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ABSTRACT

In this thesis we examine problems in the reuse of mathematical models. Reuse of a model

by others requires that the model is viewable from many different perspectives, that the

model is capable of incorporating new information during its evolution, that the model is

understood by a range of modelers in different times and places with different special

skills, that the model is mechanically computable in many different ways, that the model’s

assumptions and key data are not lost, and that the model can support conflict resolution

when it is reused as part of a larger model.

Our hypothesis is that the problems from which these requirements arise can be overcome,

leading to a significant improvement in future model building practice. We here assemble

in an original way a group of concepts from engineering design, mathematics, and

computer science which, taken together, make model reuse much easier to achieve. We

present a modeling environment, ASCEND IV, which we have used to test the our

concept.

We take a hard look at widespread concepts of object-oriented and modular software reuse

and find that they cannot efficiently meet the requirements of reusable modeling. We

suggest that, even in an ideal world, there is no single tool which can meet all these

requirements and support all users well. We suggest that computer tool makers should

design future computer tools around information sharing rather than information hiding,

so that tool users can combine different tools and models to attain their ends efficiently.

We have constructed an example of an open tool for large-scale modeling work, ASCEND

IV, which incorporates an equation-based modeling language derived from ASCEND IIIc

and concepts similar to the “design by contract” concept presented in the Eiffel language.

Our system also features an open user interface and an extensible solver architecture for

supporting interactive modeling with nonlinear, logical, and structural constraints and for

supporting peer-to-peer interaction with other tools.



iii

Acknowledgments

I am deeply indebted to Thomas Epperly, Peter Piela, Arthur and Karl Westerberg for

creating the ASCEND modeling language concept, and to Kirk Abbott and Joseph Zaher

for going with me far beyond the bounds of conventional research to create the ASCEND

IIIc modeling environment. Robert Huss, Jennifer Perry, Vicente Rico-Ramirez, Boyd

Safrit, Mark Thomas, and Kenneth Tyner have all been very influential in the design and

implementation of the modeling language, models, and tools presented in this thesis.

There is a cast of hundreds spread among the Department of Chemical Engineering, the

Engineering Design Research Center, the Norwegian Technical University at Trondheim

and the Computer Aided Process Design consortium member companies to whom I am

grateful for the roles they have played as patient system testers, anguished modelers,

design debaters, provocateurs, and friends. These have helped me discover a systems

research that is much more fruitful because it acknowledges the primacy of humans in the

systems.

This work is dedicated to the future users of mathematical modeling systems and to my

parents, Andrew and Emily Allan, and family.



iv

Table of Contents

1 Modeling is hard because reuse is very hard 1
1.1 The problem 1
1.2 Our solution 4
1.3 Open modeling issues 6
1.3.1 Sharing common information 7
1.3.2 Anonymous types 8
1.3.3 Open objects and “modeling by contract” 10
1.3.4 Intellectual property and openness 11
1.3.5 Attacking the puzzle 12
2 Changing Modeling Systems 14
2.1 Design 14
2.2 Open form modeling problems 16
2.3 The modeling systems landscape 18
2.4 Open form modeling solutions 21
3 An expanded view of component-based modeling 28
3.1 A perspective on current software 29
3.2 Components in process modeling 33
3.3 An open form model component definition 37
3.3.1 Examples of desired component reuse 38
3.3.2 Design properties 40
3.3.3 Model component attributes and messages 41
4 Toward better modeling languages 52
4.1 An open form modeling system 52
4.2 Problems in mathematical modeling tools 54
4.3 Problems in ASCEND III 57
4.3.1 The properties of ASCEND III 58
4.3.2 Why reusing ASCEND III is hard 63
4.4 Desirable language properties 65
5 ASCEND IV Modeling Language 70
5.1 User speed and syntax consistency 71
5.2 Clearly defined operators 73
5.3 Efficiency 80
5.4 Extensibility 87
5.5 Modeling by contract 90
5.6 Language results 99
6 Tools to support modeling with objects and equations 103
6.1 Helping the user manipulate model information 103
6.1.1 Parser and compiler messages 103
6.1.2 Refinement hierarchy 104
6.1.3 Information hiding 105
6.1.4 Where is this created? 106
6.1.5 Reusable dynamic modeling 107



v

6.1.6 Model reordering 107
6.1.7 GAMS code generation 107
6.2 Immediate extensions based on this work 108
6.2.1 Constructed explanation of names 108
6.2.2 Cut and paste modeling 108
6.2.3 Classification of objects 108
6.2.4 Beefing up ASCEND IV methods 109
6.3 Future extensions 110
7 Summary and conclusions 112



vi

List of Code Examples, Figures and Tables

Figure 1-1: Merging stream Unit2.out with Unit1.in for Flowsheet1 7
Figure 1-2: Passing a common stream to both units through interfaces 8
Figure 3-1: One engineering modeling system architecture 33
Figure 3-2: A General Modeling Environment 34
Figure 3-3: Production planning model (A) constructed from process design (D) and
control (B) models. Reactors in (B) are defined including parts of the chemist’s bench re-
action-separation model (C). 40
Figure 3-4: Reusable model and solution tools information flow. 43
Table 3-1: Desirable information in a reusable mathematical model 44
Figure 4-1: Part-whole structure of a distillation column. 63
Figure 4-2: A connection between self-contained objects 64
Code 5-1: MODEL pipe_flow; 74
Code 5-2: MODEL rxntest; 76
Code 5-3: FOR i IN [1..10] CREATE 77
Code 5-4: MODEL liquid_mixture( 78
Code 5-5: MODEL td_equilibrium_mixture ( 80
Code 5-6: MODEL alias_example; 81
Table 5-1: Some names of water property data 82
Table 5-2: Merge statistics for a 13 tray methanol/water column 82
Code 5-7: MODEL euler_integration( 83
Table 5-3: Isomerization2 collocation model compilation times 84
Code 5-8: MODEL liquid_feed_tray( 88
Code 5-9: ADD NOTES FOR TYPE liquid_feed_tray; 89
Code 5-10: MODEL pump; 90
Code 5-11: MODEL hexane_column_flowsheet; 93
Code 5-12: MODEL test_vapor_liquid_flash; 97
Figure 6-1: Library refinement ancestry (class hierarchy) display tool 105
Code 6-1: METHOD init_trays(status WILL_BE symbol); 110
Table 7-1:  Reusable modeling problems and solutions 112



1

CHAPTER1 MODELING IS

HARD BECAUSE

REUSE IS VERY

HARD

1.1 THE PROBLEM

The design, construction, operation, retrofit, and decommissioning of a chemical process

plant are done by diverse teams of specialists over long periods of time. These specialists

are increasingly likely to be spread over large geographic distances and across corporate

boundaries. These specialists use a wide variety of currently incompatible tools to create

the many different kinds of information (models) needed to support decision making and

record keeping. For example, a chemist is likely to use a statistics package or a

sophisticated chemistry modeling software, a design engineer is quite likely to use a

spreadsheet to define and solve preliminary material and energy balances based on rather

limited information, a control engineer may use a dynamic flowsheet simulation tool, and

a process operations planner is likely to use a rather different spreadsheet model or an

equation-based optimization language.

At almost every stage, specialists are recreating models because it is inconvenient or

impossible to reuse the information that went into constructing the models of other
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specialists on the team or to reuse the models of previous teams. Even if the various

specialists rigorously abide by standards1 and their software tools are remarkably more

compatible than are current tools, there are still many hurdles which can block successful

sharing of models and modeling tools. Reinventing the wheel is still a problem.

This problem is not unique to process plant modeling; it also affects research in

engineering science, methods, and systems. An enormous literature exists which

documents much progress in the invention of new or improved solution techniques for a

wide variety of mathematical problems. Application of these new algorithms to particular

physical systems has created new fields of investigation, for example, molecular dynamics

and molecular design, and has increased the range and detail of existing models, for

example, the constantly improving methods for estimating the thermodynamic properties

of mixtures. Challenging applications drive the invention of new algorithms in a feedback

loop. This research progress seems all the more remarkable when we consider that many

research students do not effectively reuse tools (experimental apparatus or software) or

knowledge created by previous students working on the same or similar projects.

Relatively little work has been published on the very hard problem of building a unifying

conceptual framework that will enable a diverse team of technical specialists performing

pieces of process modeling to absorb efficiently the wealth of ideas and tools that come

out of software companies and universities or to combine their efforts easily with those of

other teams. This missing framework also affects the university research project itself,

inasmuch as researchers find it difficult to share (or to bear the cost of) anything other than

the simplest of computational tools and models.

We can identify many problems in reusing the work of others, even when they use the

same set of computational tools that we do.

1. Varying views of model structures and data are required for different specialists and
different tasks. What these views will be is not always easily anticipated, in part
because the boundary between specialties is less and less clear.

2. Initial modeling must be done with very limited information. Many tools make it diffi-

1. This is unlikely, since each specialty has it own tools and jargon and since process modeling
work frequently requires unique models to be produced on very tight schedules.
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cult to incorporate subsequent information and evolve the initial model.
3. Communicating the expected and potential uses of a given model across barriers of

time, place, and specialty is hard. Most tools cannot capture information about expec-
tations and limits of application.

4. Finding the commonalities among different modeling paradigms2 to allow computa-
tional support for model sharing is difficult.

5. Tracking model data and model assumptions through time to allow recovery from
modeling errors or to help define new modeling directions is not supported by most
tools.

6. Negotiating conflicts when combining the efforts of different modelers must be per-
formed. Even the best organized people may need incompatible assumptions while
working on separate subproblems.

Considering the above list, it is hard to combine models from diverse groups of users even

when they share conceptual frameworks and software systems. The unnecessary

duplication of work is a frequent result. It is very hard to combine models from dissimilar

systems. Our hypothesis is that we can overcome many of these tool sharing and reuse

problems and significantly improve future model building.

All the problems we have described are compounded as projects grow larger. Many

modeling methodologies and software tools have been proposed to address the needs of

one or another particular kind of specialist, but very few have been shown to be effective

on very large problems solved by teams of specialists making diverse contributions. One

technology that has been successfully scaled up to tackle very large industrial problems is

the modeling of physical and economic systems with equations. Specialists in equation

solving contribute formulation and solution algorithms. Specialists in modeling some

particular kind of physics contribute model equations in explicit form (equation-based

modeling languages) or implicit form (matrices derived from discretized partial

differential equations). These equations can be reused in solving other problems so long as

the assumptions required to write the equations still hold. The resulting models in

principle may be used for simulation, optimization, parameter estimation or any

computation other than that for which the models were originally created since the

equations are independent of the solution procedures. Depending on the particular physics

and software involved, equation systems containing up to 1x109 variables can currently be

2. Consider, for example, the similarity of spreadsheets, process simulators, and partial differential
equation modeling tools. All are used to create and solve mathematical problems, but there the
similarity ends. The assumptions and computations underlying each are rather different.
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solved. Creating equation-based models of such complexity, particularly models of never-

before-considered chemical processes, is still very difficult. We must combine the work of

many modelers to create these models efficiently.

1.2 OUR SOLUTION

Our solution to handling the six problems noted in model reuse is to propose an open

conceptual framework based on the following components.

• Open hierarchical representation.
• Dynamic configuration within set model structures.
• Methods and documentation bound to models.
• Generalized equation-based modeling.

We require two abilities to address problem five which is an issue in managing

information of all kinds.

• Tracking changes in variable model data and examples of model application.
• Locating appropriate models and tools as they are needed.

Open, hierarchical representations allow different views of the same information. They

allow replacement of independent submodels with improved submodels during the

evolution of the overall problem. They allow the division of modeling labor. They reduce

the information that must be viewed simultaneously by the user. They can expose the

information required to make each level of a complex model well defined, if they are

constructed in a manner we will suggest. When problems occur in the physical system

being modeled, we may suddenly need to scrutinize intensely any part of the

corresponding models. All levels of detail within the total system model hierarchy must be

open to our examination since we can seldom predict which parts of the system will

present problems or interact in unexpected ways. In Section 3.3 we propose design goals

and features for modeling components that could be used to build up open, hierarchical

representations. In Section 5.5 we show how we have realized an open, hierarchical

representation with the ASCEND IV language.

Dynamic configuration means dynamically controlling which one of several existing
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submodel alternatives is active based on discrete problem variables. All the alternatives

are constructed as parts of the larger model structure, but only the active subset of the

models is solved. This provides a mechanism for modelers to turn off conflicting parts of

submodels selectivelyprovided the modelers can see the key features of the submodels and

understand what they see. With this mechanism available, it is possible to resolve conflicts

in the models and assumptions made by previous modelers. Algorithms capable of solving

for both discrete and continuous variables could be used to determine which submodels

are active if each alternative represents one of many valid possibilities, for example, in

heat exchanger network synthesis techniques based on network superstructures [1]. We

give an example where conflict resolution is necessary in Section 3.3.1. In Section 5.2 we

show that our conflict resolution mechanism can also be used for more general conditional

modeling.

Methods and documentation bound in computable form to models and submodels in a

model hierarchy can capture and spread current modeling knowledge. Users can access

and reuse expert knowledge coded in methods to perform common model manipulations

such as configuration, initialization, scaling, loading or saving data, solving, and solution

analysis. In an open system, methods can also call methods of foreign objects to perform

tasks not implemented directly in the system. Documentation bound to a model (in

contrast to comments that are discarded from the source code when a model is loaded) can

be used to communicate possible model applications to unfamiliar users. It can also supply

information needed to forge connections to other tools, such as other modeling systems,

graphic user interfaces, and tools that search over hierarchical structures. Documentation

bound to a model is more likely to be accurate than documentation which exists

independently and is updated less frequently than the model. In Section 5.4 we present

examples of our computable documentation in ASCEND IV.

Generalizing equation-based modeling captures more general relationships than current

equation-based systems. It can capture the logical, linear, nonlinear, and possibly

statistical constraints common to models of physical and economic systems. It can also

capture the structural relationships (part/whole, superclass/subclass, and similarity

relationships) among equations and models. It supports reuse of models by not
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permanently hiding details which may become important in unanticipated applications. It

requires sharing more than just the equation residual and gradient information of a model.

It requires a more open view of what modeling systems and solution tools must be since

there is no universally appropriate automatically computable mathematical modeling

language. We shall present the concepts underlying our extensible solver software

architecture for manipulating and solving generalized equation-based models in

Section 3.3.

Tracking changes in variable model data is a general information management problem

not limited to mathematical modeling. Finding existing models and tools so that users do

not waste time reinventing solutions is also a general problem. By defining an open

framework for mathematical modeling, we allow ourselves to reuse the tools and

techniques being created by information management specialists. Thus, we save ourselves

from reinventing information management tools, and we are free to focus on improving

the methods and tools of our own field: modeling systems to support engineers.

By defining an open framework for mathematical modeling, we also allow others to reuse

our tools and techniques. Thus the ultimate responsibility for controlling our reusable

tools must be assumed by the end users of our tools or by software agents that they

employ. We cannot assume that our mathematical modeling framework or any other

particular modeling tool defines the complete universe of the end users, because that

assumption denies the reality that new tools, models, and viewpoints are constantly being

created to improve the problem solving process. It is not enough for us to throw new

pieces (frameworks and tools) into the modeling puzzle randomly; we must also suggest

how the pieces fit in the overall picture and what that picture could look like. We discuss

our picture further in Chapter 2 and Chapter 3.

1.3 OPEN MODELING ISSUES

There are four modeling issues we must highlight because they have a particularly large

impact on the details of the conceptual framework presented in this thesis. The issues are

not unique to open mathematical modeling systems or to process engineering systems, but
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we must understand them in order to construct a framework that allows us to reuse the

work of many modelers.

1.3.1 SHARING COMMON INFORMATION

When creating complex physical models there is usually information shared between

models, for example, a stream is common to the unit which is its source and the unit which

is its destination. We may wish to solve either unit model alone, possibly making unit

specifications which require computing the stream properties. Both source and destination

unit must have the complete model of the stream if we are to use the units in this fashion;

one unit cannot be responsible for computing the stream properties for the other.

There are at least two ways to handle this situation systematically without making

restrictive assumptions about pair-wise model connectivity that are peculiar to chemical

engineering. One way is to define a stream in each unit and then declare a merge [5] of the

stream from one unit and the corresponding stream in the other unit as part of the

flowsheet model definition. We show this in Figure 1-1. The first difficulty in this merging

is that wemust read and understand in detail the code describing the units in order to find

the parts named “out” and “in” that we need to merge. The second difficulty is that merge

operations can slow the computations needed to construct a working model object by a

factor of two to ten, as we shall see in Section 5.3. Another way is to create the stream in

the flowsheet model and pass the stream object to the two units that share it through the

interfaces defined for the units. We show this in Figure 1-2.

Figure 1-1 Merging stream Unit2.out with Unit1.in for Flowsheet1

Unit1

Unit2

Flowsheet1

out in
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Figure 1-2 Passing a common stream to both units through interfaces

If we model in the style of Figure 1-2, then connections between models become obvious,

and it easier for us to modify the connections when we must modify the flowsheet. We

also gain by eliminating the wasted computations required to construct two streams before

merging them into one. Finally, by creating a single object and passing it to all the

locations that need it, we ensure that all submodels are working with consistent data. For

example, we could define an object containing the physical property options and a list of

chemical species that are to be used throughout the flowsheet and pass this object to all

streams and units in the flowsheet. Our realization of the object passing concept is

described in Section 5.5.

1.3.2 ANONYMOUS TYPES

In the world of computational modeling, a type (a class) is a set of statements which

describes a group of similar objects. Processing the statements of a type to construct an

object is called instantiation or compiling. In mathematical modeling, the set of relations

and the other statements needed to construct them constitutes a type. There are two ways

in which a model type may be reusable. First, it may be a complete set of statements

containing all the information needed to instantiate a mathematical object using a given

algorithm. In modeling physical systems, thousands of complete types may be available to

choose from, as is the case with simple parts such as resistors, capacitors, and integrated

circuit components in an electronic parts catalog. Second, a type may be an incomplete set

of statements which leaves detailed specification of certain features within the

mathematical object to the end user. For example, a reusable rigorous distillation column

Unit1

Unit2

Flowsheet2

out in

Stream7
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model may leave the choice of chemical species, of number of trays, and of

thermodynamic calculation methods to the user; this column type isincomplete. The type

of the column object compiled from the incomplete column type and the final user

specifications isanonymous because nowhere has anyone written down a single complete

set of statements that describe the resulting mathematical object.

Most mathematical objects used by chemical engineers have anonymous types because

creating an explicit complete type for every combination of final specifications leads to

extreme difficulty in storing, locating and reusing models. For example, consider the

number of complete types we can define for a simple distillation column where we have

25 thermodynamic calculation method alternatives, a number of trays between 3 and 100,

and mixtures combining five chemical species from a set of 1500. Both creating and

searching a catalog of over 1015 such distillation models would be ridiculously expensive.

One way we can evolve a structured initial process model object (already full of

anonymous types determined by the species, number of stages, and so forth) to a more

detailed model is to reach inside the structure and extend the simple thermodynamic

calculation (perhaps using constant relative volatilities) to a more refined type (a subclass)

of thermodynamic calculation. If we can model this way, then we can more quickly create

and explore organizations of types (model libraries) when the best organization is not yet

clear. This model evolution methodrequires creating anonymous types.

Unfortunately, models that are created by merging parts of submodels or by reaching

inside submodels to make anonymous type changes have proven quite difficult to reuse, as

we discuss in Section 4.3.2. We need ways to take our discoveries from early exploratory

models and restate them explicitly in models which are easy to reuse. Consider a simple

distillation column which uses the same simple thermodynamic model on each tray; the

anonymous types of all the trays except the condenser, feed tray, and reboiler are similar3.

If we refine the thermodynamic calculation on each tray using a distinct thermodynamic

3. The condenser, reboiler, and feed tray have distinct anonymous types because they contain infor-
mation about input and output streams which the simpler stage models do not. The condenser,
reboiler, and feed tray may even be constructed from explicitly different model types, depending
on the modeling system and modeling style in use.
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subclass, then each tray in the column has a distinct anonymous type. It is quite probable

that the column mathematics require the same thermodynamic model to be used on all the

trays, so we need mechanisms which allow us to define and refine at the same modeling

level both the column and the thermodynamic calculations which will be used. If we can

do this, then we can also define mechanisms which prohibit changes in the anonymous

type of an object unless those changes are made at the proper modeling level. These

mechanisms enable us to prevent incorrect use of open model structures and to make

model types more understandable when modifications are required. We will show in detail

how we can achieve this in Chapter 5.

1.3.3 OPEN OBJECTS AND “ MODELING BY CONTRACT ”

One of the central ideas in “object-oriented (OO) programming” is information hiding.

Traditional OO programming objects (data and associated imperative code) share

information by sending messages through message passing interfaces so that the data and

implementation details may be hidden. Because we need access to practically all of the

data in our model objects in order to resolve modeling conflicts and to handle other

problems encountered in applying the models, information hiding at the mathematical

modeling level is inappropriate and message passing simply adds unnecessary

computational overhead.

