but can lead to solution of otherwise unsolvable problems.
The modification is due to Joe Zaher. This option is likely to be
replaced by a choice of several linear routines eventually. The original
motivation came from distillation models which become illconditioned
as tray number grows.

7.4 DEBUGGER

The Debugger shown in Figure 7-4 is an aid for examining the
variables and relations in the Solver. The debugger is often used in
tandem with the incidence matrix because the debugger is queried
using the solvers’s internal relation/variable indexing (which starts at
0). When a variable (relation) number is typed in the variable (relation)
entry box the variable (relation) Name and Attribute buttons may be
clicked to obtain information about the variable (relation). The
information is printed to the console window. The variable (relation)
may also be exported to either the Browser or Probe by making the
appropriate selection under the export pull down menu.

65 SOLVER

Last modified: September 26, 1997 4:08 pm

Figure 7-4 The Debugger Window

When a variable or relation number is entered in the debugger, the
corresponding partitioned block number appears in the ‘block’ entry
box. Statistics on the number of rows and columns in the block are
displayed just below the block entry box. Note that a block number can
also be entered directly into the block entry box. The Variables
(Equations) pull down menu below the block entry box contains the
selections Values, Attributes, and Probe (and Find Dependent).
Selecting Values or Attributes will write the requested information to
the console for each variable (equation) in the block. Selecting Probe
will export the block’s variables (equations) to the probe. Selecting
Find Dependent under the Equations pull down menu will write the
name of any dependent equations within the block to the console.
Selecting the Export to Probe button will export both the block’s
variables and equations to the probe.

DEBUGGER 66

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/solver.fm5

The debugger also responds to requests relating to the overall system,
or current solver instance. A Variables pull down menu and an Export
to Probe button are located beneath the ‘System’ label on the debugger.
The Variables menu contains the selections Values, Attributes, Reset
Values, and Reset Nominals. Selecting Values or Attributes will write
the requested information to the console for each variable in the
system. Selecting Reset Values will reset the system’s variables to their
nominal values. Selecting Reset Values will reset the system’s nominals
to their current variable values.

67 SOLVER

Last modified: September 26, 1997 4:08 pm

CHAPTER8 THE DATA PROBEWINDOW

8.1 OVERVIEW

Thedata probe shown in Figure 8-1 is a window which manages
collections of names from the ASCEND simulation universe. Each
collection is kept in a buffer, and the user can switch among as many
buffers as are needed for convenience. For example, the first buffer may
be used as a set of bookmarks to store the names of interesting
submodels within a large simulation, a second buffer can be used to
monitor a set of key variables, and a third can be used to monitor
specifications. The browser provides a two-level view of information -
the probe provides a random access view.

Figure 8-1 Probe window

69 THE DATA PROBEWINDOW

Last modified: September 26, 1997 4:11 pm

Names are imported to any collection buffer from the other parts of the
user interface or from a previously saved file of names. Once collected,
a name remains in the buffer until the user removes it, even if the type
library and simulations are deleted. This way the set of names is
preserved when the user makes a small modification to a MODEL and
rebuilds it.

Names in probe buffers are displayed with their corresponding values
or other attributes as appropriate. When a name is not well defined
(perhaps because the simulation it came from has been deleted
temporarily) the attribute displayed is “UNCERTAIN.” As soon as the
name becomes well-defined again by having a corresponding
simulation object built, the correct attribute will appear. Names of
atomic objects (reals, integers, sets, symbols, booleans) which have not
yet been assigned a value will be shown as “UNDEFINED” until some
operation assigns them a value.

8.2 THE FILE MENU

8.2.1 NEW BUFFER

This starts another collection of names, which is initially empty. Each
buffer receives a standard name when it is created, NoNameX.a4p,
where X is the number of the buffer. These buffer names appear at the
bottom of the File menu.

8.2.2 READ FILE

This appends a file full of names into the current buffer and will
automatically attempt to associate them with the simulations in the
system. This way the name list can be reloaded from a prior work
session. The file name is not associated with the buffer.

8.2.3 SAVE

This will save the names in the current buffer to a file with the buffer’s
menu name. If you wish to save with a more meaningful name, use
“Save as.” Values are not saved with these names. To save the values,
use the Print command.

THE EDIT MENU 70

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

8.2.4 SAVE AS

This allows you to specify the directory and file name in which to save
the names in the current buffer.

8.2.5 PRINT

This lets you print the current buffer to a printer or a file. This prints
what you see in the buffer window, including the values. The printer
setup dialog will pop up for you to set the destination.

8.3 THE EDIT MENU

8.3.1 REMOVE SELECTED NAMES

This options removes all highlighted lines in the window. The selection
in the probe can be set in a disjointed fashion using Control-Button-1
and drag.

8.3.2 REMOVE ALL NAMES

This options removes all names in the current buffer window.

8.3.3 REMOVE UNCERTAIN NAMES

This removes all names that are not well defined. These are the names
displayed as “name = UNCERTAIN.”

8.3.4 COPY

This copies all the selected items in the current buffer to the clipboard.

8.4 THE VIEW MENU

From the view menu one can select a new font for the probe by the
standard font dialog, and one can toggle the Probe’s auto-display
feature.

71 THE DATA PROBEWINDOW

Last modified: September 26, 1997 4:11 pm

8.5 THE EXPORT MENU

8.5.1 TO BROWSER

This option sends the first selected name in the probe to the browser.

8.5.2 TO DISPLAY

This options sends some form of the selected names in the probe to the
Display slave window, replacing whatever used to be in the display.

8.6 THE PROBE FILTER

A class or classes of object can be imported to the probe en masse. The
import filter shown in Figure 8-2 lets you select which collection of
names (probe buffer) is to receive the imported names which are of the
types checked. Currently the probe filter window is accessible only
from the Browser Export button.

The filtering import can also be executed from the Script using the
PROBE command. The list of ones and zeros required for the PROBE
command is ordered in the same way as the list of types in the import
filter window. The easiest way to set the list of ones and zeros is to use
the Script recording feature and the Browser Export Many to probe
button.

THE PROBEFILTER 72

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/probe.fm5

Figure 8-2 Probe import filter

73 THE DATA PROBEWINDOW

Last modified: September 26, 1997 4:11 pm

CHAPTER9 ASCPLOT

9.1 PLOT MAKER

The following contains a description of the options available in each of
theAscend Plot menus. TheAscend Plot window shown in Figure 9-1

Figure 9-1 The Ascend Plot Window

 is a result of clicking on the ascplot button from the Toolbox with the
left mouse button.

75 ASCPLOT

Last modified: September 26, 1997 3:58 pm

9.1.1 THE EDIT MENU

From theEdit Menu, the following options are available when a data
set has not yet been loaded:Load data set andSelect grapher. The
Save data set, Unload data set, andMerge data sets options are
available after one or more data sets have been loaded into the plot
window.

9.1.1.1 LOAD DATA SET

SelectingLoad data set opens theFile select box window. This
window is used to select the file that contains the data generated from
the dynamic simulation. The default file is obs.dat. This file contains
the observation variables as set forth in the dynamic library models.
After having selected the appropriate file, press the OK button and
return to theAscend Plot window.

9.1.1.2 SAVE DATA SET

This option is currently not functional.

9.1.1.3 UNLOAD DATA SET

By highlighting the desired data set and selectingUnload data set
from theFile menu, the user can remove the data set from theAscend
Plot window. TheDelete these data sets? window appears to verify that
the user wants to remove the indicated data sets.

9.1.1.4 MERGE DATA SETS

9.1.1.5 SELECT GRAPHER

Currently, the only supported grapher is Xgraph (or its tk flavored
version tkxgraph). Other possible graphers are XMGR and gnuplot.
Since these graphers are not distributed with the ASCEND distribution,
they are also not supported.

9.1.2 THE EXECUTE MENU

To plot the variables in the plotted variables section, selectView plot
file from theExecute menu.

PLOT MAKER 76

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

9.1.2.1 VIEW PLOT FILE

This option will plot the variables displayed in the plotted variables
section of theAscend Plot window.

9.1.2.2 WRITE PLOT FILE

To save the output in its graphical representation, selectWrite plot file
from theExecute menu. Selecting this option opens theFile select
box. Enter the name of the file to be saved and press the OK button.
The default extension for the graph is .xgraph.

9.1.2.3 INSERT COLUMN

Selecting theInsert column option from theExecute menu opens the
Create Data window. This window is shown in Figure 9-2.

Figure 9-2 The Create Data Window

There are several options available from theCreate Data window.

9.1.2.3.1 Insert after Column

This can be any number between 0 and the maximum number of
variables in the observation file. For example, if the user wishes to add
a column after the third column, the user should enter a 3 in this space.

9.1.2.3.2 Column type

The default value for Column type is data, however by placing the
cursor over the data box and pressing the left mouse button, another
option is reveiled. The other option is formula. The user should select
data if no formula can be used to describe the information to be added
to the spreadsheet. The user should select formula if that is appropriate.
In this case, a column was inserted after Column 0 and we are using the
formula Column type.

77 ASCPLOT

Last modified: September 26, 1997 3:58 pm

9.1.2.3.3 Formula

If the data option was selected in the previous section, then this does
not apply. However, if the formula option was selected, then the user
can edit the default formula. The default formula takes the value of the
variable in the current row ($r) and the column before the new column
($c-1) and adds one (+1) to it.

9.1.2.3.4 Insert at end (overrides Column)

The user can select this box to place the new column after the last
column in the spreadsheet. This will override anything in the Insert
after Column line.

9.1.2.3.5 Forget this insertion

The user can select this box to ignore the changes made to the
spreadsheet.

9.1.2.4 RECALCULATE COLUMN

This option is currently not functional.

9.1.2.5 INSERT ROW

The insert row option has the same options as the Insert Column option.
Note that the formula take the value from the row immediately before it
($r-1) and the current column ($c) and adds one (+1) to it.

9.1.2.6 RECALCULATE ROW

This option is currently not functional.

9.1.3 THE DISPLAY MENU

TheDisplay menu has various features which include showing and
hiding the data in the spreadsheet, setting plot titles, loading old plots,
updating existing plots, and deleting plots.

9.1.3.1 SHOW DATA / HIDE DATA

Selecting theShow data option from theDisplay menu loads the data
into the spreadsheet in the bottom section of theAscend Plot window.
This option then toggles toHide data. Selecting this option will hide
the data just loaded into the spreadsheet section of the window.

PLOT MAKER 78

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

9.1.3.2 SET PLOT TITLES

Selecting theSet plot titles option from theDisplay menu opens the
Graph Generics window. This window is shown in Figure 9-3.

Figure 9-3 The Graph Generics Window

There are several options within this window depending on the number
of variables being plotted.

9.1.3.2.1 Plot Title

The user can change the default title (AscPlot) to something that is
more descriptive and meaningful for the given data. In this case, we set
the title to be Composition Profile since we are plotting the mole
fractions of the components in the system.

9.1.3.2.2 X Axis Title

The user can change the default title (X) to something more descriptive.
In this case, we are plotting the time on the x-axis.

9.1.3.2.3 Y Axis Title

The user can change the default title (Y) to something more descriptive.
In this case, we are plotting the Composition on the y-axis.

9.1.3.2.4 Column # legend

In this case, (#) is the number of the variable being plotted. If variables
2, 3, and 4 are being plotted, the will be entries in theGraph Generics
window entitled Column 2 legend, Column 4 legend, and Column 4
legend. These entries can be changed to something less descriptive than
the default. Usually the default for this field is a bit much. In this case,
the legend was changed to ‘a’, ‘b’, and ‘c’.

79 ASCPLOT

Last modified: September 26, 1997 3:58 pm

9.1.3.3 LOAD OLD PLOT

This option is currently not functional.

9.1.3.4 UPDATE PLOT

This option is currently not functional.

9.1.3.5 DELETE PLOT

This option is currently not functional.

The plot of the completed graph is shown in Figure 9-4.

Figure 9-4 Complete Plot

9.1.3.6 THE GRILL

The grill is located directly to the right of PLOT MAKER. Clicking on
this button with the left mouse button opens theXGraph Control
window. By clicking on the More button located at the bottom of the
window, the user can scroll through numerous available options for the
graphs. Some of these options include line color, fonts, graph type (i.e.
log or semilog), and marker types. These are left to the user to explore.

NAVIGATION 80

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/ascplot.fm5

9.2 NAVIGATION

Open a file using theLoad data sets option from theFile menu. You
will notice that the selected file is now displayed in the top section of
theAscend Plot window. By double-clicking on the file name with the
left mouse button, the observation variables are now placed in the
section entitled unused variables. The unused variables are the list of
variables that the user does not want to look at in the current graph.

To select a variable to plot, highlight the desired variables using the left
mouse button and click on the (>>) button. This will move the variable
from the unused variables list to the plotted variables list. Once this is
done, you can now plot the variable.

The two buttons separating the unused variabes section and the plotted
variables section are used to add (>>) and remove (<<) variables to and
from the plotted variables list.

You will notice that there is a section of theAscend Plot window
entitled Independent. Here the independent variable is time. This was
set in the dynamic library file. If the user desires to look at the phase
plot of two of the compositions, the user must move one of the
compositions into the Independent variable position.

To do this, let’s assume that all of the variables are currently in the
unused variables list and we wish to plot the composition of component
‘c’ versus the composition of component ‘b’. Thus, component ‘c’ is
now going to be our independent variable. Highlight component ‘c’ in
the unused variables list and press the (V) button. This button is one of
two buttons located directly under the (>>) and (<<) buttons. The (V)
button on the left is used to move variables between the unused
variables list and the Independent variable list while the (V) button on
the right is used to move variables between the plotted variables list and
the Independent variable list. Therefore, we are going to use the (V)
button on the left.

By doing this, we see that the composition of component ‘c’ is now the
independent variable and the time is now an unused variable. Select the
composition of component ‘b’ and press the (>>) button to move the
variable from the unused variables list to the plotted variables list. The
only remaining task is to edit the plot title and axes using theSet plot
titles option from theDisplay menu. Assuming we have done this as
described above, the resulting graph is shown in Figure 9-5.

81 ASCPLOT

Last modified: September 26, 1997 3:58 pm

The remaining section of theAscend Plot window is the HINT: section.
This section contains a brief description of the various buttons and
sections of the Ascend Plot window.

Figure 9-5 Phase Diagram

CHAPTER10 DISPLAY SLAVE

10.1 OVERVIEW

The display slave window (Figure 10-1) functions as a dumping ground
for information which is too complex to display in other ways in the
Library, Browser or other primary windows. It has rudimentary editing
abilities so the user can manually adjust the format of displayed
information if needed, for example by rearranging a highly nonlinear
relation with more than a few variables. Changes to displayed text do
not affect the rest of the system in any way.

Figure 10-1 Display slave window

83 DISPLAY SLAVE

Last modified: September 26, 1997 4:11 pm

10.2 THE FILE MENU

10.2.1 PRINT

This option brings up the default print dialog described in the section
Utilities. The print command can be used to save the displayed text to a
file.

10.2.2 CLOSE WINDOW

The option closes the display window.

10.3 THE VIEW MENU

10.3.1 SHOW COMMENTS IN CODE

This option controls whether or not comments are displayed when code
is displayedas read from source files. This setting is not retroactive;
that is code already displayed will not be redisplayed when changing
this setting.

When code is displayed in the machine representation, i.e. with
equations and set expressions in postfix (reverse polish) notation,
comments are never displayed.

10.3.2 FONT

This option brings up the standard font setting dialog so you can
change the size, style, and font of the characters in the display window.

10.3.3 OPEN AUTOMATICALLY

This option controls whether or not the display slave window opens
automatically when it receives information. Sometimes it is easier to
send several items to the display and then open it at the end.

10.4 TITLE LINE

The title line at the bottom of the window is set by the last client to
export something to the display. The user may edit the title, but the next
time new information is displayed, these edits will be lost.

CHAPTER11 ASCEND UNITS

11.1 THE MENU BAR

The Units Tool Set provides tools to allow the user to change the
display units for variables.

Units vs
dimensions

We distinguish betweenunits anddimensions in ASCEND. The
dimensions of acceleration, for example, are L/T2, i.e., length/time
squared. Units for acceleration are: m/s2, ft/hr2 and so forth.

Typical use The user will typically first pick the overall system of units such as SI,
American Engineering or cgs. Alternatively the user may select to use
thedefault display of units for some or all variable types. Displaying in
default units means ASCEND will present the units in terms of the ten
basic dimensions supported by ASCEND (length, time, temperature,
etc.). The user can select the units to be used for each basic dimension.
Whichever of these alternatives the user selects, he or she may then also
choose the units ASCEND should use to display particular variable
types. An example would be to select first SI units, then override the
display of energy to be in default units and pressure to be in atm.

Once users have created their favorite choices for display units, they
may save them to files for later restoration.

We describe here the various tools available within the Units tool set.

85 ASCEND UNITS

Last modified: September 26, 1997 4:12 pm

11.1.1 UNITS EDIT MENU

Set precision Use the slider switch for this tool to set the number of digits of
precision for displaying variable values to between 4 and 16. Precision
is the number of digit displayed when the number is displayed using
scientific notation. For example, 0.12345678 e04 for 1234.5678 has a
precision of 8 digits.

Read file Reads in a file previously saved using the “Write file” command.
Restores the display units to those previously saved.

Write file Writes out (in the current working directory) a plain text version of the
user specified display units. Units which are defaulted are not written to
this file. One can restore the display units to those currently set by
reading this file back in later.

11.1.2 UNITS DISPLAY MENU

Show all units Causes the Display window to open showing all the units conversions
currently used in ASCEND.

SI(MKS) Pushing this button makes the default display units SI units.

US Engineering Pushing this button makes the default display units US Engineering
units.

CGS Pushing this button makes the default display units CGS units.

11.1.3 UNITS HELP MENU

An essay on
units vs
dimensions

ASCEND stores all numbers in SI (MKS) units internally. The units
associated with a dimensionality (as exemplified by some atom) will be
used when displaying variables of that dimensionality. These units can
be manipulated through the Units window.

Numbers with unrecognized dimensionality (higher derivatives,
multipliers, residuals and what not) will be given units consistent with
the display units defined for the 10 base dimensions. The display units
for the 10 dimensions can be changed through the Units window
Display menu if you prefer an alternate default set such as US
engineering, and so forth.

We recognize 10 base dimensions in the compiler:

L distance meter m

THE MENU BAR 86

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/units.fm5

M mass kilogram kg

T time second s

E e- current ampere A

Q quantity mole mole

TMP temperature Kelvin K

LUM luminous intensity candela cd

P plane angle radian rad

S solid angle steradian srad

C currency currency CR

The units conversions are defined in $ASCENDDIST/compiler/
units_input, which is not particularly restricted. Units_input is
converted to an efficient binary form (unitsfile.uni) at the time
ASCEND is installed.

It can be argued that C is not a fundamental dimension, from a physical
standpoint. There is more to life than physics: there is economy, hence
engineering, hence an Advanced System for Computations in
ENgineering Design.

The dimensions P and S are ‘supplementary’ according to the General
Conference, but their use makes the coding of ASCEND much cleaner
and easier.

On UNITS The left box in the Units window lists a set of atom types, each having a
unique dimensionality. Selecting an atom in the left box will fill the
right box with different possible units that the system knows about to
display this type of variable. Dimensionless atoms and wild
dimensioned atoms are not shown since they do not have display units.
If you do not see an atom you expect here, it is because ASCEND
already found another atom of the same dimensionality, e.g. fugacity
may show up instead of pressure.

Selecting a unit in the right box sets that unit as the display unit for all
variables having the same dimensionality of the selected atom in the
left box. Thus pickingatm for fugaciy will also change pressure units
to atm. Selecting ‘default’ will cause the display to be a combination of

87 ASCEND UNITS

Last modified: September 26, 1997 4:12 pm

thefundamental units (a nice way to remind oneself of the fundamental
units for energy, for example).

Fundamental units are the units corresponding to single dimensions.
These units are chosen on the Display menu under the dimension
choices. No atoms with fundamental units are listed in the left box. The
current set of fundamental units is always shown at the very bottom of
the units window. This set is used whenever a value is displayed which
does not have a user specified units set associated with its
dimensionality. The fundamental units are created via the units_input
file mentioned above. If you do not find one you want, ask whoever
compiled your version of unitsfile.uni to add the missing unit and
rebuild the unitsfile.uni.

If converting the units for a variable makes the display of that number
impossible (e.g., due to overflow). ASCEND will first attempt to
display it using its fundamental units. If it still cannot be displayed, it
will be displayed in SI units.

You may specify a new combination of existing units (e.g. Pa*s) using
theSet units which is the line at the bottom of the window. Type in the
combination desired and press RETURN.

Unit strings may not have parentheses in them. For example, kg/
(m*s^2) is not allowed.

CHAPTER12 THE ASCEND TOOLBOX

Thetoolbox window shown in Figure 12-1 lets the users open and close
the various windows for the tool sets available in ASCEND. The
toolbox window is a vertical window containing 12 buttons: exit,
ascplot, help, utilities, bug report, LIBRARY, BROWSER, SOLVER,
PROBE, UNITS, DISPLAY, SCRIPT.

The buttons in the toolbox with names in ALL CAPS (LIBRARY and
following) open and close the windows for the corresponding tool sets

Figure 12-1 The ASCEND Toolbox window.

89 THE ASCEND TOOLBOX

Last modified: September 26, 1997 4:12 pm

in ASCEND1. As each of these toolsets has its own documentation, we
shall not discuss them here. We discuss here only the first set of
buttons: Exit, Ascplot, Help, Utilities, and Bug Report.

1. The more advanced user should note that changing the iconname of a window (via
ascend.ad) does not change its toolbox name.

12.1 EXIT

This button shuts down all of ASCEND after making sure you want to
quit. ASCEND does no checking to see if there is unsaved work so be
certain you have saved what you want of it before selecting this button.

(For more advanced users, we note that, just before exiting, we call the
tcl function user_shutdown which may be redefined in the
.ascendrc file in your HOME directory. Under Windows, the
_ascendrc is the name of the corresponding file.)

12.2 ASCPLOT

Selecting this button opens the plotting tool for ASCEND. You can find
any file that contains data for a plot and plot it with this tool. Ascplot is
described elsewhere.

12.3 HELP

Pressing this button will provide access to the Help Documentation for
ASCEND. The help system is described elsewhere.

12.4 UTILITIES

Selecting this button opens the system utilities window. The system
utilities window is described elsewhere.

12.5 BUG REPORT

The link
http://www.cs.cmu.edu/~ascend/Email.html
is connected to the web server for ASCEND at CMU. Alternatively,
send a bug report to

BUG REPORT 90

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/toolbox.fm5

ascend+bugs@cs.cmu.edu
if you cannot access this link. We do not have an 800 number, but we
usually get to bug reports very quickly.

When submitting a bug report, please try to

1. Duplicate the error.

2. Tell us in excruciating detail how you duplicated it.

3. Report to us the platform and operating system (OS) on which
you are running. Also please tell us the distribution number for
the ASCEND code on which you are running. This is research
software. We are not committed to backward compatibility, and
we do not have access to all the platform/OS combinations out
there. If the bug you report has been fixed in a newer version,
your only fix is to get the new version or fix it yourself. If you are
on a platform to which we do not have access, we will consider
working out the bugs with you in the hope that you will then give
us back a copy for the new platform.

4. Send along any model code you have that is involved in the bug
manifestation. It may happen that, in the process of fixing the
ASCEND bug, we could fix some of your model bugs. We are not
in the business of debugging your model code unless it is also
interesting to our research. We often find new applications of
ASCEND interesting, however.

5. Subscribe to the ASCEND user mailinglist/bboard: Send mail to
ascend+subscribe@edrc.cmu.edu .

91 THE ASCEND TOOLBOX

Last modified: September 26, 1997 4:12 pm

CHAPTER13 THE SYSTEM UTILITIES WINDOW

13.1 OVERVIEW

Thesystem utilities window shown in Figure 13-1 displays and allows
modification of the variables which control the interaction of ASCEND
with the operating system and with other programs.

The values of the variables are initialized from the user’s environment,
from the file.ascend-config in the user’s HOME directory, and
from settings within ASCEND.

If the user chooses to save the system utility settings, ASCEND writes
the current values of the variables into file.ascend-config in the
user’s HOME directory. ASCEND will automatically reread those
values in the next time it starts.

Figure 13-1 The System Utilities window manages ASCEND’s
interaction with the operating system and with other
programs.

93 THE SYSTEM UTILITIES WINDOW

Last modified: September 26, 1997 4:12 pm

When working with the system utilities window, it is important to
remember that changes to the variables propagateimmediately
throughout ASCEND, and that there is no way to undo or cancel
changes made to the variables1.

1. Some variables can be restored to the values in effect the last time the system utilities were saved, but this
only works if the user has previously saved the values, and it does not restore every variable.

13.2 VARIABLES

The system utilities window contains the following settings. Settings
marked with an asterisk* are not saved in.ascend-config .

To change a variable’s value, click in the box to the right of the
variable’s label and type the new value. This new value is immediately
available to the ASCEND system.

13.2.1 WWW ROOT URL

ASCEND distributes its help system as HTML documents, and spawns
a web browser to view these documents. The variable WWW Root
URL gives the root of the ASCEND help tree, and the variables WWW
Restart Command and WWW Startup Command contains commands
to connect to a running web browser and to start a new web browser,
respectively.

WWW Root URL contains the first part of a URL to the ASCEND help
tree; it is not necessarily a complete URL. The variable should end in a
forward slash (/). TheHelp menus and buttons in ASCEND will
append text to this value and invoke WWW Restart Command or
WWW Startup Command with the complete URL.

