
COLLOCATION METHODS FOR FLEXIBLE
DISTILLATION DESIGN

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

by

Robert S. Huss

Department of Chemical Engineering
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213

May 22, 1995

ii

Abstract

In this thesis we present a collocation method originally developed for

minimum reflux calculations which is applicable to the flexible distillation design

problem. Solvent recovery plants need to separate a wide range of mixed solvent

streams into their pure components. To have a flexible distillation system, single

columns must be able to handle multiple separation tasks. We address the design

problem of a single flexible column model, successfully designing a column for an

azeotropic system with different separation tasks for different feed streams.

The collocation model incorporates two variable transformations which

enable it to successfully model columns near pinch and columns with very high

purities. With this model, the number of trays in each column section is a

continuous variable, allowing us to optimize the column size and feed location.

We developed the models in the ASCEND system, which we have found to be an

excellent environment for model and design algorithm development.

We also discuss the application of the collocation methods to the minimum

reflux problem. We can accurately model nonsharp minimum reflux problems,

and we have explored in detail the trends when approaching a saddle pinch. The

model experiences numerical instability when very close to a saddle pinch, but by

detecting the error we can approach the saddle pinch to approximate a sharp split

minimum reflux.

iii

Acknowledgment

This thesis is the result of five years of graduate study, throughout which I

have received significant aid. In the first two years, I learned the ropes from Peter

Piela and Joe Zaher. I am grateful for the time they put in to help me with

ASCEND. I also received some nicely summarized papers from Mark Thomas

which have been well used. I’d like to thank him also for being my general

computer reference.

Throughout my later years here, I’ve had many bull sessions with Boyd

Safrit as we explored modeling distillation in ASCEND. I thank him for his help

as well as the opportunity to consider all the new problems he encountered. I also

thank Kirk Abbott and Ben Allan. If they had not put the effort into converting

ASCEND into C and continually improving it, my job would have been much

harder. I am very proud of the teamwork we’ve put into the ASCEND system.

I give a special thank you to my advisor, Art Westerberg. He has always

been able to find key directions and problems in my work. He has also helped me

to organize my thoughts more clearly and approach new problems confidently.

Last, but not least, he has forced me to be a better writer.

Although she does not help me with research, my most significant

supporter is my wife, Cindi. Thanks to her I have satisfaction beyond my work.

Her sure confidence in my ability to succeed has provided a solid foundation for

this thesis.

Thank you all.

Support from Eastman Chemicals and DOE contract number DE FG02-85ER13396

provide support for this research. Facilities support is from NSF grant number EEC-8942146

which supports the EDRC, an NSF funded Engineering Research Center.