While rejecting information hiding at the modeling level, we can still learn much from the

continuing work of computer scientists on object-oriented design methodology which can

substantially improve the reusability of our models. Even though a mathematical model is

“open,” meaning we can see all its variables, equations, and submodels down to the last

detail when necessary, we must be able to use the model in routine applications without

needing to understand all these details if we are to construct large models efficiently. A

“design by contract” methodology, which might be more accurately called “programming

by contract,” is proposed by object-oriented software design researchers to support

software reuse [2,4]. A practical implementation based on this methodology, Eiffel [3], is

reported to remedy the failures of “portable assembly” languages such as C++ and

FORTRAN to support efficient software reuse in very large software systems. We can

draw parallels to “programming by contract” in an open system of mathematical objects to
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define “modeling by contract.”

The essential feature of software design by contract is that it explicitly associates with

each software object an interface and computable statements defining:

• the preconditions which must be met to use the object.
• the class invariants, relationships about objects and object data which always hold for

any computation performed by that object.
• the postconditions, relationships which the object guarantees to satisfy when it is used

correctly.
• the exception handling protocols required when an object is incorrectly used.

In our equation-based modeling method, types (classes) can be easily reused if we too

make the preconditions of use explicit. Our types are primarily data structuring tools, so

the data (parts) in our open models are our class invariants. Because our open models

simply state the existence of equations, variables, and submodels but not algorithms, we

do not need to contend with postconditions or exception handling when defining the type

structures. In Eiffel, the precondition statements have relatively simple forms, checking

relationships among types and values of input parameters. If we are to support modeling

with open structures and object passing, however, we must extend the concept of

preconditions to capture easily restrictions on deeper structural relationships as well. We

will show how these relationships can be stated and checked in Chapter 5. Using examples

of chemical engineering models, we will see that these relationships are often rather

complex, which may in part explain the difficulties we currently encounter in reusing

poorly documented engineering modeling software.

1.3.4 INTELLECTUAL PROPERTY AND OPENNESS

If we define completely open model structures to facilitate model reuse and abandon

model information hiding, we have eliminated one layer of protection for the intellectual

property rights of model authors. Unlike a computer program compiled into binary form, a

completely open, reusable computer model is easily recreated in different forms. For

modeling within a single enterprise, this does not present a difficulty as the intellectual

property rights of all the employees are usually ceded to the enterprise. However, third

party suppliers of modeling technologies may find little motivation to supply open models
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if these suppliers cannot find a way to extract sufficient profit from the customers before

the information contained in these models diffuses into the store of common engineering

knowledge. We discuss this situation further in Section 2.2.

Our contributions to the concepts of reusable modeling may be of little economic value

until the creators and users of models agree on a definition of fair exchange that can

accommodate open sharing of information. The precise economic worth of our ideas is

only mildly an academic concern, but we must not fail to note the inadequacy in the

present concepts of intellectual property which could discourage further investigation of

our ideas by others. The challenge to scholars in areas of information science and property

law is to find a systematic way to encourage new developments in a marketplace of ideas

where the full details of each idea are made visible to the buyer.

1.3.5 ATTACKING THE PUZZLE

The problems of model reuse, our solutions, and the issues which attend both are parts of

the larger picture of systems research. We need to show where our solutions fit in the

overall picture so their merits can be determined by others. We begin this display in

Chapter 2 with a look at the roles of modeling in design and of equation-based modeling

in the modeling systems landscape. In Chapter 3 we consider the traditional object-

oriented, information-hiding approach to modeling software, and we present our

contrasting view of a more reusable mathematical modeling software component. In

Chapter 4 we consider how not one but many languages must be combined in an open

modeling environment, and we suggest desirable properties for any language which is to

play a role in such an environment. In Chapter 5 we present the design rationale for and

some examples of ASCEND IV, a language we are implementing to test our concepts of

open modeling languages and open modeling environments. In Chapter 5 we also examine

two language concepts apparently new to chemical engineering, object passing and

modeling by contract, and we then compare the language we have defined in Chapter 5

against the desirable language properties listed in Chapter 4 to see where other tools and

concepts may be needed. In Chapter 6 we describe several new tools that help the user

manipulate information in complex models, and we propose future work that would

further enhance model reuse.
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CHAPTER2 CHANGING

MODELING

SYSTEMS

2.1 DESIGN

The design of complex engineered systems is a difficult and error-prone social process

[4,15]. Engineering design has recently become even more difficult as economic and

regulatory pressures to account for the entire product life-cycle in all phases of design

have sharply increased. Various structured modeling methods have always been used in

chemical engineering. Indeed, some believe the view of chemical processes as structures

composed of unit operation models is what first differentiated chemical engineering from

other engineering disciplines [13]. The working environment of an engineer is itself a

complex engineered system, and it is very hard to create such an environment which gives

the engineer fine control of the ever-growing array of tools and kinds of information

necessary to handle both routine and non-routine tasks effectively. The work environment

should constitute a stable but easily expanded base which supports the engineer and the

overall goals of the business enterprise [45].

The structured process modeling habits of chemical engineers have naturally been
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reflected in the design of computer systems for process modeling created by chemical

engineers. Each commercial simulator has a proprietary, handcrafted library of commonly

used unit operation models and a graphic user interface (GUI) to hide and manage the

details of applying that library. The striking similarities between configuring a set of unit

operation models to create a flowsheet and configuring a set of computational objects to

create arbitrary software [29] has lead some to an interesting idea [17] which can be

summarized as follows.

The overall task of process modeling could be much better done if unit operations
were packaged as standardized components. We could use any off-the-shelf total
chemical process modeling environment we prefer to create and manipulate process
models out of parts from many different proprietary libraries.

A frequently proposed example of this idea is to take one vendor’s thermodynamic

models, another’s distillation models, a third’s heat exchanger models, and combine all

these standardized models with an in-house reactor model to obtain an overall flowsheet.

We take a hard look at this idea and the landscape it inhabits in this chapter. This thesis

will not answer all the issues we raise. Instead we aim to present possible solution paths

for some of the issues which make us believe that overall the problems are not

insurmountable. Others have argued that designing standardized interfaces for streams,

physical properties, and common unit operations is a worthwhile step in the evolution of

chemical engineering software systems [11]. We agree, but we contend it can be only an

early step if we aim to support the engineer and the business effectively.

We see the first difficulty in the assumption that an off-the-shelf modeling environment

designed primarily around a chemical engineer’s analysis, simulation, and data

management needs is also the best solution to a chemical manufacturer’s information and

organization management problems. This supposition seems tenuous at best, given studies

[18,44] which suggest that only about 15% of an engineer’s time is spent in analysis

related tasks. A better supposition might be that engineers and other technical contributors

in the overall business enterprise should rapidly and inexpensively build modeling

environments suited to the domain specific (or interdisciplinary!) modeling tasks at hand

from a range of pre-packaged but extensible software components.
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We would build such an ideal modeling environment based upon internationally

standardized interfaces [2], managing the software components through a general

information modeling tool more appropriate to the overall business enterprise such asn-

dim [45]. In our ideal world, each of the features incorporated in today’s gigantic, off-the-

shelf modeling environments could be repackaged as a component. The eventual result of

such a shift in modeling practice would be to put the manufacturing enterprise back in

control of its modeling technology in an inexpensive way, a result which seems to be the

opposite of current trends [8,41] in chemical process modeling software.

The second difficulty we see in the widespread component view of software is its

incompatibility with reusable ‘open form modeling’. Open form modeling is the creation

and then simultaneous solution of a set of equations describing process physics [22], and it

has been identified by many researchers (both commercial and academic [22,41,31]) as a

key element in the delivery of large-scale (plant-wide or enterprise-wide) simulation and

optimization technology.

We finish this chapter with a review of why open form modeling is necessary and why, in

general terms, we think it has incompatibilities with the component software view. In the

remainder of the thesis, we will contribute an analysis of open form modeling information

needs and possible solution elements to several key areas in the very difficult task of

designing open form modeling system standards. We intend to make clear that open form

models could indeed be standardized and that a one to two orders of magnitude decrease

in the present cost of building truly reusable modeling systems is possible.

2.2 OPEN FORM MODELING PROBLEMS

Open form modeling is more commonly known as ‘equation-based modeling.’ The term

“open form” has been adopted recently [22], possibly to emphasize the point that if one

combines unit operation models which are internally equation-based but each model hides

those equations from the flowsheet solver, the overall efficiency of an “equation-based”

solution method does not appear. Equation-based modeling advocates [16] reached the

conclusion more than two decades ago that solving all the process model equations



OPEN FORM MODELING PROBLEMS

17

simultaneously is frequently a much faster approach than iterating through a coupled

sequence of equation subsets. Such an iteration scheme is known as the sequential-

modular approach, and it remains the standard industrial practice for most chemical

process simulations because it often avoids convergence difficulties encountered in

Newton methods with poor initial solution estimates [22]. The modular approach can

cause convergence difficulties that would not appear in an equivalent simultaneous

problem [16], a situation not as uncommon as most simulation and optimization users

would like it to be.

The solution of open form models has been demonstrated as effective in solving the

simulation, optimization, parameter estimation and data reconciliation problems [22,41]

all using a single set of equations. A different solution algorithm may be used for each

problem, and each problem is characterized by which variables in the total model are held

fixed during the solution process. The use of such multi-purpose models throughout the

process plant life-cycle has been proposed by several authors [32,23,7] and is today the

foundation of advanced real-time optimization and control systems.

There are many unresolved issues in the creation and use of open form modeling systems.

• It is considered very difficult to create general purpose software environments which
lead effortlessly to well-posed models [22].

• Nonlinear equation-based models, even when well-posed and object-oriented, are gen-
erally described as very hard to use [22] and are often seen as requiring a paradigm
shift [9] from thinking about unit operations to thinking about equations.

• The examples of general equation-based modeling tools published so far do not scale
up to very large problems except under restrictive assumptions [6,5,10,24].

• Recreating an open form model written in any equation-oriented computer language is
relatively easy given another equation-oriented computer language, as we shall see.
[25,26,12,10,7]

The difficulties of scaling general equation-based modeling tools to very large problems

have been described in [6]. The scalable systems so far described in the literature obtain

scalability by sacrificing ease of use [6] or generality [5,10,24]. We wish to challenge the

assumption that a scalable system will be either specialized or hard to use. We suggest that

our efficiency in posing very large mathematical models and understanding the results of

them is strongly influenced by the tools and language we use. One of our goals in this
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thesis is to develop a modeling language which is efficient from a user’s viewpoint, a

language that makes the relationships in complex model structures clear. We shall see in

Chapter 5 that several ideas which help to clarify models for users also provide

information which can be used to improve the efficiency of modeling computations.

We think the fourth point about recreating models makes the component software view

incompatible with open form modeling environments. That is, recreating a similar model

in an equation-based language or a strongly object-oriented imperative language is

possible with modern computer-aided software engineering (CASE) tools [25,26] or

equation-based modeling systems [12,10,7]. For example, we can mechanically translate a

compiled ASCEND model into GAMS code, thus we only need to use ASCEND to create

the model. We can make routine use of the model without running ASCEND, thus we can

avoid any fees associated with ASCEND1. The licensors of open form models must obtain

legal protection of the original models or lower the costs for production and use of such

models to the point where piracy by model recreation is not worth the licensee’s effort. A

second alternative for protecting open form models is to create open form models in a

language which makes the model difficult to replicate (perforce, difficult to use) without

licensing the executive system which provides friendly interfaces to such models. A third

alternative is for the vendor to provide ‘black box’ model interfaces to the user, where

these interfaces merely contact the vendor’s computers across a network to retrieve

standard information such as equation residuals and gradients based on the user’s input. If

the definition of “standard information” is too narrow, this last alternative might not be a

significant improvement over current commercial simulators.

2.3 THE MODELING SYSTEMS LANDSCAPE

Before suggesting partial solutions to the open form modeling problems, we should first

examine the more general landscape that open form technology must inhabit. We survey

three key features in this landscape.

First, highly sophisticated, mature CASE tools are now available and getting better all the

1. There are no fees associated with ASCEND, and we do not anticipate that there ever will be. This
is not the case with all modeling systems, however.
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time, making the production of sophisticated, reliable, low cost software components in a

short amount of time possible, or so some would have us believe [25,27,38,29]. The

thousands of hours once spent looking for memory management errors in low level

languages such as C++ and FORTRAN have been eliminated by truly object-oriented

languages [25] which make automatic memory management a viable option. Even when

speed critical applications still require the use of low level languages, auditing tools such

as Purify [37] make long hours spent on hunting for memory management errors largely a

thing of the past. More importantly, object-oriented programming methods and systems

aimed at solving the many inter-organizational and information management issues

surrounding data exchange and the generalsoftware design problem are now sufficiently

well-developed that international standards [2] are being proposed and adopted in many

application areas including process engineering [1,3]. These object-oriented CASE tools

and methodologies share the assumption that it is easier to implement and reuse software

if the details of data structure and implementation of a given object are maximally hidden.

We shall suggest in Chapter 3 that easily reusable mathematical modeling requires that

very detailed model information must be available. The essential tension between the

CASE concept of information hiding and the open form modeling requirement of wide

open data communications may make open form modeling component software standards

very hard to develop.

Second, people from many disciplines and subdisciplines, each with distinct technical

languages and methodologies, must contribute knowledge to the overall task of modeling

a plant and the associated business processes during the chemical process life-cycle

[14,39]. Frequently the overlaps and subtle distinctions in terminology make collaboration

in model building difficult [14]. One approach taken by several research groups

[28,10,23,47] and at least one process modeling software vendor [22] has been to suggest

that the various disciplines and degrees of user sophistication can be handled by multiple

specialized graphic user interfaces (GUI) layered over a single modeling language. The

underlying languages proposed are commonly object-oriented, equation-based, and

specified using text file input. They are designed primarily with well trained users or

experts in mind. Reported input languages taking this approach have not addressed their
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incorporation as components into other equally sophisticated modeling systems which

have radically different modeling representations. For example, none of the research

environments mentioned [28,10,23,47] propose a general method for sharing information

with finite-element models (FEMs) defined on irregular three-dimensional meshes in a

way that results in the equations generated in each environment being combined for

simultaneous solution.

We, among others, have a natural tendency to recast the highly evolved methods and

models of other domains in our own domain specific terms [43]. Important

interdisciplinary connections are often discovered in this way, but in many cases we

wonder if the overall goal of life-cycle modeling might not be better served by

concentrating our efforts on making the tools of our own domain better. We must respect

and utilize the contributions from the best researchers and commercial software

developers in all disciplines if we are to meet the overall goal of producing less expensive,

higher quality tools to support the overall chemical processing enterprise. The practical

implication is that we need to accommodate the specialist languages of each domain in an

overall software environment designed with multiple languages and multiple users in

mind. We should construct this environment according to the best available software

engineering standards. There are specialists in the computer supported collaborative work

area dedicated to creating such environments [21,42].

Third and finally, in spite of the supposed inefficiencies of the sequential unit operations

modeling approach (it can be both mentally [40] and computationally inefficient), this

approach and the software that supports it must be accommodated during a period of

model migration which will last at least until the advocates of equation-based modeling

have demonstrated the clear superiority of their methods for all situations. In fact,

sequential-modular software is being used by one of the strongest advocates of open form

modeling [22] to initialize their open form models, thus avoiding the expense of recreating

the time tested initialization methods embedded in the sequential-modular models. Instead

of eagerly awaiting the retirement of the sequential-modular modeling paradigm,we

should respect and utilize the knowledge available in “legacy” codes where these codes

have proved particularly effective.
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2.4 OPEN FORM MODELING SOLUTIONS

ASCEND III [36,6] and similar equation-based general purpose modeling systems [28]

are not apparently receiving wide industrial use. The object-oriented mathematical

modeling paradigm as so far demonstrated by university examples has apparently been

perceived as one or more of:

• Requiring such an enormous shift in user thinking as to be an infeasible alternative at
present for anyone but the most expert modelers [9].

• Unscalable to realistic problem sizes [6].
• Not adequately addressing the really hard issues in process modeling, which are more

organizational than mathematical as seen in the two previous sections [45].

The first point has been acknowledged as a significant problem by many authors,

[31,24,28,36,22] but the academic codes continue to be designed by and for expert

modelers. The difficulty cannot be object-oriented thinking because, as noted in

Section 2.1, chemical engineers have a long tradition of object-oriented methodologies. At

least one group [9] has questioned whether or not dealing with equations will prove

beyond the abilities or at least the time constraints of most modeling users. The problems

associated with equation-based systems include formulation, initialization, scaling,

convergence, and interpretation of the results. Work on each of these problems has been

ongoing in many fields [20,30,46].

The second point, however, must be addressed in order for research on very large scale

problem solvers and modeling systems to advance. Currently, interactive object-oriented,

general purpose systems do well to create and manage 20,000 to 50,000 equations on a

workstation with 200 megabytes of fast memory and a 150 megahertz RISC processor [6].

The behavior of very large systems (100,000 to 1,000,000 general form nonlinear

equations) cannot be very well investigated if practical, cheap, usable, and, most

importantly, modifiable software tools for creating and testing such large models are not

available.

The first point has been acknowledged as a significant problem by many authors,

[31,24,28,36,22] but the academic codes continue to be designed by and for expert

modelers. The difficulty cannot be object-oriented thinking because, as noted in
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Section 2.1, chemical engineers have a long tradition of object-oriented methodologies. At

least one group [9] has questioned whether or not dealing with equations will prove

beyond the abilities or at least the time constraints of most modeling users. The problems

associated with equation-based systems include formulation, initialization, scaling,

convergence, and interpretation of the results. Work on each of these problems has been

ongoing in many fields [20,30,46].

The university codes cannot be faulted for neglecting the third point because they have

been designed primarily with other research goals in mind, such as exploring

mathematical or user interface issues in dynamic process simulation [10,7] or

optimization. Other research systems are being created to address organizational issues in

modeling [45].

We may obtain insights that help address the first two points by examining the existing

modeling systems in the light of several years of accumulated user experiences. We need

object-oriented mathematical modeling tools that give conventional simulation users a

gentle migration path to more advanced modeling techniques in a system that by design

includes model verifiability and model scalability as two of its primary properties. We will

define such a system, contrasting it most frequently with our own ASCEND III [35,19,34]

and ASCEND IIIc [6,33] systems since it is primarily these experiments which lead us to

the conclusions that motivate the construction of ASCEND IV. We will make comparisons

with the claims of other systems where it is practical and relevant, and we will observe

some contrasts with the component software view of the future in process modeling.

Based on the discussion in this chapter, we suggest at least three changes that are required

to deliver equation-based mathematical modeling technologies in support of the overall

business enterprise:

• Adoption of an expanded view of modeling system structures.
• Creation of better languages for mathematical modeling as part of a larger enterprise.
• Adaptation of existing and creation of new supporting algorithms and tools for open

form modeling.

Each of these changes will be discussed with examples. The major contributions of this
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work are in the areas of open form modeling system design and language design insights.

Our test implementation of the modeling language proposed is largely complete and early

experimental results are presented in Chapter 5.
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CHAPTER3 AN EXPANDED

VIEW OF

COMPONENT-
BASED MODELING

For a manufacturing company of any kind, engineering of all kinds (including

mathematical modeling), is simply a necessary expense. In large enterprises such as

petroleum processing where raw material purchasing strategies and product prices

dominate the financial balance sheets, engineering and process optimization may not even

be a dominant factor in profitability. Whether to purchase engineering services from direct

employees or by contracts with outside consultants is a matter of which service source

provides the cheapest method of getting immediate engineering tasks performed without

incurring an unacceptable risk in terms of future costs. Future costs could come from

damage to equipment, to employees, or to the environment due to insufficient design or

from extra engineering work required to recreate past information which is subsequently

lost. Component software advocates share the view that knowledge, as embodied in

computer software, could be more effectively and less expensively purchased if it were

available in precisely targeted pieces rather than available only in a complete body [13].

In Section 3.1 we characterize component software success and failure modes. In

Section 3.2 we present a view of how chemical process modeling might be aided in the
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future by adopting a rigorously component-oriented view of the software tools, and we

discuss some of the general implications for researchers and software vendors. In

Section 3.3 we present our view of what is required to make an open form modeling

component reusable.

3.1 A PERSPECTIVE ON CURRENT SOFTWARE

Component software provides a means to put individual tools into the hands of users as the

specific tools are needed. The successes demonstrated (or at least promised) by examples

of component software in areas such as graphic processing and construction of numerical

algorithms should be examined to determine some of the conditions for success or failure

of the component software idea. We base the following examples of when component

software does and does not work well on experiences gained while creating ASCEND IIIc

and ASCEND IV, two mathematical software systems with multiple graphic interfaces.

The components that have been considered while building the ASCEND systems include:

C, FORTRAN, and PASCAL compilers, compiler tools such as YACC and flex, sparse and

dense linear algebra libraries, nonlinear solvers, window building widget sets and

scripting languages such as Java and Tcl/Tk, spreadsheet tools, graph plotting tools, World

Wide Web browsers, a variety of other software engineering utilities, and, of course,

system users.