The person who installs ASCEND at a site should set this variable to
the root of the directory containing that site’s copy of the ASCEND
help files, for example:
file://localhost/usr/local/lib/ascend/help/
at CMU ICES.

The value
http://www.cs.cmu.edu/~ascend/help/
will connect you to the help pages at the ASCEND web site.

VARIABLES 94

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

13.2.2 WWW RESTART COMMAND

This is a command to redirect the attention of your already running web
browser to a new URL. If this command returns an error code,
ASCEND will attempt to start a new browser using the WWW Startup
Command.

If your favorite browser does not support restarting, set the value of this
variable tofalse . This will cause a new browser to start for every
help query from the ASCEND interface.

ASCEND will replace every occurrence of%U in this command with
the URL to be viewed. The default value of WWW Restart Command
is
netscape -remote openURL(%U)

13.2.3 WWW STARTUP COMMAND

This is a command to start your favorite web browser. This command is
invoked if the value of WWW Restart Command isfalse or if
attempting to start a browser using that command returns an error code.

ASCEND will replace every occurrence of%U in this command with
the URL to be viewed. The default value of WWW Startup Command
is
netscape %U

13.2.4 ASCENDLIBRARY PATH *

The ASCENDLIBRARY variable contains a list of directories that the
Library and Script tools search to find files containing ASCEND
models and scripts.

The format of the directory list should resemble the PATH environment
variable for your platform: a colon (:) separated list of directories
(using forward slashes) on UNIX, a semicolon (;) separated list of
directories (using backward slashes) on Windows.

The ASCENDLIBRARY variable is initialized from the user’s
environment or from the ASCEND binary; its value is not saved in the
user’s.ascend-config file.

95 THE SYSTEM UTILITIES WINDOW

Last modified: September 26, 1997 4:12 pm

13.2.5 SCRATCH DIRECTORY

The scratch directory is used to write the temporary and plot files that
ASCEND creates. The temporary files are automatically deleted before
you leave ASCEND, but the plot files are not (since people often want
to save plots). You should periodically remove any plot files from the
scratch directory, else you may slow build up a large collection of past
plot files.

Any existing directory you have write access to can be used as the
scratch directory. Under UNIX,/tmp is the default value of the scratch
directory. Under Windows, the directory given in the environment
variable TEMP, TMP, or TMPDIR is used as the default value.

13.2.6 WORKING DIRECTORY

Typically, this is the directory you start ASCEND from, but it can be
any existing directory you have write access to. Our handling of the
working directory is a bit “flaky” at the moment because ASCEND’s
command line allows the user to change directories without telling the
rest of the interface about it. Intermediate files are sometimes written in
the working directory.

13.2.7 PLOT PROGRAM TYPE

Currently, the only supported plot types isxgraph plot
(abbreviatedxgraph). This setting tells the plot window what type of
plot file it should generate.

13.2.8 PLOT PROGRAM NAME

This is the name of your plotting program. It should accept the plot
type listed in Plot Program Type as input.

The default isxgraph on UNIX andtkxgraph on Windows. Both
xgraph and tkxgraph are available from the ASCEND web site:
http://www.cs.cmu.edu/~ascend/

13.2.9 TEXT EDIT COMMAND

This is a command to spawn your favorite text file editor. (Currently,
nothing in ASCEND invokes this command.)

The default isemacs on UNIX andrunemacs on Windows.

VARIABLES 96

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

13.2.10 POSTSCRIPT VIEWER

This is a command to spawn a program for viewing Postscript files.
(Currently, nothing in ASCEND invokes this command).

The default isghostview on UNIX and on Windows.

13.2.11 SPREADSHEET COMMAND

This is a command to spawn your favorite spreadsheet program.
(Currently, nothing in ASCEND invokes this command2).

2. Nothing invokes this command because there is no ASCEND code that supports it. Someone needs to write
code that will write out the desired variables as columns of numbers suitable for importing into any
spreadsheet. If you want to be that someone, let us know and we’ll be happy to consult. We have some
pseudocode for this already; contact us atascend@cs.cmu.edu .

13.2.12 TEXT PRINT COMMAND

This entry displays the last command generated by the print dialog box.
Changing the value of this entry will have no effect on future printing,
since the print dialog manages all aspects of printing.

This value is displayed here as a hold-over from previous versions of
ASCEND; developers sometimes use it as a check to make sure the
print dialog is doing the right thing.

13.2.13 PRINTER VARIABLE *

This entry displays the last printer the user selected in the print dialog
box, or the value of the PRINTER or LPDEST environment variable if
the user has not used the print dialog box during this ASCEND session.

Changing the value of this entry will have no effect on future printing3,
since the print dialog manages all aspects of printing.

This value is not saved in the user’s.ascend-config file.

3. This is not entirely true. This entry will change the value of the PRINTER environment variable (but not the
LPDEST environment variable). Any command you invoke from ASCEND command prompt that depends
on the PRINTER environment variable will use the value displayed in this entry.

13.2.14 ASCENDDIST DIRECTORY *

The value of the ASCENDDIST environment variable is the directory
containing the installed ASCEND distribution. If a user can see this

97 THE SYSTEM UTILITIES WINDOW

Last modified: September 26, 1997 4:12 pm

variable inside the system utilities window, it means its value is correct.
Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The ASCENDDIST variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

13.2.15 TCL_LIBRARY ENVIRONMENT VARIABLE *

The value of the TCL_LIBRARY environment variable is the directory
containing the installed*.tcl files required by Tcl. If a user can see
this variable inside the system utilities window, it means its value is
correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The TCL_LIBRARY variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

13.2.16 TK_LIBRARY ENVIRONMENT VARIABLE *

The value of the TK_LIBRARY environment variable is the directory
containing the installed*.tcl files required by Tk. If a user can see
this variable inside the system utilities window, it means its value is
correct. Changing the value will most likely cause things to break.

The person who installs ASCEND at a site is typically the only person
who needs to be concerned with its value.

The TK_LIBRARY variable is initialized from the user’s environment
or from the ASCEND binary; its value is not saved in the user’s
.ascend-config file.

13.3 BUTTONS

The actions associated with the buttons on the system utilities window
are:

BUTTONS 98

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/utilities.fm5

13.3.1 OK

This button closes the system utilities window. Closing will fail if the
scratch directory and working directory are not writable by the user.

13.3.2 SAVE

This button writes the current value of most of the variables in the
system utilities window to a file called.ascend-config in your
HOME directory4. ASCEND will read this file on startup to get your
preferred values.

The variables whose names are in ALL CAPS (i.e.,
ASCENDLIBRARY, PRINTER, ASCENDDIST, TCL_LIBRARY,
TK_LIBRARY) arenot saved to.ascend-config . These are
environment variables that are set as part of the login process. You may
change them interactively, but their interactive values are not saved.

4. Under Windows, you can set your HOME directory by setting the HOME environment variable by opening
the Control Panel, double clicking the System icon, clicking the Environment tab, and adding the HOME
variable to the list of user environment variables.

13.3.3 READ

The button causes the system utilities window to reread the values
stored in.ascend-config in your HOME directory. This is useful
for editing.ascend-config outside of ASCEND while running
ASCEND, or for verifying that the changes you saved were properly
saved.

13.3.4 MORE

The button rotates you through the pages of options.

13.3.5 HELP

The button should direct your web browser to this document.

99 THE SYSTEM UTILITIES WINDOW

Last modified: September 26, 1997 4:12 pm

CHAPTER14 FONT SELECTION DIALOG

14.1 OVERVIEW

Thefont selection dialog (Figure 14-1) is used to select the font for the
window from which it is opened. There is no way through the interface
to change the font for every ASCEND window.

Currently, the fonts you select are not remembered across invocations
of ASCEND. This is a feature we will be adding in a future release.

Figure 14-1 The font selection dialog.

101 FONT SELECTION DIALOG

Last modified: September 26, 1997 4:21 pm

To change the default fonts for ASCEND, see Setting the Default Font
later in this chapter.

The font which the font selection dialog displays when it is opened is
independent of the current window’s font. This is actually a feature.
When you close the font selection dialog (by pressing either the OK
Button or the Cancel Button) and reopen it, it will display the same font
as when it was closed. This way, once you find a font you like, you can
change other ASCEND windows to this same font by simply opening
the font selection dialog and pressing OK. As a default, the very first
time you open the font dialog in an ASCEND session, the font is set to
Courier 12 normal .

The font selection dialog has eight parts: Font Menu, Style Menu,
Cancel Button, OK Button, Current Font Sample, Font Sampler Area,
Point Size Slider, Current Font Selection.

14.2 FONT MENU

The Font menu displays the fonts available for your platform (e.g,
Helvetica, Courier). Selecting one of these fonts will update the
Current Font Sample and Current Font Selection areas of the window.

14.3 STYLE MENU

The Style menu allows you to specify attributes (e.g., Bold, Italic) for
the selected font. As you add and remove attributes, the Current Font
Sample and the Current Font Selection will reflect the changes.

14.4 CANCEL BUTTON

The Cancel button closes the font selection window without changing
the fonts of the window.

14.5 OK BUTTON

The OK button closes the font selection window and sets the font of the
window to the font listed in the Current Font Selection area.

CURRENTFONT SAMPLE 102

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/fontsel.fm5

14.6 CURRENT FONT SAMPLE

This area of the font selection window shows a sample of text in font,
style, and size you have currently selected.

If you want to see what your current selection does to particular
characters, you may type into this area. Note that your additions will be
deleted when you change any aspect of the font (style, size, font).

14.7 FONT SAMPLER AREA

This area of the font selection window shows you a sample of the fonts
available for your platform. You may make one of the listed fonts the
current selection by clicking the font with the left mouse button. The
currently selected styles and sizes remain in effect.

14.8 POINT SIZE SLIDER

This slider lets you choose the point size of the font. The text displayed
in the Current Font Sample updates immediately.

14.9 CURRENT FONT SELECTION

This area displays the Tcl name for the font (including the size and
style(s)) that you have currently selected. You may type in this area, but
doing so will have no effect on the font.

14.10 SETTING THE DEFAULT FONT

To have ASCEND use the same font each time you run it, you need to
do the following steps.

1. Use the font selection dialog to choose a font you like. Make a
note of the Tcl name for the font; this name is displayed in the
Current Font Selection area of the window.

2. Open the system utilities window and make a note of the value of
ASCENDDIST.

3. Exit ASCEND.

4. Under the ASCENDDIST directory, there should be a directory

103 FONT SELECTION DIALOG

Last modified: September 26, 1997 4:21 pm

calledTK, and in this directory a file calledascend.ad . Copy
this file to your HOME directory1 and name it.ascend.ad 2.

5. Add the following lines at the end of.ascend.ad , replacing
courier 11 normal with the font you noted in Step 1.

Global font courier 11 normal

Global labelfont courier 11 normal

Toolbox font courier 11 normal

Library font courier 11 normal

Display font courier 11 normal

Browser font courier 11 normal

Probe font courier 11 normal

Units font courier 11 normal

Script font courier 11 normal

Solver font courier 11 normal

Debugger font courier 11 normal

6. Save.ascend.ad , and restart ASCEND.

Note that this file also contains the default size and position for most
ASCEND windows. To change the position or size of a window, edit
the lines containinggeometry ; the format for the geometry is
WWxHH+xx +yy
whereWW is the width of the window,HH is its height,xx is the
distance between the left edge of the screen and the left edge of the
window, andyy is the distance between the screen’s top edge and the
window’s top edge.

1. To set your HOME directory under Windows, open the Control Panel, double click the System icon, select
the Environment tab, and set the HOME environment variable to a directory you want to consider “home”.

2. Under Windows, the name_ascend.ad also works.

CHAPTER15 THE PRINT DIALOG

15.1 OVERVIEW

Theprint dialog shown in Figure 15-1 allows the user to modify the
settings which control the printing of information from within
ASCEND.

15.2 SETTINGS

15.2.1 DESTINATION

This is a pop-up menu that allows you to select one of the following
options for printing: Print, Write to file, Append to file, Enscript, or
Custom.

Figure 15-1 The print dialog.

105 THE PRINT DIALOG

Last modified: September 26, 1997 3:57 pm

15.2.1.1 PRINT

On UNIX machines, this option sends the window’s contents to the
printer specified in the Printer field (PRINTER). Under SystemV
systems1, the command
lp -d PRINTER
is used as the interface to the printer; on all other UNIX systems, the
command
lpr -P PRINTER
is used.

Under Windows, the command
notepad /p
is used to send the window’s contents to the user’s default printer.

1. HP-UX, SGI IRIX, and Solaris 2.x.

15.2.1.2 WRITE TO FILE

Under UNIX, this option writes the contents of the window to the file
listed in the Name of file field. If a file with the same name exists,
ASCEND will overwrite the file after verifying that the user wants to
overwrite the file.

This option is not available on the Windows platform.

This option is another version of Save As and will likely go away in
future releases of ASCEND.

15.2.1.3 APPEND TO FILE

Under UNIX, this option appends the contents of the window to the file
listed in the Name of file field. If the file does not exist, it will be
created.

This option is not available on the Windows platform.

This option will likely go away in future releases of ASCEND.

15.2.1.4 ENSCRIPT

On UNIX, this option uses theenscript program to queue the
window’s contents to the printer specified in the Printer field
(PRINTER). On SystemV systems, the command
enscript -d PRINTER enscript-flags
is used; on all other UNIX systems, the command

SETTINGS 106

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/print_dialog.fm5

enscript -P PRINTER enscript-flags
is used. The value of enscript-flags is the value specified in the Enscript
flags field.

This option is not available on the Windows platform.

15.2.1.5 CUSTOM

This option allows the user to specify a custom print command. The
user should type their custom command in the User print command
field; the command should accept a file name as its final argument.

This option is not available on the Windows platform.

15.2.2 PRINTER

Under UNIX, this field specifies the printer to send the document to
when the Destination is Print or Enscript.

This field has no effect under Windows.

15.2.3 NAME OF FILE

Under UNIX, this field contains the name of the file used by the Write
to file and Append to file options.

This field has no effect under Windows.

15.2.4 ENSCRIPT FLAGS

Under UNIX, this field contains the options sent to theenscript
program when the Destination is Enscript.

This field has no effect under Windows.

15.2.5 USER PRINT COMMAND

Under UNIX, this field contains the command used to “print” the
window’s contents when the Destination is Custom. This command
should accept the name of a file (a temporary file containing the
contents of the window) as its final argument.

This field has no effect under Windows.

107 THE PRINT DIALOG

Last modified: September 26, 1997 3:57 pm

15.3 BUTTONS

15.3.1 OK

Pressing this button accepts the settings, sends the document to the
printer or to the specified file, and closes the print dialog. The values
displayed in the Text print command and the PRINTER fields in the
system utilities window will change to reflect the new settings.

15.3.2 HELP

Pressing this button should cause your web browser to display this
document.

15.3.3 CANCEL

This button ignores any changes you may have made to the settings and
closes the print dialog. The file is not printed.

CHAPTER16 SOLVED SIMPLE MODELING

PROBLEMS WITHASCEND

In this chapter we present two simple modeling problems for which we
then show you our ASCEND models for solving them. Modeling is a
matter of style, and we will start to show you what we believe to be
good styles for modeling. We assume you have not used the ASCEND
system before. These problems are very generic and should be readily
followed by anyone with a modest technical background.

One purpose is to show you some of the different ways you can use
ASCEND. Specifically we want to show you that you can use
ASCEND to setup and solve the simple types of problems that you
might have solved using a spreadsheeting program. Indeed, we use
ASCEND to solve homework problems quite often. When you factor in
the powerful debugging tools, you might find it faster to use ASCEND,
especially as the models get more complex. And no one would want
(we think) to solve a 20,000 simultaneous nonlinear equation model
using a spreadsheeting program.

A major advantange of using ASCEND is that once you have written,
debugged and learned to solve such a model, you can interactively alter
the "fixed" flags for the variables, changing which variables are to be
fixed and which to be calculated. You can then immediately solve or
optimize the new problem, using the previously solved problem as the
initial guess.

16.1 ROOTS OF A POLYNOMIAL

In this problem you wish to find the roots of a polynomial. Assume you
do not wish to keep the code. You could readily use a spreadsheet pro-

109 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

Last modified: September 26, 1997 4:21 pm

gram with its "root finder" routine to solve this type of problem, but you
can as readily use ASCEND.

16.1.1 PROBLEM STATEMENT

Numerically compute the roots of(x-1)(x-5)(x+7)(x2+1) =0. (Given in
this form the roots are obviously 1, 5, and -7. Two roots are complex,
and ASCEND will not find them.)

16.1.2 ANSWER

You can find the roots by guessing initial points after typing in, loading
and compiling the following model. You would use any text editor to
enter this model into the computer. If you use a "WYSIWYG" (what
you see is what you get) editor such as Word or Framemaker, be sure to
save the file as atext only file. If possible, use a simpler text editor.

MODEL polynomial_roots; 1

x IS_A generic_real; 2

(x-1)*(x-5)*(x+7)*(x^2+1) = 0; 3

END polynomial_roots; 4

This simple model is a stand-alone model. You need no other
predefined libary models to support it. Load and compile an instance
of this model (using tools in the LIBRARY tool set), browse it (using
the BROWSER tool set) to see if it appears to have compiled correctly,
and then pass it to the SOLVER tool set.

This model involves a single equation in the single unknown variable,
x. The ASCEND solver treats a single equation in one unknown in a
special manner when asked to solve it. The solver first attempts to
rearrange the equation by simple algebraic manipulations to isolate the
unknown on the left hand side of the equation in the form x =
expression not involving x. In this form, solving is simply evaluating
the expression on the right hand side once. Here the solver would fail
as there is no way to isolate x on the left hand side as the equation is a
fifth order polynomial in x. When rearrangement fails, the solver uses
bisection to locate a root in the range between the lower and upper
bound on the variable. You can see the bounds, x.lower and x.upper,
using the BROWSER. The default values for these bounds are plus and
minus 1020 respectively, which gives a very large range in which to
look for the root. You should change the bounds1 to more realistic

1. To set the value for a variable interactively, select the variable when it is display in the right window or in the
lower window with the RIGHT mouse button (the other button). A window for changing its value opens.

NUMERICAL INTEGRATION OF TABULAR DATA 110

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

ones. Selecting bounds to be -10 to 0 and then solving will find the root
x=-7. Selecting other values will find the other roots.

This model illustrates that you can quickly set up and solve simple
problems using ASCEND. Note that you would have been required to
place bounds on x had you used a goal seeking tool in a spreadsheeting
program if you wanted to control which root to locate.

16.2 NUMERICAL INTEGRATION OF TABULAR DATA

This problem is similar to the previous one in that it is very easy to set
up and solve. It adds in the notion of units (e.g., ft, m, hr, atm) which
ASCEND handles in a straight-forward manner, relieving modelers
from thinking about converting among the many units they might use
when expressing the data for a problem.

Again we are talking about producing throw-away code. All we are
really concerned with here is the answer which we intend to put into a
report. We are using ASCEND as a "calculator."

16.2.1 PROBLEM STATEMENT

Given the following velocity data vs. time, estimate numerically the
distance one has traveled between time equal to zero and 100 seconds.

Table 1: Velocity data to be integrated

data point
number

time,
s

velocity,
ft/min

1 0 100

2 10 120

3 20 130

4 30 135

5 40 140

6 50 160

7 60 180

8 70 210

9 80 240

10 90 220

11 100 200

111 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

Last modified: September 26, 1997 4:21 pm

16.2.2 ANSWER

(This example will be solved using variables whose types are defined in
the file atoms.lib. You must load this file first before loading the file
with the code below, else you will experience a number of diagnostic
messages indicating missing type definitions. See the document entitled
(****link**** library_example.fm5, ****link label**** the ASCEND
predefined collection of models) for a discussion of libraries on
ASCEND.)

The distance traveled is the integral of the velocity over time. We can
use Simpson’s rule to carry out this integration for evenly spaced points.

d = ((v[1] + 4 v[2] + v[3]) + (v[3] + 4 v[4] + v[5]) +....
+(v[N-2] + 4 v[N-1] + v[N]))*∆t/6 (16.1)

whered is the distance covered when traveling at the velocities,V[k] ,
listed. This formula requires there to be an odd number of 3 or more
evenly space data points, which is fine here as we have eleven velocity
points evenly spaced in time. (If there had been an even number of
points, we could use Simpson’s rule for all but the last time interval and
use a simple trapezoidal rule to integrate it.)

An ASCEND model to evaluate this distance is as follows. The types
definitions forspeed, time anddistance are in the fileatoms.lib.

MODEL travel_distance; 1

 kmax IS_A integer_constant; 2

 v[1..2*kmax+1] IS_A speed; 3

 delta_time IS_A time; 4

 d IS_A distance; 5

6

 d = SUM[v[2*k-1]+4*v[2*k]+v[2*k+1] SUCH_THAT k IN

 [1..kmax]]*delta_time/6; 7

END travel_distance; 8

9

MODEL test_travel_distance REFINES travel_distance; 10

 kmax :== 5; 11

12

METHODS 13

 METHOD specify; 14

 v[1..2*kmax+1].fixed := TRUE; 15

 delta_time.fixed := TRUE; 16

 END specify; 17

18

 METHOD values; 19

v[1] := 100 {ft/min}; 20

NUMERICAL INTEGRATION OF TABULAR DATA 112

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_problems.fm5

v[2] := 120 {ft/min}; 21

v[3] := 130 {ft/min}; 22

v[4] := 135 {ft/min}; 23

v[5] := 140 {ft/min}; 24

v[6] := 160 {ft/min}; 25

v[7] := 180 {ft/min}; 26

v[8] := 210 {ft/min}; 27

v[9] := 240 {ft/min}; 28

v[10] := 220 {ft/min}; 29

v[11] := 200 {ft/min}; 30

delta_time := 10 {s}; 31

 END values; 32

END test_travel_distance; 33

If you look carefully at this model, you will note that we did NOT ac-
count for the conversion factors required because velocities are in ft/min
while the time increment is in seconds. ASCEND understands these
units and makes all the needed conversions. When you run this model,
you can ask for the distance to be displayed to you in any supported
length units you would prefer (e.g., ft, mile, m, cm, angstroms, light-
years). The distance traveled, when reported using SI units, is 42.84 m.

113 SOLVED SIMPLE MODELING PROBLEMS WITHASCEND

Last modified: September 26, 1997 4:21 pm

THE WHEN STATEMENT 114

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

CHAPTER17 A CONDITIONAL MODELING

EXAMPLE: REPRESENTING A

SUPERSTRUCTURE

To give an example of the application of the conditional modeling tool
in ASCEND -theWHEN statement-, we developed a simplified model
for the superstructure given in Figure 17-1. The code listed below
exists in a file in the ASCEND models subdirectory entitled
when_demo.a4c. You could run this example by loading this file and
using it and its corresponding scriptwhen_demo.a4s.

17.1 THE WHEN STATEMENT

Before showing the example, we want to start by giving a brief
explanation about the semantics of the WHEN statement, a tool which
allowsASCEND to represent conditional models efficiently.

In theWHEN statement, we take advantage of the fact thatASCEND is
based on object oriented concepts where model definitions can contain
parts that contain parts to any level. Furthermore, inASCEND, a simple

Figure 17-1 Superstructure used in the example of the application of the when statement

f1

f2

c1

co1 h1

r2

r1

co2 fl1

h2

h3

c2

Feed 1 (cheap)

Feed 2(exp.)

Pby

<1000
ton/day

>90 %
pure C

high conv, high cost

low conv, low cost

A + B C
s1

sp1
s2

m1

115 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

relation is treated as an object by itself and can have a name. Based on
these ideas, the syntax for theWHEN statement is:

WHEN (list_of_variables)
CASE list_of_values_1:

USE name_of_equation_1;
USE name_of_model_1;

CASE list_of_values_2:
USE name_of_equation_2;
USE name_of_model_2;

CASE list_of_values_nminus1:
USE

name_of_equation_nminu1;
USE name_of_model_nminus1;

 OTHERWISE:
USE name_of_equation_n;
USE name_of_model_n;

END;

The following are important observations about the implementation:

1 TheWHEN statement does not mean conditional compilation. We
create and have available the data structures for all of the variables
and equations in each of the models. This is actually a requirement
for the solution algorithms of conditional models. All the models
and equations whose name is given in each of the cases should be
declared inside the model which contains theWHEN statement.

2 The variables in the list of variables can be of any type among
boolean, integer or symbol or any combination of them. That is, we
are not limited to the use of boolean variables. Obviously, The list
of values in each case must be in agreement with the list of
variables in the number of elements and type of each element. In
other words, order matters in the list of variables of theWHEN

statement, and parentheses are enclosing this list to make clear such
a feature.

3 Names of arrays of models or equations are also allowed inside the
scope of eachCASE.

TheWHEN statement represents an important contribution to modeling:
it allows the user to define the domain of validity of bothmodels and
equations inside the cases of aWHEN statement. This feature
enormously increases the scope of modeling in an equation based
modeling environment.

Mainly, there are two different ways in which theWHEN statement can
be used.:

• First, the WHEN statement can be used to select a configuration

THE PROBLEM DESCRIPTION 116

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

of a problem among several alternative configurations.

• Second, in combination with logical relations, theWHEN

statement can be used for conditional programming. That is, a
problem in which the system of equations to be solved depends
on the solution of the problem. A typical example of this
situation is the laminar-turbulent flow transition. The selection of
the equation to calculate the friction factor depends on the value
of the Reynolds number, which is an unknown in the problem.

17.2 THE PROBLEM DESCRIPTION

In the example, there are two alternative feedstocks, two possible
choices of the reactor and two choices for each of the compression
systems. The user has to make 4 decisions (for example, using either
the cheap feed or the expensive feed), therefore, there are 24 = 16
feasible configurations of the problem. All these 16 configurations are
encapsulated in oneASCEND model containing 4WHEN statements
which depend on the value of 4 boolean variables.