iv

Table of Contents

1 Chapter 1. Introduction and Overview 1

1.1 Introduction 1

1.2 Overview of Chapter 2 2

1.3 Overview of Chapter 3 4

1.4 Overview of Chapter 4 4

1.5 Overview of Chapter 5 6

1.6 Overview of Chapter 6 6

1.7 Overview of Chapter 7 6

2 Chapter 2. Collocation Paper I 7

Abstract 8

2.1 Introduction 9

2.2 Motivation 9

2.3 Background of Collocation 12

2.4 Description of Model 13

2.5 Point Placement 24

2.6 Variable Transformations 27

2.7 Formulation of Collocation Column Model 35

2.8 Testing the Collocation Model 37

2.9 Conclusions 40

Acknowledgment 41

Nomenclature 42

References 43

Appendix 45

3 Chapter 3. Collocation Paper II 47

v

Abstract 48

3.1 Introduction 49

3.2 Pinch Points 50

3.3 Nonsharp Splits 50

3.4 Sharp Splits 53

3.5 Trends of Large Column Sections 56

3.6 Error Detection 61

3.7 Sharp Split Calculations 65

3.8 Minimum Reflux Algorithm 69

3.9 Difficulties 71

3.10 Conclusions 73

Acknowledgment 73

Nomenclature 74

References 75

4 Chapter 4. Collocation Paper III 76

Abstract 77

4.1 Introduction 78

4.2 Learning to Solve Models 78

4.3 Design Methodology 81

4.4 Design Essentials and Tricks 87

4.5 Design Examples 87

4.6 Background on Flexible Distillation Design 89

4.7 Problem Statement: 90

4.8 Single Column Problem 91

4.9 Flexible Design Algorithm. 92

4.10 Flexible Design Examples 98

vi

4.11 Conclusions 100

Acknowledgment 101

Nomenclature 102

References 103

5 Chapter 5. Description of ASCEND Models 104

5.1 Introduction 104

5.2 Thermodynamics: 105

5.3 Stream Models 106

5.4 Flash Models 107

5.5 Collocation Models 108

5.6 Column Cost Models 110

6 Chapter 6. Manual for Column Design Application 112

6.1 Use of the Application 112

6.2 File Menu 113

6.3 Options Menu 115

6.4 Entry Boxes 115

6.5 Component Lists 116

6.6 Settings Buttons 116

6.7 Creating Buttons 117

6.8 Running Buttons 117

6.9 Flexible Optimization 118

7 Chapter 7. Conclusions and Future work 119

7.1 Conclusions 119

7.2 Future Directions 121

Nomenclature 122

vii

References 124

Appendix 126

viii

List of Figures

2.1 Minimum reflux trajectories and column configurations 10

2.2 Collocation of a differential equation 15

2.3 Diagram of tray 17

2.4 Diagram of collocation section, I and II are material and energy balance
envelopes for a tray 18

2.5 Column trajectories for components c1, c2, and c3 for a range of reflux
ratios, r 26

2.6 Effect of point placement on error 28

2.7 Comparison of variable transformations on s 29

2.8 Effect of choice of a 30

2.9 Column trajectories for a large column over a range of reflux ratios 31

2.10 Error curves for s and z based collocation 32

2.11 Effect of transformation on x 32

2.12 Effect of x transformation in a column simulation 33

2.13 Blowup of lower left corner 34

2.14 Effect of s transformation on a column with many trays 34

2.15 Column configuration 36

2.16 Comparison of collocation to rigorous model for methanol-water column 38

2.17 Comparison of collocation to rigorous model of separation range over D:F
ratio for acetone-benzene-chloroform system 39

2.18 Comparison of collocation to rigorous model for acetone-benzene-
chloroform column, for three different D:F ratios 39

2.19 Comparison of collocation to rigorous model of separation range over D:F
ratio for acetone-ethanol-propanol-isobutanol-butanol system 40

3.1 Pinch behavior for ternary nonsharp split 51

3.2 Blowup of Figure 3.1 51

3.3 Mapping of nonsharp minimum reflux on to standard collocation model 53

ix

3.4 Pinch behavior for ternary sharp split 54

3.5 Mapping of sharp minimum reflux on to standard collocation model 56

3.6 Increasing trays and reducing reflux Relative volatilities (3,2,1) 58

3.7 Reflux ratio vs. impurity of heavy component. 58

3.8 Several nonsharp minimum reflux calculations for propanol, isobutanol,
butanol system, for varying recoveries and impurities of heavy
component. 60