Software components work when we use them in a single standardized environment.

Components designed for one environment almost never work in another. We can

inexpensively create components only when using certain major assumptions, for

example, when we create numeric applications in ANSI FORTRAN 77 or we create

graphic applications for a particular flavor of the Microsoft Windows widget set. Creating

component codes that work reliably in multiple operating systems under multiple graphic

interfaces using diverse compilers is extremely expensive with current tools and standards

because a large quantity of specialized knowledge is needed. Languages such as Java [10]

which hide all the computer platform specific details of operating systems, graphic

interfaces, and compilers are being developed, but they have not yet evolved to true

universality.
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Software components work when we can find the right one quickly using easily obtained

resources. Each component in our local arsenal should be well-designed for specific tasks,

and we should not have to choose a component from among too many candidates. For

example, we might want a spreadsheet tool in our modeling environment. If there are

about six different spreadsheet-like components available, it should not take us long to

determine which one we should use or if none of them is suitable. We probably will reject

a spreadsheet which has thousands of expensive features we do not expect to use or one

which has precisely the numeric features we need but which is poorly designed for data

display. In our selection process we will very likely rely heavily on documentation

external to the component objects, such as catalogs, WWW sites, and the opinions of our

coworkers based on their experience with similar problems. We may miss a good

component choice if any of the documentation sources uses naming and classification

schemes that do not match our own domain specific or task specific scheme. We could end

up making several expensive purchases before finding the right component.

Once we have purchased them, software components work when we can easily tell if they

satisfy our selection criteria. We can easily judge the quality of a component when it gives

immediate answers to questions such as: Has the component frozen up my machine? Has

my display turned green because the component does not play well with one of my other

components? Has the component produced distillation profiles for my test cases which

match my benchmarks? Has the component tried to destroy one of the components

produced by a competing component provider? We cannot make quick, accurate

evaluations of components which do not have such easily evaluated behavior. We need to

know somehow that what we see is what we are getting. If we cannot inexpensively verify

the performance of a component, we may find it less expensive in the long run to make our

own or to accept working with the uncertainties of an unverified component.

Software components work when we can easily understand their overall functionality.

This is particularly true when we are finding and using components that are from domains

of expertise outside our usual work. If a component has documentation with many

different audiences in mind built into it, we are much more likely to find it useful than if it

has internal documentation for a single audience of which we are not a member. For
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example, a process simulator with on-line help oriented only to chemical engineers with

less than six months experience can drive more advanced users to frustration in short

order.

Software components do not work when we cannot afford them. If we must spend too

much time or too much money in order to use a component, it is not a good component.

One of the spreadsheet components we considered for adding to ASCEND was

technically perfect, but the licensing costs and conditions proved prohibitive.

Software components do not work when the best available is almost what we need and we

are prevented from extending it to include the few extra missing features. Components that

are available only as executable libraries without extensive, accurate documentation of

programming interfaces cannot be wrapped in our own code that adds the missing

features. When the features we need require perhaps only small changes to the program

logic of a component, we usually cannot add these features at all unless the component

source code is available. Software components, and almost any other product, are

generally rather better if they are created with strong user input to the design process

[20,17].

Software components do not work when we must carry out a trial and error process on too

many semantically rich alternatives in the time available to solve the problems at hand. For

example, many distinct sparse linear algebra libraries are available for use in creating a

nonlinear solver, but we frequently select a locally produced one with properties known to

be adequate for the required task rather than risk losing the time required to find and

evaluate other linear solvers because we cannot be assured of finding something better in

our search.

Software components do not work when we must assemble hundreds of simple

components for a single routine task. This can happen when we decide to build a complex

object, say a distillation train flowsheet, using only a library with two dozen kinds of state

and transition mechanism objects representing various fundamental physical phenomena.

We need a collection of components designed with larger granularity, such as unit

operations. Each of these coarse grained components might be built from a set of
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phenomena-based subcomponents, but, as a user, we are not usually concerned with such

details.

Software components do not work very well when we cannot see their most important

information. What is most important in reusable mathematical models is “everything

mathematical.” This includes, but is by no means limited to, the names of variables

because the names often give us important clues about how we might alter a variable in

order to get a problem to solve. We need the symbolic form of equations because new

tools that help in initialization, scaling, decomposition, and reformulation of models by

manipulating symbolic information are constantly being developed [14,21,8]. We also

need hierarchical structure information from models of physical systems in order to

intelligently decompose problems for linear factorization, branch and bound analysis, or

algorithms to be executed on multi-processor hardware [3].

Software components do not work very well when we do not have mechanisms for

communicating case histories (failures or successes) among users. This is also true of most

types of hardware. Government bodies or standards organizations have been created to

collect histories, define acceptable practices, and communicate the results as broadly as

possible for many kinds of hardware, for example boilers and petroleum storage tanks.

Also, components do not work very well when we do not have mechanisms for rapidly

evaluating, incorporating, and distributing fixes proposed by the smarter component users.

We and others have observed this many times. For example, in a 1995 benchmark of

UNIX software components (80 common utility programs) from 7 commercial UNIXes

and the freeware Linux, there is an average fatal error rate of 23% among the commercial

systems but only 9% for the Linux system [12]. The reasons suggested by the study

authors are that some Linux users often take the time to fix bugs and share the fixes, while

bug reports (and even potential fixes) sent by users to commercial UNIX vendors are

usually not responded to with a new product release in less than a year, if they are

responded to at all. Similarly, many of the best features of the ASCEND system interfaces

originated from the suggestions of frustrated, and not necessarily advanced, users rather

than from the minds of the implementors.
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The key idea needed to explain all the preceding examples, whether describing success or

failure, is how effectively information is exchanged among all the people using or

providing software components. Database technologies and international standards for the

exchange of product data [1] have been widely identified as necessary in reducing the cost

of software development and maintenance. We take it for granted that these technologies

will be required to help users find and apply software components efficiently. We are left

to wonder how the Linux operating system, which has been created entirely by a globally

distributed, unstructured network of volunteers without the benefit of database technology

or much in the way of software standards or formal quality controls, has become one of

the most robust operating systems available. There must be lessons in the history of Linux

and of the volunteers that created it for companies in the software component business, but

precisely what those lessons are we will not venture to say.

3.2 COMPONENTS IN PROCESS MODELING

Among current process simulation tools we see a trend toward turning just one layer of the

overall software system into components: process models and model solvers. The software

system of the immediate future may be structured as shown in Figure 3-1.

Figure 3-1 One engineering modeling system architecture

In Figure 3-1 the choice of off-the-shelf user interfaces probably fixes the choice of model
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management tools, of database services, and of operating systems and hardware. This

architecture is expected to ease the long-standing problem of in-house engineering

modeling efforts being tied to a single vendor’s total system [9]. It adds very little by way

of flexible support for the continuous change of today’s dynamic business processes.

Figure 3-1 bears a remarkable resemblance to the architecture of ASCEND III and,

temporarily, to the architecture of ASCEND IV.

We propose that a more general modeling environment [20] is a more appropriate tool and

that it should be structured more like the one shown in Figure 3-2.

Figure 3-2 A General Modeling Environment

Each block in the tool base is a computational model (the types BM, GM, PM are merely

representative of possibilities, not an exhaustive classification), a data transformation tool

(the type ST exemplifies one class of transformation), or a graphic representation tool
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standards and might even be constructed from several other tools and data models. All

tools and models can be queried in standardized ways to determine what they represent,

what is required to use them properly, and so forth.

For example, the tool labeled “GI-p,s” might tell us that:

• it contains a graphic flowsheet creator capable of managing data from process models
(p) and solving tools (s).

• we will automatically be paying license fees to company H any time a new flowsheet
is saved to our database.

• the in-house history of calls to the toll-free hotline for company H is available in our
database.

Since the tool knows about our billing practices and the content of our database, we

surmise that this graphic interface tool has been constructed by someone in-house to

manage a number of solver, diagnostic, and process modeling components we are not

being billed to use and a commercial graphic flowsheet renderer licensed from company

H. If we ask the database for more details about how this tool was added to the tool base, it

will tell us.

Each tool base block is treated as potentially intelligent and capable of handling some

classes of data autonomously, including data about the other tools with which it is

designed to interact. For example, the general graphic user interface is not very intelligent

about solving mathematical problems, but it is an expert in finding tools or models and in

helping users assemble tools and models from existing parts in the tool base (our kit of

modeling, solving, diagnostic, and representation components which covers many

technical and business domains). In our hypothetical business, the billing and security tool

will have veto power over tool-tool interactions, user-tool interactions, all interactions that

go outside the company, and maybe even user-user interactions inside the company. What

is important here is that the security and billing tool is provided by a vendor in that

business, not one in the modeling business.

Each user has an environment which puts an organization relevant to her short and long

term tasks on the models and tools of interest, ignoring all others. Our new employees are

given a typically configured modeling software environment or the environment of the last
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person in the same position and a one page handout explaining how to search and navigate

our tool base. Each tool in the tool base is able to at least minimally explain itself, and of

course there may be tools created by other employees that explain typical tool-tool

interactions they have discovered.

We would design modeling environments with the view that employees should feel in

control of the modeling environment rather than vice versa. We would build environments

(or rather our employees would) with off-the-shelf components for every routine aspect of

the total business process including the routine activity of constructing non-routine models

and tools. Consider the tools Herb uses in the following example:

7:45 a.m.: Herb arrives at work in his process plant near Kansas City.

9:30 Herb finishes disposing of his electronic mailbox. The task that has risen to the
top is to help find out why reactor 100 at the Houston plant is still making off-specifi-
cation material in spite of the best efforts of the local engineers and chemists. Herb’s
plant has a reactor built on essentially the same lines. Herb searches the company data-
base for design and control models of either reactor and finds several. All of them treat
the tubular reactor as an isothermal plug flow reactor with axial but not radial diffu-
sion. The team in Houston has ruled out feed quality changes being the source of the
problem.

10:30 After a general massaging of all the available data, Herb decides that a new reac-
tor model is called for, using a full finite element (FEM) treatment to capture axial and
radial diffusion effects and fine details of the reactor’s internal geometry not previ-
ously modeled. He draws on mesh generation and other FEM solver tools he routinely
uses [4] and a material properties model in use in the current reactor model. Using the
FEM tools, Herb constructs a new reactor model, importing the required detailed geo-
metric information from the most recently updated mechanical drawings in the Hous-
ton maintenance department. He specifies initial guess profiles by importing data from
the best model the Houston team has been able to create.

10:50 The FEM solver says that the problem is not well specified, but does not have
any bright ideas about how to fix the difficulty. The problem seems to be with some
highly irregular geometry due to the newly modeled reactor internals and the specifica-
tion of boundary conditions around those internals. Herb finds this odd since the FEM
solver generally gives very good advice on boundary conditions.

11:00 After trying a few obvious permutations within the FEM input, Herb decides to
try a tool from a simple flowsheeting system that knows how to do bookkeeping about
equation and variable degrees of freedom (DOF). He opens up the flowsheeting tool,
grabs the “Help on DOF” button on the flowsheeting system’s graphic solver tool, and
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drags the button into the FEM application. He puts away the flowsheeting system.

11:01 The general tool manager signals Herb that it was able to negotiate all the data
exchange mechanisms required to make the FEM tool and the DOF tool work together.

11:05 The DOF tool immediately comes back to Herb with a message that temperature
and pressure cannot be specified simultaneously in the material properties model at
mesh nodes along certain boundaries. He makes a mental note to compliment the
authors of the apparently simple flowsheeting system on their extremely good effort at
making their tools reusable. Apparently, this particular material properties model was
not anticipated by the FEM code developers. Herb modifies the boundary conditions,
and sends a message to the FEM developers and material properties package develop-
ers about the poor interaction between their software packages.

11:30 Herb goes to lunch, having sent Houston his reactor model and pointers to the
tools he used to make it. The Houston team will incorporate the model into a flowsheet
simulator they have from company H and eventually solve the problem. A week later,
the FEM company sends Herb a note thanking him for finding a subtle conformance
error in their software, along with an updated copy of the responsible FEM-properties
package interface component.

EXAMPLE 3-1 A successful component software enabled user

Frankly, the scenario in Example 3-1 sounds a bit futuristic to us as well, but this is what

component software ought to bring. Creating such an environment is a big design

challenge indeed, but one to which software designers and standards organizations are

rising.

We in chemical engineering research should be rethinking our own tools to fit into such an

environment, one where no discipline-specific tool is ultimately in charge. The user is in

charge, with a host of software slaves (components) to assist, and the user understands that

behind each slave is a person or company willing and able to improve it in order to keep

the user’s business. In the next section we will suggest some properties of open form

models we think any user should insist on before buying them.

3.3 AN OPEN FORM MODEL COMPONENT DEFINITION

We believe all the following are included in the properties of an ideal open form modeling

component. Many of these properties should be determinable from messages answered by

an open form modeling software component, while some properties describe ways in
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which we would like components to interact with humans due to good design. We have

considerable experience in open form modeling based on several reimplementations of

ASCEND. We will start our definition with two examples of model reuse and a list of

somewhat fuzzy design properties, then proceed to more specific attributes and messages.

3.3.1 EXAMPLES OF DESIRED COMPONENT REUSE

We seek a systematic way to allow component reuse and to avoid reinventing the wheel.

Let us reconsider the chemist, the design engineer, the control engineer, and the operation

planner introduced in Section 1.1, where each has separate tools. Let us imagine a

scenario where they duplicate much less of each other’s work, as illustrated in Figure 3-3.

The chemist creates a bench scale continuous stirred tank reactor model (Figure 3-3 C)

containing a part which models the detailed kinetics and thermodynamics of some novel

reactions. A design engineer works out a separation and recycle scheme (Figure 3-3 D)

given only the list of chemical species involved. The design engineer models the reactor

using a simple species mass-balance, because insufficient reaction information is

available. Based on preliminary design reports and promising laboratory work, the project

continues, eventually reaching the stage where detailed control models need to be

constructed to investigate process safety and other issues.

A tubular reactor model is constructed using a collocation method, and at each point in the

collocation mesh the chemical kinetics and thermodynamic part of the chemist’s model is

reused (Figure 3-3 B). The control engineer substitutes more rigorous dynamic models of

the distillation columns and adds models of the furnaces which heat the tubular reactors.

The results from the shortcut distillation design models are used to initialize the rigorous

models, but the shortcut models are discarded so far as the control engineer is concerned.

Many months later the plant is actually brought on line, and optimal planning and

scheduling models are needed. The plant model (Figure 3-3 A) is constructed reusing the

control modeland the design model. For optimization purposes, the planner adds models

of the varying feed stocks and reuses the tubular reactor model and the shortcut distillation

models, instructing the computer modeling system to disregard the conflicting simple
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reactor model and rigorous distillation models.

Each of the workers in this scenario may be using tool interfaces and modeling languages

which are different. Because each modeling language and interface has been designed to

manipulate and produce open, standardized mathematical models, each worker can reuse

the relevant components of the models produced by previous workers. No doubt even the

chemist reused models for thermodynamic calculations supplied by someone outside the

illustration.
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Figure 3-3 Production planning model (A) constructed from process
design (D) and control (B) models. Reactors in (B) are defined
including parts of the chemist’s bench reaction-separation model (C).

3.3.2 DESIGN PROPERTIES

We should be able to easily build a standards-compliant modeling component from other

such components. In one case, a general component designed to calculate mass balances

of a certain type (say, a distillation column) might specify that the user must supply

complex subcomponents for physical property calculations and tray hydraulic

calculations. The standards should include mechanisms that allow a component to verify

user-supplied subcomponents at run time for semantic appropriateness. This kind of

checking would ensure that we do not accidently send our distillation model a material

properties model for molten steel. Such checking generally will involve checking logical

constraints on the values of character string or integer classification codes, but might also

include checking the expected values of real parameters against ranges of applicability as

in the case of the aforementioned distillation model.

We should be able to test a new model easily for correct behavior. Independent validation

of complex mathematical objects can be extremely difficult, since the likelihood of errors

in the validation methods are often greater than in the object being tested. Validation is

doubly difficult because constructing mathematical models frequently requires

approximations which are expected to fail under all but a particular set of conditions.

Modelers seldom manage to explicitly state the exact set of valid conditions on the first

try. Therefore, we should expect each modeler to define each model with an initial set of

self-validation routines which can be invoked by the end-user who defines a final

application. We should be able to add additional testing routines easily as we encounter

additional failure (or success) modes of the model.

Because we reuse models to build models, for example building a distillation column

model out of tray models, provision should be made for a group of model instances that

are bound together in another model to share as much of their implementation overhead as

possible. In our distillation column, most of the equations on most of the trays can be

evaluated using the same functions, since only the variable values and equation residuals
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are distinct among trays.

We should be able to distribute a model easily to different sites and different software

systems once we create it. A model is most easily distributed if it is packaged in a small

format and can be easily instantiated wherever it ends up. Basically, this means models

must be distributed as standards-compliant source code since the computing community is

not willing to agree on a universal binary format. Express [11] may end up being a

language for such sources, but its universal utility and convenience is not yet well

established. Even if some universally computable and applicable language is available,

however, it will probably not help chemical engineers and other domain specialists express

models in convenient ways because broadly applicable languages invariably have either

enormous vocabularies with subtle shades of meaning or very small vocabularies with

meanings too primitive to express modeling ideas efficiently.

We should be able to incorporate any application easily into any environment. That is we

should be able to pull any part out of any model and reuse it in any other appropriate

context. We should also be able to take any tool for manipulating models from any

environment and incorporate it into any other, just as in Example 3-1 where Herb moved

the “Help on DOF” button from his flowsheeting system to his FEM system. In adding this

requirement, we begin to blur the line between models and modeling tools. This is as it

should be and fits the jumbled tools and models in Figure 3-2. We will have more to say

about this blurring when it comes to methods associated with models in the next section.

3.3.3 MODEL COMPONENT ATTRIBUTES AND MESSAGES

We need to choose a standard way of interacting with large composite models once they

are assembled. We have found the following view quite serviceable. It is extensively

expanded and evolved from ideas presented in [23]. It is more fully documented in

[15,18,21, 16,22]. We present this view due to the shortage of descriptions in the open

literature of the structures and functions used in process modeling systems which

communicate with nonlinear solvers1. We believe it can serve as a basis for the discussion

1. The full details of our software are available in the source code which is distributed under the
GNU License via http://www.cs.cmu.edu/~ascend/Home.html or can be acquired by sending e-
mail to Arthur Westerberg, a.westerberg@cmu.edu.
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and development of open standards for building large-scale, equation-based modeling

tools.

Underlying this view is our reorganization and expansion of the solver application

programming interface (API) of ASCEND III. One major goal of the reorganization is to

demonstrate efficient reuse and extension of a large set of complex software tools by

others2. Building on top of our ASCEND IV solver API, Kenneth Tyner has since been

able to connect a sophisticated nonlinear solver3, CONOPT [7], in less than a month.

Vicente Rico-Ramirez was able to add extensions that support conditional modeling (the

WHEN statement) to our basic solver API4 very rapidly as well [18]. Tyner has also

recently added new functions that allow the ASCEND IV graphic user interface code to

remain ignorant of the details5 required to support any particular solver while giving the

user full control over these details via the graphical interface. Tyner and Rico-Ramirez’

efforts have been and will continue to occur simultaneously and without significant

conflicts; the success of their efforts suggests that our API design and implementation are

fundamentally sound. Starting from our ASCEND foundation, they have not been

substantially diverted from their primary research in order to build the tools needed to test

the concepts and algorithms they are investigating.

We begin our description with an illustration of the information flows around model

components, and then we proceed to more precise descriptions of the parts shown inside

the SYSTEM object of Figure 3-4. Every step in the process is designed to allow (but not

require) user intervention and inspection of intermediate results without substantial loss of

computational efficiency. The implementation of these objects and data flows should be

entirely in an object-oriented (data-hiding, message-passing) style, but our aim is to

present a high level view rather than a dissection of the implementation1. Figure 3-4

shows how a number of distinct modeling tools (ASCEND and a foreign system, in this

example) can produce information which is combined into a generalized mathematical

2. Primarily other graduate students.
3. A new solver client.
4. Rico-Ramirez modified our solver server.
5. A modern solver typically has dozens of control parameters, and some subset of these can drasti-

cally affect that solver’s performance on different classes of problems.
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representation (the system) suitable for reuse with a number of solving engines

(CONOPT, LSODE, the ASCEND solver QRSlv) and user interfaces (ASCEND or

GAMS).

Figure 3-4 Reusable model and solution tools information flow.

Each filter transforms the information available via the system utilities into forms

appropriate for clients communicating through the filter. The system object contains state
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methods) to support the mathematical component abstraction. All the clients of the system

utilities and system object are insulated from the details of particular modeling objects,

and each can potentially change the state of the system.

Each model object is defined by a tool appropriate to a particular task or particular user.