The value of the four boolean variables will determine the structure of
the problem to be solved. In this example, those values are defined by
the modeler, but they also could be defined by some logic inference
algorithm which would allow the automatic change of the structure of
the problem.

The following section gives the code for this model. The first models
correspond to the different types of unit operations existing in the
superstructure. Those model are very simplified. You may want to skip
them and analyze only the modelflowsheet, in which the use and
syntax of the WHEN statement as well as the configuration of the
superstructure become evident.

17.3 THE CODE

As the code is in our ASCEND examples subdirectory, it has header
information that we required of all such files included as one large
comment extending over several lines. Comments are in the form (*
comment *). The last item in this header information is a list of the
files one must load before loading this one, i.e.,system.lib and
atoms.lib.

(***\ 34

 when_demo.a4c 35

117 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

 by Vicente Rico-Ramirez 36

 Part of the Ascend Library 37

38

This file is part of the Ascend modeling library. 39

The Ascend modeling library is free software; you can redistribute 40

it and/or modify it under the terms of the GNU General Public License as 41

published by the Free Software Foundation; either version 2 of the 42

License, or (at your option) any later version. 43

44

The Ascend Language Interpreter is distributed in hope that it will be 45

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 46

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 47

General Public License for more details. 48

49

You should have received a copy of the GNU General Public License along with50

the program; if not, write to the Free Software Foundation, Inc., 675 51

Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 52

53

Use of this module is demonstrated by the associated script file 54

when_demo.s. 55

***) 56

(***\ 57

 $Date: 97/06/03 12:22:29 $ 58

 $Revision: 1.1 $ 59

 $Author: rv2a $ 60

 $Source:/afs/cs.cmu.edu/project/ascend/Repository/models/when_demo.a4c,v $61

***) 62

63

(* 64

This model is intended to demonstrate the degree of flexibility 65

that the use of conditional statements -when statements- provides 66

to the representation of superstructures. We hope that this 67

application will become clear by looking at the MODEL flowsheet, 68

in which the existence/nonexistence of some of the unit operations 69

is represented by WHEN statements. A particular combination of 70

user defined boolean variables -see the methods values, configuration2, and 71

configuration3- will a define a particular configuration of the 72

problem. 73

74

This model requires: 75

“system.lib” 76

“atoms.lib” 77

*) 78

(* *** *) 79

80

MODEL mixture; 81

THE CODE 118

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

components IS_A set OF symbol_constant; 82

Cpi[components] IS_A heat_capacity; 83

y[components] IS_A fraction; 84

P IS_A pressure; 85

T IS_A temperature; 86

Cp IS_A heat_capacity; 87

88

89

SUM[y[i] | i IN components] = 1.0; 90

Cp = SUM[Cpi[i] * y[i] | i IN components]; 91

92

 METHODS 93

 METHOD clear; 94

 y[components].fixed := FALSE; 95

 Cpi[components].fixed := FALSE; 96

 Cp.fixed := FALSE; 97

 P.fixed := FALSE; 98

 T.fixed := FALSE; 99

 END clear; 100

101

 METHOD specify; 102

 Cpi[components].fixed := TRUE; 103

 P.fixed := TRUE; 104

 T.fixed := TRUE; 105

 y[components].fixed := TRUE; 106

 y[CHOICE[components]].fixed := FALSE; 107

 END specify; 108

109

 METHOD reset; 110

 RUN clear; 111

 RUN specify; 112

 END reset; 113

END mixture; 114

115

(* *** *) 116

117

MODEL molar_stream; 118

state IS_A mixture; 119

Ftot,f[components] IS_A molar_rate; 120

components IS_A set OF symbol_constant; 121

P IS_A pressure; 122

T IS_A temperature; 123

Cp IS_A heat_capacity; 124

125

components, state.components ARE_THE_SAME; 126

P, state.P ARE_THE_SAME; 127

119 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

T, state.T ARE_THE_SAME; 128

Cp, state.Cp ARE_THE_SAME; 129

130

FOR i IN components CREATE 131

 f_def[i]: f[i] = Ftot*state.y[i]; 132

END; 133

134

 METHODS 135

 METHOD clear; 136

RUN state.clear; 137

Ftot.fixed:= FALSE; 138

f[components].fixed:= FALSE; 139

 END clear; 140

141

 METHOD specify; 142

RUN state.specify; 143

state.y[components].fixed := FALSE; 144

f[components].fixed := TRUE; 145

 END specify; 146

147

 METHOD reset; 148

RUN clear; 149

RUN specify; 150

END reset; 151

END molar_stream; 152

(* *** *) 153

154

MODEL cheap_feed; 155

stream IS_A molar_stream; 156

cost_factor IS_A cost_per_mole; 157

cost IS_A cost_per_time; 158

159

stream.f[‘A’] = 0.060 {kg_mole/s}; 160

stream.f[‘B’] = 0.025 {kg_mole/s}; 161

stream.f[‘D’] = 0.015 {kg_mole/s}; 162

stream.f[‘C’] = 0.00 {kg_mole/s}; 163

stream.T = 300 {K}; 164

stream.P = 5 {bar}; 165

166

cost = cost_factor * stream.Ftot; 167

METHODS 168

 METHOD clear; 169

RUN stream.clear; 170

cost_factor.fixed := FALSE; 171

cost.fixed := FALSE; 172

 END clear; 173

THE CODE 120

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

174

 METHOD specify; 175

RUN stream.specify; 176

stream.f[stream.components].fixed := FALSE; 177

cost_factor.fixed := TRUE; 178

stream.T.fixed := FALSE; 179

stream.P.fixed := FALSE; 180

 END specify; 181

182

 METHOD reset; 183

RUN clear; 184

RUN specify; 185

 END reset; 186

187

END cheap_feed; 188

189

(* *** *) 190

191

MODEL expensive_feed; 192

stream IS_A molar_stream; 193

cost_factor IS_A cost_per_mole; 194

cost IS_A cost_per_time; 195

196

stream.f[‘A’] = 0.065 {kg_mole/s}; 197

stream.f[‘B’] = 0.030 {kg_mole/s}; 198

stream.f[‘D’] = 0.05 {kg_mole/s}; 199

stream.f[‘C’] = 0.00 {kg_mole/s}; 200

stream.T = 320 {K}; 201

stream.P = 6 {bar}; 202

203

cost = 3 * cost_factor * stream.Ftot; 204

205

METHODS 206

 METHOD clear; 207

RUN stream.clear; 208

cost_factor.fixed := FALSE; 209

cost.fixed := FALSE; 210

 END clear; 211

212

 METHOD specify; 213

RUN stream.specify; 214

stream.f[stream.components].fixed := FALSE; 215

cost_factor.fixed := TRUE; 216

stream.T.fixed := FALSE; 217

stream.P.fixed := FALSE; 218

 END specify; 219

121 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

220

 METHOD reset; 221

RUN clear; 222

RUN specify; 223

 END reset; 224

225

END expensive_feed; 226

227

228

(* *** *) 229

230

231

MODEL heater; 232

input,output IS_A molar_stream; 233

heat_supplied IS_A energy_rate; 234

components IS_A set OF symbol_constant; 235

cost IS_A cost_per_time; 236

cost_factor IS_A cost_per_energy; 237

238

components,input.components,output.components ARE_THE_SAME; 239

240

input.state.Cpi[components], 241

 output.state.Cpi[components] ARE_THE_SAME; 242

243

FOR i IN components CREATE 244

 input.f[i] = output.f[i]; 245

END; 246

247

input.P = output.P; 248

249

heat_supplied = input.Cp *(output.T - input.T) * input.Ftot; 250

251

cost = cost_factor * heat_supplied; 252

253

METHODS 254

 METHOD clear; 255

RUN input.clear; 256

RUN output.clear; 257

cost.fixed := FALSE; 258

cost_factor.fixed := FALSE; 259

heat_supplied.fixed := FALSE; 260

 END clear; 261

262

 METHOD specify; 263

RUN input.specify; 264

cost_factor.fixed := TRUE; 265

THE CODE 122

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

heat_supplied.fixed := TRUE; 266

 END specify; 267

268

 METHOD seqmod; 269

cost_factor.fixed := TRUE; 270

heat_supplied.fixed := TRUE; 271

 END seqmod; 272

273

 METHOD reset; 274

RUN clear; 275

UN specify; 276

 END reset; 277

278

END heater; 279

280

281

282

(* *** *) 283

284

285

MODEL cooler; 286

287

input,output IS_A molar_stream; 288

heat_removed IS_A energy_rate; 289

components IS_A set OF symbol_constant; 290

cost IS_A cost_per_time; 291

cost_factor IS_A cost_per_energy; 292

293

components,input.components,output.components ARE_THE_SAME; 294

input.state.Cpi[components], 295

 output.state.Cpi[components] ARE_THE_SAME; 296

297

FOR i IN components CREATE 298

 input.f[i] = output.f[i]; 299

END; 300

input.P = output.P; 301

heat_removed = input.Cp *(input.T - output.T) * input.Ftot; 302

303

cost = cost_factor * heat_removed; 304

305

METHODS 306

 METHOD clear; 307

RUN input.clear; 308

RUN output.clear; 309

cost.fixed := FALSE; 310

cost_factor.fixed := FALSE; 311

123 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

heat_removed.fixed := FALSE; 312

 END clear; 313

314

 METHOD specify; 315

RUN input.specify; 316

cost_factor.fixed := TRUE; 317

heat_removed.fixed := TRUE; 318

 END specify; 319

320

 METHOD seqmod; 321

cost_factor.fixed := TRUE; 322

heat_removed.fixed := TRUE; 323

 END seqmod; 324

325

 METHOD reset; 326

RUN clear; 327

RUN specify; 328

 END reset; 329

330

END cooler; 331

332

333

(* *** *) 334

335

336

MODEL single_compressor; (* Adiabatic Compression *) 337

338

input,output IS_A molar_stream; 339

components IS_A set OF symbol_constant; 340

work_supplied IS_A energy_rate; 341

gamma IS_A factor; 342

pressure_rate IS_A factor; 343

R IS_A gas_constant; 344

cost IS_A cost_per_time; 345

cost_factor IS_A cost_per_energy; 346

347

components,input.components,output.components ARE_THE_SAME; 348

input.state.Cpi[components], 349

 output.state.Cpi[components] ARE_THE_SAME; 350

351

FOR i IN components CREATE 352

 input.f[i] = output.f[i]; 353

END; 354

355

gamma = input.Cp / (input.Cp - R); 356

pressure_rate = output.P / input.P; 357

THE CODE 124

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

output.T = input.T * (pressure_rate ^((gamma-1)/gamma)); 358

359

work_supplied = input.Ftot * gamma * R *input.T 360

* (gamma/(gamma -1)) 361

* (((pressure_rate)^((gamma -1)/gamma))-1); 362

363

cost = cost_factor * work_supplied; 364

365

METHODS 366

 METHOD clear; 367

RUN input.clear; 368

RUN output.clear; 369

gamma.fixed := FALSE; 370

cost.fixed := FALSE; 371

cost_factor.fixed := FALSE; 372

pressure_rate.fixed := FALSE; 373

work_supplied.fixed := FALSE; 374

 END clear; 375

376

 METHOD specify; 377

RUN input.specify; 378

pressure_rate.fixed := TRUE; 379

 END specify; 380

381

 METHOD seqmod; 382

cost_factor.fixed := TRUE; 383

pressure_rate.fixed := TRUE; 384

 END seqmod; 385

386

 METHOD reset; 387

RUN clear; 388

RUN specify; 389

 END reset; 390

END single_compressor; 391

(* *** *) 392

393

MODEL staged_compressor; 394

395

input,output IS_A molar_stream; 396

components IS_A set OF symbol_constant; 397

work_supplied IS_A energy_rate; 398

T_middle IS_A temperature; 399

heat_removed IS_A energy_rate; 400

gamma IS_A factor; 401

pressure_rate IS_A factor; 402

R IS_A gas_constant; 403

125 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

cost IS_A cost_per_time; 404

cost_factor_work IS_A cost_per_energy; 405

cost_factor_heat IS_A cost_per_energy; 406

407

components,input.components,output.components ARE_THE_SAME; 408

input.state.Cpi[components], 409

 output.state.Cpi[components] ARE_THE_SAME; 410

411

FOR i IN components CREATE 412

 input.f[i] = output.f[i]; 413

END; 414

415

gamma = input.Cp / (input.Cp - R); 416

output.T = input.T; 417

pressure_rate = output.P / input.P; 418

T_middle = input.T * (pressure_rate ^((gamma-1)/gamma)); 419

420

work_supplied = input.Ftot * 2 * gamma * R *input.T 421

* (gamma/(gamma-1)) 422

* (((pressure_rate)^((gamma -1)/(2*gamma)))-1); 423

424

heat_removed = input.Ftot * input.Cp * (T_middle - input.T); 425

426

cost = cost_factor_work * work_supplied + 427

 cost_factor_heat * heat_removed; 428

429

METHODS 430

 METHOD clear; 431

RUN input.clear; 432

RUN output.clear; 433

gamma.fixed := FALSE; 434

pressure_rate.fixed := FALSE; 435

T_middle.fixed := FALSE; 436

work_supplied.fixed := FALSE; 437

heat_removed.fixed := FALSE; 438

cost_factor_heat.fixed := FALSE; 439

cost_factor_work.fixed := FALSE; 440

cost.fixed := FALSE; 441

 END clear; 442

443

 METHOD specify; 444

RUN input.specify; 445

cost_factor_heat.fixed := TRUE; 446

cost_factor_work.fixed := TRUE; 447

 END specify; 448

449

THE CODE 126

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

 METHOD seqmod; 450

cost_factor_heat.fixed := TRUE; 451

cost_factor_work.fixed := TRUE; 452

pressure_rate.fixed := TRUE; 453

 END seqmod; 454

455

 METHOD reset; 456

RUN clear; 457

RUN specify; 458

 END reset; 459

END staged_compressor; 460

461

(* *** *) 462

463

MODEL mixer; 464

465

components IS_A set OF symbol_constant; 466

n_inputs IS_A integer_constant; 467

feed[1..n_inputs], out IS_A molar_stream; 468

To IS_A temperature; 469

470

components,feed[1..n_inputs].components, 471

out.components ARE_THE_SAME; 472

473

feed[1..n_inputs].state.Cpi[components], 474

out.state.Cpi[components] ARE_THE_SAME; 475

476

FOR i IN components CREATE 477

 cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 478

END; 479

480

SUM[(feed[i].Cp *feed[i].Ftot * (feed[i].T - To))|i IN [1..n_inputs]]= 481

out.Cp *out.Ftot * (out.T - To); 482

483

SUM[(feed[i].Ftot * feed[i].T / feed[i].P)|i IN [1..n_inputs]] = 484

out.Ftot * out.T / out.P; 485

486

 METHODS 487

 METHOD clear; 488

RUN feed[1..n_inputs].clear; 489

RUN out.clear; 490

To.fixed := FALSE; 491

 END clear; 492

493

 METHOD specify; 494

To.fixed := TRUE; 495

127 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

RUN feed[1..n_inputs].specify; 496

 END specify; 497

498

 METHOD seqmod; 499

To.fixed := TRUE; 500

 END seqmod; 501

502

 METHOD reset; 503

RUN clear; 504

RUN specify; 505

 END reset; 506

507

END mixer; 508

509

(* *** *) 510

511

MODEL splitter; 512

components IS_A set OF symbol_constant; 513

n_outputs IS_A integer_constant; 514

feed, out[1..n_outputs] IS_A molar_stream; 515

split[1..n_outputs] IS_A fraction; 516

517

components, feed.components, 518

out[1..n_outputs].components ARE_THE_SAME; 519

520

feed.state, 521

out[1..n_outputs].state ARE_THE_SAME; 522

523

FOR j IN [1..n_outputs] CREATE 524

out[j].Ftot = split[j]*feed.Ftot; 525

END; 526

527

SUM[split[1..n_outputs]] = 1.0; 528

529

 METHODS 530

 METHOD clear; 531

RUN feed.clear; 532

RUN out[1..n_outputs].clear; 533

split[1..n_outputs-1].fixed :=FALSE; 534

 END clear; 535

536

 METHOD specify; 537

RUN feed.specify; 538

split[1..n_outputs-1].fixed:=TRUE; 539

 END specify; 540

541

THE CODE 128

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

 METHOD seqmod; 542

split[1..n_outputs-1].fixed:=TRUE; 543

 END seqmod; 544

545

 METHOD reset; 546

RUN clear; 547

RUN specify; 548

 END reset; 549

END splitter; 550

551

(* *** *) 552

553

MODEL cheap_reactor; 554

components IS_A set OF symbol_constant; 555

input, output IS_A molar_stream; 556

low_turnover IS_A molar_rate; 557

stoich_coef[input.components] IS_A factor; 558

cost_factor IS_A cost_per_mole; 559

cost IS_A cost_per_time; 560

561

components,input.components, output.components ARE_THE_SAME; 562

input.state.Cpi[components], 563

output.state.Cpi[components] ARE_THE_SAME; 564

565

FOR i IN input.components CREATE 566

 output.f[i] = input.f[i] + stoich_coef[i]*low_turnover; 567

END; 568

569

input.T = output.T; 570

(* ideal gas constant volume *) 571

input.Ftot * input.T / input.P = output.Ftot * output.T/output.P; 572

573

cost = cost_factor * low_turnover; 574

575

 METHODS 576

 METHOD clear; 577

RUN input.clear; 578

RUN output.clear; 579

low_turnover.fixed:= FALSE; 580

stoich_coef[input.components].fixed:= FALSE; 581

cost.fixed := FALSE; 582

cost_factor.fixed := FALSE; 583

 END clear; 584

585

 METHOD specify; 586

RUN input.specify; 587

129 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

low_turnover.fixed:= TRUE; 588

stoich_coef[input.components].fixed:= TRUE; 589

cost_factor.fixed := TRUE; 590

 END specify; 591

592

 METHOD seqmod; 593

low_turnover.fixed:= TRUE; 594

stoich_coef[input.components].fixed:= TRUE; 595

cost_factor.fixed := TRUE; 596

 END seqmod; 597

598

 METHOD reset; 599

RUN clear; 600

RUN specify; 601

 END reset; 602

603

END cheap_reactor; 604

605

(* *** *) 606

607

MODEL expensive_reactor; 608

609

components IS_A set OF symbol_constant; 610

input, output IS_A molar_stream; 611

high_turnover IS_A molar_rate; 612

stoich_coef[input.components] IS_A factor; 613

cost_factor IS_A cost_per_mole; 614

cost IS_A cost_per_time; 615

616

components,input.components, output.components ARE_THE_SAME; 617

618

input.state.Cpi[components], 619

output.state.Cpi[components] ARE_THE_SAME; 620

621

FOR i IN input.components CREATE 622

 output.f[i] = input.f[i] + stoich_coef[i]*high_turnover; 623

END; 624

625

input.T = output.T; 626

(* ideal gas constant volume *) 627

input.Ftot * input.T / input.P = output.Ftot * output.T/output.P; 628

629

cost = cost_factor * high_turnover; 630

631

 METHODS 632

633

THE CODE 130

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

 METHOD clear; 634

RUN input.clear; 635

RUN output.clear; 636

high_turnover.fixed:= FALSE; 637

stoich_coef[input.components].fixed:= FALSE; 638

cost.fixed := FALSE; 639

cost_factor.fixed := FALSE; 640

 END clear; 641

642

 METHOD specify; 643

RUN input.specify; 644

high_turnover.fixed:= TRUE; 645

stoich_coef[input.components].fixed:= TRUE; 646

cost_factor.fixed := TRUE; 647

 END specify; 648

649

 METHOD seqmod; 650

high_turnover.fixed:= TRUE; 651

stoich_coef[input.components].fixed:= TRUE; 652

cost_factor.fixed := TRUE; 653

 END seqmod; 654

655

 METHOD reset; 656

RUN clear; 657

RUN specify; 658

 END reset; 659

660

END expensive_reactor; 661

662

(* *** *) 663

664

MODEL flash; 665

components IS_A set OF symbol_constant; 666

feed,vap,liq IS_A molar_stream; 667

alpha[feed.components] IS_A factor; 668

ave_alpha IS_A factor; 669

vap_to_feed_ratio IS_A fraction; 670

671

components,feed.components, 672

vap.components, 673

liq.components ARE_THE_SAME; 674

675

feed.state.Cpi[components], 676

vap.state.Cpi[components], 677

liq.state.Cpi[components] ARE_THE_SAME; 678

679

131 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

vap_to_feed_ratio*feed.Ftot = vap.Ftot; 680

681

FOR i IN feed.components CREATE 682

cmb[i]: feed.f[i] = vap.f[i] + liq.f[i]; 683

eq[i]: vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i]; 684

END; 685

686

feed.T = vap.T; 687

feed.T = liq.T; 688

feed.P = vap.P; 689

feed.P = liq.P; 690

691

 METHODS 692

693

 METHOD clear; 694

RUN feed.clear; 695

RUN vap.clear; 696

RUN liq.clear; 697

alpha[feed.components].fixed:=FALSE; 698

ave_alpha.fixed:=FALSE; 699

vap_to_feed_ratio.fixed:=FALSE; 700

 END clear; 701

702

 METHOD specify; 703

RUN feed.specify; 704

alpha[feed.components].fixed:=TRUE; 705

vap_to_feed_ratio.fixed:=TRUE; 706

 END specify; 707

708

 METHOD seqmod; 709

alpha[feed.components].fixed:=TRUE; 710

vap_to_feed_ratio.fixed:=TRUE; 711

 END seqmod; 712

713

 METHOD reset; 714

RUN clear; 715

RUN specify; 716

 END reset; 717

END flash; 718

719

Next, the modelflowsheet is presented. This model represents one of
the applications of theWHEN statement. Namely, selecting among
alternative configurations of the problem. Note that in each of the
WHEN statements we define the conditional existence of complete
ASCEND models. A specific combination for each of the conditional

THE CODE 132

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

variables -boolean_vars in the example- will define a specific
configuration of the problem. Once a configuration has been selected, it
will be kept until the user decides to change it. Note that the user does
not have to recompile the model to switch among alternative
configurations. The reconfiguration of the system can be done
automatically by simply changing the values of the conditional
variables. An obvious application of this would be the synthesis of
process networks. While running the scriptwhen_demo.a4s, note the
changes in the number of active equations, active variables and fixed
variables for the different configurations. For example, the
configuration defined by one of the feeds, two single-stage
compressors and one of the reactors contains 169 active equations.