3.9 Reflux as a function of impurity of butanol for propanol, isobutanol,
butanol system. 61

3.10 Example of inaccurate collocation of large column. Volatilities (3,2,1) 62

3.11 Example if inaccuracy in trace component. Volatilities (3,2,1) 63

3.12 Error in polynomial prediction for isolated trays. Recovery of keys 98%,
Relative volatilities (3,2,1) 64

3.13 Error in C3, section 1 for a range of recoveries. Volatilities (3,2,1) 65

3.14 Reflux as a function of recovery and order. Volatilities 3,2,1 66

3.15 Reflux as a function of recovery and order. Volatilities 9,3,1 67

3.16 Reflux at 30 trays as a function of recovery and order. Volatilities 3,2,1 67

3.17 Effect of parameter a on reflux determination with 2 collocation points. 68

3.18 Effect of parameter a on reflux determination with 5 collocation points 69

3.19 Minimum reflux algorithm 71

4.1 Column design application 80

4.2 Algorithm for creating and converging a collocation model 82

4.3 Algorithm for designing a column to meet specifications 84

4.4 Average slope definition 85

4.5 Solvent Recovery Plant Problem 90

4.6 Solvent Recovery Plant Example 92

4.7 Flexible Design Algorithm 93

4.8 Data Point Placement 94

x

4.9 Reapproximation example 98

6.1 Column Design Interface 113

xi

List of Tables

2.1 Comparison of Collocation Methods 14

2.2 Degrees of Freedom for an Isolated Tray 17

2.3 Degrees of Freedom for a Single Tray 20

2.4 Degrees of Freedom for Section 22

4.1 Flexible Design Example 1 99

4.2 Flexible Design Example 2 100

1

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

Chemical plants use a wide variety of solvents which must be recovered

for reuse. However, the feed to a solvent recovery plant will vary as the chemical

plant demands change. Any number of plants will send their waste mixed

solvents to the recovery plant. Therefore, the feed to the recovery plant will

change as the operation of the plants change. Azeotropic systems are particularly

difficult because a change in the feed composition can move the system into a

different distillation region. A simple, but expensive, solution to this problem is to

require a constant feed composition to the recovery plant, using mixing to

maintain the composition. A flexible solvent recovery plant, capable of separating

a range of feeds with the same equipment, would be very useful to the chemical

industry.

2

It is our goal to create the capability for designing flexible solvent recovery

plants. However, this thesis only addresses a small part of that task, concentrating

mainly on the tools we have developed toward that goal. We have developed an

advanced collocation method for distillation design. Our collocation method

incorporates two variable transformations which allow us to model large columns

reaching high purities. We have tested this model against rigorous stage-by-stage

calculations, used it to explore minimum reflux conditions, applied it to

distillation column design, and applied it to the flexible distillation design

problem.

We developed the model within the ASCEND system, an equation-based

modeling environment. Within this environment we can create hierarchical model

structures and through the user interface access any part of the model for

manipulation or solving. Within this system we have learned how to solve

column models effectively and developed complex design algorithms. We have

created a user interface to the application we built to design columns.

In this thesis we use three completed papers for Chapters 2-4. The

numbering in these chapters has been made consistent with the rest of the thesis,

but the text is not changed from what we plan to publish. Therefore each paper

has its own nomenclature and references sections. We also include complete

nomenclature and references for the entire thesis at the end of the thesis. The

papers are “Collocation Methods for Distillation Design I: Model Description and

Testing,” “Collocation Methods for Distillation Design II: Minimum Reflux,” and

“Collocation Methods for Distillation Design III: Flexible Column Design.” We

plan to publish them in Industrial & Engineering Chemistry Research.

1.2 Overview of Chapter 2

In the first paper we describe the collocation model in detail. We begin

with our original motivation for looking at collocation, minimum reflux

determination. We proposed that modeling infinite column sections with

3

collocation models would allow us to develop a minimum reflux calculation

method that did not rely on approximate geometric criteria. After developing the

collocation models, however, we saw that it would be very applicable to design.

We then give a background of collocation, covering the work of Cho and

Joseph [1983a and b], Stewart et al. [1984], Swartz and Stewart [1986], Srivastava

and Joseph [1987], and Seferlis and Hrymak [1994a and b]. We also present a

detailed degrees of freedom analysis for collocation, which demonstrates how we

formulated our model.

We discuss how placement of the collocation points is a non-trivial

problem, demonstrating that Stewart’s improvement of using Hahn polynomials

rather than Jacobi polynomials to place the points was due to the fact that the

Hahn placement spreads the points out towards the ends of the collocation

section more than the default Jacobi placement. Stewart et al. [1984] noted that the

superior Hahn placement did not require any adjusting of parameters, which the

Jacobi did. However, for most systems, the optimal placement is even further out

than the Hahn placement.