The system maker performs the initial mapping from these diverse models (which might

include another existing system!) onto a system object. We now turn to discussing the

system parts, beginning with Table 3-1 which contains a synopsis of desirable system

functions and data suggested by Drud and to which we add our own suggestions. While

very few of the features in either our proposal or Drud’s are completely new, this is, to our

Table 3-1: Desirable information in a reusable mathematical model

System feature Drud proposal Our additional suggestions

Structural relation-
ships

component part/whole maps

Logical relations relationships on sets and
other discrete types

Boundary definitions subregions of discrete and
continuous variable spaces

Nonlinear relations list of variables scaling value

residual differential equations

gradient activity in conditional models

hessian identity of component context

linearity continuity

bilinearity monotonicity

convexity list of all similar relations

concave/convex estimator maximum additive term

symbolic form roots in one variable

Real variables list of nonlinear relations differential/algebraic status

value derivative of which variable

fixed (.FX) flag derivative with respect to
which independent variable
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scaling value

bounds

integer/boolean status

multiple names

Discrete variables symbolic, integer, boolean

list of conditions controlled

list of logical relations

Conditions list of controlling discrete
variables

list of components controlled

list of relations controlled

Subcomponent list of available methods

list of subcomponents (recur-
sively)

Total system Jacobian matrix subcomponent list

residual list condition list

variable list

System utilities simplifying equations block lower triangularization

remove singleton equa-
tions

degrees of freedom analysis

tightening bounds find variables near bounds

expression elimination find poorly scaled variables

bounds on Jacobian ele-
ments

find causes of structural and
numeric singularities

primal and dual optimal-
ity condition information

part/whole information
based matrix ordering

interactive solversa matrix visualization

derived constraints code generation

feasibility tools

Table 3-1: Desirable information in a reusable mathematical model

System feature Drud proposal Our additional suggestions
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knowledge, the first time that anyone has proposed that they should be combined into a

software system capable of being scaled up to handle interactively hundreds of thousands

of equations.

We use one overall object (the system) containing lists of its variables, its constraints, its

component-wise substructure information, and its conditional behaviors. For convenience,

we call this object a solver system, but it is really just another software component. Each

of the solver system’s variables, constraints, and so forth is an object that maintains certain

state information and responds to messages. Each maintains state information because

many different clients, including user interface tools, must interact with the solver system

or any part of it during the initialization, solution, and analysis processes. All clients can,

at least potentially, change the state of the solver system, and no client is responsible for

managing the data structures associated with the solver system. Utility programs and

solvers that interact with the system and its objects should not (and in ASCEND IV do

not) need to know anything at all about how the solver objects are internally implemented.

Not all of the functions described next are fully implemented in ASCEND IV yet, but the

missing ones would be very easy to add.

Variables may be real or discrete, or even change between such roles as when solving a

relaxed integer-linear program. We can ask each variable for a list of the constraints using

it. We can ask each variable for a list of the conditional behaviors it helps determine. We

can ask each variable if it is the derivative of another and, if so, of which one and with

respect to which independent variable. We can ask each variable about its many other

attributes, such as an appropriate scaling value, bounds, and whether it is currently

specified or is to be computed. We can ask for the name or names of a variable in a system,

but we cannot ask the variable alone because names require contexts to make sense. We

will not give a catalog of possible variable attributes here, as the attributes we find

interesting are only a subset of those that would be generally interesting. Curious readers

should see [16] for our latest working definition of the variable abstract data type and

operators.

a. These have been a hallmark of ASCEND since its inception in 1985.



AN OPEN FORM MODEL COMPONENT DEFINITION

47

Constraints may be continuous or discrete (logical rules), and they may be constraints that

must be satisfied at the solution of the system, constraints describing boundaries within

the system, or constraints thatmight need to be satisfied at the solution of the system

depending on the conditional behavior of the system. Discrete variable values may be (and

usually are) tied to the satisfaction of one or more of the real valued boundary constraints

in the model, such as a temperature being beyond the critical temperature:T > T c. We

can ask a constraint for the list of variables it requires. We can ask a constraint for the list

of conditional behaviors that control its activity. We can ask a constraint if it is the

derivative of another constraint, and, if so, of which one and with respect to which

independent variable. We can ask a real constraint for the value of its largest additive term

[21] using the current or scaling values of its variables. We can ask a constraint for all the

usual sorts of information such as residuals, gradients, lagrange multipliers, roots in one

variable, linearity in subsets of variables, and convex underestimates [19]. Most

importantly, we can ask a constraint for its symbolic form, as this is needed to help the less

casual user debug open form models and to feed other symbolic tools. As with variables,

constraints may have many other attributes, and the interested reader should examine [16]

for our latest constraint abstract data type and operators.

The component-wise substructure information is useful for both debugging and

decomposing (or reordering [2]) the equation and variable lists. Each component in the list

may have its own component list; thus a system has an associated tree of subcomponents.

Each component also defines a list of locally defined constraints. Any component at any

level of the tree could be isolated with its own subcomponents for any desired

manipulation, for example solving each tray in a distillation column before solving the

whole column. Each constraint is associated with a single component, though variables

may be shared among several components.

Conditional behaviors are simply logical structures that can be used to determine which of

the constraints or subcomponents apply at the solution based on values of the discrete

variables. We can ask conditional behaviors on which variables they depend, which

constraints and subcomponents they control, and which subset of the controlled

constraints and subcomponents are currently active in the problem.
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Methods defined for one component may call on the methods of its subcomponents, since

methods as well as variable data must all be visible to be reused effectively in an open

form model. Each reusable component should provide us a number of methods that

configure its variables (setting which are fixed, computed, and so forth) for various typical

problems the component is expected to handle. Each component should provide a set of

initial variable values that correspond to an easy to solve problem so that we can test it

somewhat before plugging it into our larger model. Each component should provide

solution checking methods that can be used to verify the correctness of both the

assumptions and the solution when a solver pronounces the model solved. Each

component should provide methods for rescaling variables. We should be allowed to add

our own methods to a component so long as they do not conflict with its existing methods,

and, when we are developing new components, we would like to be able to replace

methods easily.

We need a method in each component for solving that component. Of course, the self-

solution method should be able to use existing solver tools or to issue a message “Sorry, I

can’t. No solver present.” response to our self-solution request. We can hardly make a

distinction, then, between a component model and a solver in software terms. A solver is

simply a component with some very interesting methods attached and no constraints or

variables to contribute to the problem. Note that nowhere have we said the internal

implementation of a method must be in all cases visible. This leaves a “solver” method

free to be implemented in an arbitrary (but we hope efficient) way.

A model component should be able to identify where, if anywhere, we pay when we use it,

and it should not perform any modeling for us until it is satisfied that we have indeed paid

as necessary. Mechanisms for such financial transactions are being rapidly investigated

[5,6], and we will not speculate further on how electronic commerce will eventually occur.

We need to be able to ask a component (and by recursion all its subcomponents) to

produce pedigree information (when, by whom, and by using what tools it was created) so

that we can track down the origin of unexpected and often quite annoying changes in

behavior of a complex system when one of its components is replaced.
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We need to be able to ask a component for examples of successful applications. It may

respond with a message to look in some other specific place, or it will have some examples

built into its on-line self-documentation. Similarly, we need access to failure and revision

histories in a publicly (the paid-up user public, not the general public) accessible database

uncensored by the component vendor. The component should include methods or

instructions for accessing this database. The vendor retains a measure of control over the

database by being able to add reviews of failure reports to the database. Most users would

only consider the reviewed problems and their resolutions, thus avoiding the opinions of

the few who are overly fond of irrelevantly complaining. The database must be

uncensored so that, when users believe their legitimate problems are being ignored, they

can use the database as evidence in discussions with their own management or with higher

level representatives of the vendor. Finally, the failure and revision history database would

no doubt include listings of what consultants to call when training and extra help is needed

to use the component.

Shortcomings of the objects described thus far include their inability to represent temporal

logic directly in process models or to represent realistic spatially distributed models. We

have never deeply investigated modeling discrete event system algorithms with the

ASCEND system. Nor have we deeply investigated finite element modeling and its

associated algorithms for dealing with enormous numbers of variables on unstructured

meshes. In discretizing time or space, the assumption is generally made that computing

solutions at any given time or mesh point is an already solved problem. We make the

opposite assumption in ASCEND; we assume mesh generation and discrete event

simulation are already solved problems. All three assumptions are clearly incorrect in the

general case, so we propose that the specialists in each domain should keep doing what

they do best and that those few in each domain with an interest in interdisciplinary

research should work as a group towards establishing general standards for

communicating between their diverse model types.

In Chapter 4 we turn to an examination of several modeling languages and characterize

what we have learned from ASCEND III/IIIc and other systems regarding the difficulty of

modeling and the design of modeling language.
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CHAPTER4 TOWARD BETTER

MODELING

LANGUAGES

4.1 AN OPEN FORM MODELING SYSTEM

Modeling complex systems, or even a single complex system, generally requires

integrating the efforts of specialists from diverse disciplines and subdisciplines over a

large period of time, frequently over large distances as well. For example, creating

detailed models of a new chemical process requires chemists, several kinds of engineers,

marketing analysts, financial analysts, and of course the mathematicians, scientists, and

software specialists who create the various methods and tools in use by all the others. If

we take a diverse group of such specialists, say about ten of them, and ask each separately

what a model is or what a design is, we are quite likely to get as many different answers.

To use such a group, divided by a common language and possibly spread over temporal

and geographic locations, more effectively we need to create tools that help the group

members translate each other’s speech and share each other’s methods and expertise [16].

We need open form modeling tools to handle very large problems, to support concurrently

performing several tasks from one or many users based on a single model, and to improve

communications among users with a wide disparity in abilities and technical dialects. We
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assume that expecting all the different users to learn a common language is unrealistically

expensive and that a practical open form modeling language must explicitly support

communications with other modeling tools in a peer-to-peer fashion. If we assemble a

collection of languages and other tools - where each is constructed to be very good at

something and where all are constructed with the goal of promoting communication and

reuse in mind - we find ourselves with a modeling system. This modeling system, not just

the mathematical models in it, is open form.

Many have hypothesized that the very basic view of the world as a place full of interacting

objects with many kinds of interrelationships (links) among the objects is a view which

can be mechanically computed and could facilitate mapping between diverse languages

and domains of thought [1]. Before adding yet another text-based language to the

mountain of object-oriented languages currently in existence, we need to answer several

questions to determine if this is a wise course of action.

The questions are: What is the language to represent? For what audiences is it intended?

What are the properties of good representations that we should consider? and, given our

answers to the previous questions, can we create a significantly better language than those

currently available, one that fits well into an open modeling environment? (Of course we

will eventually answer the last question in the affirmative since the resulting language is

the subject of our next chapter.)

We seek to represent arithmetic, logical, temporal, and configurational constraints

describing physical objects and processes, and we seek generally to represent connections

with other complex tools that share little or none of our semantics. We seek a

representation usable by and promoting communications among a set of audiences

including, but not limited to:

• casual users of simulation tools with comparatively little domain specific mathemati-
cal or configurational knowledge.

• engineering domain experts with very little time and very little software knowledge.
• modeling and software experts who create modeling tools.
• mechanical experts (other computer programs) that can take a model in our representa-

tion and solve it, reason about it, interpret it, or translate it into such diverse represen-
tations as may be needed to help us efficiently use the knowledge contained in it.
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We can use the insights of other workers regarding what constitutes a good representation.

Here we present a list of the properties of good representations from [17].

a. Good representations make the important aspects explicit.....
b. They are complete. We can say all that needs to be said.
c. They facilitate computation. We can store and retrieve information rapidly.
d. They are transparent. We can understand what has been said.
e. They are concise. We can say things efficiently.
f. They suppress detail. We can keep rarely used information out of sight, but we can still

get to it when necessary.
g. They expose natural constraints, facilitating some class of computations.
h. They are computable by an existing procedure.

We will use this list as a reference point for discussions in the remainder of this chapter

and in the description of the new language we are implementing, ASCEND IV, in the next

chapter. We will highlight some interesting conflicts within this list.

4.2 PROBLEMS IN MATHEMATICAL MODELING TOOLS

In this section, we will briefly review features and difficulties of several mathematical

modeling languages and, where the problems stem from the underlying language design,

problems with the associated modeling environments. We focus primarily on commercial

tools because they are usually documented and usually have had some care put into

making them usable, thus we can feel safer in drawing inferences about the underlying

design assumptions and their results when we must do so. In the next section, we will

analyze in greater detail the performance of the ASCEND III language as measured

against this same list of good representation properties.

Some languages define mechanisms to make extending the language easy. Symbolic

processing systems in particular tend to be extensible. One example among many is

Mathematica [18], an interpreted language incorporating hundreds of different symbolic

and numeric operators from virtually all realms of mathematics. Once the notation of

Mathematica is learned, simple sequences of complex calculations or new algorithms can

be specified in a high level language. Mathematica is very good for conducting

experiments that involve complex transformations on rather small (generally a few dozen

items), arbitrarily structured data sets. The language of Mathematica is very nearly a
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complete representation of every significant data type and operator in modern

mathematics because extensions are constantly being added. Unfortunately, the large

number of operators makes it very difficult to look at an arbitrary piece of Mathematica

code and tell what it will do. Thus property (d) is sacrificed in favor of properties (b) and

(e). The Mathematica language also allows us to reuse the result of any previous

computation in the current computation. This supports properties (c) and (f), but when this

feature is combined with the symbolic structure of the language, it requires computational

overheads that are prohibitive in large problems. Mathematica is an excellent tool, but not

for solving highly structured, large scale, routine tasks that can be much more efficiently

computed without the overhead required in Mathematica.

Nonsymbolic systems can also be extensible. The Matlab environment includes such a

language. Matlab [11] organizes its operators into tool kits, groups of related operators, to

alleviate some but not all of the difficulties that come with having a complete language.

Matlab is an interpreted language specialized for modeling and using algorithms that

manipulate matrices and vectors in complex or real arithmetic. Routinely called functions

can be compiled for better performance. Matlab is very like an interactive FORTRAN 77

where the typical user need not be concerned with memory management issues. For

matrix operations on small data sets (maybe as high as a few thousand variables) the

Matlab language is fairly complete (b), rather concise (e), and of course highly

computable (h). The language hides completely the important physical aspects of a model,

forcing the user to keep track of the physics of the problem by some other method and thus

scoring poorly on (a) and (c). In a Matlab representation, the machine can store and

retrieve matrix information quite rapidly, but this does not automatically mean we the

users can store and retrieve physically meaningful information efficiently. Matlab

overloads several basic mathematical operations, such as addition and multiplication, to

handle vectors and matrices, making the meaning of a statement quite ambiguous if we do

not have a complete understanding of the context in which it appears. Due to this

overloading, the Matlab representation is often not transparent (d). Matlab keeps some

intermediate results and offers immediate feedback about each of the user’s actions, in a

spirit similar to that of Mathematica. In spite of its apparent drawbacks, Matlab is
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extremely popular among both academic and professional users who must do non-routine

numerical work on a routine basis.

Unstructured or at best array-structured equation-based systems (sometimes called matrix

generators) that aim to promote optimization model reuse by separating problem data

from problem statements have been around for nearly two decades. GAMS [6] is one such

system that is widely used. GAMS is a batch interpreted algebraic modeling language.

Equations and variables can be grouped into sparse arrays defined on sets and can have

only very short names. GAMS array and set notation makes model definitions highly

concise (e). The GAMS language can describe a wide range of algebraic problem classes

involving discrete and continuous variables in forms easily fed to a number of

sophisticated algebraic solvers, thus it has property (h). GAMS is notably incomplete (b)

in that it does not provide any support for modeling with units of measure, in spite of

being intended to express models of physical systems. This makes subtle input data errors

nearly impossible to detect, allows the user to create physically inconsistent equations, and

(as the purveyors of GAMS readily acknowledge [6]) leaves the user with the burden of

finding a set of units which will lead to convergence of the model when it is solved. The

lack of structure in the GAMS representation makes it difficult to create a complex model

or to retrieve information about a complex model by examining the code (properties (c)

and (d)) due to the difficulty of creating meaningful names in one global name space.

In more chemical engineering oriented mathematical modeling systems, i.e. modular

flowsheet simulation environments, virtually all the commercial languages are deficient in

three of the properties. All are exceedingly incomplete because the number of possible

complex unit operations is quite large and creating a general model of a unit for just one or

two customers is often hard to justify. In most cases, the contents of the librarydefine the

language. Property (b) is unsatisfied, and this is one of the reasons behind the drive for

standards in the process simulation area; customers want to be able to create one model

and use it with any commercial simulator. Unit operation model statements are generally

not at all transparent, (d), in the simulation languages we have seen [14,5,2]. Generally, a

graphic user interface with handcrafted, intelligent unit configuration tools is called on to

cover up the simulation language difficulties. Finally, present simulators hide virtually all
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of the details (algorithms and internal variables) of a unit object so that we cannot get to

rarely used information if we should need it, thus the languages do not support property (f)

very well. The equation-based simulator Speedup [2] fairs somewhat better on all points,

in particular supporting dynamic models well, whereas many do not. Speedup is

incomplete if considered as a language which best supports unit operations primitives

rather than equations.

Another symbolic language group bears mentioning: the physical phenomena oriented

modeling languages that propose to derive a mathematical model from statements of the

physical principles involved. One such language [15] allowed the user to write complex

object descriptions in terms of conservation principles, transfer mechanisms, and various

object interrelationships that a machine could then reason about to obtain a set of

equations or derive higher level abstractions. As best we can tell, such systems are not

widely in use. This is unfortunate because such a tool might be very useful in the area of

creating new models and organizing unfamiliar concepts into object class and component

part hierarchies . We probably need another tool for mapping the results of such a

reasoning tool into a language more suited to routine computations on a large scale.

4.3 PROBLEMS IN ASCEND III

We now analyze the representation properties, reflecting on the ASCEND III [13] system,

to motivate the design of ASCEND IV. We note here that all properties are subject to

design trade-offs in creating a usable modeling system. It is our intent to learn from

ASCEND III about the problems we are addressing, not to criticize the creators of

ASCEND III. ASCEND III does an admirable job of making the case that appropriate

tools can be created to aid the expert designer in modeling novel problems. We first give a

summary of the major ASCEND III operators to help illuminate the discussion in the rest

of this section. In these summaries we set initalics the arguments to the operators. The

operator names are given in bold, as they are throughout our thesis. The minor operators

used for writing equations and handling sets are described in Appendix C.

• REFINES: MODEL new_type REFINES existing_type; This operator creates a new
type by adding statements to an existing type.
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• IS_A: name IS_A type; This operator defines a partname in the context of the model
and instructs the compiler to start construction of an associated object. The ASCEND
compiler uses a multipass algorithm so the associated object may not be completed at
the time this statement is seen.

• IS_REFINED_TO: name IS_REFINED_TOmore_refined_type; This operator finds
an existing object with thename given and changes the formal type of that object to
the more refined type specified. The action of IS_REFINED_TO is called “deferred
binding.”

• ARE_THE_SAME : name1, name2 ARE_THE_SAME; This operator takes the
objects associated with the names given and recursively merges those two objects into
one. If one object is of a less refined formal type than the other, then it is first refined to
the type of the other object. After the merge there is a single object known by both
name1 andname2.

• ARE_ALIKE : name1, name2 ARE_ALIKE; This operator takes the objects associ-
ated with the names and puts them in a list. Any time any object in the list becomes
more refined by either IS_REFINED_TO or ARE_THE_SAME, every other object in
the list is also refined. In other words, this operator automatically propagates changes
in the formal type of one list member to all list members.

All of these operators, except the part declaration operatorIS_A, are somewhat

mysterious to programmers more familiar with non-object-oriented languages. We

analyze these operators and other features of ASCEND on the basis of the properties of

good representations, and then we look at some additional difficulties with reuse in

ASCEND III.

4.3.1 THE PROPERTIES OF ASCEND III

“Good representations make important aspects explicit.” Three of the five operators for

handling general objects in the ASCEND III language are ambiguous. TheARE_ALIKE ,

ARE_THE_SAME , andIS_REFINED_TO operators can all have unanticipated and

difficult to track side-effects due to deferred binding. Common wisdom in the (small)

community of ASCEND users is that one must instantiate a definition before one can tell

what it really says. We use these three operators quite effectively to find a good first pass

organization of information into inheritance and part/whole hierarchies. However, a first

pass organization usually leaves far too many configurational constraints (rules on the way

objects are wired together) implicit. For example, of about a dozen users of the reusable

thermodynamics library created in ASCEND III, not a single one has been able to pick up

the library and use it without a thorough explanation and example being delivered in
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person by one or another of the library’s original designers. In at least four cases, even

after the explanation, the users have chosen instead to write simpler one-off

thermodynamic models because the reusable library was not easily reused or modified.

Configurational constraints are quite plainly visible (or at least reliably checked) in most

flowsheeting systems. The “simple”ARE_ALIKE  constraint [13,8] has proved both

insufficient and confusing to most users. Configurational constraints need to be made

more explicit in any proposed language.