(* *** *) 720

721

722

MODEL flowsheet; 723

724

(* units *) 725

726

f1 IS_A cheap_feed; 727

f2 IS_A expensive_feed; 728

729

c1 IS_A single_compressor; 730

s1 IS_A staged_compressor; 731

732

c2 IS_A single_compressor; 733

s2 IS_A staged_compressor; 734

735

r1 IS_A cheap_reactor; 736

r2 IS_A expensive_reactor; 737

738

co1,co2 IS_A cooler; 739

h1,h2,h3 IS_A heater; 740

fl1 IS_A flash; 741

sp1 IS_A splitter; 742

m1 IS_A mixer; 743

744

(* boolean variables *) 745

746

select_feed1 IS_A boolean_var; 747

select_single1 IS_A boolean_var; 748

select_cheapr1 IS_A boolean_var; 749

select_single2 IS_A boolean_var; 750

751

(* define sets *) 752

133 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

753

m1.n_inputs :==2; 754

sp1.n_outputs :== 2; 755

756

(* wire up flowsheet *) 757

758

f1.stream, f2.stream, c1.input, s1.input ARE_THE_SAME; 759

c1.output, s1.output, m1.feed[2] ARE_THE_SAME; 760

m1.out,co1.input ARE_THE_SAME; 761

co1.output, h1.input ARE_THE_SAME; 762

h1.output, r1.input, r2.input ARE_THE_SAME; 763

r1.output, r2.output,co2.input ARE_THE_SAME; 764

co2.output, fl1.feed ARE_THE_SAME; 765

fl1.liq, h2.input ARE_THE_SAME; 766

fl1.vap, sp1.feed ARE_THE_SAME; 767

sp1.out[1], h3.input ARE_THE_SAME; 768

sp1.out[2],c2.input, s2.input ARE_THE_SAME; 769

c2.output, s2.output,m1.feed[1] ARE_THE_SAME; 770

771

772

(* Conditional statements *) 773

774

WHEN (select_feed1) 775

 CASE TRUE: 776

USE f1; 777

 CASE FALSE: 778

USE f2; 779

END; 780

781

WHEN (select_single1) 782

 CASE TRUE: 783

USE c1; 784

 CASE FALSE: 785

USE s1; 786

END; 787

788

WHEN (select_cheapr1) 789

 CASE TRUE: 790

USE r1; 791

 CASE FALSE: 792

USE r2; 793

END; 794

795

WHEN (select_single2) 796

 CASE TRUE: 797

USE c2; 798

THE CODE 134

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

 CASE FALSE: 799

USE s2; 800

END; 801

802

803

 METHODS 804

 METHOD clear; 805

RUN f1.clear; 806

RUN f2.clear; 807

RUN c1.clear; 808

RUN c2.clear; 809

RUN s1.clear; 810

RUN s2.clear; 811

RUN co1.clear; 812

RUN co2.clear; 813

RUN h1.clear; 814

RUN h2.clear; 815

RUN h3.clear; 816

RUN r1.clear; 817

RUN r2.clear; 818

RUN fl1.clear; 819

RUN sp1.clear; 820

RUN m1.clear; 821

 END clear; 822

823

 METHOD seqmod; 824

RUN c1.seqmod; 825

RUN c2.seqmod; 826

RUN s1.seqmod; 827

RUN s2.seqmod; 828

RUN co1.seqmod; 829

RUN co2.seqmod; 830

RUN h1.seqmod; 831

RUN h2.seqmod; 832

RUN h3.seqmod; 833

RUN r1.seqmod; 834

RUN r2.seqmod; 835

RUN fl1.seqmod; 836

RUN sp1.seqmod; 837

RUN m1.seqmod; 838

 END seqmod; 839

840

 METHOD specify; 841

RUN seqmod; 842

RUN f1.specify; 843

RUN f2.specify; 844

135 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

 END specify; 845

846

 METHOD reset; 847

RUN clear; 848

RUN specify; 849

 END reset; 850

END flowsheet; 851

852

853

(* *** *) 854

855

856

MODEL test_flowsheet REFINES flowsheet; 857

858

f1.stream.components :== [‘A’,’B’,’C’,’D’]; 859

860

 METHODS 861

 METHOD values; 862

RUN reset; 863

 (* Initial configuration *) 864

select_feed1 := TRUE; 865

select_single1 := TRUE; 866

select_cheapr1 := TRUE; 867

select_single2 := TRUE; 868

869

 (* values of fixed variables *) 870

f1.stream.state.Cpi[‘A’] := 0.04 {BTU/mole/K}; 871

f1.stream.state.Cpi[‘B’] := 0.05 {BTU/mole/K}; 872

f1.stream.state.Cpi[‘C’] := 0.06 {BTU/mole/K}; 873

f1.stream.state.Cpi[‘D’] := 0.055 {BTU/mole/K}; 874

875

co1.heat_removed := 100 {BTU/s}; 876

co1.cost_factor := 0.7e-06 {dollar/kJ}; 877

878

h1.heat_supplied := 200 {BTU/s}; 879

h1.cost_factor := 8e-06 {dollar/kJ}; 880

881

co2.heat_removed := 150 {BTU/s}; 882

co2.cost_factor := 0.7e-06 {dollar/kJ}; 883

884

fl1.alpha[‘A’] := 12.0; 885

fl1.alpha[‘B’] := 10.0; 886

fl1.alpha[‘C’] := 1.0; 887

fl1.alpha[‘D’] := 6.0; 888

fl1.vap_to_feed_ratio :=0.9; 889

fl1.ave_alpha:= 5.0; 890

THE CODE 136

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/when_model.fm5

891

h2.heat_supplied := 180 {BTU/s}; 892

h2.cost_factor := 8e-06 {dollar/kJ}; 893

894

sp1.split[1] :=0.05; 895

896

h3.heat_supplied := 190 {BTU/s}; 897

h3.cost_factor := 8e-06 {dollar/kJ}; 898

899

m1.To := 298 {K}; 900

901

f1.cost_factor := 0.026 {dollar/kg_mole}; 902

f2.cost_factor := 0.033 {dollar/kg_mole}; 903

904

c1.cost_factor := 8.33333e-06 {dollar/kJ}; 905

c1.pressure_rate := 2.5; 906

907

s1.cost_factor_work := 8.33333e-06 {dollar/kJ}; 908

s1.cost_factor_heat := 0.7e-06 {dollar/kJ}; 909

s1.pressure_rate := 2.5; 910

911

r1.stoich_coef[‘A’]:=-1; 912

r1.stoich_coef[‘B’]:=-1; 913

r1.stoich_coef[‘C’]:=1; 914

r1.stoich_coef[‘D’]:=0; 915

r1.low_turnover := 0.0069 {kg_mole/s}; 916

917

r2.stoich_coef[‘A’]:=-1; 918

r2.stoich_coef[‘B’]:=-1; 919

r2.stoich_coef[‘C’]:=1; 920

r2.stoich_coef[‘D’]:=0; 921

r2.high_turnover := 0.00828 {kg_mole/s}; 922

923

924

c2.cost_factor := 8.33333e-06 {dollar/kJ}; 925

c2.pressure_rate := 1.5; 926

927

s2.cost_factor_work := 8.33333e-06 {dollar/kJ}; 928

s2.cost_factor_heat := 0.7e-06 {dollar/kJ}; 929

s2.pressure_rate := 1.5; 930

 END values; 931

932

 METHOD configuration2; 933

(* alternative configuration *) 934

select_feed1 := FALSE; 935

select_single1 := FALSE; 936

137 A CONDITIONAL MODELING EXAMPLE: REPRESENTING A

Last modified: September 26, 1997 4:22 pm

select_cheapr1 := FALSE; 937

select_single2 := FALSE; 938

 END configuration2; 939

940

 METHOD configuration3; 941

(* alternative configuration *) 942

select_feed1 := FALSE; 943

select_single1 := TRUE; 944

select_cheapr1 := TRUE; 945

select_single2 := FALSE; 946

 END configuration3; 947

END test_flowsheet; 948

(* *** *) 949

THE PROBLEM DESCRIPTION 138

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

CHAPTER18 A SIMPLE CHEMICAL ENGINEERING

FLOWSHEETINGEXAMPLE

In this example we shall examine a model for a simple chemical
engineering process flowsheet. The code listed below exists in the file
in the ASCEND examples subdirectory entitledsimple_fs.asc. Except
for some formatting changes to make it more presentable here, it is
exactly as it is in the library version. Thus you could run this example
by loading this file and using it and its corresponding scriptsimple_fs.s.

18.1 THE PROBLEM DESCRIPTION

This model is of a simple chemical engineering flowsheet. Studying it
will help to see how one constructs more complex models in ASCEND.
Models for more complex objects are typically built out of previously
defined types each of which may itself be built of previously defined
parts, etc. A flowsheet could, for example, be built of units and
streams. A distillation column could itself be built out of trays and
interconnecting streams.

Lines 40 to 56 in the code below give a diagram of the flowsheet we
would like to model. This flowsheet is to convert species B into species
C. B undergoes the reaction.

 B-->C

The available feed contains 5 mole percent of species A, a light
contaminant that acts as an inert in the reactor. We pass this feed into
the reactor where only about 7% of B converts per pass. Species C is
much less volatile than B which is itself somewhat less volatile than A.
Relative volatilities are 12, 10 and 1 respectively for A, B and C.
Species A will build up if we do not let it escape from the system. We
propose to do this by bleeding off a small portion (say 1 to 2%) of the B
we recover and recycle back to the reactor.

The flowsheet contains a mixer where we mix the recycle with the feed,
a reactor, a flash unit, and a stream splitter where we split off and
remove some of the recycled species B contaminated with species A

139 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

Our goal is to determine the impact of the bleed on the performance of
this flowsheet. We would also like to see if we can run the flash unit to
get us fairly pure C as a bottom product from it.

The first type definitions we need for our simple flowsheet are for the
variables we would like to use in our model. The ones needed for this
example are all in the file atoms.a4l. Thus we will need to load
atoms.a4l before we load the file containing the code for this model.

The following is the code for this model. We shall intersperse
comments on the code within it.

18.2 THE CODE

As the code is in our ASCEND models directory, it has header
information that we require of all such files included as one large
comment extending over several lines. Comments are in the form (*
comment *).

To assure that appropriate library files are loaded first, ASCEND has
the REQUIRE statement, such as appears on line 61:

REQUIRE atoms.a4l

This statement causes the system to load the fileatoms.a4l before
continuing with the loading of this file.atoms.a4l in turn has a require
statement at its beginning to causesystem.a4l to be loaded before it is.

(***\ 1

 simple_fs.asc 2

 by Arthur W. Westerberg 3

 Part of the Ascend Library 4

5

This file is part of the Ascend modeling library. 6

7

Copyright (C) 1994 8

9

The Ascend modeling library is free software; you can redistribute 10

it and/or modify it under the terms of the GNU General Public License as 11

published by the Free Software Foundation; either version 2 of the 12

License, or (at your option) any later version. 13

14

The Ascend Language Interpreter is distributed in hope that it will be 15

useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 16

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17

THE CODE 140

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

General Public License for more details. 18

19

You should have received a copy of the GNU General Public License along 20

with the program; if not, write to the Free Software Foundation, Inc., 21

675 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. 22

23

Use of this module is demonstrated by the associated script file 24

simple_fs.s. 25

***) 26

27

(***\ 28

 $Date: 97/02/20 18:54:21 $ 29

 $Revision: 1.5 $ 30

 $Author: mthomas $ 31

 $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/examples/

simple_fs.asc,v $ 32

***) 33

(* 34

35

The following example illustrates equation based modeling using the 36

ASCEND system. The process is a simple recycle process. 37

38

39

40

 ------- 41

 | | 42

 ----------------------| split |----> purge 43

 | | | 44

 | ------- 45

 | ^ 46

 v | 47

 ----- --------- ------- 48

 | | | | | | 49

 ----->| mix |--->| reactor |--->| flash | 50

 | | | | | | 51

 ----- --------- ------- 52

 | 53

 | 54

 -----> C 55

56

This model requires: “system.a4l” 57

“atoms.a4l” 58

*) 59

60

REQUIRE atoms.a4l 61

141 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

The first model we shall define is for defining a stream. In the
document entitled ****link to **** Equation-based Process
Modeling**** we argued the need to define a stream by maximizing
the use of intensive variables and the equations interrelating them. Our
problem here requires only the molar flows for the components as the
problem definition provides us with all the physical properties as
constants. Nowhere for this simple model do we seem to need
temperatures, fugacities, etc. To maximize the use of intensive
variables, we will use mole fractions and total molar flow to
characterize a stream. We must include the equation that says the mole
fractions add to unity. Our first model we callmixture.

(* *** *) 62

63

MODEL mixture; 64

65

components IS_A set OF symbol_constant; 66

y[components] IS_A fraction; 67

68

SUM[y[i] | i IN components] = 1.0; 69

70

METHODS 71

METHOD clear; 72

y[components].fixed := FALSE; 73

END clear; 74

75

METHOD specify; 76

y[components].fixed := TRUE; 77

y[CHOICE[components]].fixed := FALSE; 78

END specify; 79

80

METHOD reset; 81

RUN clear; 82

RUN specify; 83

END reset; 84

85

END mixture; 86

87

Line 66 of the model for mixture defines a set of symbol constants. We
will later include in this set one symbol constant giving a name for each
of the species in the problem (A, B and C). Line 67 defines one mole
fraction variable for each element in the set of components, while line
69 says these mole fractions must add to 1.0.

THE CODE 142

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

We add a methods section to our model to handle the flag setting which
we shall need when making the problem well-posed -- i.e., as a problem
having an equal number of unknowns as equations. We first have a
method called clear which resets all the “fixed” flags for all the
variables in this model to FALSE. This method puts the problem into a
known state (all flags are FALSE). The second method is our selection
of variables that we wish to fix if we were to solve the equations
corresponding to a mixture model. There is only one equation among
all the mole fraction variables so we set all but one of the flags to
TRUE. The CHOICE function picks arbitrariliy one of the members of
the setcomponents. For that element, we reset the fixed flag to FALSE,
meaning that this one variable will be computed in terms of the values
given to the others.

The reset method is useful as it runs first the clear method to put an
instance of a mixture model into a known state with respect to its fixed
flags, followed by runing the specify method to set all but one of the
fixed flags to TRUE.

These methods are not needed to create our model. To include them is
a matter of modeling style, a style we consider to be good practice. The
investment into writing these methods now has always been paid back
in reducing the time we have needed to debug our final models.

The next model we write is for a stream, a model that will include a part
we callstate which is an instance of the type mixture.

(* *** *) 88

89

MODEL molar_stream; 90

91

components IS_A set OF symbol_constant; 92

state IS_A mixture; 93

Ftot,f[components]IS_A molar_rate; 94

95

components, state.componentsARE_THE_SAME; 96

97

FOR i IN components CREATE 98

f_def[i]: f[i] = Ftot*state.y[i]; 99

END; 100

101

METHODS 102

103

METHOD clear; 104

RUN state.clear; 105

Ftot.fixed := FALSE; 106

143 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

f[components].fixed:= FALSE; 107

END clear; 108

109

METHOD seqmod; 110

RUN state.specify; 111

state.y[components].fixed:= FALSE; 112

END seqmod; 113

114

METHOD specify; 115

RUN seqmod; 116

f[components].fixed:= TRUE; 117

END specify; 118

119

METHOD reset; 120

RUN clear; 121

RUN specify; 122

END reset; 123

124

METHOD scale; 125

FOR i IN components DO 126

f[i].nominal := f[i] + 0.1{mol/s}; 127

END; 128

Ftot.nominal := Ftot + 0.1{mol/s}; 129

END scale; 130

131

END molar_stream; 132

133

We define our stream over a set of components. We next include a part
which is of type mixture and call itstate as mentioned above. We also
include a variable entitledFtot which will represent the total molar
flowrate for the stream. For convenience -- as they are not needed, we
also include the molar flows for each of the species in the stream. We
realize that the components defined within the part calledstate and the
set of components we just defined for the stream should be the same
set. We force the two sets to be the same set with the
ARE_THE_SAME operator.

We next write the equations that define the individual molar flows for
the components in terms of their corresponding mole fractions and the
total flowrate for the stream. Note, the equations that says the mole
fractions add to unity in the definition of the state forces the total of the
individual flowrates to equal the total flowrate. Thus we do not need to
include an equation that says the molar flowrates for the species add up
to the total molar flowrate for the stream.

THE CODE 144

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

We again write the methods we need for handling flag setting. We
leave it to the reader to establish that the specify method produces a
well-posed instance involving the same number of variables to be
computed as equations available to compute them. The scale method is
there as we may occasionally wish to rescale the nominal values for our
flows to reflect the values we are computing for them. Poor scaling of
variables can lead to numerical difficulties for really large models. This
method is there to reduce the chance we will have poor scaling.

Note that the nominal values for the remaining variables -- the mole
fractions -- are unity. It does not need to be recomputed as unity is
almost always a good nominal value for each of them.

Our next model is for the first of our unit operations. Each of these will
be built of streams and equations that characterize their behavior. The
first models a mixer. It can have any number of feed streams, each of
which is a molar stream. We require the component set for each of the
feed streams and the output stream from the unit to be the same set.
Finally we write a component material balance for each of the species
in the problem, where we sum the flows in each of the feeds to give the
flow in the output stream,out.

(* *** *) 134

135

MODEL mixer; 136

137

n_inputs IS_A integer_constant; 138

feed[1..n_inputs], out IS_A molar_stream; 139

140

feed[1..n_inputs].components, 141

out.components ARE_THE_SAME; 142

143

FOR i IN out.components CREATE 144

cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]]; 145

END; 146

147

METHODS 148

149

METHOD clear; 150

RUN feed[1..n_inputs].clear; 151

RUN out.clear; 152

END clear; 153

154

METHOD seqmod; 155

END seqmod; 156

157

145 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

METHOD specify; 158

RUN seqmod; 159

RUN feed[1..n_inputs].specify; 160

END specify; 161

162

METHOD reset; 163

RUN clear; 164

RUN specify; 165

END reset; 166

167

METHOD scale; 168

RUN feed[1..n_inputs].scale; 169

RUN out.scale; 170

END scale; 171

172

END mixer; 173

TheMETHOD clear sets all the fixed flags for the parts of this model to
false by running each of their clear methods (i.e., for all the feeds and
for the stream out). If this model had introduced any new variables,
their fixed flags would have been set to FALSE here.

We will implement the method to make the model well posed into two
parts:seqmod (stands for “sequential modular” which is the mindset we
use to get a unit well-posed) andspecify. The first we shall use within
any unit operation to fix exactly enough fixed flags for a unit such that,
if we also make the feed streams to it well-posed, the unit will be well-
posed. For a mixer unit, the output stream results simply from mixing
the input streams; there are no other variables to set other than those for
the feeds. Thus theseqmod method is empty. It is here for consistency
with the other unit operation models we write next. TheMETHOD
specify makes this model well-posed by calling theseqmod method and
then thespecify method for each of the feed streams. No other flags
need be set to make the model well-posed.

METHOD reset simply runsclear followed byspecify. Running this
sequence of method will make the problem well-posed no matter which
of the fixed flags for it are set to TRUE before runningreset. Finally,
flowrates can take virtually any value so we can include ascale method
to scale the flows based on their current values.

The next model is for a very simple ‘degree of conversion’ reactor. The
model defines a turnover rate which is the rate at which the reaction as
written proceeds (e.g., in moles/s). For example, here our reaction will
be B --> C. A turnover rate of 3.7 moles/s would mean that 3.7 moles/s
of B would convert to 3.7 moles/s of C. The vector stoich_coef has one

THE CODE 146

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

entry per component. Here there will be three components when we
test this model so the coefficients would be 0, -1, 1 for the reaction

0 A + (-1) B + (+1) C = 0.

Reactants have a negative coefficient, reactants a positive one. The
material balance to compute the flow out for each of the components
sums the amount coming in plus that created by the reaction.

(* *** *) 174

175

MODEL reactor; 176

177

feed, out IS_A molar_stream; 178

feed.components, out.components ARE_THE_SAME; 179

180

turnover IS_A molar_rate; 181

stoich_coef[feed.components]IS_Afactor; 182

183

FOR i IN feed.components CREATE 184

out.f[i] = feed.f[i] + stoich_coef[i]*turnover; 185

END; 186

187

METHODS 188

189

METHOD clear; 190

RUN feed.clear; 191

RUN out.clear; 192

turnover.fixed := FALSE; 193

stoich_coef[feed.components].fixed := FALSE; 194

END clear; 195

196

METHOD seqmod; 197

turnover.fixed := TRUE; 198

stoich_coef[feed.components].fixed := TRUE; 199

END seqmod; 200

201

METHOD specify; 202

RUN seqmod; 203

RUN feed.specify; 204

END specify; 205

206

METHOD reset; 207

RUN clear; 208

RUN specify; 209

END reset; 210

147 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

211

METHOD scale; 212

RUN feed.scale; 213

RUN out.scale; 214

turnover.nominal := turnover.nominal+0.0001 {kg_mole/s}; 215

END scale; 216

217

END reactor; 218

219

TheMETHOD clear first directs all the parts of the reactor to run their
clear methods. Then it sets the fixed flags for all variables introduced
in this model to FALSE.

Assume the feed to be known. We introduced one stoichiometric
coefficient for each component and a turnover rate. To make the output
stream well-posed, we would need to compute the flows for each of the
component flows leaving. That suggests the material balances we
wrote are all needed to compute these flows. We would, therefore, need
to set one fix flag to TRUE for each of the variables we introduced,
which is what we do in theMETHOD seqmod. Now when we run
seqmod and then thespecify method for the feed, we will have made
this model well-posed, which is what we do in theMETHOD specify.

The flash model that follows is a constant relative volatility model. Try
reasoning why the methods attached are as they are.

(* *** *) 220

221

MODEL flash; 222

223

feed,vap,liqIS_Amolar_stream; 224

225

feed.components, 226

vap.components, 227

liq.components ARE_THE_SAME; 228

229

alpha[feed.components], 230

ave_alpha IS_A factor; 231

232

vap_to_feed_ratio IS_A fraction; 233

234

vap_to_feed_ratio*feed.Ftot = vap.Ftot; 235

236

FOR i IN feed.components CREATE 237

cmb[i]: feed.f[i] = vap.f[i] + liq.f[i]; 238

THE CODE 148

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

eq[i]: vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i]; 239

END; 240

241

METHODS 242

243

METHOD clear; 244

RUN feed.clear; 245

RUN vap.clear; 246

RUN liq.clear; 247

alpha[feed.components].fixed := FALSE; 248

ave_alpha.fixed := FALSE; 249

vap_to_feed_ratio.fixed := FALSE; 250

END clear; 251

252

METHOD seqmod; 253

alpha[feed.components].fixed := TRUE; 254

vap_to_feed_ratio.fixed := TRUE; 255

END seqmod; 256

257

METHOD specify; 258

RUN seqmod; 259

RUN feed.specify; 260

END specify; 261

262

METHOD reset; 263

RUN clear; 264

RUN specify; 265

END reset; 266

267

METHOD scale; 268

RUN feed.scale; 269

RUN vap.scale; 270

RUN liq.scale; 271

END scale; 272

273

END flash; 274

275

(* *** *) 276

277

The final unit operation model is the splitter. The trick here is to make
all the states for all the output streams the same as that of the feed. This
move makes the compositions all the same and introduces only one
equation to add those mole fractions to unity. The rest of the model
should be evident.

149 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

MODEL splitter; 278

279

n_outputs IS_A integer_constant; 280

feed, out[1..n_outputs] IS_A molar_stream; 281

split[1..n_outputs] IS_A fraction; 282

283

feed.components, out[1..n_outputs].components ARE_THE_SAME; 284

285

feed.state, 286

out[1..n_outputs].state ARE_THE_SAME; 287

288

FOR j IN [1..n_outputs] CREATE 289

out[j].Ftot = split[j]*feed.Ftot; 290

END; 291

292

SUM[split[1..n_outputs]] = 1.0; 293

294

METHODS 295

296

METHOD clear; 297

RUN feed.clear; 298

RUN out[1..n_outputs].clear; 299

split[1..n_outputs-1].fixed:=FALSE; 300

END clear; 301

302

METHOD seqmod; 303

split[1..n_outputs-1].fixed:=TRUE; 304

END seqmod; 305

306

METHOD specify; 307

RUN seqmod; 308

RUN feed.specify; 309

END specify; 310

311

METHOD reset; 312

RUN clear; 313

RUN specify; 314

END reset; 315

316

METHOD scale; 317

RUN feed.scale; 318

RUN out[1..n_outputs].scale; 319

END scale; 320

321

END splitter; 322

323

THE CODE 150

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

(* *** *) 324

325

Now we shall see the value of writing all those methods for our unit
operations (and for the models that we used in creating them). We
construct our flowsheet by saying it includes a mixer, a reactor, a flash
unit and a splitter. The mixer will have two inputs and the splitter two
outputs. The next few statements configure our flowsheet by making,
for example, the output stream from the mixer and the feed stream to
the reactor be the same stream.

The methods are as simple as they look. This model does not introduce
any variables nor any equations that are not introduced by its parts. We
simply ask the parts to clear their variable fixed flags.

To make the flowsheet well-posed, we ask each unit to set sufficient
fixed flags to TRUE to make itself well posed were its feed stream well-
posed (now you can see why we wanted to create the methodsseqmod
for each of the unit types.) Then the only streams we need to make
well-posed are the feeds to the flowsheet, of which there is only one.
The remaining streams come out of a unit which we can think of
computing the flows for it.

MODEL flowsheet; 326

327

m1 IS_A mixer; 328

r1 IS_A reactor; 329

fl1 IS_A flash; 330

sp1 IS_A splitter; 331

332

(* define sets *) 333

334

m1.n_inputs :==2; 335

sp1.n_outputs :==2; 336

337

(* wire up flowsheet *) 338

339

m1.out, r1.feed ARE_THE_SAME; 340

r1.out, fl1.feed ARE_THE_SAME; 341

fl1.vap, sp1.feed ARE_THE_SAME; 342

sp1.out[2], m1.feed[2] ARE_THE_SAME; 343

344

 METHODS 345

346

METHOD clear; 347

RUN m1.clear; 348

151 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

RUN r1.clear; 349

RUN fl1.clear; 350

RUN sp1.clear; 351

END clear; 352

353

METHOD seqmod; 354

RUN m1.seqmod; 355

RUN r1.seqmod; 356

RUN fl1.seqmod; 357

RUN sp1.seqmod; 358

END seqmod; 359

360

METHOD specify; 361

RUN seqmod; 362

RUN m1.feed[1].specify; 363

END specify; 364

365

METHOD reset; 366

RUN clear; 367

RUN specify; 368

END reset; 369

370

METHOD scale; 371

RUN m1.scale; 372

RUN r1.scale; 373

RUN fl1.scale; 374

RUN sp1.scale; 375

END scale; 376

377

END flowsheet; 378

379

(* *** *) 380

381

We have created a flowsheet model above. If you look at the reactor
model, we require the use specify the turnover rate for the reaction. We
may have no idea of a suitable turnover rate. What we may have an
idea about is the conversion of species B in the reactor; for example, we
may know that about 7% of the B entering the reactor may convert.
How can we alter our model to allow for us to say this about the reactor
and not be required to specify the turnover rate? In a sequential
modular flowsheeting system, we would use a “computational
controller.” We shall create a model here that gives us this same
functionality. Thus we call it a “controller.” There are many ways to
construct this model. We choose here to create a model here that has a
flowsheet as a part of it. We introduce a variable conv which will

THE CODE 152

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

indicate the fraction conversion of any one of the components which
we call the key_component here. For that component, we add a
material balance based on the fraction of it that will convert. We added
one new variable and one new equation so, if the flowsheet is well-
posed, so will our controller be well-posed. However, we want to
specify the conversion rather that the turnover rate. Thespecify method
first asks the flowsheet fs to make itself well-posed. Then it makes this
one trade: fixing conv and releasing the turnover rate.

MODEL controller; 382

383

fs IS_A flowsheet; 384

conv IS_A fraction; 385

key_components IS_A symbol_constant; 386

fs.r1.out.f[key_components] = (1 - conv)*fs.r1.feed.f[key_components]; 387

388

METHODS 389

390

METHOD clear; 391

RUN fs.clear; 392

conv.fixed:=FALSE; 393

END clear; 394

395

METHOD specify; 396

RUN fs.specify; 397

fs.r1.turnover.fixed:=FALSE; 398

conv.fixed:=TRUE; 399

END specify; 400

401

METHOD reset; 402

RUN clear; 403

RUN specify; 404

END reset; 405

406

METHOD scale; 407

RUN fs.scale; 408

END scale; 409

410

END controller; 411

412

(* *** *) 413

414

We now would like to test our models to see if they work. How can we
write test for them? We can create test models as we do below.