“They are complete. We can say all that needs to be said.” ASCEND III, as are most

thesis-derived languages, is not intended to be complete. That the four users just described

were able to create serviceable thermodynamic models in a very short time (all in less than

a week) strongly suggests that ASCEND III is on the right track. We need many features

missing in ASCEND III if we are to create an open form tool for general mathematical

modeling use and reuse. We must somehow represent:

• boolean algebra.
• nonlinear algebra.
• equations for describing boundaries that partition a nonlinear space.
• equations placing constraints on object structures.
• selection among alternative object structures when compiling an object.1

• choice among alternative equation sets during nonlinear and discrete problem solving.
• temporal logic.
• equations defined by code external to ASCEND.2

• integer variables.
• character string variables.
• methods taking arbitrary actions on objects, including actions defined by external

tools.2

• temporary variables (data structures) in methods.
• links to other languages, including human languages and graphic languages.

With this list of features added, we still have an incomplete language for theoverall task

of mathematical modeling. We are considering a language needed to be part of a bigger

picture where other specialized languages are used for tasks around which they are

1. This item and the next were proposed as a single CASE statement in [13]. Apparently the confu-
sion of these two very distinct kinds of conditional modeling stymied the ASCEND III develop-
ers.

2. Abbott [4] demonstrated this is practical in his thesis work on ASCEND IIIc.
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designed; for example in deriving general formulae, Mathematica or other mainly

symbolic systems are clearly better. We do not believe there is any need to create another

symbolic manipulation language with hundreds of operators as a subset of a new

language; our new language should be intentionally designed to be incomplete. What

features to include is a practical matter, so we shall include only what we can expect to do

well.

“They facilitate computation. We can store and retrieve information rapidly.” Both

creating and executing complex searches of large structures of objects can be difficult.

This is particularly the case with ASCEND III because each object can have several

parents (be shared among several different contexts). Each ASCEND object stores a great

deal of information about itself at considerable cost in memory (1200 to 2000 bytes per

equation is typical when modeling a flowsheet) to speed the retrieval of commonly needed

information. Unless object implementation is done very carefully, however, storing and

managing extra information can end up costing more time than it saves. We must strive to

design a language and implementation such that an interactive user working with any size

model does not get frustrated with waiting on the system to compute any needed result.

“They are transparent. We can understand what has been said.” The ASCEND III

language is not transparent. It is common knowledge among the ASCEND users at

Carnegie Mellon that one must compile a definition, potentially to a very large or a very

incorrect object, before one is able to tell what the definition really says. Similarly, the

overall refinement hierarchy of an ASCEND library cannot be determined from the

definition file without a great deal of effort. There are almost no elements of the language

which look familiar to users from either the sequential-modular or the imperative

programming paradigm, the majority of users. An object definition contains almost no

clues about the authors intentions and how it ought to be used.

Comments are allowed in ASCEND, but, as with most computer languages, they are

seldom an effective mechanism for documenting complex objects. Users routinely report

being confused by library models that useARE_ALIKE  or ARE_THE_SAME

unexpectedly. The omnipresence of deferred binding means the compiler cannot tell when
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an object has reached its final state, which makes determining error conditions (such as

misspelling a variable name) and generating appropriate messages difficult to impossible;

a name could be misspelled, or it could be the name of a variable to be defined in a later

binding. Piela has noted [12] that users resort to tactics such as sending an incomplete

object to a solver to find out what is wrong with the object. This suggests to us that

perhaps the language needs to be rethought. The tool sets in the ASCEND III environment

assume an object-oriented expert user with a good store of patience, a better store of math

skills, and a great store of free time. Tools to support non-experts do not exist because

most such tools require input information that is not computable from the language, such

as the expected connections between objects. We need a new language that is highly

transparent if we are to support a broad range of users and machine translation agents.

“They are concise. We can say things efficiently.” ASCEND III is sometimes too concise.

ARE_THE_SAME  andARE_ALIKE  are overloaded operators which allow very simple

statements of very complex ideas that may require deferred binding side effects.

ARE_THE_SAME  was designed to allow connections between otherwise disconnected

objects, for example merging a reactor output stream with a separator input stream. The

primary use ofARE_THE_SAME , however, has been to create alternate names for

variables down in nested scopes, for example creating a temperature, T, in a reactor model

and then merging it with the temperature down in the vapor-liquid phase equilibrium

model that is part of the reactor model. Here T is created only to be immediately destroyed

in the merge. Such uses ofARE_THE_SAME  account for up to 90% of the total time

spent compiling a complex model, as we shall see in Section 5.3. When writing models in

libraries that users expect to perform efficiently, we need ways to avoid compiling

structures that will only be destroyed.

“They suppress detail. We can keep rarely used information out of sight, but we can still

get to it when necessary.” We cannot tell what an object is for or how it got to be in its

present form. This information is completely suppressed, though we generally need it to

figure out how to use an object or why we cannot use an object as expected. We speculate

that, if comments in ASCEND III were associated with keywords and could be produced

in useful forms in the user interface, then the authors of models would be much more
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likely to produce well documented definitions because they would find the computable

documentation useful themselves. We will enlarge on this idea in Section 5.4. There are

many constant and set values in ASCEND III used to determine the detailed structure of a

model (such as the number of trays in a distillation tower), and these values for the most

part cease to be interesting once the model is created. We might like to have a general

ability to suppress the display of these values as a feature of a new language, or we might

decide to implement it as a user interface tool instead.

“They expose natural constraints, facilitating some class of computations.” In the

comments made on completeness, we have already listed the types of natural constraints

that we find unfacilitated by the ASCEND III language. Perhaps we should note here that

we want to model and solve large mixed nonlinear and discrete equation models which

represent physical systems possibly discretized over time and spatial dimensions. We note,

however, that some classes of equation models may require so much data that creating

models in manually produced text files would be infeasible. We suggest that models with

this characteristic are better handled in open form tools designed around the issues of data

mountain manipulation, and that those tools and our language tool should contribute

equations and variables as peer servers to an equation solving client.

“They are computable by an existing procedure.” The ASCEND III language is not

computable by an existing procedure. The procedures used to implement ASCEND III

were coded in Domain Pascal on Apollo and HP workstations. The Pascal compiler

needed to make ASCEND III computable no longer exists. This of course is not a

surprising property of a code written in the late 1980’s, but it suggests that we want a

language that is implemented in a widely available, long lived, well-standardized language

such as C. Languages which are still undergoing great change or are not properly

standardized, such as Microsoft C++, should be avoided. ASCEND III was ported to C as

ASCEND IIIc in 1993/4 [3], with its user interface implementation being completely

discarded and redone in Tcl 7.2/Tk 3.4 [10]. The C portion of the port has withstood the

hazards of 8 distinct UNIX systems3 and countless compilers. The Tcl/Tk language is

3. IBM AIX, DEC OSF1, DEC Ultrix, HP UX, Linux, SGI Irix, Solaris 2.x, SunOS 4.
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neither standardized nor stable, currently both are at version 8.0, and we have frequently

wondered at the wisdom of this choice of interface languages. At present there is not a

significantly better alternative available.

4.3.2 WHY REUSING ASCEND III IS HARD

As first mentioned in Section 1.3.1, we have observed that most modelers cannot reuse

ASCEND models by other authors if merging and refinement of parts within the reused

model is required for the new application. We can illustrate this with some simple pictures.

In Figure 4-1 and Figure 4-2 each box is a model, and boxes shown inside boxes indicate

that the inner model is a part of the outer model. Tags on the upper left corners of boxes

indicate the kind of object the box represents. A stack of overlaid boxes indicates an array

of similar objects.

In Figure 4-1 we see a structure typical of staged operations such as distillation.

Figure 4-1 Part-whole structure of a distillation column.

If we want to reuse this distillation model, extending it to use a more detailed vapor phase

part in the tray vapor-liquid equilibrium calculation, then we must find the Vapor part in

the VLE-calc part in every Tray part in the Column and perform a refinement. To discover

the changes needed, we must read through several nested definitions which contain many

distracting details such as variable and equation declarations. Object-oriented users
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trained in information-hiding programming methods may have even more difficulty with

this form of model reuse than those users versed in a FORTRAN style where everything is

referenced through a COMMON block.

In Figure 4-2 we see structures typical of connected units in a flowsheet. The dashed lines

Figure 4-2 A connection between self-contained objects

indicate the part that must be shared between the two units. We must examine the code for

the Reactor and Column very carefully before we can determine that the Reactor Output-

stream must be merged with the Column Feed-Tray Input Feed-stream. We need to make

the connection with a merge operation. Even if we successfully locate the corresponding

stream part in each model, we still have no guarantee that the merge is possible.

An ASCEND III model does not automatically contain information which indicates the

parts of the model that should be connected to other models in constructing larger models,

nor does it automatically contain information about which parts of the model could be

extended (by refinement) without invalidating the model. Experience has shown that

adding comments to a model, no matter how thorough the comments are, is insufficient for
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most modelers to reuse the work of others. We need to find ways of modeling that make

clear which parts of the models should be shared (merged or connected) and which can be

extended or replaced without causing errors.

4.4 DESIRABLE LANGUAGE PROPERTIES

We now take what we’ve learned from existing languages and expand from our

observations along various lines to expose additional features that should be considered if

we are to create a language.

Other authors suggest that each operator in a language should have only one, clearly

defined meaning [7], but there should not be so many operators that reasoning in the

language requires constant reference to a dictionary. We wish to support nonroutine and

preliminary modeling, however, so vague statements such as ASCEND III’s

ARE_ALIKE  andARE_THE_SAME  may be necessary. We may need a few more

operators in a declarative language than the five of ASCEND III. We have found that a

small, unambiguous set of operators and an aptly named set of operands promotes

effective analytic, synthetic, and algorithmic thought. We do not want to end up with the

dozens or hundreds of operators in the languages like Mathematica and Matlab. The

naming of operands (variables) is at the whim of the language user. We have seen that

allowing descriptive names helps the user so a language should not place a small, arbitrary

limit on the number of characters in a name.

For routine applications, we would like a language where there is exactly one way to state

each meaning we want to express and that way should be obvious. Of course this idea

conflicts with the notion of mathematical modeling where there are an infinite number of

ways to write any equation or set of equations, and it conflicts with our desire to support

modeling with incompletely understood information. We want to control the amount of

information that needs to be simultaneously processed by human users of a computer

language so they are not overwhelmed with extraneous detail. Information overload

typically occurs in humans when there are more than about six distinctive items to be

handled [9]. We believe an object-oriented language such as ASCEND III reduces the
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chances of information overload. We do not want to shield human users from excess

information in a way that prevents machine users from accessing all the information in a

model efficiently. We sometimes construct complex models with no good part/whole

decomposition and no idea of which elements of the few dozen in the model will be most

interesting to various end users, so ultimately we will need a tool which allows the user to

hide types of information in specific contexts or globally until that user decides it is

needed.

We would like to enable humans or machines to find out quickly what is common in and to

abstract information from two definitions in a language. Similarly, we would like to spot

differences easily. If we pick up a definition written in a computer language, we should

like that definition to suggest uses and misuses for the object it defines. We would like the

definition to be readable by a broad audience through barriers of discipline and time. We

would like the definition to contain links describing how it relates to concepts in other

languages. These links could contain information that does not compute in our language

but might be computed by an appropriate client or server (human or machine) interacting

with our language in a larger environment.

If we are to support open form modeling and environments, we need a language (or its

resulting objects) which can be easily connected to other tools and their conceptual

frameworks, either tightly or loosely depending on how well our concepts and theirs

match. We need a language which provides clear, simple ways to adopt terms from other

languages and use them in a manner consistent with both our language and the foreign

language. In our language system we should be able to communicate as client or server

with any tool which in any way deals with solving equations.

We should be able write a reusable definition which is self-checking: that is, if applied

incorrectly, some explicit statement in the definition should be violated. Objects should be

created from definitions and kept in a persistent database form because other tools or users

may need to ask many arbitrary questions about a definition while learning how to interact

with it.

We believe the ideas we discuss this chapter are sufficient to allow us to propose a new
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language (and some of the tools to support it). This language will significantly improve on

those currently available. We believe that by extensively renovating, expanding, and

pruning the ASCEND III language and modeling environment, we can create a reusable

open form modeling language and point the way to the creation of an example of an open

form tool suitable for the computer-aided engineering work environment of the future. We

shall present the significant features of our new language in Chapter 5 and ideas for tools

in Chapter 6.
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CHAPTER5 ASCEND IV
MODELING

LANGUAGE

In this chapter we clarify our design goals, explain our decisions made in creating

ASCEND IV, and present example results that convince us we are on the right path. We

defer a detailed definition of the ASCEND IV syntax and semantics to Appendix C. We

achieve the most critical of our results by defining an interface appropriate for

construction of an open model. We can pass the objects which must be shared and the

objects which the model reuser may refine through this interface. We can also pass

constant parametric values through the interface. This form of model interface addresses

the issues raised in Section 1.3 and some of the problems in Section 1.1. We explain this

interface in Section 5.5. By itself, however, our definition of the model interface is

insufficient to relieve the difficulties of reusing ASCEND III; we must define other user

support mechanisms to achieve a total combination of interrelated features which is

reusable. We define these supporting language features in Section 5.1 through Section 5.4.

We want a language which helps us create open form models quickly because modeling is

simply an expense. We want a language which is intuitive and consistent; that is, we need

one where the complete syntax is easy to figure out once we know a few examples. We
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want a language where operators are clearly defined to give us expressive power, user time

efficiency, and assurance that we will get what we think we have said when writing a

definition. We want a language that facilitates connections to other languages, computing

tools, and users. We want a language in which we can say things unambiguously, yet we

want to use it in extremely ambiguous situations such as developing new flowsheets or

developing new models of other sorts. We want to satisfy most of the representation

criteria listed in Section 4.1 simultaneously. We want to have our cake and eat it, too.

5.1 USER SPEED AND SYNTAX CONSISTENCY

Using ASCEND IV, we need to create or understand a large, complex mathematical model

quickly where all the details may be examined as needed (by ourselves or by the

computer) to support our decision making processes. Since the entire model is to be

examinable simultaneously, we need an efficient way of naming every part. The array and

dot notation of many computer languages [5,14] and also used in ASCEND III is

sufficient. For example, the name of the temperature variable in the thermodynamic

calculation in tray 100 of our column,tray[100].thermo.T , is quite clear. Similarly, all

names of model types (classes) must be unique. For example, if we saymy_column IS_A

high_pressure_column;  there must be only one definition ofhigh_pressure_column

in the modeling environment, or we cannot tell whatmy_column  is. ASCEND IV checks

for both part names and type names being uniquely defined when parsing a definition. It

records type information about all names and issues warnings or errors about any names

that are undefined or are used incorrectly. For example, ASCEND IV rejects at parse time

definitions which attempt to merge two obviously incompatible objects. This makes it

much faster for the user creating new models to detect and correct modeling errors which

could only be detected during object compilation in ASCEND III.

Because ASCEND IV still supports deferred binding in some contexts via the

ARE_ALIKE  andARE_THE_SAME  operations, it is possible for a naming error to slip

past the parse time checks. In particular, the existence and final instantiated type of

specific array elements cannot be determined at parse time in reusable definitions which

leave unspecified the value of the set over which the array will eventually be created. For
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example, in the general definition of a distillation column which leaves the number of

trays unspecified, we cannot prove or disprove that the name tray[7] is valid. We have

found that in practice such errors are rare; nonetheless, the compiler must still perform

range checking when building objects.

We need to be able to compile or load routinely used ASCEND IV models rapidly and be

able to modify their associated methods equally rapidly when the methods are insufficient

for our purposes. In ASCEND IV we define theADD METHODS  andREPLACE

METHODS commands which allow the user to experiment rapidly with interpreted

method definitions. In ASCEND III, redefining methods requires destroying the objects

created using the old methods and rereading the type and method definitions together.

When experimenting with new large models, say a flowsheet, the ability to add or replace

existing methods lets us save huge amounts of time that would otherwise be spent

recompiling the objects. This functionality is only partially implemented.

We need to be able to tell whether order matters in a statement. When order matters is not

clear from the syntax of ASCEND III or the extensions to it presented by Abbott [1].

ASCEND IV is a declarative language, and the order of statements made outside methods

does not matter. Wherever the order of a list of names or statements in ASCEND IV

matters, that list is enclosed in parentheses. For example, the order in which arguments are

passed to most numeric functions matters.SATISFIED (relation,tolerance)  returns

TRUE if the residual value ofrelation  is less than the absolute value oftolerance ;

clearly reversing the order of the arguments is incorrect. However, the order of arguments

to ASCEND set operationsUNION , INTERSECTION , CARD, andCHOICE  does not

matter. So, we writeUNION [set1,set2] . In any place that an argument list whose order

does not matter must be grouped together, ASCEND IV requires that square brackets be

used. Two numeric functions,SUM andPROD, which specify the addition and

multiplication of a list of numbers, respectively, do not require any list order since addition

and multiplication are commutative. Hence we write

SUM[flow[inputs],flow[outputs]]. In ASCEND IV, the use of () and [] list

delimiters is consistent.
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The five general operators in ASCEND III areIS_A, ARE_THE_SAME, REFINES,

IS_REFINED_TO, andARE_ALIKE . As we indicated in Section 4.3, these correspond

respectively to object construction, merging objects, type specialization, changing the type

of an existing object (deferred binding), and grouping objects so that all are kept

consistent with the same formal type. We expand this set in ASCEND IV to:IS_A,

WILL_BE, ALIASES, ARE_THE_SAME, WILL_BE_THE_SAME,

WILL_NOT_BE_THE_SAME, REFINES, IS_REFINED_TO,  andARE_ALIKE.

Most of the additional operators are used when defining parameters that will be passed to

a model, as we explain in Section 5.5, so we follow a consistent pattern of changing the

existing operators into their future tense verb forms. A parameter defined withWILL_BE

will be constructed by the user of the model which needs the parameter.WILL_BE  is

similar to the forward declaration of most imperative languages [5]. We will discuss the

semantic consistency of these parameter passing operators in Section 5.5.

TheALIASES  operator defines a new name for an existing object, a concept which does

not generalize any single ASCEND III operator, so of course it cannot be named

consistently. We believe the name chosen makes the action of theALIASES  operator

obvious.

We have named four new operators, but by following a consistent pattern of naming, we

have avoided significantly expanding the conceptual space of operators an ASCEND IV

user must manage in order to read or write a model. The addition of these operators and a

parameter list for models makes it possible to create highly reusable, quickly compiled

library definitions that minimize the application of deferred binding and avoid completely

the ambiguous and expensive applications of ARE_ALIKE and ARE_THE_SAME

operators. Several complete examples of such libraries are given in Appendix A. Detailed

explanations of our other new operators are given in Section 5.5.

5.2 CLEARLY DEFINED OPERATORS

In this section we describe with examples several new features in ASCEND IV which we

believe make a quicker, clearer understanding of statements and complete models
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possible. We also note some remaining difficulties in the language.

Using ASCEND IV we need to state efficiently and clearly all the constraints of a model,

whether they are arithmetic (operating on real, integer, logical, or set data) relations to be

solved or relations that define boundaries. Boundary equations are just like relations to be

solved except that they are marked with a read-only boolean attribute, $boundary, with

value TRUE. We use theCONDITIONAL  statement to identify boundaries.

Code 5-1 MODEL pipe_flow;
laminar IS_A boolean; 2
Re IS_A reynolds_number; (* 0 < Re < INFINITY *) 3
CONDITIONAL 4

low_reynolds: Re <= 2100; 5
END; 6
laminar == SATISFIED(low_reynolds,0); 7

END pipe_flow; 8

We have expanded ASCEND IV to support logical relations [12], adding the logical

equality (==) and inequality (!=) operators. Logical equations may be written over

boolean variables using the boolean operators AND, OR, and NOT and boolean functions.

One such boolean function is theSATISFIED  function described in Section 5.1. We

enforce a strict separation of equations into those in terms of real variables and those in

terms of discrete variables. We do so because it makes models easier to read and

understand, because it makes ASCEND IV much easier to implement, and because we

have a new syntax (theWHEN  statement, Code 5-5) to handle conditional modeling in a

much more general way than mixing logical operations into real relations.

Sets are used to define the elements of an array in ASCEND IV. In ASCEND III, array

elements can be defined arbitrarily meaning an array can change size at any time due to

deferred binding. If we are to ensure model structure consistency and name uniqueness,

we cannot allow arrays to change size once they are created. Also in ASCEND III,

multidimensional arrays are always created with rectangular shapes, which does not

reflect the sparsity which commonly occurs in the data of physical models. In ASCEND

IV sparse arrays may be created by using appropriateFOR statements and set definitions.
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Because the full expressiveness of ASCEND set notation has not been well exploited by

most users and because the creation of sparse arrays is best explained by an example, we

give an example of both in Code 5-2. The example is heavily commented so that it can be

read and understood even if isolated from the surrounding text.
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Code 5-2 MODEL rxntest;
(* this style is generic to all reaction systems that conserve mass *) 2
(* all the species in our system *) 3

species IS_A set OF symbol_constant; 4
species :== [‘A’,’B’,’C’,’D’]; 5

(* all the chemical reactions we will model *) 6
rxns IS_A set OF integer_constant; 7
rxns :== [1..3]; 8

(* the species participating in each reaction *) 9
reactants[rxns] IS_A set OF symbol_constant; 10
reactants[1] :== [‘A’,’B’,’C’]; 11
reactants[2] :== [‘A’,’C’]; 12
reactants[3] :== [‘A’,’B’,’D’]; 13

(* reactions each species participates in *) 14
reactions[species] IS_A set OF integer_constant; 15
FOR i IN species CREATE 16

reactions[i] :== [j IN rxns SUCH_THAT i IN reactants[j]]; 17
END; 18

(* sparse stoichiometric matrix. *) 19
FOR j IN rxns CREATE 20

FOR i IN reactants[j] CREATE 21
nu[i][j] IS_A integer_constant; 22
(* mole i/mole rxn j*) 23

END; 24
END; 25

(* production rates of all species *) 26
production[species] IS_A molar_rate; 27

(* reaction rate for all reactions mole rxn j/time *) 28
rate[rxns] IS_A molar_rate; 29

(* generic conservation of species equations *) 30
FOR i IN species CREATE 31
netgeneration[i]: 32

production[i] = 33
SUM[nu[i][j]*rate[j] SUCH_THAT j IN reactions[i]]; 34

END; 35
x[species] IS_A mole_fraction; 36

(* rate coefficient values the user must specify *) 37
k[rxns] IS_A real; 38
FOR j IN rxns CREATE 39
ratelaw[j]: 40
rate[j] = 41

k[j]* 42
PROD[ 43

PROD[ x[i] SUCH_THAT m IN [1..-(nu[i][j])]] 44
| i IN reactants[j] ]; 45

END; 46
(* This equation filters out the rhs stoichiometric coefficients 47
* because [m..n] where (n < m) == empty set, [].*) 48
END rxntest; 49
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Line 17 shows how to compute the row-wise sparsity pattern,reactions , from the

column-wise sparsity pattern,reactants , of the stoichiometric matrixnu. We find the set

operation syntax used to calculatereactions  is one of the less intuitive (but much

needed) features of ASCEND. We seldom find rigorous unordered set notation in a

mathematical computing context which is odd considering that set theory underlies most

mathematics. Line 22 defines the sparse array nu[species][rxns] so that the zero entries do

not get compiled into objects. In ASCEND IV a sparse array can contain objects of any

type. Line 44 demonstrates the.. set operator. In ASCEND IV contexts where order

matters,m..n  will result in an iteration starting atm andincreasing to n. In contexts where

order does not matter, the.. operator is simply a shorthand way of noting the integers

ranging frommup ton, as noted in Line 48.

We cannot overstate the fraction of ASCEND users we have seen attempt to useFOR

loops as if they were iterations in an imperative language. In keeping with the declarative

nature of ASCEND, the statements in the body of aFOR statement are not executed in

any particular sequence, nor is the index set that theFOR statement specifies processed in

any particular order. We can demonstrate the problem with a very small example.

Code 5-3 FOR i IN [1..10] CREATE
k[i] :== 2*i; 2
wide_triangle[i][1..k[i]] is_a variable; 3

END; 4

ThisFOR statement cannot be compiled because the constant assignment in Line 2 may

not yet be done when we try to execute Line 3. We suggest, but have not implemented,

replacingFOR with OVER_ALL  in ASCEND IV so users will realize that ASCEND

does not use the loops of traditional imperative languages to define model structures.

We express conditional compilation of declarative statements in ASCEND IV with the

SELECT statement. We explain the particulars of theSELECT statement with an

example, Code 5-4, abstracted from our thermodynamics library given in Section A.2.5.
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Code 5-4 MODEL liquid_mixture(
P WILL_BE pressure; 2
T WILL_BE temperature; 3
options WILL_BE liquid_options; 4
data[options.components] WILL_BE td_component_constants; 5
correlation IS_A symbol_constant; 6

) REFINES td_homogeneous_mixture( 7
phase :== 'liquid'; 8

); 9
pure[options.components] IS_A Rackett_liquid_component; 10

11
SELECT (correlation) 12
CASE 'UNIFAC': 13

FOR i IN options.components CREATE 14
pure[i] IS_REFINED_TO 15
RackettA_liquid_component(P, T, data[i], 16
options.pure_component_correlation['liquid'], 17
data[i].vp_correlation); 18

END; 19
UNIFAC_mixing_rule IS_A 20
UNIFAC_partials(P, T, V, H, G, scale, options, 21

phase, data, phi, y, pure, partial); 22
CASE 'Wilson': 23

FOR i IN options.components CREATE 24
pure[i] IS_REFINED_TO 25
RackettB_liquid_component(P, T, data[i], 26
options.pure_component_correlation['liquid'], 27
data[i].vp_correlation); 28

END; 29
Wilson_mixing_rule IS_A 30

                Wilson_partials(P, T, V, H, G, scale, options, 31
phase, data, phi, y, pure, partial); 32

END; 33
34

END liquid_mixture; 35

In Line 12 we putcorrelation  in parentheses because the selection may be computed

over an ordered list containing any combination of constant integers, booleans, symbols,

or sets. In Line 6, we definecorrelation  as a value supplied from outside the model, and

it determines the structure inside the model. We compile all matching cases. The same

name cannot be created in more than one case, therefore we name the mixing rule

differently in Line 20 and Line 30. A name definedoutside theSELECT statement, e.g.

pure[i], can be refined differently in each case, as in Line 16 and Line 26. The names
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defined in unmatched cases might be accidently referred to elsewhere by the user or by a

system tool, so we cannot just ignore the statements of alternative mixing rules. We must

leave a place holder object for unselected parts of the definition so that the system can

differentiate between objects missing because they were not selected and parts missing

because the compiler has not yet been able to process their defining statements. We give

the details of implementing the place holder in an efficient fashion in [12].

We express conditional inclusion of relations or model parts in a mathematical problem to

be solved in ASCEND IV with theWHEN  statement. We declare all the parts and

equations we want to choose from dynamically and all the discrete decisionvariables

which may be integers, booleans or symbols. We then write aWHEN  statement, as shown

in Code 5-5, which tells which equations and model parts to use when the discrete

variables have particular values. We may include logical equations in theWHEN  cases.

Equations and parts specified in non-matching cases need not be satisfied at the solution of

the overall problem. The details of implementing theWHEN  statement are given in [12].

At present the ASCEND IV system uses these statements only when constructing a system

(as described in Section 3.3) to determine which equations will be solved. We do not yet

have a solver which simultaneously solves for the discrete and continuous variables.



EFFICIENCY

80

Code 5-5 MODEL td_equilibrium_mixture (
P WILL_BE pressure; 2
T WILL_BE temperature; 3
options WILL_BE multi_phase_options; 4
mix[options.phases] WILL_BE td_homogeneous_mixture; 5
equilibrated WILL_BE boolean; 6

) REFINES td_alpha_mixture; 7
8

(* Define the partial Gibbs free energy equilibrium condition. *) 9
FOR i IN options.components CREATE 10

FOR j IN options.other_phases CREATE 11
equil_condition[i][j]: 12

mix[j].partial[i].G/data[i].G0 = 13
mix[options.reference_phase].partial[i].G/

data[i].G0; 14
END; 15

END; 16
(* The equilibrium conditions can be relaxed, decoupling the 17
* energy balance between phases. *) 18

WHEN (equilibrated) 19
CASE TRUE: 20

USE equil_condition; 21
END; 22

END td_equilibrium_mixture; 23

Using Code 5-5, we can setequilibrated  to FALSE so the WHEN statement in Line 19

will prevent the equilibrium equations in Line 12 from being solved.

5.3 EFFICIENCY

We are aiming to improve the efficiency of the overall mathematical modeling process.

This means, among other improvements, we need to make the compiler as fast as possible

so that the user does not spend time waiting on the compiler during each iteration of the

model construction process. In this section we explain two aliasing operators that we

believe make possible a natural modeling style that has the added benefit of allowing more

efficient compilation algorithms. We note some properties of refinement and universal

objects that suggest we should minimize their use in modeling large or routine problems.

We also propose language constructs new to ASCEND that allow the user or the system to

represent concisely tabulated data, differential equations, and the attributes of variables.

In ASCEND III, nearly every name corresponds to a unique constructed object. An object

can have more than one name in only two ways: if it is aUNIVERSAL  object [3] or if it is
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the result of merging two objects. TheALIASES  operator we described in Section 5.1 is

equivalent to a pair of statements. We give an example of this in Code 5-6. In this

example, our goal is to make local namesP1 andP2 for the pressure in the reactor,rxr .

The nameP1 comes from creating a pressure in Line 3 which we destroy by merging it

with rxr.thermostate.P in Line 4. The nameP2 comes from waiting until the object

rxr.thermostate.P  exists and then just pointing at it in Line 5. TheALIASES  operator

has none of the deferred binding side-effects ofARE_THE_SAME , and it naturally

indicates thatP2 is really just our local name for a component that belongs to the reactor.

Not surprisingly, the compiler can executeALIASES  more efficiently than

ARE_THE_SAME  because it only needs to create one pressure instead of two. Of

course, in this example we should define the nameP1 with an alias rather than merge it as

shown.

Code 5-6 MODEL alias_example;
rxr IS_A reactor; 2
P1 IS_A pressure; 3
P1, rxr.thermostate.P ARE_THE_SAME; 4
P2 ALIASES rxr.thermostate.P; 5

END alias_example; 6

As models grow large and the objects being merged have more parts, the time we pay to

merge objects grows at least quadratically. The time we pay to create an alias is small and

is independent of object complexity, makingALIASES  suitable for use in large models

where efficiency matters.

Our example in Code 5-6 is trivial in order to be clear. In the ASCEND III ‘reusable

modeling’ style which relies heavily on merging and refinement, the issue affects the

construction of distillation and collocation models. We give brief statistics from a

distillation example which highlights the problem, and then we look at result of our work

for a collocation model. In a thirteen tray methanol-water distillation model we find

complex objects with 273 names. An object with 273 names implies that 272 similar

objects have been created and destroyed. Table 5-1 gives a sampling of these names.

By counting names we obtain the statistics in Table 5-2. These numbers suggest that the

elegant, ‘reusable’ style of modeling in ASCEND III has a very high price in terms of lost
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work that is put into objects that are subsequently merged.

We use arrays to group related items in ASCEND. Often we need an array whose elements

comprise a group of already defined objects, such as in collocation formulae libraries [11].

In an ASCEND III collocation of a dynamic flowsheet model overn time steps, we must

create4n flowsheet objects, only to destroy them while connecting the collocation steps. If

we extendALIASES  so it can be used to construct arrays from similar objects, we can

avoid this cost. Code 5-7 demonstrates constructing an array from already defined objects

using theALIASES/IS_A  compound statement. This example is abstracted from

Section A.2.10.

Table 5-1: Some names of water property data

Names (8/273)

tc.col.tray[7].input[‘feed’].state.mix[‘liquid’].pure[‘b’].data

tc.col.tray[8].VLE.mix[‘vapor’].data[‘b’]

tc.col.tray[13].vapout[‘vapor_product’].state.pure[‘b’].data

tc.feed.data[‘b’]

tc.feed.state.mix[‘liquid’].data[‘b’]

tc.col.tray[8].totfeed.state.data[‘b’]

tc.col.tray[7].input[‘feed’].state.mix[‘liquid’].data[‘b’]

tc.col.data[‘b’]

Table 5-2: Merge statistics for a 13 tray methanol/water column

Object Type
Number
Created

Number
Needed

Average
Merges

Models 1,795 327 4.5

Arrays 12,754 854 13.9

Variables 149,573 1,902 77.6
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Code 5-7 MODEL euler_integration(
nstep WILL_BE integer_constant; 2
npoint WILL_BE integer_constant; 3
grid[0..(nstep*npoint)] WILL_BE bvp_point; 4
n_eq IS_A integer_constant; 5

); 6
(* model for solving boundary value problems *) 7

(* Create the little arrays for euler steps out of the user grid.*) 8
FOR i IN [0..nstep-1] CREATE 9

step_nodes[i+1][pset[i]] ALIASES 10
( grid[(i*npoint) ..( (i+1)*npoint)] ) 11
WHERE pset[i] IS_A 12
set OF integer_constant 13
WITH_VALUE ( 0 .. npoint ); 14

END; 15
16

(* Create the total collocation equations using Euler intervals. *) 17
FOR i IN [1..nstep] CREATE 18

euler_step[i] IS_A euler(npoint,step_nodes[i],n_eq); 19
END; 20

END euler_integration; 21

In Line 10 and Line 11 we construct a small array from user suppliedgrid  elements. Each

element contains abvp_point  model for calculatingn_eq  ordinary differential equations.

In Line 12 we construct the set of subscripts,pset[i] , over which the array

step_nodes[i+1]  is defined, and in Line 14 we specify the elements ofpset[i] . The

ordered list of subscripts in Line 14 matches the ordered list of items in Line 11 one to

one. There is no destroying of complex objects needed to assemble the integration model

in Code 5-7. Theeuler_integration  parameter list specifies that the user will provide

an array ofbvp_points,  and the statements of the model distribute the points into the

euler_step  mesh models which define the collocation equations. We note that while the

ALIASES/IS_A  syntax is clear once written, users have pointed out that creating a correct

ALIASES/IS_A statement is not a particularly intuitive process. We believe the

functionality is correct, but admit that better ways of expressing it might be found with

further investigation.

In Table 5-3 we see that, by avoiding merging through the use of theALIASES/IS_A  just

described, we can reduce compilation times by an order of magnitude for general models

containing large arrays of similar objects, such as collocation models and distillation

models. The model tested in Table 5-3,isomerization2  [16], is a collocation using the
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midpoint rule [6] with a total of 17 nodes (8 midpoint steps). Each node is a model of a

two species, gas-phase isomerization reaction in the presence of an inert species. The

details of this model are given in Section A.1.1. It contains 725 equations.

What happened here? Neither theALIASES  we have defined nor the copying of similar

model parts (in this case the grid nodes) suggested by Abbott [1] significantly reduced the

compile time by itself. In case 1, an ASCEND III style compilation, the compiler destroys

the 4n (n = 8)bvp_point s, but many of them are destroyed before their complex

substructures are fully assembled. Epperly notes this effect in [3]. In case 2, each

bvp_point is fully assembled by copying a prototype, so 32 fully assembledbvp_point s

must be destroyed when the 32 merges are carried out. Copying the prototype saves us the

time of reprocessing thebvp_point  definition statements, but the time needed to merge

fully assembled objects balances the savings. In case 3, we see that the use ofALIASES/

IS_A does not significantly reduce the compilation time, but, so long as it does not

increase the time we are satisfied because our goal is to create a more reusable collocation

model. We can almost tell what information we must supply to use the

euler_integration  model in Code 5-7 just by looking at its parameter list. In case 4, we

see that the combination of copying prototypes and avoiding merge operations by using

theALIASES  statement yields an order of magnitude speed up in compiling

isomerization2 .

In the cases of Table 5-3 where we used copying, we had to instruct the compiler ahead of

time that copyingbvp_point  should be done. Large arrays of identical models are found

a. 110 MHz Sparcstation 5 running SunOS 4.1.4 and acc 2.0.1

Table 5-3: Isomerization2 collocation model compilation timesa

Case
ALIASES

used
 Copying

used
Compile
time (sec)

1 No No 5.9

2 No Yes 5.8

3 Yes No 5.9

4 Yes Yes 0.6
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in better understood models such as occur in libraries. We have observed (and routinely

recommend to new users) that the arrays in poorly understood models ought to be kept

small (under 10 elements) until the models become better understood. We suggest,

therefore, that the compiler can use array size as one of the criteria for determining when

to apply prototype copying methods automatically. By defining the ASCEND IV language

as we have, we can avoid merging complex objects and capture information which the

compiler can use to determine faster ways of building the objects we define. We can

reduce compilation time by an order of magnitude, leaving the user with more time to

spend applying the models to real problems. We have not yet implemented a compiler

which automatically applies prototype copying methods to arrays of complex objects.

UNIVERSAL  types in ASCEND never have more than one object associated with them.

For example,gas_constant  is a universal type which when compiled yields a

real_constant  with value 8.314 {J/mole/K}. All declarations using thegas_constant

type share the same compiledreal_constant  instance. Each object keeps a unique list of

all the contexts in which it appears, and maintenance of this list can become expensive in a

large model where the universal object occurs thousands of times. Univeral objects

minimize the memory required to store the universal information and ensure that the same

information is used in all contexts since there are no duplicate objects. Some users create

libraries containing universal typed variables for scaling equations1. Because each

variable keeps a unique list of the relations in which it appears as well as the list of

contexts in which it is defined, universal variables can cost large amounts of compile time

and should be avoided where possible.

We want to enter array values efficiently as tabular data in ASCEND models. There is very

little difference between what makes a table look good in ASCEND and what makes a

table look good in any other computer language. Because tabular data entry is not a

particularly new or difficult concept, and because it is not yet implemented in ASCEND

IV, we refer the interested reader to Appendix C page 22 for our proposed definition of the

1. We note that this makes such libraries less reusable because one instance of a library model may
need to be scaled differently from another, and the universal scaling value prevents independently
scaling the equations of the two instances. This, however, is an issue of personal modeling styles.
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ASCEND IV DATA  statement.

Deferred binding (theIS_REFINED_TO statement and other statements that have

refinement as a side-effect) is the primary source of objects with anonymous types in

ASCEND. We discourage the use of deferred binding because of the potential

inconsistency that anonymous types create and because deferred binding causes

reconstruction of objects, a process which can be expensive. ARE_ALIKE is a particularly

inefficient operator because it causes cliques of objects to be rebound any time one clique

member is refined and because it frequently lulls new users into expecting the clique to be

of equivalent anonymous type as well as equivalent formal type. This incorrect

expectation can lead to very long periods of frustration spent debugging new models until

the new user finally understands the inadequacy of formal type to ensure object

consistency in an open system like ASCEND.

When we are developing very new models (such as a new thermodynamics library) where

we do not know what are the right refinement and part/whole relationships, we can do our

development and early testing on a small version of the model where the unscalabilities of

ARE_THE_SAME , IS_REFINED_TO, andARE_ALIKE  are insignificant. If we

decide to turn our new model into a scalable, reusable model, we can use theALIASES

andSELECT operators already described and the parameterized model operators coming

up in Section 5.5 to rewrite the model in a more efficient manner. If producing efficient or

general models is not high on our priority list, we can also give our small model and the

examples of its application (both of which are in a very high level language) to a model

efficiency or model generality expert for her to use as a detailed specification while

creating an improved, reusable model. Because we can quickly supply a working

prototype, we improve our chances of getting a model we really like back from the expert

in a short time. If the expert returns us a model written in ASCEND, we can also compare

how we model to how she models and learn a bit about efficient modeling, assuming, of

course, that our supervisor gives us time to perform such a comparison.
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5.4 EXTENSIBILITY

We have suggested in Chapter 4 that we should build our models and our modeling system

from components that can be incorporated by other systems. Indeed, to allow complex

model construction in reasonable time, we must [13]. We have suggested in Chapter 4 that

we should build our models and our modeling system so we can easily incorporate tools

and models from other systems. We want to construct such connections either tightly or

loosely depending on how well the semantics of the connected components match. We do

not want to end up creating a language with a thousand operators that no one could ever

remember.

Decomposing the total ASCEND IV environment (200,000+ lines of code in three

languages) into components usable by other systems is difficult due to the lack of

published software protocols specifying the interfaces needed for object-oriented

mathematical modeling components involving mixed logical and nonlinear equations [2].

We do not consider it further in this thesis because this component decomposition is also

largely an ASCEND IV software implementation task not particularly affected by the

modeling language syntax.

We can make decisions that enable or improve connections from our modeling language to

external submodels, modeling tools, and users. Abbott [1] has described a language

connecting tightly to externally defined submodels including external models that have

component hierarchy information. Oh [9] has described a language connecting tightly to

an externally defined model which discretizes a set of partial differential equations.

Nilsson [8] has described a language connecting tightly to a graphical user interface tool.

We now propose a more general formalism which we can use to forge loose connections in

arbitrary languages, including human languages, by applying tools to model components.

We view this ability as crucial to achieve the goal of future model component sharing.

We defineNOTES in ASCEND IV. WithNOTES we can associate a keyword/annotation

pair with an ASCEND type definition, with names in a definition context, or with a library

file of definitions. The annotating text is not understood by the ASCEND compiler, rather

it is for the consumption of external tools and users.NOTES differ from comments in that
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the compiler stores them in a database that it can use to answer queries from outside

agents. Each annotation is simply a block of text which can be of any length. ASCEND

definitions, libraries, or compiled objects can be queried by external agents (users, graphic

interfaces, other modeling systems) to retrieve these annotations. The annotating text

might be the name of a graphic to represent a model, the contact information for user help,

an explanation of the applications for the model, code in a foreign programming language

appropriate to some task carried out with the model, or anything else needed to build

bridges between the modeling process components, whether human or machine. We give

an example in Code 5-8.