153 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

To test the flowsheet model, we create a test_flowsheet model that
refines our previously defined flowsheet model. To refine the previous
model, means this model includes all the statements made to define the
flowsheet model plus those statements that we now provide here. So
this model is a flowsheet but with it components specified to be ‘A’,
‘B’, and ‘C’. We add a new method calledvalues in which we specify
values for all the variables we intend to fix when we solve. We can also
provide values for other variables; these will be used as the initial
values for them when we start to solve. We see all the variables being
given values with the units specified. The units must be specified in
ASCEND. ASCEND will interpret the lack of units to mean the
variable is unitless. If it is not, then you will get a diagnostic from
ASCEND telling you that you have written a dimensionally
inconsistent relationship.

Note we specify the molar flows for the three species in the feed. Given
these flows, the equations for the stream will compute the total flow and
then the mole fractions for it. Thus the feed stream is fully specified
with these flows.

We look at the seqmod method for each of the units to see the variables
to which we need to give values here.

MODEL test_flowsheet REFINES flowsheet; 415

416

m1.out.components:==[‘A’,’B’,’C’]; 417

418

 METHODS 419

420

METHOD values; 421

m1.feed[1].f[‘A’] := 0.005 {kg_mole/s}; 422

m1.feed[1].f[‘B’] := 0.095 {kg_mole/s}; 423

m1.feed[1].f[‘C’] := 0.0 {kg_mole/s}; 424

425

r1.stoich_coef[‘A’] := 0; 426

r1.stoich_coef[‘B’] := -1; 427

r1.stoich_coef[‘C’] := 1; 428

r1.turnover := 3 {kg_mole/s}; 429

430

fl1.alpha[‘A’] := 12.0; 431

fl1.alpha[‘B’] := 10.0; 432

fl1.alpha[‘C’] := 1.0; 433

fl1.vap_to_feed_ratio := 0.9; 434

fl1.ave_alpha := 5.0; 435

436

sp1.split[1] := 0.01; 437

THE CODE 154

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/simple_fs_model.fm5

438

fl1.liq.Ftot:=m1.feed[1].f[‘B’]; 439

END values; 440

441

END test_flowsheet; 442

443

(* *** *) 444

445

Finally we would like to test our controller model. Again we write our
test model as a refinement of the model to be tested. The test model is,
therefore, a controller itself. We make our fs model inside our test
model into a test_flowsheet, making it a more refined type of part than
it was in the controller model. We can do this because the
test_controller model is a refinement of the flowsheet model which fs
was previously. A test_flowsheet is, as we said above, a flowsheet. We
create a values method by first running that we wrote for the
test_flowsheet model and then add a specification for the conversion of
B in the reactor.

MODEL test_controller REFINES controller; 446

447

fs IS_REFINED_TOtest_flowsheet; 448

key_components :==‘B’; 449

450

METHODS 451

452

METHOD values; 453

RUN fs.values; 454

conv := 0.07; 455

END values; 456

457

END test_controller; 458

459

(* *** *) 460

461

155 A SIMPLE CHEMICAL ENGINEERINGFLOWSHEETINGEX-

Last modified: September 26, 1997 4:23 pm

156

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/library_example_files.fm5

CHAPTER19 THE ASCENDPREDEFINED

COLLECTION OF MODELS

The ASCEND system has two subdirectories containing models we
and others have previously defined. We have labeled the first
subdirectorylibraries and the secondexamples. In thelibraries
subdirectory are several different files, each containing a number of
useful type definitions which we can use to construct larger models in
ASCEND. Theexamples subdirectory contains a number of complete
ASCEND models ready for us to execute. One can examine and
execute these examples when learning how to model in ASCEND.

system.a4l The file calledsystem.a4l in the libraries subdirectory must always be
loaded first in the ASCEND system. It is automatically loaded when
one starts the ASCEND system. However, thedelete all types
command will delete all type definitions including the ones in this file.
If you have deleted all types, always reload this file first using theRead
instruction in the Library tool set.

atoms.a4l The simplest collection of previously defined types are those which
define the kinds of constants, parameters and variables we are likely to
use in constructing an engineering or scientific model. A file called
atoms.a4l located in the libraries subdirectory has over 125 types of
constants, parameters and variables. Following are three of the
definitions it contains.

CONSTANT critical_compressibility REFINES

 real_constant DIMENSIONLESS; 1

2

UNIVERSAL CONSTANT speed_of_light 3

REFINES real_constant :== 1{LIGHT_C}; 4

5

ATOM volume REFINES solver_var 6

DIMENSION L^3 7

DEFAULT 100.0{ft^3}; 8

lower_bound := 0.0{ft^3}; 9

upper_bound := 1e50{ft^3}; 10

nominal := 100.0{ft^3}; 11

END volume; 12

157 THE ASCENDPREDEFINED COLLECTION OF MODELS

Last modified: September 26, 1997 4:36 pm

Note that the first and third include a statement of the dimensionality of
the item being defined. For example critical compressibility is
dimensionless while the dimensions for volume are L3 (i.e., length
cubed). The ASCEND system supports nine basic dimensions as
defined for the standards defining the SI system of units. Dimensions
differ from units in thatlength is a dimension whilefeet is a set of units
one may use to express a length. Dimensions in ASCEND are L
(length: typical units being ft, m), M (mass: kg, lbm), T (time: s, yr), E
(electric current: amp), Q (quantity: mole), TMP (temperature: K, R),
LUM (luminous intensity: candela), P (plane angle: radian) and S (solid
angle: steradian). We have also included the tenth dimension C
(currency: USdollar) so one can express cost. If you wish to express
cost in a variety of different currencies (e.g., USdollars, UKpounds),
you will have to define the conversion rates.

(See the manual entitled (****hyperlink to the document entitled ****
The ASCEND Language Syntax and Semantics for more information
on dimensionality and units.)

Typical use of
library files

One will typically create models in the ASCEND system by including
one or more of the library files available. Almost certainly the file
atoms.a4l will become a part of any engineering or scientific model.

It would be useful for you to view this and a few of the other library
files using a text editor such as xemacs to see what libraries we do have
available.

Examples and
scripts

The examples subdirectory in ASCEND has a number of complete
ASCEND models. Each model is in two parts: the .a4c file containing
the model definition and the .a4s file containing a script which one can
use to execute the model. An example is the model simple_fs.a4c along
with its script simple_fs.a4s.

Each of the example files indicates which of the library files one must
load and the order in which to load them before loading the example
file. If you fail to load a library file, you will experience a large number
of diagnostic messages indicating there are missing type definitions.

158

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

CHAPTER 20THE ASCEND IV LANGUAGE

SYNTAX AND SEMANTICS

Benjamin Allan1

Arthur W. Westerberg1

Department of Chemical Engineering
and the Engineering Design Research Center /
Institute for Complex Engineered Systems

Carnegie Mellon University

1. The ASCEND language has evolved from the combined efforts of several generations of users and imple-
mentors. We wish to particularly acknowledge the contributions of ASCEND III implementors Kirk Abbott, Tom Ep-
perly, Peter Piela, Boyd Safrit, Karl Westerberg, and Joe Zaher, and of the ASCEND IV crew: Vicente Rico-Ramirez,
Mark Thomas and Ken Tyner.

We shall present an informal description of the ASCEND IV language. Being informal, we shall
usually include examples and descriptions of the intended semantics along with the syntax of the
items. At times the inclusion of semantics will seem to anticipate later definitions. We do this
because we would also like this chapter to be used as a reference for the ASCEND language even
after one generally understands it. Often one will need to clarify a point about a particular item
and will not wish to have to search in several places to do so.

Syntax is the form or structure for the statements in ASCEND, where one worries about the exact
words one uses, their ordering, the punctuation, etc.Semantics describe the meaning of a
statement.

To distinguish between syntax and semantics, consider the statement

y IS_A fraction;

Rules on the syntax for this statement tell us we need a user supplied instance name,y, followed
by the ASCEND operatorIS_A , followed by a type name (fraction). The statement terminates
with a semicolon. The statement semantics says we are declaring the existence of an instance,

159 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

locally named y, of the type fraction as a part within the current model definition and it is to be
constructed when an instance of the current model definition is constructed.

The syntax for a computer language is often defined by using a Bachus-Naur formal (BNF)
description. The complete YACC and FLEX description of the language described (as presently
implemented) is available by FTP2 and via the World Wide Web3. The semantics of a very high
level modeling language such as ASCEND IV are generally much more restrictive than the
syntax. For this reason we do not include a BNF description in this paper. ASCEND IV is an
experiment. The language is under constant scrutiny and improvement, so this document is under
constant revision. Contact the authors for the latest version.

20.1 PRELIMINARIES

2. In the directory ftp.cs.cmu.edu:project/ascend/gnu-ascend/ see the file README.
3. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ascend/ftp/gnu-ascend/README

We will start off with some background information and some tips
that make the rest of the chapter easier to read. ASCEND is an
object-oriented (OO) language for hierarchical modeling that has
been somewhat specialized for mathematical models. Most of the
specialization is in the implementation and the user interface rather
than the language definition.

We feel the single most distinguishing feature of mathematical
models is that solving them efficiently requires that the solving
algorithms be able to address the entire problem either
simultaneously or in a decomposition of the natural problem
structure that the algorithm determines is best for the machine(s) in
use. In the ASCEND language object-orientation is used to
organize natural structures and make them easier to understand. It is
not used to hide the details of the objects. The user (or machine) is
free to ignore uninteresting details, and the ASCEND environment
provides tools for the runtime suppression of these.

ASCEND is beginning its 4th generation. Some features we will
describe are not yet implemented (some merely speculative) and
these are clearly marked (* 4+ *). Any feature not marked (* 4+
*)has been completely implemented, and thus any mismatch
between the description given here and the software we distribute is
a bug we want you to tell us about.

The syntax and semantics of ASCEND may seem at first a bit
unusual. However, do not be afraid to just try what comes naturally
if what we write here is unclear. The parser and compiler of
ASCEND IV really will help you get things right. Of course if what

PRELIMINARIES 160

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

we write here is unclear, please ask us about it because we aim to
continuously improve both this document and the language system
it describes.

We will describe, starting in Section 20.1.2, the higher level
concepts of ASCEND, but first some important punctuation rules.

ASCEND is cAsE
sensitive!

The keywords that are shown capitalized (or in lower case) in this
chapter are that way because ASCEND is case sensitive. IS_A is an
ASCEND keyword; isa, Is_a, and all the other permutations you
can think of are NOT equivalent to IS_A. In declaring new types of
models and variables the user is free to use any style of
capitalization he or she may prefer, however, they must remain
consistent or undefined types and instances will result.

This case restriction makes our code very readable, but hard to type
without a smart editor. We have kept the case-sensitivity because,
like all mathematicians, we find ourselves running out of good
variable names if we are restricted to a 26 letter alphabet. We have
developed smart add-ins for two UNIX editors, EMACS and vi, for
handling the upper case keywords and some other syntax elements.
The use of these editors is described in another chapter.

The ASCEND IV parser is very picky and pedantic. It also tries to
give helpful messages and occasionally even suggestions. New
users should just dive in and make errors, letting the system help
them learn how to avoid errors.

20.1.1 PUNCTUATION

This section covers both the punctuation that must be understood to
read this document and the punctuation of ASCEND code.

keywords: ASCEND keywords and type names are given in the left column in
bold format. It is generally clear from the main text which are
keywords and which are type names.

Minor items: Minor headings that are helpful in finding details are given in the
left column inunderline format.

Tips: Special notes and hints are sometimes placed on the left.

3: This indicates that what follows is specific to ASCEND IIIc and
may disappear in a future version of ASCEND IV. Generally
ASCEND IV will provide some equivalent functionality at 1/10th
of the ASCEND III price.

161 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

4 This indicates that what follows is specific to ASCEND IV
and may not be available in ASCEND IIIc. Generally ASCEND III
may provide some very klugey equivalent functionality, often at a
very high price in terms of increased compilation time or debugging
difficulty.

4+ ASCEND IV functionality that is not fully implemented at the time
of this writing. The precise syntax of the final implementation may
vary slightly from what is presented here. A revision of this
document will be made at the time of implementation.

LHS: Left Hand Side. Abbreviation used frequently.

RHS: Right Hand Side. Abbreviation used frequently.

Simple Names: In ASCEND simple names are made of the characters a through z,
A through Z, _, (*4+*: $). The underscore is used as a letter, but it
cannot be the first letter in a name. The “$” character is used
exclusively as the first character in the name of system defined
built-in parts. "$" is explained in more detail in Section 20.6.2.
Simple names should be no more than 80 characters long.

Compound names: Compound names are simple names strung together with dots (.).
See the description of "." below.

Groupings:

« » In documentation optional fields are surrounded by these markers.

(* *) Comment. *3* Anything inside these is a comment. Comments DO
NOT nest in ASCEND IIIc. Comments may extend over many
lines. *4* Comments DO nest in ASCEND IV.

() Rounded parentheses. Used to enclose arguments for functions or
models where the order of the arguments matters. Also used to
group terms in complex arithmetic, logical, or set expressions
where the order of operations needs to be specified.

Efficiency tip: The compiler can simplify relation definitions in a particularly
efficient manner if constants are grouped together.

{ } Curly braces. Used to enclose units. For example, 1 {kg_mole/s}.
Also used to enclose the body of annotations.Note: Curly braces
are also used in TCL, the language of the ASCEND user interface,
about which we will say more in another chapter.

PRELIMINARIES 162

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

[] Square brackets. Used to enclose sets or elements of sets.
Examples: my_integer_set :== [1,2,3], demonstrates the use of
square brackets in the assignment of a set. My_array[1]
demonstrates the use of square brackets in naming an array object
indexed over an integer set which includes the element 1.

. Dot. The dot is used, as in PASCAL and C, to construct the names
of nested objects. Examples: if object a has a part b, then the way to
refer to b is as a.b. Tray[1].vle shows a dot following a square
bracket; here Tray[1] has a part named vle.

.. Dot-dot or double dot. Integer range shorthand. For example,
my_integer_set :== [1,2,3] and my_integer_set :== [1..3] are
equivalent. If .. appears in a context requiring (), such as the
ALIASES/IS_A statement, then the range is expanded and ordered
as we would naturally expect.

: Colon. A separator used in various ways, principally to set the name
of an arithmetic relation apart from the definition.

:: Double colon. A separator used in the methods section for
accessing methods defined on types other than the type the method
is part of. Explained in Section 20.4.

; Semicolon. The separator of statements.

20.1.2 BASIC ELEMENTS

Boolean value TRUE or FALSE. Can’t get much simpler, eh? In the language
definition TRUE and FALSE do not map to 1 and 0 or any other
type of numeric value. (In the implementation, of course, they do.)

User interface tip: The ASCEND user interface programmers have found it very
convenient, however, to allow T/F, 1/0, Y/N, and other obvious
boolean conventions as interactive input when assigning boolean
values. We are lazy users.

Integer value A signed whole number up to the maximum that can be represented
by the computer on which one is running ASCEND.
MAX_INTEGER is machine dependent. Examples are:

123

-5

Typically, 2147483647. MAX_INTEGER

163 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

Real value ASCEND represents reals almost exactly as any other
mathematically oriented programming language does. The mantissa
has an optional negative sign followed by a string of digits and at
most one decimal point. The exponent is the lettere followed by an
integer. The number must not exceed the largest the computer is
able to handle. There can be no blank characters in a real.
MAX_REAL is machine dependent. The following are legitimate
reals in ASCEND:

-1

1.2

1.3e-2

7.888888e+34

.6E21

Normally MAX_REAL
is about 1.79E+308.

MAX_REAL

while the following are not:

1. 2 (*contains a blank within it*)

1.3e2.0 (*exponent has a decimal in it*)

+1.3 (*contains illegal unary + sign*)

Reals stored in SI units We store all real values as double precision numbers in the MKS
system of units. This eliminates many common errors in the
modeling of physical systems. Since we also place the burden of
scaling equations on system routines and a simple modeling
methodology, the internal units are not of concern to most users.

Dimensionality: Real values have dimensionality such as length/time for velocity.
Dimensionality is to be distinguished from the units such as ft/s.
ASCEND takes care of mapping between units and dimensions. A
value without units (this includes integer values) is taken to be
dimensionless. Dimensionality is built up from the following base
dimensions:

Name definitiontypical units

L lengthmeter, m

M masskilogram, kg

T timesecond, s

E electric currentampere, A

PRELIMINARIES 164

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

Q quantitymole, mole

TMP temperatureKelvin, K

LUM luminous intensitycandela, cd

P plane angleradian, rad

S solid anglesteradian, srad

C currencycurrency, CR

The atom and constant definitions in the library illustrate the use of
dimensionality.

Dimensions may be any combination of these symbols along with
rounded parentheses, (), and the operators *, ^ and /. Examples
includeM/T or M*L^2/T^2/TMP {this latter means
(M*(L^2)/(T^2))/TMP }. The second operand for the “to the
power” operator, ^, must be an integer value (e.g., -2 or 3) because
fractional powers are physically undefined.

If the dimensionality for a real value is undefined, then ASCEND
gives it a wild card dimensionality. If ASCEND can later deduce its
dimensionality from its use in a model definition it will do so. For
example consider the real variablea, supposea has wild card
dimensionality,b has dimensionality ofL/T. Then the statement:

Example of a
dimensionally consistent
equation.

a + b = 3 {ft/s};

requires thata have the same dimensionality as the other two terms,
namely,L/T. ASCEND will assign this dimensionality toa. The
user will be warned of dimensionally inconsistent equations.

Unit expression A unit expression may be composed of any combination of unit
names defined by the system and any numerical constants
combined with times (*), divide(/) and “to the power” (^) operators.
The RHS of ^ must be an integer. Parentheses can be used to group
subexpressions EXCEPT a divide operator may not be followed by
a grouped subexpression.

So, {kg/m/s} is fine, but {kg/(m*s)} is not. Although the two
expressions are mathematically equivalent, it makes the system
programming and output formatting easier to code and faster to
execute if we disallow expressions of the latter sort.

165 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

The units understood by the system are defined in Chapter 21. Note
that several “units” defined are really values of interesting constants
in SI, e.g. R :== 1{GAS_C} yields the correct value of the
thermodynamic gas constant. Users can define additional units.

Units A unit expression must be enclosed in curly braces {}. When a real
number is used in a mathematical expression in ASCEND, it must
have a set of units expressed with it. If it does not, ASCEND
assumes the number is dimensionless, which may not be the intent
of the modeler. An example is shown in the dimensionally
consistent equation above where the number 3 has the units {ft/s}
associated with it.

Examples:

{kg_mole/s/m} same as {(kg_mole/s)/m}

{m^3/yr}

{3/100*ft} same as {0.03*ft}

{s^-1}same as {1/s}

Illegal unit examples are

{m/(K*kg_mole)} grouped subexpression used in denominator (should
be written {m/K/kg_mole})
{m^3.5} power must be integer.

Symbol Value The format for a symbol is that of an arbitrary character string
enclosed between two single quotes. There is no way to embed a
single quote in a symbol: we are not in the escape sequence
business at this time. The following are legal symbols in ASCEND:

’H2O'

’r1'

’bill said,”foo” to who?’

while the following are not legal symbol values:

"ethanol" (double quotes not allowed)

water (no single quotes given)

’i can’t do this’ (no embedded quotes)

There is an arbitrary upper limit to the number of characters in a
symbol (something like 10,000) so that we may detect a missing
close quote in a bad input file without crashing.

PRELIMINARIES 166

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

Sets values Sets values are lists of elements, all of type integer_constant or all
of type symbol_constant, enclosed between square brackets []. The
following are examples of sets:

['methane', 'ethane', 'propane']

[1..5, 7, 15]

[2..n_stages]

[1, 4, 2, 1, 16]

[]

We will say more about
sets in 20.2.2.

The value range 1..5 is an allowable shorthand for the integers 1, 2,
3, 4 and 5 while the value range 2..n_stages (where n_stages must
be of type integer) means all integers from 2 to n_stages. If
n_stages is less than 2, then the third set is empty. The repeated
occurrence of 1 in the fourth set is ignored. The fifth set is the
empty set.

We use the termset in an almost pure mathematical sense. The
elements have no order. One can only ask two things of a set: (1) if
an element is a member of it and (2) its cardinality (CARD(set)).
Repeated elements used in defining a set are ignored. The elements
of setscannot themselves be sets in ASCEND; i.e., there can be no
sets of set.

Sets are unordered. A set of integers may appear to be ordered to the modeler as the
natural numbers have an order. However, it is the user imposing and
using the ordering, not ASCEND. ASCEND sees these integers as
elements in the set with NO ordering. Therefore, there are no
operators in ASCEND such as successor or precursor member of a
set.

Arrays An array is a list of instances indexed over a set. The instances are
all of the samebase type (as that is the only way they can be
defined). An individual member of a list may later be more refined
than the other members (we shall illustrate that possibility). The
following are arrays in ASCEND.

stage[1..n_stages]

y[components]

column[areas][processes]

wherecomponents, areas andprocesses are sets. For
examplecomponents could be the set of symbols
['ethylene','propylene'], areas the set of symbols
['feed_prep','prod_purification'] while
processes could be the set['alcohol_manuf',

167 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

'poly_propropylene_manuf'] . Note that the third example
(column) is a list of lists (the way that ASCEND permits a multiply
subscripted array).

The following are elements in the above arrays:

stage[1]

y['ethylene']

column['feed_prep'][alcohol_manuf']

provided that n_stages is 1 or larger.

There can be any number of subscripts for an array. We point out,
however, that in virtually every application of arrays requiring more
than two subscripts, there is usually a some underlying concept that
is much better modeled as an object than as part of a deeply
subscripted array. In the following jagged array example, there are
really the concepts of unit operation and stream that would be better
understood if made explicit.

Arrays can be jagged (* 4 *) Arrays can be ’sparse’ or jagged. For example:

process[1..3] IS_A set OF integer;

process[1] :== [2];

process[2] :== [7,5,3];

process[3] :== [4,6];

FOR i in [1..3] CREATE

FOR j IN process[i] CREATE

flow[i][j] IS_A mass;

END FOR;

END FOR;

flow is an array with six elements spread over three rows. Sparse
arrays of models and variables are new to ASCEND IV.

Arrays are also instances Each array is itself an object. That is, when you write
"a[1..2]IS_A real;" three objects get created:a[1] ,
a[2] , anda. a is anarray instance which has parts named [1]
and [2] that arereal instances. When a parameterized model
requires an array, you pass it the single itema, not the elements
a[1..2] .

Index variable One can introduce a variable as an index ranging over a set. Index
variables are local to the statements in which they occur. An
example of using an index variable is the following FOR statement:

PRELIMINARIES 168

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

FOR i IN components CREATE

VLE_equil[i]: y[i] = K[i]*x[i];

END FOR;

In this examplei implicitly is of the same type as the values in the
setcomponents. If another objecti exists in the model
containing the FOR loop, it is ignored while executing the
statements in that loop. This may cause unexpected results and the
compiler will generate warnings about loop index shadowed
variables.

Label: One can label statements which define arithmetic relationships
(objective functions, equalities, and inequalities) in ASCEND.
Labeling is highly recommended because it makes models much
more readable and more easily debugged. Labels are also necessary
for relations which are going to be used in conditional modeling or
differentiation functions. A label is a sequence of alphanumeric
characters ending in a colon. An example of a labeled equation is:

mass_balance: m_in = m_out;

An example of a labeled objective function is:

obj1: MAXIMIZE revenue - cost;

If a relation is defined within a FOR statement, it must have an
array indexed label so that each instance created using the statement
is distinguishable from the others. An example is:

FOR i IN components CREATE

equil[i]: y[i] = K[i]*x[i];

END FOR;

The ASCEND interactive user interface identifies relationships by
their labels. If one has not provided such a label, the system
generates the label:

modelname_equationnumber

wheremodelname andequationnumber are the name of the model
and the equation number in the model. An example is

mixture_14

for the unlabeled 14th relation in the mixture definition. If there is a
conflict caused with an existing name, the generated name has

169 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

enough letters added afterequationnumber to make it a unique
name. Remember that each model in a refinement hierarchy inherits
the equations of its less refined ancestors, so the first equation
appearing in the source code of a refining model may actually be
the nth relation in that model.

Lists Often in a statement one can include a list of names or expression.
A name list is one or more names where multiple list entries are
separated from each other by commas. Examples of a list of names
are:

T1, inlet_T, outlet_T

y[components], y_in

stage[1..n_stages]

Ordered lists: If the ordering of names in a list matters, that list is enclosed in ().
Order matters in: calling externally defined methods or models,
calling most real-valued functions, passing parameters to ASCEND
models or methods, and declaring the controlling parameters that
SELECT, SWITCH, and WHEN statements make decisions on.

20.1.3 BASIC CONCEPTS

Instances and types This is an opportune time to emphasize the distinction between the
termsinstance andtype. A type in ASCEND is what we define
when we declare an ASCEND model or atom. It is the formal
definition of the attributes (parts) and attribute default values that an
object will have if it is created using the type definition. Methods
are associated with types.

In ASCEND there are two meanings (closely related) of an
instance.

• An instance is anamed partthat exists within a type
definition.

• An instance is a compiled object.

If one is in the context of the ASCEND interface, the system
compiles an instance of a model type to create an object with which
one carries out computations. The system requires the user to give a
simple name for this simulation instance. This name given is then
the first part of the qualified name for all the parts of the compiled
object.