Code 5-8 MODEL liquid_feed_tray(
in_stream[inputs] IS_A molar_stream; 2

) REFINES tray ( 3
inputs :== [’liquid’,’vapor’,’feed’]; 4

); 5
(* other statements omitted from example. *) 6

NOTES 7
’bitmap’ SELF {feed_tray.bmp} 8

in_stream[’feed’] {portdiamond.bmp} 9
’basic’ in_stream[’feed’] 10

{The feed to this tray must be a saturated liquid.} 11
in_stream[’vapor’] 12
{The vapor feed to this tray should come from the 13
tray below in a vertical stack of trays.} 14

’applicability’ SELF 15
{This feed tray model assumes steady state petroleum operation. 16
For an unsteady state tray model, see dynamic_feed_tray in the 17
HOLDUP library. For cryogenic work, see the library ICECOL.} 18
’author’ SELF {Otto von Bismarck} 19
’tech-support-usa’ SELF {888-272-3634 (that’s 888-ASCEND4)} 20
’tech-support-www’ SELF {http://www.ascend4.org/dist/help.htm} 21
’revision’ SELF {$Revision: 2.5.7 $} 22
’competition’ SELF {No one else is willing to sell only a tray.}23

END NOTES; 24
END liquid_feed_tray; 25

We see in Code 5-8 that we can express much of the information we want in an ideal

reusable model component as described in Section 3.3.3. The wordNOTES introduces a

block of annotations, andEND NOTES closes the block. Each annotation in the block is

stored in a database as a five element record {context, language-keyword, name,
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annotating-text, unique-id}, where context names a type or library, language-keyword is

the name of the language in which the annotation is written, name is an ASCEND object

name orSELF or LIBRARY , and the annotation is any text enclosed in {}2. If the name

SELF is seen, we apply the annotation to the type definition or method in which the

NOTES statement appears. If the nameLIBRARY  appears, we apply the annotation to

the library in which theNOTES statement appears.

We can also annotate libraries and models from external sources. Code 5-9 shows

examples of annotating a model and a library from a file loaded into the system later.

Code 5-9 ADD NOTES FOR TYPE liquid_feed_tray;
’in-house-expert’ {Joe Glitsch, x-2742, jglitsch::oldvax.rnd.com} 2
’success’ {Works for the C10 fractionator in Red Stick, LA} 3
’failure’ {This model does a lousy job with light alcohols} 4
’failure-reviewed’ {The model works fine for light alcohols if you5

use the thermo component from PineTree for VLE.6
Reviewer: jglitsch} 7

’GUI-window-code’ {win_liqfeed.tcl} 8
’demonstration-tcl’ 9
{ 10

LOAD distill.lib; 11
COMPILE testrun OF td_test_liqfeed; 12
ASSIGN testrun.reflux 10; 13
ASSIGN testrun.feed.totflow 1{mole/s}; 14
SOLVE testrun; 15

} 16
END NOTES liquid_feed_tray; 17

18
ADD NOTES FOR LIBRARY "cryostuff/ICECOL.lib"; 19
’in-house-expert’ {None. It’s so easy to use that we can’t be bothered20

to understand the details.} 21
’success’ {Works for our air plant in Saskatoon.} 22
END NOTES ICECOL; 23

Sometimes the author of a model is not the best person to write explanations of it for

general audiences, but we do not want people whose job is documentation to change the

model accidently while they document it. By allowing the annotations to be made without

touching the model source files, we can ensure that the process of documenting a model

2. If the annotation containsunmatched curly braces, “{“ or “}”, they must be escaped with the “\”
character. Well-formed statements in most of the computer languages which use braces will be
matched properly, so this is not a severe limitation. The other characters in an annotation are
taken literally, including linefeeds and other whitespace characters; it is up to the external agent
to interpret the annotation string.
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does not change the model in any way. We canADD NOTES, but we believe that policy

should dictate that we cannot delete or replaceNOTES once they are made.

We can make short notes at the time an object is defined using quotes. These short notes

are all assumed to have the keyword ‘is.’  For example:

Code 5-10 MODEL pump;
inlet “the suction” , 2
outlet “the discharge” 3
IS_A stream; 4
rating “the design flow capacity” 5
IS_A volumetric_rate; 6

END pump; 7

We see in Code 5-10 that these short comments are written after the name that they

annotate. The implementation of this annotation facility is only partially complete, and we

have not yet conducted extensive experiments on its use. We make proposals for its use in

Chapter 6.

5.5 MODELING BY CONTRACT

We want a language which enables someone who has never before used an open form

model library to pick it up and write an application model immediately without having to

understand in detail the content of the library. We want a language which can perform

logical consistency checks on structures and variables to ensure that the user of a library

has not become a misuser of that library. We want a language that helps us rapidly

understand the details of a library when we must extend it, whether we are an expert or

not. And we want all this in a mathematical language which is general, not a language tied

to one set of application concepts, with all the flexibility that ASCEND III demonstrates.

In the previous sections, we have described many interesting features of ASCEND IV, but

what is still missing is an easy path for a user from the more common flowsheeting or

procedural programming language paradigms into this object-oriented, equation-based

system.

Piela [11] and Abbott [1] both meditate on adding an interface to ASCEND models. Piela

proposed creating several different interfaces for a given model where each interface is
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designed to help meet a specific user interest. By allowing ALIASES statements, we can

easily write model wrappers (simpler models which hide the details of the more complex

model being wrapped from the user) which have the same effect as defining multiple

interfaces, and we can do so at very little additional computational cost. Abbott proposed

creating a single parameter list which fixes all the structural parameters of the general

definition so that a compiler could fully assemble the model once the parameters were

specified, and he proposed creating new operators that build data structures by copying so

that the user could force the compiler to use certain construction algorithms. Neither

author investigated the propositions in any detail.

We think an appropriate question to ask when considering adding model interfaces to the

ASCEND language is, “Considering that ASCEND IV is to be an experiment in helping

people more efficiently use open form models and modeling software components, what

can we do with an interface?” Most imperative languages [5,7, 4,10,15,14] use interfaces

to hide information, which is the opposite of our goal: to make as much information as we

can available to various human and machine agents with different needs without

overwhelming any of them with it. We agree with Abbott that we should be able to know

everything required to compile a model by looking at only the interface of the model.

We can do more, however, with the model interface. We can write statements to ensure the

consistency of the arguments to the model. We can use passed objects and passed values to

make the routine compilation of a model efficient. We can use model interfaces to help

control the deferred binding events that generate incompatible anonymous types in a

compiled object. We have definedALIASES  which can look down in the current scope.

Model interfaces can give us a way of “looking up,” a way to state what parts any larger

application context which uses our definition must supply before the compiler should

bother building our model. Before we continue, we must more clearly define the operators

named in Section 5.1 which we use in model interfaces. Basic model interfaces have the

form:

MODEL model_name ( passed_object_and_value_definition_statements)

WHERE  ( preconditions_of_model_use_statements);
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passed_object_and_value_definition_statements is an ordered list of statements using

IS_A andWILL_BE.

• IS_A: establishes a new name and a new object of any constant type3 in the model. In
short,IS_A defines a constant parametric value. Thevalue of the object will be
assigned by an expression supplied to the model from the application context. Later
refinements of the model we are defining can also assign the value ofIS_A defined
parameters, removing them from the list of information the user must supply. For
example, in Code 5-8, Line 4liquid_feed_tray  assigns the setinputs  the value
[’liquid’,’vapor’,’feed’]  so the interface statement "inputs IS_A set OF

symbol_constant ;" which must have been in the less refined definitiontray,  is no
longer needed.

• WILL_BE : establishes a new name in the model for an object compatible with the
designated type that the application context will create and pass. This defines a passed
object.

preconditions_of_model_use_statements is an ordered list of statements using

WILL_BE_THE_SAME , WILL_NOT_BE_THE_SAME , and relations among

constants. These statements correspond to theassertions [7] of “programming by

contract.”

• WILL_BE_THE_SAME : asserts that named parts of two or more objects supplied to
the current scope must in fact beone object.

• WILL_NOT_BE_THE_SAME : asserts that named parts of two or more objects sup-
plied to the current scope must bedistinct objects.

Logical and real relations, possibly written insideFOR statements, can be included in the

model interface as preconditions of use. All the values in these relations must be constants

and the relations must be satisfied before the model will be constructed.

We give a very simple example of our model interface in Code 5-11, a distillation column

with one liquid feed and two liquid products. The model interface fordemo_column

follows the definition ofhexane_column_flowsheet . For this example, we are concerned

with simulating only a single distillation column, a task which is not infrequent in our

industrial experience.

3. Parametric values have one of the types: set, symbol_constant, integer_constant, real_constant,
boolean_constant. Arrays of these are also considered parametric values. In the parlance of
ASCEND III, parametric values are “structural constants.”
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Code 5-11 MODEL hexane_column_flowsheet;
hexsep IS_A 2
demo_column( 3

[‘n_pentane’,’n_hexane’,’n_heptane’], 4
’n_heptane’, 5
13, 6
7 7
); 8

END hexane_column_flowsheet; 9

Lines 4-8 of this model are the parametric values passed through the model interface. The

demo_column  model is actually a wrapper for a more complex, more configurable model,

simple_column . Both these models are given in Appendix A.

MODEL demo_column(
        components IS_A set OF symbol_constant;
        reference IS_A symbol_constant;
        n_trays IS_A integer_constant;
        feed_location IS_A integer_constant;
) WHERE (
        reference IN components == TRUE;
        n_trays > 5;
        feed_location > 2;
        feed_location < n_trays - 2;
);

To illustrate most of our model interface concepts in more detail, we present in Code 5-12

a very simple flowsheet containing nothing but a flash unit. We present a scenario

describing howtest_vapor_liquid_flash  can be assembled from a flash library model

by looking only at the parameter lists of the required models and responding to the

diagnostic messages from the ASCEND IV compiler. In fact, in our scenario almost no

domain specialist knowledge is needed; we can almost write the model mechanically by

following the syntax of the language. Thus we demonstrate that the model interface can

help bridge the gap between the experts who write libraries and the people who use them.

Let us assume a user who is new to the ASCEND language but who has some experience

writing FORTRAN or C. He has a pretty good idea of what objects are for, but still tends

to think of them as “subroutines” or “functions.” For the moment we will assume as

insignificant the thorny problems encountered by new users in navigating the ASCEND
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IV interface. In particular we assume that the libraries needed are all loaded and his task is

to create a model. We have assured our user that his existing skills, the basic definitions of

the operatorsIS_A, WILL_BE , WILL_BE_THE_SAME ,

WILL_NOT_BE_THE_SAME , and a willingness to make up reasonable names will be

enough to accomplish his task, if he trusts the ASCEND system to help him figure out how

to define these names.

Let us call our user Ed. With a point-and-click modeling interface much of what Ed will

do could be simplified and automated. Ed will write a text input file, however, as the issues

we wish to illustrate are clearly demonstrated in so doing. Ed wants to simulate a flash unit

with one liquid and one vapor product. He looks at the list of loaded ASCEND libraries:

system, atoms, components, thermodynamics, stream, and flash. Flash looks promising.

He clicks on flash and seesmass_balance_flash , vapor_liquid_flash,

multifeed_flash , andVLL_flash . He clicks onvapor_liquid_flash  and sees the

parameter list:

MODEL vapor_liquid_flash(
feed WILL_BE liquid_stream;
vapout WILL_BE vapor_stream;
liqout WILL_BE liquid_stream;
flash_state WILL_BE td_VLE_mixture;

) WHERE (
state.heavy, liqout.state WILL_BE_THE_SAME;
state.light, vapout.state WILL_BE_THE_SAME;
vapout.state.T, feed.state.T WILL_NOT_BE_THE_SAME;
vapout.state.P, feed.state.P WILL_NOT_BE_THE_SAME;
liqout.state.options.ds.components ==
vapout.state.options.ds.components;

);

So in his text file he puts:

MODEL test_vapor_liquid_flash;
flash IS_A vapor_liquid_flash( feed, vapout, liqout, state);

END test_vapor_liquid_flash;

Ed is not sure what exactly all theWILL_BE_THE_SAME ’s  are about yet, but the

requirement that the same components are in both product streams seems reasonable.

Since nothing has suggested he must define the components yet, it seems safe to ignore

doing so at this time. He sees from the model interface ofvapor_liquid_flash  that he
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needs to declare his process streams and atd_VLE_mixture . So he defines:

feed IS_A liquid_stream;
vapout IS_A vapor_stream;
liqout IS_A liquid_stream;
flash_state IS_A td_VLE_mixture;

Ed tries to compile his model, and it fails. The compiler complains that each stream model

requires a passed object that will be locally namedstate  and thattd_VLE_mixture  needs

five passed objects. Ed browses the model interfaces ofvapor_stream , liquid_stream ,

andtd_VLE_mixture  where he sees:

MODEL liquid_stream(
state WILL_BE liquid_mixture;

) REFINES td_stream;
MODEL vapor_stream (

state WILL_BE vapor_mixture;
) REFINES td_stream;
MODEL td_VLE_mixture(

P WILL_BE pressure;
T WILL_BE temperature;
light WILL_BE vapor_mixture;
heavy WILL_BE liquid_mixture;
equilibrated WILL_BE boolean;

) WHERE (
heavy.P, light.P WILL_BE_THE_SAME;
heavy.T, light.T WILL_BE_THE_SAME;
light.options.phase != heavy.options.phase;

) REFINES td_equilibrium_mixture();

Ed sees that, since all the streams and thetd_VLE_mixture  need mixtures, he should give

them distinctive names, and he writes the following.

equilibrated IS_A boolean;
feed_state IS_A liquid_mixture;
liquid_state IS_A liquid_mixture;
vapor_state IS_A vapor_mixture;

As there seem to be model interfaces everywhere, Ed decides to check on liquid and vapor

mixtures. Sure enough they also need to be passed some objects:

MODEL liquid_mixture(
P WILL_BE pressure;
T WILL_BE temperature;
options WILL_BE liquid_phase_options;

) REFINES td_homogeneous_mixture;
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MODEL vapor_mixture(
P WILL_BE pressure;
T WILL_BE temperature;
options WILL_BE vapor_phase_options;

) REFINES td_homogeneous_mixture;

Ed changes what he just added to read:

feed_state IS_A liquid_mixture(P, T, liquid_options);
liquid_state IS_A liquid_mixture(P, T, liquid_options);
vapor_state IS_A vapor_mixture(P, T, vapor_options);

and looking ahead adds:

P IS_A pressure; T IS_A temperature;
vapor_options IS_A vapor_phase_options(ds,’Pitzer’,’Pitzer’);
liquid_options IS_A liquid_phase_options(ds,’Rackett’,’UNIFAC’);

becausevapor_phase_options  andliquid_phase_options  show:

MODEL vapor_phase_options (
ds WILL_BE td_component_data_set;
component_thermo_correlation IS_A symbol_constant;
mixture_thermo_correlation IS_A symbol_constant;

) REFINES single_phase_options(
        phase :== 'vapor';
        component_thermo_correlation == 'Pitzer';
        mixture_thermo_correlation == 'Pitzer';
);
MODEL liquid_phase_options (

ds WILL_BE td_component_data_set;
component_thermo_correlation IS_A symbol_constant;
mixture_thermo_correlation IS_A symbol_constant;

) REFINES single_phase_options(
phase :== 'liquid';
component_thermo_correlation == 'Rackett';
(mixture_thermo_correlation == 'UNIFAC') OR
(mixture_thermo_correlation == 'Wilson');

);

which seem to suggest that he must choose from UNIFAC or Wilson in the liquid and is

otherwise rather limited in his choice of correlations. At last Ed is down to just one new

parameter to define,ds , so he types:

ds IS_A td_component_data_set

and being used to looking just one step ahead, sees
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MODEL td_component_data_set(
        components IS_A set OF symbol_constant;
        reference IS_A symbol_constant;
) WHERE (
        CARD[reference IN components] == 1;
        FOR i IN components CREATE
                (i ==  'hydrogen' ) OR
                (i ==  'carbon_dioxide' ) OR
                (i ==  'water' ) OR
                (i ==  'chloroform' ) OR
                (i ==  'methane' ) OR
                (i ==  'methanol' ) OR

END;
);

He finishes the line with([’methanol’,’water’],’water’); . Ed tries to compile his

model. The compiler catches a mistake. The compiler reports:

WILL_NOT_BE_THE_SAME statement contains identical/merged instances.
vapout.state.T, feed.state.T WILL_NOT_BE_THE_SAME;

WILL_NOT_BE_THE_SAME statement contains identical/merged instances.
vapout.state.P, feed.state.P WILL_NOT_BE_THE_SAME;

Parameter passing error: Merged instances found in WILL_NOT_BE_THE_SAME.
Error in executing statement:

flash IS_A vapor_liquid_flash( feed, vapout, liqout, state); Line
2: vlftest.asc.

Ed lost track of this condition on the parameters of the flash, but it seems obvious now. He

adds variables feed_P and feed_T to pass into the feed_state. Ed’s total model now looks

like:

Code 5-12 MODEL test_vapor_liquid_flash;
flash IS_A 2
vapor_liquid_flash( feed, vapout, liqout, flash_state); 3

4
feed IS_A molar_stream(feed_state); 5
vapout IS_A vapor_stream(vapor_state); 6
liqout IS_A liquid_stream(liquid_state); 7
flash_state IS_A 8
td_VLE_mixture(vapor_state, liquid_state, equilibrated); 9

10
feed_state IS_A liquid_mixture(feed_P, feed_T, liquid_options); 11
liquid_state IS_A liquid_mixture(P, T, liquid_options); 12
vapor_state IS_A vapor_mixture(P, T, vapor_options); 13
equilibrated IS_A boolean; 14

15
P IS_A pressure; 16
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T IS_A temperature; 17
vapor_options IS_A vapor_phase_options(ds,’Pitzer’,’Pitzer’); 18
liquid_options IS_A liquid_phase_options(ds,’Rackett’,UNIFAC’); 19

20
ds IS_A td_component_data_set([’methanol’,’water’],’water’); 21
feed_P IS_A pressure; feed_T IS_A temperature; 22

END test_vapor_liquid_flash; 23

We note several interesting points about this example.

• The errors ascribed to Ed are very much like those made by ourselves and the first
users of model interfaces.

• Ed did not see any nonlinear equations.
• Ed saw quite a few logical and structural constraints in the WHERE statements of the

model interfaces, but nearly all of them were satisfied quite naturally without direct
attention from Ed. These constraints ensure that Ed is combining models in correct
ways.

• Ed did have to look at the WHERE statements to find out the symbols for valid compo-
nents and correlations. This suggests that an interface tool should search for and
present these alternatives to the user.

• Ed has not used any operator except IS_A to construct this routine problem.
• Ed never looked at the internal content of the models. (He may get to that if the model

does not converge.)
• Ed picks up quickly on looking one step ahead to define parts in his model. If he had

not done so, the compiler would have continued to check for errors and generate mes-
sages about which passed objects and parametric values were missing each step of the
way. Most of these checks can be performed at parse time, so Ed can find and fix his
mistakes very quickly, i.e. in seconds rather than in minutes.

• Ed now has a flash model which can be solved for just the mass balances if he sets the
value ofequilibrated  to FALSE.

We invite the reader to consider how long Ed would have worked to create his model if the

libraries he used did not have interfaces, and whether or not Ed would have been able to

meet all the configuration constraints listed in theWHERE  portion of the model

interfaces if these constraints went unwritten.

We do not see in this example two important properties of model interfaces. First, until all

the objects passed to a model are constructed (and, in the case of constant data arguments,

assigned) in a way which satisfies all the statements in theWHERE  list of the model

interface, the compiler will not attempt to construct the model. This ensures the orderly

flow of shared subcomponents and valid parametric information from the root object into

submodel objects. Orderly information flow is key to model source code transparency and
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to efficient model compilation.

Second, passed objects cannot have their types changed in the scope of models into which

they are passed. Passed objects can be refined only in or above the application context

where they are defined withIS_A. Assigning values to constants causes an anonymous

type change, andARE_ALIKE , ARE_THE_SAME , andIS_REFINED_TO may cause

formal type changes. All these operations are disallowed on any part of a passed object.

These restrictions ensure that an object passed into a submodel as a parameter does not get

altered by the submodel, thus giving us better control over the deferred binding operations

that create anonymous types. Passing an object through a model interface can cause no

side-effects on the formal or anonymous type of the passed object. The model can, by

usingALIASES , establish new names for subparts of a parameter.

5.6 LANGUAGE RESULTS

We now review the ASCEND IV language as we have defined and implemented it in the

light of the design considerations and problems stated in Chapter 4. We aimed to create a

language which has the properties of a good representation as outlined in Section 4.1. We

shall see that not all the considerations and problems have been satisfactorily addressed in

ASCEND IV.

We aimed to support casual users with little mathematical knowledge, engineering domain

experts, modeling tool creators, and other computer programs. We believe that Code 5-12

and our scenario with Ed suggest that our language is quite suitable for delivering complex

mathematical libraries to users who cannot, for whatever reason, afford to deal directly

with the mathematical structure inside the models. Of course reaching the user’s final

objective, a solved or optimized model, requires that the libraries have well-coded

methods attached to aid the user (or the solvers) in solving the resulting model. Domain

experts can create novel models by writing additional constraints in a model constructed

from standard library submodels. Domain experts can also take the library source codes

and add new features, such as an alternative thermodynamic calculation method, easily

because the flow of structural information in a parameterized library is made clear. We
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have not fully demonstrated that the language supports modeling tool creators, though as

tool creators ourselves we rather like it. We have successfully constructed some examples

of other computer programs which take models in our form and derive other

representations. We will present these examples in Chapter 6. We now give a preliminary

scoring of the language against the representation properties, in order to identify some

remaining issues and to motivate some of the other tools we will discuss in Chapter 6.

Property a: We can now explicitly state the many configurational constraints that must be

met when assembling complex mathematical models. As in Code 5-7 Line 4, we can now

state explicitly how many copies of a repeated structure will be needed to construct a

model in a way that helps the user (and the compiler) gauge the expense. We can state

production models using onlyIS_A, ALIASES , and models with interfaces, eliminating

the untraceable side-effects associated with deferred binding. We retain the ambiguous

operators of ASCEND III to support workers modeling with incomplete or ambiguous

information so that ASCEND IV can be used to help resolve ambiguous models and

collect complete information.

Property b: We define a deliberatelyincomplete language specialized around stating

nonlinear and logical equation-based models, contending that we should be very good at

something in particular and anticipate that specialists in other areas will contribute the

parts we choose not to investigate. We have added all the items identified as missing in

ASCEND III (page 59) except two: the language cannot represent temporal logic and the

language lacks the ability to define temporary local variables (stack data) in its methods.

We also cannot yet represent partial derivatives explicitly in ASCEND IV, though [9] has

shown at least one way that it might be done.

Property c: We demonstrated in Table 5-3 that the language facilitates storing data

(compiling the model) rapidly provided an appropriate implementation is used. We can

retrieve information from library models in source code form now because the new

operators and parameterized types make it possible to write reusable libraries without

applying the deferred binding operators to complex objects.

Property d: We can write transparent models, but the language does not force us to or
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stop us from doing so. Writing a transparent model in ASCEND requires making wise

choices in the naming of variables and types. Even good names are sometimes insufficient

to communicate all that might be needed, so we can use theNOTES defined in

Section 5.4. There are still many questions that cannot be answered just looking at the

model source code, however, such as “Where was the object associated with this name

really defined in our application?” a question we frequently need to answer when

debugging new models.

Property e: We have retained the conciseness of the ASCEND III set notation and object-

oriented model structures in our definition of ASCEND IV.

Property f:  Object-oriented languages help manage detail by encapsulating data, as

ASCEND IV does. However, there are still many models which simply have too many

equations, variables, set definitions, and submodels in any single layer (sometimes

dozens) for us to browse them comfortably once they have been compiled.

Property g: The ASCEND IV syntax exposes many kinds of constraints, helping us to

create complex models suitable for solution by mathematical programming algorithms

and for translation into other languages.

Property h: The ASCEND IV language is computable by existing procedures written in

ANSI C and Tcl/Tk that are distributed freely via the World Wide Web. The procedures

are compilable on all the UNIX systems we have encountered. An upgrade of the Tcl/Tk

sources to version 8 will make ASCEND compilable on personal computers running

recent Microsoft and Macintosh operating systems4.

Only through further testing of the ASCEND IV language and environment will we be

able to ascertain the accuracy of our properties assessment. Some of the deficiencies noted

in satisfying properties (a) through (h) are issues better addressed with tools that operate

on the language or on the objects defined by the language. In the next chapter we present

some tools which help address these deficiencies and other problems in object-oriented

open form mathematical modeling.

4. This upgrade is in progress.
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CHAPTER6 TOOLS TO SUPPORT

MODELING WITH

OBJECTS AND

EQUATIONS

In this chapter we discuss a number of tools we have added to the ASCEND IV system,

and specify several more that could be easily added. Most of the tools would be applicable

in any object-oriented mathematical modeling system.

6.1 HELPING THE USER MANIPULATE MODEL

INFORMATION

6.1.1 PARSER AND COMPILER MESSAGES

Most modern mathematical modeling languages have separate parsing and compiling

stages, as we illustrated in Figure 3-4. We can substantially shorten each iteration in the

process of writing new models if we can diagnose most modeling errors when the

definition files are parsed, rather than waiting until the user attempts to compile an

incorrect model. Because ASCEND uses a multipass compiler which does not execute

statements in any well-defined order, we often have trouble deducing the ultimate cause of

the error messages issued. Because there are often many objects made from a single

definition, the number of redundant compilation error messages is also quite large. We
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save time because during parsing we handle each definition once and issue the diagnostic

messages once. We handle each definition in a well-defined sequence, the order in which

they are written in the input files. By issuing the messages once and in a proper sequence,

we give the user the ability to start with the first error and work through the sequence

correcting her errors. Fixing the first two or three errors is likely to shorten the list of

remaining errors dramatically.

We have defined four classes of diagnostic messages: Style, Warning, Error, and Fatal.

Style errors point out the use of syntax that may make models hard to reuse or hard to

debug. At present every application of the ARE_ALIKE operator is diagnosed as poor

style because the cause of a particular deferred binding on a particular object is very hard

to trace when ARE_ALIKE is involved. Warnings point out statements that may not be

correct but cannot be proven wrong due to the possibility of deferred binding. For

example, relations are often written assuming that variables will exist in submodels, even

though the formal type of the submodel is not sufficient to guarantee the existence of those

variables. The parser cannot distinguish between this poor style and a misspelled variable

name, so both cases are diagnosed. Well written reusable libraries will not produce Style

or Warning diagnostics when they are loaded. Errors come from statements that the parser

can prove are incorrect. Any definition which provokes Error diagnostics is rejected. For

example, a model which declares a part using an undefined formal type is rejected. The

Fatal diagnostics point out bugs in the ASCEND implementation. Users have suggested

adding the ability to suppress both Style and Warning messages, but this has not yet been

done.

6.1.2 REFINEMENT HIERARCHY

We have created a tool to display formal type hierarchies (class hierarchies) in ASCEND

IV. This tool can help users figure out the relationships between model types, a task which

is difficult when looking at a large set of library models. An example of a hierarchy from

thermodynamic modeling1 is given in Figure 6-1. At each node in the hierarchy we can

ask the tool to display the complete list of statements which define the formal type. This

1. We make no claims for the merits of this particular classification of thermodynamic concepts.
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list includes all the statements inherited from other definitions. At each node we can also

ask for the list of formal types used to write the definition or for the list of variables the

definition introduces. This tool helps make libraries more transparent (property (d)).

Figure 6-1 Library refinement ancestry (class hierarchy) display tool

6.1.3 INFORMATION HIDING

When browsing a large compiled object, we are easily overwhelmed by the amount of

information available. We would like to suppress information that, for the moment, is

uninteresting. Our definition of “interesting” is quite likely to change as we work with a

model. In a model made from several hundred or more objects we cannot suppress

information one object at a time: it would take us far too long. We have implemented

general tools that allow the user to control which object types the object browser will hide.

thermodynamic_properties

two_phase_mixture pure_component homogeneous_mixture

td_two_phase_mixture liquid_component vapor_component td_homogeneous_mixture

td_VLE_mixture Rackett_liquid_component Pitzer_vapor_component liquid_mixture vapor_mixture

murphree_equilibrium_mixture
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For example, relations can be hidden. Sets can also be hidden, since the values of sets are

frequently uninteresting once the relations have been compiled. This is not sufficient,

however. Sometimes we want to hide information with a specific name only in specific

kinds of context. For example, we might want to hide a large array,trays,  within

distillation column models so we can focus on just the input and output streams of our

columns. We have implemented tools to allow this kind of suppression as well. At any

time we can apply the tools to change what is hidden and what is displayed. These tools

help the user manage detail (property (f)).

6.1.4 WHERE IS THIS CREATED ?

When using our new parameterized modeling language, we often want to know where an

object is created.ARE_THE_SAME , ALIASES , and parameter passing may create

hundreds of new names for an object, but in a well-written model each complex object

should only be created under one name. We can count the list of names under which an

object was created in order to tell how many times it has been merged. We can also use the

name under which an object was created to identify the locations where we are allowed to

refine or merge it. We cannot refine or merge an object if we specify it with a name that

was created by passing any object through a parameter list.

We have implemented a tool (the “Where created” button in our object browser) to

identify the names under which an object is created. This tool helps make the language

more transparent (property (d)). For example, we are browsing a distillation column,

flowsheet1.recovery_section.column2 , and find the objecttd_data  which specifies

the correlations and species to use in calculating physical properties.td_data  is shared by

every thermodynamic model object in the recovery section, possibly in the whole

flowsheet, so it has hundreds or thousands of names. If we want to know where in our

model we must go in order to modifytd_data , looking at this list of names is not likely to

be of much help. The “Where created” tool will give us a list with just one name for the

object:flowsheet1.recovery_section.component_data  because all the other names

for the same object were defined by passingcomponent_data as a parameter. We now

know to look at the definition of the partcomponent_data  in the type definition of

recovery_section .
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6.1.5 REUSABLE DYNAMIC MODELING

We have created an initial value problem (IVP) solver tool which allows dynamic models

to be built out of other dynamic models and to be integrated one part at a time or

simultaneously. This tool makes it possible to create libraries of dynamic models, in

contrast to ASCEND III where every dynamic model had to have several special models

written for it to communicate with the IVP solver and those special models were not

reusable. We have also implemented plotting tools to allow easy visualization of dynamic

model output from one or several integrations using spreadsheet-like functions. These

solving and plotting tools are described in [5]. These tools have been used extensively by

other graduate students in our department.

6.1.6 MODEL REORDERING

Abbott [1] suggests an algorithm to derive good matrix reorderings based on part/whole

hierarchies such as the ASCEND system provides. We have implemented variations of his

algorithm in the ASCEND system and tools to let the user interactively select which

reordering algorithms are applied to the Jacobian matrices used in ASCEND’s Newton-

type solvers.

6.1.7 GAMS2 CODE GENERATION

Building on unpublished stand-alone solver work of Joseph Zaher, we have worked with

Chad Farschman, Vicente Rico-Ramirez, Mark Thomas, and Kenneth Tyner to create a

GAMS code generator which allows users to create complex models in ASCEND and

export them for solution with GAMS. This allows us to reuse ASCEND models with a

variety of sophisticated solvers that we cannot justify spending research time to connect

more directly to ASCEND. This also allows GAMS users access to an object-oriented

modeling environment with many aids for debugging models, scaling equations and

variables, and initializing complex models one piece at a time.

2. General Algebraic Modeling System [2]
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6.2 IMMEDIATE EXTENSIONS BASED ON THIS WORK

6.2.8 CONSTRUCTED EXPLANATION OF NAMES

We could give the user a tool that takes a name and explains it using theNOTES available

in ASCEND IV. The explanation offs.column4.tray[3].VLE.f might be constructed

using part names, model types, andNOTES made with the keyword ‘is’  that we

described at the end of Section 5.4. We see this in Example 6-1 where the text from‘is’

NOTES is shown in bolditalics.

This real is of typefugacity  inside modelVLE which is of type
vapor_liquid_equilibrium  insidethe condenser modeltray[1]  which is of type
equilibrium_tray  insidethe oil separator modelcolumn4  which is of typeradfrac

insidethe Pasadena plant modelfs  which is of typeethyl_alcohol_process .

EXAMPLE 6-1 An application ofNOTES

6.2.9 CUT AND PASTE MODELING

Given the simplicity of the mental tools needed during the creation of Ed’s flash flowsheet

in Section 5.5, (basically just reviewing parameter lists and satisfying explicit logical

constraints) we could create a form-based or graphically-based modeling interface

combining the information from model interfaces andNOTES. Creating such a graphical

interface might be hard for some to justify as research, but we suggest that it is actually a

challenging problem. We would like to create an interface tool which takes a library of

models in a language such as ASCEND IV and uses algorithms that require no

engineering domain knowledge to create an interface which makes sense to an engineering

specialist. Many current industrial systems require handcrafted graphic user interface

codes. Automating the production of these codes might be a significant step in lowering

the cost of simulation software and might relieve expert modelers of the burden of

designing clever interfaces.

6.2.10 CLASSIFICATION OF OBJECTS

As we have noted in Chapter 4, each complex object built from a reusable model has a

formal and an anonymous type, where the anonymous type includes application specific
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set information such as the identity of chemical species, number of trays in a distillation

column, and so forth. Given a completely compiled object, we could start at the outermost

leaves of the object hierarchy and group objects by anonymous types, classifying our way

toward the root of the hierarchy. If two objects are of identical anonymous types, then the

second one could in theory share all the overhead of the first one except the memory

locations required for variable data and relation residual data. In large flowsheet models

we have seldom seen more than a few dozen anonymous model types.

Given this classification, we could automatically generate small pieces of object-oriented

code in C, C++, or other suitable languages for the very fast evaluation of gradients. This

approach would be much faster than generating code for each individual relation, a

technique unsuitable for large models because the number of functions that most binary

code compilers can handle efficiently enough to satisfy an interactive user is too small.

Similarly, we could create a minimal set of mappings between our objects and data-

oriented languages such as Express [3] or data translation tools such as CORBA [4].

Given this classification, we could also search for commonalities and differences between

the names and anonymous types of parts in two models. Taking this sort of information,

we could derive more abstract models, helping the user to classify her collection of models

in ways that make it more reusable.

6.2.11 BEEFING UP ASCEND IV METHODS

We can build much more powerful methods for initializing models and carrying out other

modeling activities if we extend the methods of ASCEND IV to allow the declaration of

interfaces, local variables, and structures. For example we could write Code 6-1, where the

function SOLVER connects to a piece of C code (possibly imported from a dynamically

loaded binary library) capable of interpreting the data in SlvParameters to control a

nonlinear solver. Thus we could write a column model with very sophisticated

initialization strategies, making it much more reusable. All the ideas of “programming by

contract” mentioned in Section 1.3.3 should go into the redefinition of ASCEND IV

methods
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Code 6-1 METHOD init_trays(status WILL_BE symbol);
parameters IS_A SlvParameters(0.1,100,1e-8,’TearDrop2’,2000); 2
(* march from feed tray up to condenser, solving stagewise.*) 3
FOR i IN [feed_stage..1] DECREASING DO 4

RUN tray[i].reset; 5
CALL SOLVER(tray[i], ‘QRSlv’, SlvParameters, status); 6
IF status != ‘OK’ THEN 7

BREAK; 8
END; 9

END; 10
END init_trays; 11

6.3 FUTURE EXTENSIONS

There are a large number of other possibilities that are now explorable using ASCEND IV.

The solving of general conditional models [7,6] represented with theWHEN  syntax is an

open problem. Developing a practical open form system which captures the essence of our

work and temporal logic in a single reusable language seems to be a large challenge. Fully

exploiting the semantics of ASCEND IV to improve the model compilation and the

performance of solvers should prove to be a fruitful area of investigation. We hope that

other interested researchers will pick up the tools we have created and use them in ways

we have yet to imagine, sharing the results with the entire engineering community.
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CHAPTER7 SUMMARY AND

CONCLUSIONS

We began Chapter 1 with a list of six problems in process modeling. The problems cannot

be solved individually, so we have taken a systemic view and presented a collection of

ideas and tools which taken together can substantially improve how effectively we reuse

modeling knowledge. In Table 7-1 we list each problem and which of the ideas most

directly aid in solving it.

Table 7-1:  Reusable modeling problems and solutions

Problem Our Solution

1 Varying user views Open, hierarchical modeling.

2 Model evolution Hierarchical modeling.

3 Communicating uses and limits Built-in documentation. Modeling by contract.

4 Common modeling paradigm Generalized, open equation-based models.

5 Tracking assumptions and data Modeling by contract. System open to other
information tools.

6 Negotiating modeling conflicts Conditional modeling.
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In Chapter 2, we have observed several recent developments in chemical process

modeling, including movements toward both equation-based and component-based

construction of process simulation models. We have focused on several reported

difficulties with equation-based modeling, and we have argued that a new outlook on the

structure of modeling systems and a new modeling language are needed to address these

difficulties.

In Chapter 3, we have reviewed component software technology and visualized one

possible world where software components can be used effectively to help solve

engineering problems reliably and in a hurry. We have argued that complex modeling

environments need to be built dynamically, possibly by borrowing pieces of other systems,

and that real progress toward an efficient future requires mechanisms for a much broader

information exchange than is supported by present commercial software. We have

suggested that we should put the human in control of the system and that modeling

systems should be designed to support interactions with other modeling systems in a peer-

to-peer fashion.

We concluded Chapter 3 with an overview of the component-wise fashion in which

ASCEND IV handles mathematical modeling problems to show the kinds of component

behaviors that are already practical. We saw that our ASCEND IV solver programming

interface design has been successfully built upon without fundamental changes by other

graduate students to connect an advanced commercial solver (CONOPT), to handle new

types of modeling information (conditional model logic representations), and to add

improved component features such that a graphic user interface needs no built-in domain

information about the solvers and models it must manipulate.

In Chapter 4, we have formulated goals for one of themany computer languages needed to

support modeling complex engineered systems. We have reviewed several classes of

mathematical modeling languages and systems to refine and expand our design goals and

to justify our decision to create yet another modeling language.

In Chapter 5, we define interesting features of the ASCEND IV modeling language, a very

general object-oriented mathematical modeling language suitable for:
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• modeling by production modelers and expert modelers.
• defining both non-routine and very large routine models.
• developing modeling knowledge in an evolutionary fashion.
• managing large quantities of model information interactively.
• capturing the kinds of information required for automatically building user interfaces.
• investigating the construction of bridges among complex modeling tools, including

users.

We have suggested that a general mathematical modeling language should be small and

incomplete, providing general mechanisms for being used as part of larger systems and for

using parts of other equally sophisticated systems. We believe such a language could

provide support for all phases of the mathematical modeling process: model design, model

construction, model solution, and model analysis. We defined parameter passing in a way

that helps people who must reuse complex, open form models and, incidentally, helps the

compiler build objects more efficiently. We definedSELECT, a mechanism to allow the

compilation of alternative structures based on problem data. We definedWHEN , a

mechanism to allow dynamic selection of model equations or structures before problem

solution begins. We definedALIASES , a mechanism to create new, possibly more

meaningful, names for existing objects at virtually no compilation cost. We defined

NOTES, a mechanism to support loose connections among different types of models,

other tools, and users.

Our changes support a modeling style which is transparent, making it easier for a user to

reuse, modify, and extend well-written open form models. We have used the new language

to reimplement the ASCEND III libraries with much assistance from Jennifer Perry, an

undergraduate in the Department of Chemical Engineering. After we constructed the flash

model shown in Code 5-12, Perry1 was able to create a new general purpose flash library

in three2 hours. This demonstrates that a well written ASCEND IV library can be built

upon quite efficiently, even by someone with very little time, to solve more complex

problems.

1. Perry has been instrumental in the development of ASCEND IIIc and ASCEND IV. We are
deeply indebted to her for her many bug reports and other criticisms of ASCEND IV interface
features and of our new language. It is supporting the work of Jennifer and other frustrated mod-
elers that has motivated our definition of ASCEND IV.

2. We discovered a few easily corrected nonlinear equation errors upon testing the flash library, but
all the complex model structures were created correctly the first time.
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In Chapter 6, we have highlighted newly created and potential tools for helping modelers

understand and use their models. These tools are discussed in the context of ASCEND IV,

but they would be appropriate tools in any object-oriented system. We believe that the

language and tools presented in this thesis indicate that robust, well-documented, portable,

easy to extend and apply models, with good user interfaces could be produced quite

rapidly using a language such as ASCEND IV. This could dramatically lower the cost of

delivering high quality modeling capabilities to a wide range of users and facilitate

communication among model users and model developers. However, both users and

developers must be committed to exchanging a broad range of information in order to

apply the methods we propose successfully.

There are many challenges presented in this thesis that remain to be met if we are to reach

the ideal work environment presented in Chapter 3. We need a demonstration that a large,

conceptually rich software system such as ASCEND can be decomposed into hundreds of

independent tools that can be imported and used in other complex systems to solve

modeling and mathematical problems. We need a demonstration that an information

modeling system such asn-dim can be used to manage effectively several modeling

systems comprising hundreds of complex, interdependent tools. We need the users and

purveyors of process modeling software to agree upon open standards that make the

creation of extensible, reliable modeling tools possible. Last, but possibly most important,

we need a way for users to pay for software tools in proportion to the value derived from

their use.