PRELIMINARIES 170

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

Implicit types It is possible to create an instance that does not have a
corresponding type definition in the library. The type of such an
instance is said to beimplicit. (Some people use the word
anonymous. However, no computable type is anonymous and the
implicit type of an instance is theoretically computable). The
simplest example of an implicit type is the type of an instance
compiled from the built-in definitioninteger_constant . For
example:

i, j IS_A integer_constant;

i:== 2;

j:== 3;

Instances i and j, though of the same formal type, are implicit type
incompatible because they have been assigned distinct values.

Instances which are either formally or implicitly type incompatible
cannot be merged. This will be discussed further in Section 20.3.

Parsing Most errors in the declaration of an ASCEND model can be caught
at parse time because the object type of any well-formed name in an
ASCEND definition can be resolved or proved ambiguous. We
cannot prove at parse time whether a specific array element will
exist, but we can know that should such an element exist, it must be
of the type with which the array is defined.

Ambiguity is warned about loudly because it is caused by either
misspelling or poor modeling style. The simplest example of
ambiguity follows.

Assume a type,stream , and a refinement ofstream ,
heat_stream , which adds the new variable H. Now, if we write:

MODEL mixer;

input[1..2] IS_A stream;

output IS_A heat_stream;

input[1].H + input[2].H = output.H;

END mixer;

We see the parser can find the definition ofH in the type
heat_stream , sooutput.H is well defined. The author of the
mixer model may intend to refine input[1] and input[2] to be
objects of different types, saysteam_stream and
electric_stream , where each defines anH suitable for use in
the equation. The parser cannot read the author’s mind, so it warns
that input[1].H and input[2].H are ambiguous in the mixer

171 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

definition. The mixer model is not highly reusable except by the
author, but sometimes reusability is not a high priority objective.
The mixer definition is allowed, but it may cause problems in
instantiation if the author has forgotten the assumption that is not
explicitly stated in the model and neglects to refine the input
streams appropriately.

Instantiation Creating an simulation based on a type definition is a multi-phase
process called compiling (or instantiation). When an instantiation
cannot be completed because some structural parameter (a
symbol_constant, real_constant, integer_constant, or set) does not
have a value there will be PENDING statements. The user interface
will warn that something is incomplete.

In phase 1 all statements that create instance structures or assign
constant values are executed. This phase theoretically requires an
infinite number of passes through the structural statements of a
definition. We allow a maximum of 5 and have never needed more
than 3. There may be pending statements at the end of phase 1. The
compiler or interface will issue warnings about pending statements,
starting with warnings about unassigned constants.

Phase 2 compiles as many real arithmetic relation definitions as
possible. Some relations may be impossible to compile because the
constants or sets they depend on do not have values assigned. Other
relations may be impossible because they reference variables that
do not exist. This is determined in a single pass.

Phase 3 compiles as many logical arithmetic relation definitions as
possible. Some relations may be impossible to compile because the
constants or sets they depend on do not have values assigned. Other
relations may be impossible because they reference real arithmetic
relations that do not exist. This is determined in a single pass.

Phase 4 compiles as many conditional programming statements
(WHENs) as possible. Some WHEN relations may be impossible to
compile because the discrete variables, models, or relations they
depend on do not exist. This is determined in a single pass.

Phase 5 executes the variable defaulting statements made in the
declarative section of each model IF AND ONLY IF there are no
pending statements from phases 1-4 anywhere in the simulation.

The first occurrence of each impossible statement will be explained
during a failed compilation. Impossible statements include:

DATA TYPE DECLARATIONS 172

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

• Relations containing undefinable variables (often
misspellings).

• Assignments that are dimensionally inconsistent or containing
mismatched types.

• Structure building or modifying statements that refer to model
parts which cannot exist or that require a type-incompatible
argument, refinement, or merge.

20.2 DATA TYPE DECLARATIONS

In the spectrum of OO languages, ASCEND is best considered as
being class-based, though it is rather more a hybrid. We have atom
and model definitions, calledtypes, and the compiled objects
themselves, calledinstances. ASCEND instances have a record of
what type they were constructed from.

Type qualifiers:

UNIVERSAL Universal is an optional modifier of all ATOM, CONSTANT. and
MODEL definitions. If UNIVERSAL precedes the definition, then
ALL instances of that type will actually refer to the first instance of
the type that is created. This saves memory and ensures global
consistency of data.

Examples of universal type definitions are

UNIVERSAL MODEL methane REFINES

generic_component_model;

UNIVERSAL CONSTANT circle_constant REFINES

real_constant :== 1{PI};

UNIVERSAL ATOM counter_1 REFINES integer;

Tip: Don’t use
UNIVERSAL variables in
relations.

It is important to note that, because variables must store
information about which relations they occur in, it is a very bad
idea to use UNIVERSAL typed variables in relations. The
construction and maintenance of the relation list becomes very
expensive for universal variables. UNIVERSAL constants are
alright to use, though, because there are no relation links for
constants.

173 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

20.2.1 MODELS

MODEL An ASCEND model has a declarative part and an optional
procedural part headed by the METHODS word. Models are
essentially containers for variables and relations. We will explain
the various statements that can be made within models in
Section 20.3 and Section 20.4.

Simple models:

foo MODEL foo;

(* statements about foo go here*)

METHODS

(* METHODs for foo go here*)

END foo;

bar MODEL bar REFINES foo;

(*additional statements about foo *)

METHODS

(* additional METHODs for bar *)

END bar;

Parameterized Models (* 4 *) Parameterizing models makes them easier to understand and
faster for the system to compile. The syntax for a parameterized
model vaguely resembles a function call in imperative languages,
but it is NOT. When constructing a reusable model, all the constants
that determine the sizes of arrays and other structures should be
declared in the parameter list so that

• the user knows what is required to reuse the model.

• the compiler knows what values must be set before it should
bother attempting to compile the model.

There is no reason that other items could not also go in the
parameter list, such as key variables which might be considered
inputs or outputs or control parameters in the mathematical
application of the model. A simple example of parameterization
would be:

column(n,s) MODEL column(

ntrays WILL_BE integer_constant;

components IS_A set of symbol_constant;

);

stage[1..ntrays] IS_A simple_tray;

END column;

DATA TYPE DECLARATIONS 174

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

flowsheet MODEL flowsheet;

tower4size IS_A integer_constant;

tower4size :== 22;

ct IS_A column(tower4size,[’c5’,’c6’]);

(* additional flowsheet statements *)

END flowsheet;

In this example, the column model takes the first argument, ntrays,
by reference. That is,ct.ntrays is an alias for the flowsheet
instancetower4size . tower4size must be compiled and
assigned a value before we will attempt to compile the column
model instance ct. The second argument is taken by value,
[’c5’,’c6’], and assigned to components, a column part that
was declared with IS_A in the parameter list. There is only one
name for this set, ct.components . Note that in the flowsheet
model there is no part that is a set of symbol_constant.

The use of parameters in ASCEND modeling requires some
thought, and we will present that set of thoughts in Section 20.5.
Beginners may wish to create new models without parameters until
they are comfortable using the existing parameterized library
definitions. Parameters are intended to support model reuse and
efficient compilation which are not issues in the very earliest phase
of developing novel models.

20.2.2 SETS

Arrays in ASCEND, as already discussed in Section 20.1.2, are
defined over sets. A set is simply an instance with a set value. The
elements of sets are NOT instances or sets.

Set Declaration: A set is made of either symbol_constants or integer_constants, so a
set object is declared in one of two ways:

my_integer_set IS_A set OF integer_constant;

or

my_symbol_set IS_A set OF symbol_constant;

:== A set is assigned a value like so:

my_integer_set :== [1,4];

The RHS of such an assignment must be either the name of another
set instance or an expression enclosed in square brackets and made
up of only set operators, other sets, and the names of

175 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

integer_constants or symbol_constants. Sets can only be assigned
once.

Set Operations

UNION[setlist] A function taken over a list of sets. The result is the set that includes
all the members of all the sets in the list. Note that the result of the
UNION operation is an unordered set and the argument order to the
union function does not matter. The syntax is:

+ UNION[list_of_sets]

A+B is shorthand for
UNION[A,B]

Consider the following sets for the examples to follow.

A := [1, 2, 3, 5, 9];

B := [2, 4, 6, 8];

Then UNION[A, B] is equal to the set [1, 2, 3, 4, 5, 6, 8, 9] which
equals [1..6, 8, 9] which equals [[1..9] - [7]].

INTERSECTION[] INTERSECTION[list of set expressions]. Finds the intersection
(and) of the sets listed.

* Equivalent to INTERSECTION[list_of_sets].

A*B is shorthand for
INTERSECTION[A,B]

For the sets A and B defined just above,INTERSECTION[A, B]
is the set [2] . The * shorthand for intersection is NOT
recommended for use except in libraries no one will look at.

Set difference: One can subtract one set from another. The result is the first set less
any members in the set union of the first and second set. The syntax
is

- first_set - second_set

For the sets A and B defined above, the set difference A - B is the
set [1, 3, 5, 9] while the set difference B - A is the set[4, 6, 8] .

CARD[set] Cardinality. Returns an integer constant value that is the number of
items in the set.

CHOICE[set] Choose one. The result of running the CHOICE function over a set
is an arbitrary (but consistent: for any set instance you always get
the same result) single element of that set.

DATA TYPE DECLARATIONS 176

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

RunningCHOICE[A] gives any member from the set A. The
result is a member, not a set. To make the result into a set, it must be
enclosed in square brackets. Thus[CHOICE[A]] is a set with a
single element arbitrarily chosen from the set A. Good modelers do
not leave modeling decisions to the compiler; they do not use
CHOICE[].

To reduce a set by one element, one can use the following

A_less_one IS_A set OF integer;

A_less_one :== A - [CHOICE[A]];

IN lhs IN rhs can only be well explained by examples. If lhs is a simple
and not previously defined name, it is created as a temporary loop
index which will take on the values of the rhs set definition. If lhs is
something that already exists, the result of lhs IN rhs is context
dependent; stare at the modelset_example below which
demonstrates both IN and SUCH_THAT. If you still are not
satisfied, you might examine [[westerbergksets]].

SUCH_THAT (* 4 *) Set expressions can be rather clever. We will give a detailed
example because unordered sets are unfamiliar to most people and
set arithmetic is quite powerful. In this example we see arrays of
sets and sparse arrays.

MODEL set_example;

(* we define a sparse matrix of reaction coefficient information

* and the species balance equations. *)

rxns IS_A set OF integer_constant;

rxns :== [1..3];

species IS_A set OF symbol_constant;

species :== ['A','B','C','D'];

reactants[rxns] IS_A set OF symbol_constant; (* species in each rxn_j *)

reactants[1] :== ['A','B','C'];

reactants[2] :== ['A','C'];

reactants[3] :== ['A','B','D'];

reactions[species] IS_A set OF integer_constant;

FOR i IN species CREATE (* rxns for each species i *)

reactions[i] :== [j IN rxns SUCH_THAT i IN reactants[j]];

END FOR;

(* Define sparse stoichiometric matrix. Values of eta_ij set later.*)

FOR j IN rxns CREATE

FOR i IN reactants[j] CREATE

(* eta_ij --> mole i/mole rxn j*)

177 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

eta[i][j] IS_A real_constant;

END FOR;

END FOR;

production[species] IS_A molar_rate;

rate[rxns] IS_A molar_rate; (* mole rxn j/time *)

FOR i IN species CREATE

gen_eqn[i]: production[i] =

SUM[eta[i][j]*rate[j] | j IN reactions[i]];

END FOR;

END set_example;

"|" is shorthand for
SUCH_THAT.

The array eta has only 8 elements, and we defined those elements in
a set for each reaction. The equation needs to know about the set of
reactions for a species i, and that set is calculated automatically in
the model’s first FOR/CREATE statement.

| The | symbol is the ASCEND III notation for SUCH_THAT. We
noted that "|" is often read as "for all", which is different in that "for
all" makes one think of a FOR loop where the loop index is on the
left of an IN operator. For example, the j loop in the SUM of
gen_eqn[i] above.

20.2.3 CONSTANTS

ASCEND supports real, integer, boolean and character string
constants. Constants in ASCEND do not have any attributes other
than their value. Constants are scalar quantities that can be assigned
exactly once. Constants may only be assigned using the :==
operator and the RHS expression they are assigned from must itself
be constant. Constants do not have subparts. Integer and symbol
constants may be used in determining the definitions of sets.

Explicit refinements of the built-in constant types may be defined as
exemplified in the description of real_constant. Implicit type
refinements may be done by instantiating an incompletely defined
constant and assigning its final value.

Sets could be considered constant because they are assigned only
once, however sets are described separately because they are not
quite scalar quantities.

real_constant Real number with dimensionality. Note that the dimensionality of a
real constant can be specified via the type definition without
immediately defining the value, as in the following pair of
definitions.

DATA TYPE DECLARATIONS 178

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

CONSTANT declaration
example:

CONSTANT molar_weight REFINES real_constant DIMENSION

M/Q;

CONSTANT hydrogen_weight REFINES molar_weight :==

1.004{g/mole};

integer_constant Integer number. Principally used in determining model structure. If
appearing in equations, integers are evaluated as dimensionless
reals. Typical use is inside a MODEL definition and looks like:

n_trays IS_A integer_constant;

n_trays :== 50;

tray[1..n_trays] IS_A vl_equilibrium_tray;

symbol_constant Object with a symbol value. May be used in determining model
structure.

boolean_constant Logical value. May be used in determining model structure.

Setting constants

:== Constant and set assignment operator.

It is suggested, but not
required, that names of all
types that refine the built-
in constant types have
names that end in
_constant.

LHS_list :== RHS;

Here it is required that the one or more items in the LHS be of the
same constant type and that RHS is a single-valued expression
made up of values, operators, and other constants. The :== is used
to make clear to both the user and the system what scalar objects
are constants.

20.2.4 VARIABLES

There are four built-in types which may be used to construct
variables: symbol, boolean, integer, and real. At this time symbol
types have special restrictions. Refinements of these variable base
types are defined with the ATOM statement. Atom types may
declare attribute fields with types real, integer, boolean, symbol,
and set. These attributes are NOT independent objects and therefore
cannot be refined, merged, or put in a refinement clique
(ARE_ALIKEd).

ATOM The syntax for declaring a new atom type is

ATOM atom_type_name REFINES variable_type

179 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

«DIMENSION dimension_expression»

«DEFAULT value»; (* note the ; *)

«initial attribute assignment;»

END atom_type_name;

DEFAULT,
DIMENSION, and
DIMENSIONLESS

The DIMENSION attribute is for variables whose base type is real.
It is an optional field. If not defined for any atom with base type
real, the dimensions will be left as undefined. Any variable which is
later declared to be one of these types will be givenwild card
dimensionality (represented in the interactive display by an asterisk
(*)). The system will deduce the dimensionality from its use in the
relationships in which it appears or in the declaring of default
values for it, if possible.

solver_var is a special
case of ATOM and we
will say much more
about it in Section 20.6.1.

ATOM solver_var REFINES real DEFAULT 0.5 {?};

lower_bound IS_A real;

upper_bound IS_A real;

nominal IS_A real;

fixed IS_A boolean;

fixed := FALSE;

lower_bound := -1e20 {?};

upper_bound := 1e20 {?};

nominal := 0.5 {?};

END solver_var;

The default field is also optional. If the atom has a declared
dimensionality, then this value must be expressed with units which
are compatible with this dimensionality. In thesolver_var
example, we see a DEFAULT value of 0.5 with the unspecified unit
{?} which leaves the dimensionality wild.

real Real valued variable quantity. At present, all variables that you
want to be attended to by solver tools must be refinements of the
type solver_var. This is so that modifiable parametric values can be
included in equations without treating them as variables. Strictly
speaking, this is a characteristic of the solver interface and not the
ASCEND language. Each tool in the total ASCEND system may
have its own semantics that go beyond the ASCEND object
definition language.

integer Integer valued variable quantity. We find these mighty convenient
for use in certain procedural computations and as attributes of
solver_var atoms.

boolean Truth valued variable quantity. These are principally used as flags
on solver_vars and relations. They can also be used procedurally

DATA TYPE DECLARATIONS 180

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

and as variables in logical programming models, subject to the
logical solver tool’s semantics. (Comparesolver_boolean and
boolean_var in Section 20.6.)

symbol *4* Symbol valued variable quantity. We do not yet have operators
for building symbols out of other symbols.

Setting variables

:= Procedural equals differs from the ordinary equals (=) in that it
means the left-hand-side (LHS) variables are to be assigned the
value of the right-hand-side (RHS) expression when this statement
is processed. Processing happens in the last phase of compiling
(INSTANTIATION on page 171) or when executing a method
interactively through the ASCEND user interface. The order the
system encounters these statements matters, therefore, with a later
result overwriting an earlier one if both statements have the same
the same LHS variable.

Note that variable assignments (also known as “defaulting
statements”) written in the declarative section are executed only
after an instance has been fully created. This is a frequent source of
confusion and errors, therefore we recommend that you DO NOT
ASSIGN VARIABLES IN THE DECLARATIVE SECTION.

Note that := IS NOT =. We use an ordinary equals (=) when defining a real valued equation
to state that the LHS expression is to equal the RHS expression at
the solution for the model. We use == for logical equations.

Tabular assignments (* 4+ *) Assigning values en masse to arrays of variables that are
defined associatively on sets without order presents a minor
challenge. The solution proposed in ASCEND IV (but not yet
implemented as we’ve not had time or significant user demand) is
to allow a tabular data statement to be used to assign the elements
of arrays of variables or constants. The DATA statement may be
used to assign variables in the declarative or methods section of a
model (though we discourage its use declaratively for variable
initialization) or to assign constant arrays of any type, including
sets, in the declarative section. Here are some examples:

DATA (* 4+ *) MODEL tabular_ex;

lset,rset,cset IS_A set OF integer_constant;

rset :== [1..3];

cset :== rset - [2];

lset :== [5,7];

a[rset][cset] IS_A real;

181 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

b[lset][cset][rset] IS_A real_constant;

(* rectangle table *)

DATA FOR a:

COLUMNS 1,3; (*order last subscript cset*)

UNITS {kg/s}, {s}; (* columnar units *)

(* give leading subscripts *)

[1] 2.8, 0.3;

[2] 2.7, 1.3;

[3] 3.3, 0.6;

END DATA;

(* 2 layer rectangle table *)

CONSTANT DATA FOR b:

COLUMNS 1..3; (* order last subscript rset *)

(* UNITS omitted, so either the user gives value in the

table or values given are DIMENSIONLESS. *)

(* ordering over [lset][cset] required *)

[5][1] 3 {m}, 2{m}, 1{m};

[5][3] 0.1, 0.2, 0.3;

[7][1] -3 {m/s}, -2{m/s}, -1{m/s};

[7][3] 4.1 {1/s}, 4.2 {1/s}, 4.3 {1/s};

END DATA;

END tabular_ex;

For sparse arrays of variables or constants, the COLUMNS and
(possibly) UNITS keywords are omitted and the array subscripts
are simply enumerated along with the values to be assigned.

20.2.5 RELATIONS

Mathematical expression: The syntax for a mathematical expression is any legal combination
of variable names and arithmetic operators in the normal notation.
An expression may contain any number of matched rounded
parentheses, (), to clarify meaning. The following is a legal
arithmetic expression:

y^2+(sin(x)-tan(z))*q

Each additive term in a mathematical expression (terms are
separated by + or - operators) must have the same dimensionality.

DATA TYPE DECLARATIONS 182

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

An expression may contain an index variable as a part of the
calculation if that index variable is over a set whose elements are of
type integer. (See the FOR/CREATE and FOR/DO statements
below.) An example is:

term[i] = a[i]*x^(i-1);

Numerical relations The syntax for a numeric relation is either

optional_label: LHS relational_operator RHS;

or

optional_label: objective_type LHS;

Objective_type is eitherMAXIMIZE orMINIMIZE . RHS and
LHS must be one or more variables, constants, and operators in a
normal algebraic expression. The operators allowed are defined
below and in Section 20.6.3. Variable integers, booleans, and
symbols are not allowed as operands in numerical relations, nor are
boolean constants. Integer indices declared in FOR/CREATE loops
are allowed in relations, and they are treated as integer constants.

Relational operators:

=, >=, <=, <, >,
<>

These are the numerical relational operators for declarative use.

Ftot*y['methane'] = m['methane'];

y['ethanol'] >= 0;

Equations must be dimensionally correct.

MAXIMIZE,
MINIMIZE

Objective function indicators.

Binary Operators: +, -, *, /, ^. We follow the usual algebraic order of operations for
binary operators.

+ Plus. Numerical addition or set union.

- Minus. Numerical subtraction or set difference.

* Times. Numerical multiplication or set intersection.

/ Divide. Numeric division. In most cases it implies real division and
not integer division.

183 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

^ Power. Numeric exponentiation. If the value of y in x^y is not
integer, then x must be greater than 0.0 and dimensionless.

Unary Operators: -,ordered_function()

- Unary minus. Numeric negation. There is no unary + operator.

ordered_function (
)

unary real valued functions. The unary real functions we support
are given in section Section 20.6.3.

Real functions of sets of
real terms:

SUM[term set] Add all expressions in the function’s list.

For the SUM, the base type real items can be arbitrary arithmetic
expressions. The resulting items must all be dimensionally
compatible.

An examples of the use is:

SUM[y[components]] = 1;

or, equivalently, one could write:

SUM[y[i] | i IN components] = 1;

Empty SUM[] yields
wild 0.

When a SUM is compiled over a list which is empty it generates a
wild dimensioned 0. This will sometimes cause our dimension
checking routines to fail. The best way to prevent this is to make
sure the SUM never actually encounters an empty list. For example:

SUM[Q[possibly_empty_set], 0{watt}];

In the above, the variablesQ[i] (if they exist) have the
dimensionality associated with an energy rate. When the set is
empty, the 0 is the only term in the SUM and establishes the
dimensionality of the result. When the set is NOT empty the
compiler will simplify away thetrailing 0 in the sum.

PROD[term set] Multiply all the expressions in the product’s list. The product of an
empty list is a dimensionless value, 1.0.

Possible future functions: (Not implemented - only under confused consideration at this
time.) The following functions only work in methods as they are

DATA TYPE DECLARATIONS 184

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

not smooth function and would destroy a Newton-based solution
algorithm if used in defining a model equation:

MAX[term set] (* 4+ *) maximum value on list of arguments

MIN[term set] (* 4+ *) minimum value on list of arguments

20.2.6 DERIVATIVES IN RELATIONS (* 4+ *)

Simply put, we would like to have general partial and full
derivatives usable in writing equations, as there are many
mathematically interesting things that can be said about both. We
have not implemented such things yet for lack of time and because
with several implementations (see gPROMS and OMOLA, among
others) already out there we can’t see too many research points to
be gained by more derivative work.

20.2.7 EXTERNAL RELATIONS

We cannot document these at the present time. The only reference
for them is [[abbottthesis]].

20.2.8 CONDITIONAL RELATIONS (* 4 *)

The syntax is CONDITIONAL list_of_relation_statements END
CONDITIONAL;

A CONDITIONAL statement can appear anywhere in the
declarative portion of the model and it contains only relations to be
used as boundaries. That is, these real arithmetic equations are used
in expressing logical condition equations via the SATISFIED
operator. See LOGICAL FUNCTIONS on page 206.

20.2.9 LOGICAL RELATIONS (* 4 *)

Logical expression An expression whose value is TRUE or FALSE is a logical
expression. Such expressions may contain boolean variables. If
A,B , andlaminar areboolean , then the following is a logical
expression:

A + (B * laminar)

as is (and probably more clearly)

185 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

A OR (B AND laminar)

The plus operator acts like an OR among the terms while the times
operator acts like an AND. Think of TRUE being equal to 1 and
FALSE being equal to 0 with the 1+1=0+1=1+0=1, 0+0=0, 1*1=1
and 0*1=1*0=0*0=0. IfA = FALSE, B=TRUE andlaminar is
TRUE, this expression has the value

FALSE OR (TRUE AND TRUE) -->TRUE

or in terms of ones and zeros

0 + (1 * 1) --> 1.

Logical relations are then made by putting together logical
expressions with the boolean relational operators == and !=. Since
we have no logical solving engine we have not pushed the
implementation of logical relations very hard yet.

20.2.10 NOTES (* 4+ *)

NOTES are discussed in Chapter 5 of Allan’s thesis. More details
are not available here at this time as the implementation is only
partially complete.

20.3 DECLARATIVE STATEMENTS

We have already seen several examples that included declarative
statements. Here we will be more systematic in defining things. The
statements we describe are legal within the declarative portion of an
ATOM or MODEL definition. The declarative portion stops at the
keyword METHODS if it is present in the definition or at the end of
the definition.

Statements Statements in ASCEND terminate with a semicolon (;). Statements
may extend over any number of lines. They may have blank lines in
the middle of them. There may be several statements on a single
line.

Compound statements Some statements in ASCEND can contain other statements as a part
of them. The declarative compound statements are the ALIASES/
ISA, CONDITIONAL, FOR/CREATE, SELECT/CASE, and
WHEN/CASE statements. The procedural compound statements
allowed only in methods are the FOR/DO, SWITCH (* 4+ *) and

DECLARATIVE STATEMENTS 186

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

the IF statements. Compound statements end with "END word ; ",
whereword matches the beginning of the syntax block, e.g.END
FOR.and they can be nested, with some exceptions which are noted
later.

CASE statements are
here, finally!

(*4*) WHEN/CASE, CONDITIONAL, and SELECT/CASE
handle modeling alternatives within a single definition. The easy
way to remember the difference is that the first picks which
equations to solve WHEN discretevariables have certain values,
while the second SELECTs which statements to compile based on
discreteconstants. (* 4+ *) SWITCH statements handle flow of
control in procedures, in a slightly more generalized form than the
C language switch statement.

Type declarations are not
compound statements.

MODEL and ATOM type definitions and METHOD definitions are
not really compound statements because they require a name
following their END word that matches the name given at the
beginning of the definition. These definitions cannot be nested.

ASCEND operator
synopses:

We’ll start with an extremely brief synopsis of what each does and
then give detailed descriptions. It is helpful to remember that an
instance may have many names, even in the same scope, but each
name may only be defined once.

IS_A Constructor. Calls for one or more named instances to be compiled
using the type specified. (* 4 *) If the type is one that requires
parameters, the parameters must be supplied in () following the
type name.

IS_REFINED_TO Reconstructor. Causes the already compiled instance(s) named to
have their type changed to a more refined type. This causes an
incremental recompilation of the instance(s). IS_REFINED_TO is
not a redefinition of the named instances because refinement can
only add compatible information. The instances retain all the
structure that originally defined them. (* 4 *) If the type being
refined to requires arguments, these must be supplied, even if the
same arguments were required in the IS_A of the original less
refined declaration of the instance.

ALIASES (* 4 *) Part alternate naming statement. Establishes another name for an
instance at the same scope or in a child instance. The equivalent of
an ALIASES in ASCEND III is to create another part with the
desired name and merge it immediately via ARE_THE_SAME
with the part being renamed, a rather expensive and unintuitive
process.

187 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

ALIASES/ISA (*4*) Creates an array of alternate names for a list of existing instances
with some common base type and creates the set over which the
elements of the array are indexed. Useful for making collections of
related objects in ways the original author of the model didn’t
anticipate. Also useful for assembling array arguments to
parameterized type definitions.

WILL_BE (* 4 *) Forward declaration statement. Promises that a part with the given
type will be constructed by an as yet unknown IS_A statement
above the current scope. At present WILL_BE is legal only in
defining parameters. Were it legal in the body of a model,
compiling models would be very expensive.

ARE_THE_SAME Merge. Calls for two or more instances already compiled to be
merged recursively. This essentially means combining all the values
in the instances into the most refined of the instances and then
destroying all the extra, possibly less refined, instances. The
remaining instance has its original name and also all the names of
the instances destroyed during the merge.

WILL_BE_THE_SAME
(* 4 *)

Structural condition statement restricting objects in a forward
declaration. The objects passed to a parameterized type definition
can be constrained to have arbitrary parts in common before the
parameterized object is constructed.

WILL_NOT_BE_THE_S
AME (* 4 *)

Structural condition statement restricting objects in a forward
declaration. We apologize for the length of this key word, but we
bet it is easy to remember. The objects passed to a parameterized
type definition can be constrained to have arbitrary parts be distinct
instances before the parameterized object is constructed. At present
the constraint is only enforced when the objects are being passed.

ARE_NOT_THE_SAME
(* 4+ *)

Cannot be merged. We believe it is useful to say that two objects
cannot be merged and still represent a valid model. This is not yet
implemented, however, mainly for lack of time. The
implementation is simple.

ARE_ALIKE Refinement clique constructor. Causes a group of instances to
always be of the same formal type. Refining one of them causes a
refinement of all the others. Does not propagateimplicit type
information, such as assignments to constants or part refinements
made from a scope other than the scope of the formal definition.

FOR/CREATE Indexed execution of other declarative statements. Required for
creating arrays of relations and sparse arrays of other types.

DECLARATIVE STATEMENTS 188

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

SELECT/CASE (*4*) Select a subset of statements to compile. Given the values of the
specifiedconstants, SELECT compiles all cases that match those
values. A name cannot be defined two different ways inside the
SELECT statement, but it may be defined outside the case
statement and thenrefined in different ways in separate cases.

CONDITIONAL (*4*) Describe bounding relations. The relations written inside a
CONDITIONAL statement must all be labelled. These relations
can be used to define regions in which alternate sets of equations
apply using the WHEN statement.

WHEN/CASE (* 4 *) When logicalvariables have certain values, use certain relations or
model parts in defining a mathematical problem. The relations are
not defined inside the WHEN statement because all the relations
must be compiled regardless of which values the logical variables
have at any given moment.

Reminder: In the following detailed statement descriptions, we show keywords
in capital letters. These words must appear in capital letters as
shown in ASCEND statements. We show optional parts to a
statement enclosed in double angle brackets (« ») and user supplied
names in lower-caseitalic letters. (Remember that ASCEND treats
the underscore (_) as a letter). The user may substitute any name
desired for these names. We use names that describe the kind of
name the user should use.

Operators in detail:

IS_A This statement has the syntax

list_of_instance_names IS_A
model_name«(arguments_if_needed)»;

The IS_A statement allows us to declareinstances of a giventype to
exist within a model definition. Iftype has not been defined (loaded
in the ASCEND environment) then this statement is an error and
the MODEL it appears in is irreparably damaged (at least until you
delete the type definitions and reload a corrected file). Similarly, if
the arguments needed are not supplied or if provably incorrect
arguments are supplied, the statement is in error. The construction
of the instances does not occur until all the arguments satisfy the
definition oftype.

If a name is used twice in WILL_BE/IS_A/ALIASES statements of
the same model, ASCEND will complain bitterly when the

189 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

definition is parsed. Duplicate naming is a serious error. Labels on
relations share the same name space as other objects.

IS_REFINED_TO This statement has the syntax

list_of_instances IS_REFINED_TO

type_name «(arguments_if_needed)»;

We use this statement to change the type of each of the instances
listed to the typetype_name. The modeler has to have defined each
member on the list of instances. Thetype_name has to be a type
which refines the types of all the instances on the list.

An example of its use is as follows. First we define the parts called
fl1, fl2 and fl3 which are of type flash.

fl1, fl2, fl3 IS_A flash;

Assume that there exists in the previously defined model definitions
the type adiabatic_flash that is a refinement of flash. Then we can
make fl1 and fl3 into more refined types by stating:

fl1, fl3 IS_REFINED_TO adiabatic_flash;

This reconstruction does not occur until the arguments to the type
satisfy the definitiontype_name.

ALIASES (* 4 *) This statement has the syntax

list_of_instances ALIASES instance_name ;

We use this statement to point at an already existing instance of any
type other thanrelation , logical_relation , orwhen. For
example, say we want a flash tank model to have a variable T, the
temperature of the vapor-liquid equilibrium mixture in the tank.

MODEL tank;

feed, liquid, vapor IS_A stream;

state IS_A VLE_mixture;

T ALIASES state.T;

liquor_temperature ALIASES T;

END tank;

We might also want a more descriptive name than T, so ALIASES
can also be used to establish a second name at the same scope, e.g.
liquor_temperature .

DECLARATIVE STATEMENTS 190

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

An ALIASES statement will not be executed until the RHS instance
has been created with an IS_A. The compiler schedules ALIASES
instructions appropriately and issues warnings if recursion is
detected. An array of aliases, e.g.

b[1..n], c ALIASES a;

is permitted (though we can’t think why anyone would want such
an array), and the sets over which the array is defined must be
completed before the statement is executed. So, in the example of b
and c, the array b will not be created until a exists and n is assigned
a value. b and c will be created at the same time since they are
defined in the same statement. This suggests the following rule: if
you must use an array of aliases, do not declare it in the same
statement with a scalar alias.

The ALIASES RHS can be an element or portion of a larger array
with the following exception. The existing RHS instance cannot be
a relation or array of relations (including logical relations and
whens) because of the rule in the language that a relation instance is
associated with exactly one model.

ALIASES/ISA (*4*) The ALIASES/IS_A statement syntax is subject to change, though
some equivalent will always exist. We take a set of
symbol_constant or integer_constant and pair it with a
list of instances to create an array. For the moment, the syntax and
semantics is as follows.

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OF
settype ;

or

alias_array_instance[aset] ALIASES
(list_of_instances) WHEREaset IS_A set OFsettype
WITH_VALUE (value_list_matching_settype);

aset is the name of the set that will be created by the IS_A to
index the array of aliases. If
value_list_matching_set_type is not given, the
compiler will make one up out of the integers (1..number of names
in list_of_instances) or symbols derived from the
individual names given. If the value list is given, it must have the
same number of elements as the list of instances does. The value list
elements must be unique because they form a set. The list of

191 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

instances can contain duplicates. If any of these conditions are not
met properly, the statement is in error.

ALIASES/IS_A can be used inside a FOR statement. When this
occurs, the definition ofaset must be indexed and it must be the
last subscript ofalias_array_instance . The statement must
look like:

array_instance[FOR_index][aset[FORindex]]
ALIASES (list_of_instances) WHERE
aset[FORindex] IS_A set OFsettype WITH_VALUE
(value_list_matching_settype);

Here, as with the unindexed version, the WITH_VALUE portion is
optional.

If this explanation is unclear, just try it out. The compiler error
messages for ALIASES/IS_A are particularly good because we
know it is a bit tricky to explain.

WILL_BE (* 4 *) instance WILL_BE type_name ;

The most common use of this forward declaration is as a statement
within the parameter list of a model definition. In parameter lists,
list_of_instances must contain exactly one instance. When
a model definition includes a parameter defined by WILL_BE, that
model cannot be compiled until a compiled instance at least as
refined as the type specified bytype_name is passed to it.

(* 4+ *) The second potential use of WILL_BE is to establish that
an array of a common base type exists and its elements will be filled
in individually by IS_A or ARE_THE_SAME or ALIASES
statements. WILL_BE allows us to avoid costly reconstruction or
merge operations by establishing a placeholder instance which
contains just enough type information to let us check the validity of
other statements that require type compatibility while delaying
construction until it is called for by the filling in statements.
Instances declared with WILL_BE are never compiled if they are
not ultimately resolved to another instance created with IS_A.
Unresolved WILL_BE instances will appear in the user interface as
objects of type PENDING_INSTANCE_model_name. Because of
the many implementation and explanation difficulties this usage of
WILL_BE creates, it is not allowed. The ALIASES/IS_A construct
does the same job in a much simpler way.

ARE_THE_SAME The format for this instruction is

DECLARATIVE STATEMENTS 192

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

list_of_instancesARE_THE_SAME;

All items on the list must have compatible types. For the example in
Fig. 1, consider a model where we define the following parts:

a1 IS_A A;

b1 IS_A B;

c1 IS_A C;

d1 IS_A D;

e1 IS_A E;

Then the following ARE_THE_SAME statement is legal

a1, b1, c1 ARE_THE_SAME;

while the following are not

b1, d1 ARE_THE_SAME;

a1, c1, d1 ARE_THE_SAME;

b1, e1 ARE_THE_SAME;

When compiling a model, ASCEND will put all of the instances
mentioned as being the same into an ARE_THE_SAME “clique.”
ASCEND lists members of this clique when one asks via the
interface for the aliases of any object in a compiled model.

Merging any other item with a member of the clique makes it the
same as all the other items in the clique, i.e., it adds the newly
mentioned items to the existing clique.

ASCEND merges all members of a clique by first checking that all
members of the clique are type compatible. It then changes the type
designation of all clique members to that of the most refined
member.

193 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

Figure 1. Diagram of the model type hierarchy A,B,C,D,E

It next looks inside each of the instances, all of which are now of
the same type, and puts all of the parts with the same name into
their respective ARE_THE_SAME cliques. The process repeats by
processing these cliques until all parts of all parts of all parts, etc.,
are their respective most refined type or discovered to be type
incompatible.

There are now lots of cliques associated with the instances being
merged. The type associated with each such clique is now either a
model, an array, or an atom (i.e., a variable, constant, or set). If a
model, only one member of the clique generates its equations. If a
variable, it assigns all members to the same storage location.

Note that the values of constants and sets are essentiallytype
information, so merging two already assigned constants is only
possible if merging them does not force one of them to be assigned
a new value. Merging arrays with mismatching ranges of elements
is an error.

WILL_BE_THE_SAME
(* 4 *)

There is no further explanation of WILL_BE_THE_SAME.

WILL_NOT_BE_THE_S
AME (* 4 *)

There is no further explanation of WILL_NOT_BE_THE_SAME.

A

C

D

E

B

refines refines

refines

DECLARATIVE STATEMENTS 194

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

ARE_NOT_THE_SAME
(* 4+ *)

ARE_NOT_THE_SAME will be documented further when it is
implemented.

ARE_ALIKE The format for this statement is

list_of_instance_names ARE_ALIKE;

The compiler places all instances in the list into an ARE_ALIKE
clique. It checks that the members are formally type compatible and
then it converts each into the most refined type of any instance in
the clique. At that point the compiler stops. It does not continue by
placing the parts into cliques nor does it merge anything.

There are important consequences of modeling with such a partial
merge. The consequences we are about to describe can be much
more reliably achieved by use of parameterized types,when the
types are well understood. When we are exploring new ways of
modeling, ARE_ALIKE still has its uses. When a model and its
initial uses are understood well enough to be put into a reusable
library, then parameterization and the explicit statement of
structural constraints by operators such as
WILL_NOT_BE_THE_SAME should be the preferred method of
ensuring correct use.

One consequence of ARE_ALIKE is to prevent extreme model
misuse when configuring models. For example, suppose a modeler
creates a new pressure changing model. The modeler is not yet
concerned about the type of the streams into and out of the device
but does care that these streams are of the same final type. For
example, the modeler wants both to be liquid streams if either is or
both to be vapor streams if either is. By declaring both to be streams
only but declaring the two streams to be alike, the modeler
accomplishes this intent. Suppose the modeler merges the inlet
stream with a liquid outlet stream from a reactor. The merge
operation makes the inlet stream into a liquid stream. The outlet
stream, being in an ARE_ALIKE clique with the inlet stream, also
becomes a liquid stream. Any subsequent merge of the outlet
stream with a vapor stream will lead to an error due to type
incompatibility when ASCEND attempts to compile that merge.
Without the ARE_ALIKE statement, the compiler can detect no
such incompatibility unless parameterized models are used.

Another purpose is the propagation of type through a model.
Altering the type of the inlet stream through merging it with a
liquid stream automatically made the outlet stream into a liquid
stream.

195 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

If all the liquid streams within a distillation column are alike, then
the modeler can make them all into streams with a particular set of
components in them and with the same method used for physical
property evaluation by merging only one of them with a liquid
stream of this type. This isthe primary example which has been
used to justify the existence of ARE_ALIKE. We have observed
that its use makes a column library very difficult to compile
efficiently. But since we now have parameterized types to help us
keep the column library semantically consistent, ARE_ALIKE can
be left to its proper role: the rapid prototyping of partially
understood models.

Finally, because ARE_ALIKE does not recursively put the parts of
ARE_ALIKEd instances into ARE_ALIKE cliques, it is possible to
ARE_ALIKE model instances which have compatible formal types
but incompatibleimplicit types. This can lead to unexpected
problems later and makes the ARE_ALIKE instruction a source of
non-reusability.

FOR/CREATE The FOR/CREATE statement is a compound statement that looks
like a loop. It isn’t, however, necessarily compiled as a loop. What
FOR really does is specify an index set value. Its format is:

FOR index_variable IN set CREATE

list_of_statements;

END FOR;

This statement can be in the declarative part of the model definition
only. Every statement in the list should have at least one occurrence
of the index variable, or the statement should be moved outside the
FOR to avoid redundant execution. A correct example is

FOR i IN components CREATE

a.y[i], b[i] ARE_THE_SAME;

y[i] = K[i]*x[i];

END FOR;

FOR loops can be nested to produce sparse arrays as illustrated in
ARRAYS CAN BE JAGGED on page 167. IS_A and ALIASES
statements are allowed in FOR loops, provided the statements are
properly indexed, a new feature in ASCEND IV.

SELECT/CASE (*4*) Declarative. Order does not matter. All matching cases are
executed. The OTHERWISE is executed if present and no other
CASEs match. SELECT is not allowed inside FOR. Writing FOR
statements inside SELECT is allowed.

PROCEDURAL STATEMENTS 196

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

CONDITIONAL (*4*) Both real and logical relations are allowed in CONDITIONAL
statements. CONDITIONAL is really just a shorthand for setting
the $boundary flag on a whole batch of relations, since $boundary
is a write-once attribute invisible through the user interface and
methods at this time.

WHEN/CASE (* 4 *) Inside each CASE, relations or model parts to be used are specified
by writing, for example, USE mass_balance_1;. The method of
dealing with the combined logical/nonlinear model is left to the
solver. All matching CASEs are included in the problem to be
solved. We do not yet have a solver which dynamically determines
the applicable set of relations during solution. Our solver interface
currently sends only the equations specified by the current values of
the discrete variables to the client solving engine.

20.4 PROCEDURAL STATEMENTS

METHODS This statement separates the method definitions in ASCEND from
the declarative statements. All statements following this statement
are to define methods in ASCEND while all before it are for the
declarative part of ASCEND. The syntax for this statement is
simply

METHODS

with no punctuation. The next code must be a METHOD or the
END of the type being defined. If there are no method definitions,
this statement may be omitted.

(* 4+ *) METHOD definitions for a type can also be added or
replaced after the type has been defined. This is to make creating
and debugging of methods as interactive as possible. Currently, an
instance must be destroyed and recreated each time a new or
revised method is added to the type definition. This is a very
expensive process when working with models of significant size.

The detailed semantics of method inheritance, addition, and
replacement of methods are given at the end of this section.

ADD METHODS IN
type_name; (*4+*)

This statement allows new methods to be added to an already
loaded type definition. The next code must be a METHOD or the
END METHODS; statement. If a method of the same name already
exists intype_name , the statement is in error.

197 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

REPLACE METHODS
IN type_name;
(*4+*)

This statement allows existing methods to be replaced in an already
loaded type definition. The next code must be a METHOD or the
END METHODS; statement. If a method of the same name does
not exist intype_name , the statement is in error.

Initialization routines:

METHOD A method in ASCEND must appear following the METHODS
statement within a model. The system executes procedural
statements of the method in the order they are written.

At present, there are no local variables or other structures in
methods except loop indices. A method may be written recursively,
but there is an arbitrary stack depth limit (currently set to 20 in
compiler/initialize.h) to prevent the system from crashing on
infinite recursions.

Specifically disallowed in ASCEND III methods are IS_A,
ALIASES, WILL_BE, IS, IS_REFINED_TO, ARE_THE_SAME
and ARE_ALIKE statements as these “declare” the structure of the
model and belong only in the declarative section.

(* 4+ *) In the near future, declarations of local instances (which
are automatically destroyed when the method exits) will be
allowed. Since methods are imperative, these local structure
definitions are processed in the order they are written. Local
structures are not allowed to shadow structures in the model context
with which the method is called. When local structures are allowed,
it will also be possible to define methods which take parameters and
return values, thereby making the imperative ASCEND methods a
rapid prototyping tool every bit as powerful and easy to use as the
declarative ASCEND language.

The syntax for a method declaration is

METHOD method_name;

«procedural statement;» (*one or more*)

END method_name;

Procedural assignment The syntax is

instance_name := mathematical_expression;

or

array_name[set_name] := expression;

or

list_of_instance_names := expression.

PROCEDURAL STATEMENTS 198

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

Its meaning is that the value for the variable(s) on the LHS is set to
the value of the expression on the RHS.

DATA statements (DATA (* 4+ *) on page 180) can (should,
rather) also appear in methods.

FOR/DO statement This statement is similar to the FOR/CREATE statement except it
can only appear in a method definition. An example would be

FOR i IN [1..n_stages] DO

T[i] := T[1] + (i-1)*DT;

...

END FOR;

Here we actually execute using the values of iin the sequence
given.So,

FOR i IN [n_stages..1] DO ... END FOR;

is an empty loop, while

FOR i IN [n_stages..1] DECREASING DO ... END FOR;

is a backward loop.

IF The IF statement can only appear in a method definition. Its syntax
is

IF logical_expression THEN

list_of_statements

ELSE

list_of_statements

END IF;

or

IF logical_expression THEN

list_of_statements

END IF;

If the logical expression has a value of TRUE, ASCEND will
execute the statements in the THEN part. If the value is FALSE,
ASCEND executes the statements in the optional ELSE part. Please
use () to make the precedence of AND, OR, NOT, ==, and != clear
to both the user and the system.

199 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

SWITCH (* 4+ *) Essentially equivalent to the C switch statement, except that
ASCEND allows wildcard matches, and any number of controlling
variables to be given in a list.

CALL External calls are not presently well defined, pending debugging of
the EXTERNAL connection prototype originally created by Kirk
Abbott.

RUN This statement can appear only in a method. Its format is:

RUN name_of_method ;

or

RUN part_name.name_of_method ;

or

RUN model_type :: name_of_method ;

The named method can be defined in the current model (the first
syntax), or in any of its parts (the second syntax). Methods defined
in a part will be run in the scope of that part, not at the scope of the
RUN statement.

Type access to methods: Whenmodel_type:: appears, the type named must be a type that the
current model is refined from. In this way, methods may be defined
incrementally. For example:

MODEL foo;

x IS_A generic_real;

METHODS

METHOD specify;

x.fixed:= TRUE;

END specify;

END foo;

MODEL bar REFINES foo;

y IS_A generic_real;

METHODS

METHOD specify;

RUN foo::specify;

y.fixed := TRUE;

END specify;

END bar;

20.5 PARAMETERIZED MODELS

Parameterized model definitions have the following general form.

PARAMETERIZED MODELS 200

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

MODEL new_type(parameter_list;)

«WHERE (where_list;)»

«REFINES existing_type «(assignment_list;)»»;

20.5.1 THE PARAMETER LIST

A parameter list is a list of statements about the objects that will be
passed into the model being defined when an instance of that model
is created by IS_A or IS_REFINED_TO. The parameter list is
designed to allow a complete statement of the necessary and
sufficient conditions to construct the parameterized model. The
mechanism implemented is general, however, so it is possible to put
less than the necessary information in the parameter list if one seeks
to confuse the model’s reusers. To make parameters easy to
understand for users with experience in other computer languages
(and to make the implementation much simpler), we define the
parameter list as ordered. All the statements in a parameter list,
including the last one, must end with a ";". A parameter list looks
like:

MODEL test (

x WILL_BE real;

n IS_A integer_constant;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE widget;

);

Each WILL_BE statement corresponds to a single

instance that the user must create and pass into the

definition of test. We will establish the local name x

for the first instance passed to the definition of

test. n is handled similarly, and it must preceed the

definition of p[1..n], because it defines the set for

the array p. Constant types can also be defined with

WILL_BE, though we have used IS_A for the example

test.

Each IS_A statement corresponds to a single constant

valued instance or an array of constant valued

instances that we will create as part of the model we

are defining. Thus, the user of test must supply an

array of constants as the third argument. We will

check that the instance supplied is subscripted on the

set [1..n] and copy the corresponding values to the

array p we create local to the instance of test.

201 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

WILL_BE statements can be used to pass complex objects

(models) or arrays of objects. Both WILL_BE and IS_A

statements can be passed arguments that are more

refined than the type listed. If an object that is less

refined than the type listed, the instance of

parameterized model test will not be compiled. When a

parameterized model type is specified with a WILL_BE

statement, NO arguments should be given. We are only

interested in the formal type of the argument, not how

it was constructed.

20.5.2 THE WHERE LIST

We can write structural and equation constraints on the arguments
in the WHERE list. Each statement is a WILL_BE_THE_SAME, a
WILL_NOT_BE_THE_SAME, an equation written in terms of sets
or discrete constants, or a FOR/CREATE statement surrounding a
group of such statements. Until all the conditions in the WHERE
list are satisfied, an object cannot be constructed using the
parameterized definition. If the arguments given to a parameterized
type in an IS_A or IS_REFINED_TO statement cannot possibly
satisfy the conditions, the IS_A or IS_REFINED_TO statement is
abandoned by the compiler.

We have not created a WILL_BE_ALIKE statement because
formal type compatibility in ASCEND is not really a meaningful
guarantee of object compatibility. Object compatibility is much
more reliably guaranteed by checking conditions on the structure
determining constants of a model instance.

20.5.3 THE ASSIGNMENT LIST

When we declare constant parameters with IS_A, we can in a later
refinement of the parameterized model assign their values in the
assignment list, thus removing them from the parameter list. If an
array of constants is declared with IS_A, then we must assign
values to ALL the array elements at the same time if we are going
to remove them from the parameter list. If an array element is left
out, the type which assigns some of the elements and any
subsequent refinements of that type will not be compilable.

20.5.4 REFINING PARAMETERIZED TYPES

Because we wish to make the parameterized model lists represent
all the parameters and conditions necessary to use a model of any

MISCELLANY 202

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

type, we must repeat the parameters declared in the ancestral type
when we make a refinement. If we did not repeat the parameters,
the user would be forced to hunt up the (possibly long) chain of
types that yield an interesting definition in order to know the list of
parameters and conditions that must be satisfied in order to use a
model. We repeat all the parameters of the type being refined before
we add new ones. The only exception to this is that parameters
defined with IS_A and then assigned in theassignment_list
are not repeated because the user no longer needs to supply these
values. A refinement of the modeltest given in Section 20.5.1
follows.

MODEL expanded_test (

x WILL_BE real;

p[1..n] IS_A integer_constant;

q[0..2*n-1] WILL_BE better_widget;

r[0..q[0].k] WILL_BE gizmo;

ms WILL_BE set OF symbol_constant;

) WHERE (

q[0].k >= 2;

r[0..q[0].k].giz_part WILL_BE_THE_SAME;

) REFINES test(

n :== 4;

);

In expanded_test , we see that the type of the arrayq is more
refined than it was intest . We see that constants and sets from
inside passed objects, such asq[0].k , can be used to set the sizes
of subseqent array arguments. We see a structural constraint that all
thegizmo s in the arrayr must have been constructed with the
samegiz_part . This condition probably indicates that the gizmo
definition takesgiz_part as a WILL_BE defined parameter.

20.6 MISCELLANY

20.6.1 VARIABLES FOR SOLVERS

solver_var Solver_var is the base-type for allcomputable variables in the
current ASCEND system. Any instances of an atom definition that
refines solver_var are considered potential variables when
constructing a problem for one of the solvers.

Solver_var has wild card dimensionality. (Wild card means that
until ASCEND can decide what its dimensionality is, it has none

203 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

assigned. ASCEND can decide on dimensionality while compiling
or executing.) In system.lib we define the following parts with
associated initial values for each:

Attributes: type default

lower_bound real 0.0

upper_bound real 0.0

nominal real 0.0

fixed boolean FALS E

lower_boundandupper_bound are bounds for a variable which are
monitored and maintained during solving. The nominal value the
value used to scale a variable when solving. The flagfixed indicates
if the variable is to be held fixed during solving. All atoms which
are refinements of solver_var will have these parts. The refining
definitions may reassign the default values of the attributes.

The latest full definition of solver_var is always in the file
system.lib.

generic_real One should not declare a variable to be of type solver_var. The
nominal value and bound values will get you into trouble when
solving. If you are programming and do not wish to declare variable
types, then declare them to be of type generic_real. This type has
nominal value of 0.5 and lower and upper bounds of -1.0e50 and
1.0e50 respectively. It is dimensionless. Generic_real is the first
refinement of solver_var and is also defined in system.lib

Kluges for MILPs Also defined in system.lib are the types for integer, binary, and
semi-continuous variables.

solver_semi,
solver_integer,
solver_binary

We define basic refinements of solver_var to support solvers which
are more than simply algebraic. Various mixed integer-linear
program solvers can be fed solver_semi based atoms defining semi-
continuous variables, solver_integer based atoms defining integer
variables, and solver_binary based atoms defining binary variables.

Integers are relaxable. All these types have associated boolean flags which indicate that
either the variable is to be treated according to its restricted
meaning or it is to be relaxed and treated as a normal algebraic
variable.

MISCELLANY 204

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

Kluges for ODEs We have an alternate version of system.lib called ivpsystem.lib
which adds extra flags to the definition of solver_var in order to
support initial value problem (IVP) solvers (integrators).
Integration in the ASCEND IV environment is explained in another
chapter.

ivpsystem.lib Having ivpsystem.lib is a temporary, but highly effective, way to
keep people who want to use ASCEND only for algebraic purposes
from having to pay for the IVP overhead. Algebraic users load
system.lib. Users who want both algebraic and IVP capability load
ivpsystem.lib instead of system.lib. This method is temporary
because part of the extended definition of ASCEND IV is that
differential calculus constructs will be explicitly supported by the
compiler. The calculus is not yet implemented, however.

20.6.2 SUPPORTED ATTRIBUTES

(* 4+ *) The solver_var, and in fact most objects in ASCEND IV, should
have built-in support for (and thereby efficient storage of) quite a
few more attributes than are defined above. These built-in attributes
are not instances of any sort, merely values. The syntax for naming
one of these supported attributes is:
object_name.$ supported_attribute_name.

Supported attributes may have symbol, real, integer, or boolean
values. Note that the$ syntax is essentially the same as the
derivative syntax for relations; derivatives are a supported attribute
of relations. The supported attributes must be defined at the time the
ASCEND compiler is built. The storage requirement for a
supported boolean attribute is 1 bit rather than the 24 bytes required
to store a run time defined boolean flag. Similarly, the requirement
for a supported real attribute is 4 or 8 bytes instead of 24 bytes.

20.6.3 SINGLE OPERAND REAL FUNCTIONS :

exp() exponential (i.e., exp(x) = ex)

ln() log to the base e

sin() sine. argument must be an angle.

cos() cosine. argument must be an angle.

tan() tangent. argument must be an angle.

205 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

arcsin() inverse sine. return value is an angle.

arccos() inverse cosine. return value is an angle.

arctan() inverse tangent. return value is an angle.

erf() error function

sinh() hyperbolic sine

cosh() hyperbolic cosine

tanh() hyperbolic tangent

arcsinh() inverse hyperbolic sine

arccosh() inverse hyperbolic cosine

arctanh() inverse hyperbolic tangent

lnm() modified ln function. This lnm function is parameterized by a
constant a, which is typically set to about 1.e-8. lnm(x) is defined as
follows:

ln(x) for x > a

(x-a)/a + ln(a) for x <= a.

Below the value a (default setting is 1.0e-8), lnm takes on the value
given by the straight line passing through ln(a) and having the same
slope as ln(a) has at a. This function and its first derivative are
continuous. The second derivative contains a jump at a.

The lnm function can tolerate a negative argument while the ln
function cannot. At present the value of a is controllable via the
user interface of the ASCEND solvers.

Operand dimensionality
must be correct.

The operands for an ASCEND function must be dimensionally
consistent with the function in question. Most transcendental
functions require dimensionless arguments. The trigonometric
functions require arguments with dimensionality of plane angles, P.
ASCEND functions return dimensionally correct results.

The operands for ASCEND functions are enclosed within rounded
parentheses, (). An example of use is:

MISCELLANY 206

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

y = A*exp(-B/T);

Discontinuous functions: Discontinuous functions may destroy a Newton-based solution
algorithm if used in defining a model equation. We strongly suggest
considering alternative formulations of your equations.

abs() absolute value of argument. Any dimensionality is allowed in an
abs() function.

20.6.4 LOGICAL FUNCTIONS

SATISFIED() (*4*) SATISFIED(relation_name,tolerance) returns TRUE if the relation
named has a residual value less than the real value, tolerance, given.
If the relation named is a logical relation, the tolerance should not
be specified, since logical relations evaluate directly to TRUE or
FALSE.

20.6.5 UNITSDEFINITIONS

As noted in 20.1.2, ASCEND will recognize conversion factors
when it sees them as {units). These units are built up from the basic
units, and new units can be defined by the user. Note that the
assignment x:= 0.5 {100}; yields x == 50, and that there are no
'offset conversions,' e.g. F=9/5C+32. Please keep unit names to 20
characters or less as this makes life pretty for other users

One or more unit conversion factors can be defined with the UNITS
keyword. A unit of measure, once defined, stays in the system until
the system is shut down. A measuring unit cannot be defined
differently without first shutting down the system, but duplicate or
equivalent definitions are quietly ignored.

A UNITS declaration can occur in a file by itself, inside a model or
inside an atom. UNITS definitions are parsed immediately, they
will be processed even if a surrounding MODEL or ATOM
definition is rejected. Because units and dimensionality are
designed into the deepest levels of the system, a unit definition must
be parsed before any atoms or relations use that definition. It is
good design practice to keep customized unit definitions in separate
files and REQUIRE those files at the beginning of any file that uses
them. Unit definitions are made in the form, for example:

UNITS (* several unit definitions could be here. *)

ohm = {kilogram*meter^2/second^3/ampere^2};

END UNITS;

207 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

The standard units library, measures.a4l, is documented in
Chapter 21.

MISCELLANY 208

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

209 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

MISCELLANY 210

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

211 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

MISCELLANY 212

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

213 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

MISCELLANY 214

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

215 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

MISCELLANY 216

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/syntax.fm5

217 THE ASCEND IV LANGUAGE SYNTAX AND SEMANTICS

Last modified: September 26, 1997 3:54 pm

CHAPTER21 UNITS LIBRARY

21.1 UNITS

This chapter defines the dimensions and units and all the attendant
conversion factors. Note that all conversions are simply multiplicative.
This information is from the file models/measures.a4l in the ASCEND
source code.

Note that units can be easily defined to suit the needs of local users. We
are always on the lookout for new and interesting units, so if you have
some send them in. From measures.a4l we have:

21.2 THE BASIC UNITS IN AN EXTENDED SI MKS
SYSTEM

These units (kilogram, mole, et c.) are associated with the
dimensionality listed here (M, Q, et c.) by the ASCEND IV C code. All
other units are derived from these by multiplication factors. Use of
units other than these requires loading unit definitions, either from
measures.a4l or from another ASCEND file containing a UNITS
declaration. The system rejects loudly any model or variable definition
using undefined units.

define kilogram M; (* internal mass unit SI *)

define mole Q; (* internal quantity unit SI *)

define second T; (* internal time unit SI *)

define meter L; (* internal length unit SI *)

define Kelvin TMP; (* internal temperature unit SI *)

define currency C; (* internal currency unit *)

define ampere E; (* internal electric current unit SI suggested *)

219 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

define candela LUM; (* internal luminous intensity unit SI *)

define radian P; (* internal plane angle unit SI suggested *)

define steradian S; (* internal solid angle unit SI suggested *)

21.3 UNITS DEFINED IN MEASURES .A4L, THE

DEFAULT SYSTEM UNITS LIBRARY OF

ATOMS.A4L.

distance pc = 3.08374e+16*meter;

parsec = pc;

kpc = 1000*pc;

Mpc = 1e6*pc;

km = meter*1000;

m = meter;

dm = meter/10;

cm = meter/100;

mm = meter/1000;

um = meter/1000000;

nm = 1.e-9*meter;

kilometer = km;

centimeter = cm;

millimeter = mm;

micron=um;

nanometer = nm;

angstrom = m/1e10;

fermi = m/1e15;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 220

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

mi = 1609.344*meter;

yd = 0.914412*meter;

ft = 0.304804*meter;

inch = 0.0254*meter;

mile = mi;

yard = yd;

feet = ft;

foot = ft;

in = inch;

mass metton = kilogram *1000;

mton = kilogram *1000;

kg = kilogram;

g = kilogram/1000;

gram = g;

mg = g/1000;

milligram = mg;

ug= kilogram*1e-9;

microgram = ug;

ng=kilogram*1e-12;

nanogram=ng;

pg=kilogram*1e-15;

picogram=pg;

amu = 1.661e-27*kilogram;

221 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

lbm = 4.535924e-1*kilogram;

ton = lbm*2000;

oz = 0.028349525*kilogram;

slug = 14.5939*kilogram;

time yr = 31557600*second;

wk = 604800*second;

dy = 86400*second;

hr = 3600*second;

min = 60*second;

sec = second;

s = second;

ms = second/1000;

us = second/1e6;

ns = second/1e9;

ps = second/1e12;

year = yr;

week = wk;

day = dy;

hour = hr;

minute = min;

millisecond = ms;

microsecond = us;

nanosecond = ns;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 222

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

picosecond = ps;

molecular quantities kg_mole=1000*mole;

g_mole = mole;

gm_mole = mole;

kmol = 1000*mole;

mol = mole;

mmol = mole/1000;

millimole=mmol;

umol = mole/1e6;

micromole=umol;

lb_mole = 4.535924e+2*mole;

temperature K = Kelvin;

R = 5*Kelvin/9;

Rankine = R;

money dollar = currency;

US = currency;

USdollar=currency;

CR = currency;

credits=currency;

reciprocal time
(frequency)

rev = 1.0;

cycle = rev;

rpm = rev/minute;

rps = rev/second;

223 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

hertz = cycle/second;

Hz = hertz;

area ha = meter^2*10000;

hectare=ha;

acre= meter^2*4046.856;

volume l = meter^3/1000;

liter = l;

ml = liter/1000;

ul = liter/1e6;

milliliter = ml;

microliter = ul;

hogshead=2.384809e-1*meter^3;

cuft = 0.02831698*meter^3;

impgal = 4.52837e-3*meter^3;

gal = 3.785412e-3*meter^3;

barrel = 42.0*gal;

gallon = gal;

quart = gal/4;

pint = gal/8;

cup = gal/16;

floz = gal/128;

force N = kilogram*meter/second^2;

newton = N;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 224

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

dyne = N*1.0e-5;

pn=N*1e-9;

picoNewton=pn;

lbf = N*4.448221;

pressure Pa = kilogram/meter/second^2;

MPa = 1.0e+6*Pa;

bar =1.0e+5*Pa;

kPa = 1000*Pa;

pascal = Pa;

atm = Pa*101325.0;

mmHg = 133.322*Pa;

torr = 133.322*Pa;

psia = 6894.733*Pa;

psi = psia;

ftH2O = 2989*Pa;

energy J = kilogram*meter^2/second^2;

joule = J;

MJ = J * 1000000;

kJ = J * 1000;

mJ=J*1.0e-3;

uJ=J*1.0e-6;

nJ=J*1.0e-9;

milliJoule=mJ;

225 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

microJoule=uJ;

nanoJoule=nJ;

erg = J*1.0e-7;

BTU = 1055.056*J;

pCu = BTU * 1.8;

cal = J*4.18393;

calorie = cal;

kcal=1000*calorie;

Cal=1000*calorie;

power W = J/second;

EW = 1.0e+18*W;

PW = 1.0e+15*W;

TW = 1.0e+12*W;

GW = 1.0e+9*W;

MW = 1.0e+6*W;

kW = 1000*W;

mW = W/1000;

uW = W/1000000;

nW = W/1e9;

pW = W/1e12;

fW = W/1e15;

aW = W/1e18;

terawatt = TW;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 226

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

gigawatt = GW;

megawatt = MW;

kilowatt = kW;

watt = W;

milliwatt = mW;

microwatt = uW;

nanowatt = nW;

picowatt = pW;

femtowatt = fW;

attowatt = aW;

hp= 7.456998e+2*W;

absolute viscosity poise = Pa*s;

cP = poise/100;

electric charge coulomb=ampere*second;

C = coulomb;

coul = coulomb;

mC = 0.001*C;

uC = 1e-6*C;

nC = 1e-9*C;

pC = 1e-12*C;

miscellaneous electro-
magnetic fun

V = kilogram*meter^2/second^3/ampere;

F = ampere^2*second^4/kilogram/meter^2;

ohm = kilogram*meter^2/second^3/ampere^2;

227 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

mho = ampere^2*second^3/kilogram/meter^2;

S = mho;

siemens = S;

A=ampere;

amp = ampere;

volt = V;

farad= F;

mA= A/1000;

uA= A/1000000;

kV= 1000*V;

MV= 1e6*V;

mV= V/1000;

mF = 0.001*F;

uF = 1e-6*F;

nF = 1e-9*F;

pF = 1e-12*F;

kohm = 1000*ohm;

Mohm = 1e6*ohm;

kS = 1000*S;

mS = 0.001*S;

uS = 1e-6*S;

Wb = V*second;

weber = Wb;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 228

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

tesla = Wb/m^2;

gauss = 1e-4*tesla;

H = Wb/A;

henry = H;

mH = 0.001*H;

uH = 1e-6*H;

numeric constants of
some interest

To set a variable or constant to these, the code is (in the declarations):

ATOM unspecified_unitwise REFINES real;

END unspecified_unitwise;

MODEL gizmo;

x IS_A unspecified_unitwise;

(* if some other atom type is more appropriate, by all

* means, use it.

*)

x := 1 {PI};

...

END gizmo;

molecule = 1.0;

PI=3.141592653589793; # Circumference/Diameter ratio

EULER_C = 0.57721566490153286; # euler gamma

GOLDEN_C = 1.618033988749894; # golden ratio

HBAR = 1.055e-34*J*second; # Reduced Planck’s constant

PLANCK_C = 2*PI*HBAR; # Planck's constant

LIGHT_C = 2.99793e8 * meter/second; # Speed of light in vacuum

MU0 = 4e-7*PI*kg*m/(C*C); # Permeability of free space

EPSILON0 = 1/LIGHT_C/LIGHT_C/MU0; # Permittivity of free space

BOLTZMAN_C = 1.3805e-23 * J/K; # Boltzman's constant

AVOGADRO_C = 6.023e23 *molecule/mole; # Avogadro's number of molecules

GRAVITY_C = 6.673e-11 * N*m*m/(kg*kg); # Newtons gravitational constant

GAS_C = BOLTZMAN_C*AVOGADRO_C; # Gas constant

INFINITY=1.0e38; # darn big number;

eCHARGE = 1.602e-19*C; # Charge of an electron

EARTH_G = 9.80665 * m/(s*s); # Earth's gravitational field, somewhere

eMASS = 9.1095e-31*kilogram; # Electron rest mass, I suppose

pMASS = 1.67265e-27*kilogram; # Proton mass

constant based
conversions

eV = eCHARGE * V;

229 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

keV = 1000*eV;

MeV = 1e6*eV;

GeV = 1e9*eV;

TeV = 1e12*eV;

PeV = 1e15*eV;

EeV = 1e18*eV;

lyr = LIGHT_C * yr; # Light-year

oersted = gauss/MU0;

subtly dimensionless
measures

rad = radian;

srad = steradian;

deg = radian*1.74532925199433e-2;

degrees = deg;

grad = 0.9*deg;

arcmin = degrees/60.0;

arcsec = arcmin/60.0;

light quantities cd = candela;

lm = candela*steradian;

lumen = lm;

lx = lm/meter^2;

lux= lx;

miscellaneous rates gpm = gallon/minute;

time variant
conversions

MINIMUMWAGE = 4.75*US/hr;

SPEEDLIMIT = 65*mi/hr;

UNITS DEFINED IN MEASURES.A4L, THE DEFAULT SYSTEM UNITS LIBRARY OF ATOMS.A4L. 230

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/measures.fm5

Conversions we'd like to see, but probably won't:

milliHelen = beauty/ship;

231 UNITS LIBRARY

Last modified: September 26, 1997 4:38 pm

232

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

Brief History of ASCEND

ASCEND is an acronym which stands forAdvanced System for
Computations in ENgineering Design1. The name ASCEND first
appeared in print in 1978. The ASCEND programs are a series of
modeling systems that Arthur Westerberg and his graduate students at
Carnegie Mellon University have developed since that time.

1. ASCEND originally stood for “Advanced System for Chemical ENgineering Design” but the second
generation system and following are not discipline specific, thus the name change.

ASCEND I Dean Benjamin developed the first ASCEND system. It was an
interactive system in Fortran. Chemical engineering students at
Carnegie Mellon University used this system from about 1978 to 1982
to carry out multicomponent flash calculations. It supported the senior
design project.

ASCEND II Almost in parallel, Michael Locke developed the ASCEND II
simulation system for his PhD thesis [1981]. ASCEND II allowed
users to create models by configuring them using predefined types of
parts. System maintainers defined the library of types, each in the form
of seven handcrafted Fortran subroutines. These routines computed the
space needed for the data when instancing a part, generated numerical
values for the partial derivatives and the residuals of the equations that
the part instance provided to the overall model, generated proper
variable and equation scaling and the like. Michael Locke used this
system to create models involving a few thousand equations to test
variants of the Sequential Quadratic Programming algorithm. Tom
Berna and he developed for optimizing structured engineering systems.
Selahattin Kuru also used ASCEND II to generate and test solution
algorithms for dynamic simulation that he subsequently developed for
his PhD. Two companies used the software architectural design of
ASCEND II to create their own internal equation-based modeling
systems.

Experience at this time demonstrated that models involving several
thousands of equations were solvable and could even be efficiently
optimized. The question of interest moved from how to solve large
equation-based models to how to aid an engineer to pose them, debug
them and get them to solve.

In 1983 Dean Benjamin proposed the first version of a modeling
language for posing complex models. Larry Gaydos and Art
Westerberg further developed this language in the spring of 1984.

233

Last modified: September 26, 1997 4:39 pm

ASCEND III In 1984 Peter Piela undertook a PhD project with Art Westerberg to
“reduce the time needed to create and solve a complex model by one
order of magnitude.” He developed what became ASCEND III. He
had the help of two Carnegie Mellon University undergraduate
students, Tom Epperly and Karl Westerberg, and of Roy McKelvey, a
member of the faculty in the Design Department in Fine Arts. This
team developed this system on the Apollo workstation and in Pascal. It
comprised three parts: a modeling language and compiler, an
interactive user interface and a suite of solvers. The language used
object-oriented principles, with the exception of hiding of information.
Modelers define types to create model definitions. A type (called a
model in ASCEND) is a collection of variables and complex parts
whose types are previously defined and the definition of the equations
that model is to supply. A model can also be the refinement of a
previously defined type. The language fully supported associative
arrays and sets. For example, a distillation column is an array of trays.
It also supported deferred binding by allowing one to reach inside a
part and alter one of its parts to be a more refined type. The language
and its compiler obviated the need to have a system programmer write
the seven subroutines needed in ASCEND II.

The interactive user interface supplied the user with organized access
to the many tools in the ASCEND III system. There were tools to load
model definitions, to compile them, to browse them, to solve them, to
probe them, to manipulate the display units (e.g., ft/s) for reporting
variable values, to create reports and to run methods on them. One
could even point at a part and ask that it be made into a more refined
type (triggering the compiler to restart). As previously solved values
were not overwritten, they became the starting point for the more
complex model. Thus one could creep up on the solution by solving
more and more complex versions of a model. Many of the tools were
there specifically to aid the user in debugging their models as they tried
to solve them. A tool could tell a user that the model appeared to be
singular and why. Another set of tools aided in picking a consistent set
of variables to fix before solving. Browsing allowed the user to look at
all parts of the model. It was easy to check the configuration of a
model. One could ask that parts of a model be solved one at a time.

Experience by Peter Piela, Oliver Smith, Neil Carlberg and Art
Westerberg with ASCEND III demonstrated very clearly thatskilled
modelers could develop, debug and solve very complex models much
more rapidly than they could with previously available tools, easily
meeting the original target of a order of magnitude reduction in time
required.

234

 /afs/cs.cmu.edu/project/edrc-ascend7/DOCS/Help/history.fm5

ASCEND IIIc In the fall of 1992, Kirk Abbott and Ben Allan approached Art
Westerberg and said they wanted to convert the ASCEND III system
from Pascal into C. They would also use Tcl/Tk for the interface. With
these changes, the system would then run on most Unix workstations.
Tom Epperly and Karl Westerberg had already created a C version for
the compiler and solver. Abbott and Allan wanted to do this conversion
even after they were warned that converting the system would take time
that they could be using to do more apparently relevant work to
complete their PhD theses. They insisted2. They were aided by Tom
Epperly who, although located remotely, worked with them on the
compiler. In eight months and putting in excessively long hours, they
had a working system that could could mimic most of the capabilities
of the ASCEND III system.

Several students and a few people outside CMU could now use the
system for modeling. Bob Huss and Boyd Safrit performed the hardest
testing when they used ASCEND IIIc to model nonideal distillation
processes. They developed and solved models involving up to 15,000
equations. Using a rudimentary capability for solving initial value
problems, Safrit also solved dynamic models.

2. It should be understood that Art Westerberg was tbrilled they insisted on doing this conversion.

With use came the
recognition of a need
for improvements.

Attempts to teach ASCEND to others showed that it was a great system
to speed up the modeling process for experts. Nonexperts found it
nearly impossible to reuse models contained in the ASCEND libraries.
The library for computing the thermodynamic properties of mixtures
was particularly elegant but almost impossible to reuse. Modelers
would reinvent their own properties models quickly, unable to use the
library models.

Models larger than about 17,000 equations took more space than our
largest workstation could provide. The models by Huss and Safrit were
pushing the limits. Abbott and Allan established the goal to increase
the size possible by a factor of at least ten, i.e., to about a quarter of a
million equations. ASCEND needed to solve models more quickly.
Without counting the increases coming from faster and larger
hardware, the goal here too was a factor of ten. If solving were to be
that fast, then compiling would stand out as unacceptably slow. The
goal: ten times faster.

Abbott, with Allan, exposed a new style for modeling in ASCEND. He
created prototypes of the various repeating types that occur in a model.
The compiled equations and other data structures to define these
prototypes then became available for all subsequent instances of parts
that were of the same type as the prototype. Only the instance data

235

Last modified: September 26, 1997 4:39 pm

needed to be developed separately. Demonstrated impact on compile
times was dramatic.

Abbott, with Allan, looked at how to speed up the solving times. The
new twist was to use the model structure as defined by the model
definition to expose a global reordering for the model equations before
presenting them for solution. The time to solve the linear Newton
equations as the inner loop of solving nonlinear equations dropped by
factors of 5 to 10.

ASCEND IV Ben Allan has taken a lead role and worked with Mark Thomas,
Vicente Rico-Ramirez and Ken Tyner to produce the next version of
ASCEND, ASCEND IV. Playing the role of tester, an undergraduate,
Jennifer Perry, demonstrated that Allan’s introduction of parameterized
types dramatically increased the reusability of the model libraries,
converting it into an almost automatable exercise. Adding language
constructs to permit the modeler to state what constitutes misuse of a
model leads to the system generating diagnostics the model itself
defines. Allan also completely revised the data structures and the
interface between ASCEND and its solvers so that adding new solvers
is much less work and so the solvers in ASCEND themselves become
separable from ASCEND and usable by others.

Allan also defined the addition of NOTES to ASCEND which are like
methods except they are not understood by the ASCEND system itself.
Rather they can be passed to programs outside ASCEND. An example
includes documentation notes which a documentation manager can use
to compose answers to queries about what is in an ASCEND model.
Another is a note that contains a bitmap description of a part that an
external package could use to draw a symbol of that part.

ASCEND IV can now handle discrete variables and constants (logical,
binary, symbolic, and integer). It supports the solver directing that
parts of the model be excluded when solving such as when solving
using implicit enumeration (dynamic model modification). CONOPT
is now attached for optimization. The standard solver is rapidly
becoming much more robust. ASCEND IV can generate a GAMS
model corresponding the ASCEND model, giving access to solvers
GAMS has that ASCEND does not.

While not quite there just yet, the goal to compile and solve 250,000
equations on a 150 megahertz workstation having about 250 megabytes
of fast memory in a few tens of minutes is in sight.