We describe the variable transformations we incorporated into our model,

one an exponential transformation of stage location, mapping infinite stages to a

finite transform variable, and the second a hyperbolic tangent transformation on

mole fraction, transforming asymptotic approach to zero or one to an increase or

decrease towards positive or negative infinity. These variable transformations

improve accuracy when modeling large columns or columns with high purities.

The improvements from the variable transformations are more significant than

the effects of optimal point placement.

We describe our standard collocation model, which has 11 tray models and

as many equations as an 18 tray stage-by-stage model. We present several tests of

the model against stage-by-stage rigorous models, including an azeotropic

4

system and a five component nonideal system.

1.3 Overview of Chapter 3

In the second paper we concentrate on the minimum reflux problem. We

describe what pinch points are and how they can be exploited for simplified

models of minimum reflux conditions. We describe how nonsharp splits require

finite column sections and cannot be modeled by the existing methods which use

approximate geometric arguments. We also describe sharp splits, which are

characterized by saddle pinches where an infinite number of trays are required to

remove a component completely.

We use the collocation model to explore the trends of large column

sections, which approach a saddle pinch condition. We show how the sensitivity

of reflux ratio on the amount of trace components in the products decreases

sharply as less sharp splits are required between the key components. We also

show how the collocation model can become inaccurate when going to large

numbers of trays, even with the variable transformations.

We present techniques for detecting the error in the collocation at large

trays, and propose a minimum reflux calculation for sharp splits that approaches

the saddle pinch as closely as possible before numerical instabilities occur. With

these techniques we can approximate minimum reflux for sharp splits. For

nonsharp splits we see no numerical problems with calculating minimum reflux.

We describe in detail all the difficulties we have encountered with the

collocation model to open discussion on these problems.

1.4 Overview of Chapter 4

In the third paper we present our algorithms for column design and

flexible column design. We discuss how we use the ASCEND system to develop

models and with its interactive solving environment learn how to solve these

5

problems. We describe in detail the algorithm for designing a column to meet a

specific separation task. Once we find a nominal design, we can optimize that

column design for cost, using a simple gradient based algorithm.

We present two examples of simple column design, one an ideal system

which we optimized with MINOS, and the other a fully rigorous system which

we optimized with the gradient based algorithm. With the application we

developed in ASCEND for design, we designed a fully thermodynamic, heat

balanced column for a propanol, isobutanol, butanol system in 20 minutes on an

HP700. This solution represents 39 column solutions.

We then present background on the flexible design problem. Very little

work has been done on the specific problem of flexible distillation design, but we

discuss some of the more general work on flexible design by Grossmann and

coworkers. Unfortunately, those techniques require significant manipulation of

the equations, and complex thermodynamics do not lend themselves to those

methods.

We present our flexible design algorithm for a single column. A single

flexible column represents the subproblem of a single column within a flexible

solvent recovery plant which must be able to handle a set of different feeds with

different separation tasks. We overcome the problem of having multiple column

models within an optimization or formulating the Kuhn-Tucker conditions for

2000 equations including UNIFAC liquid mixture models by approximating the

operation of the column with each feed. We use the column model to create a

quadratic approximation of the reflux ratio as a function of the number of trays

and the feed tray location. With an approximation of each column and overall cost

equations, we used MINOS to optimize the column locally within the range of the

approximation. When MINOS returned a solution on the border of the

approximation region, we reapproximated around the current point, continuing

until the minimum cost was within the current approximation region.

6

We designed flexible columns for two systems, one with four possible

feeds of propanol, isobutanol, and butanol, which took two hours to optimize.

The other was an azeotropic system where the separation tasks for the different

feeds were in different distillation regions, demonstrating how a single column

can be designed for quite different tasks.

1.5 Overview of Chapter 5

Chapter 5 is not a paper to be published. In Chapter 5, we describe the

ASCEND models included in the appendix. We include this lengthy ASCEND

code to present the equations of our models for anyone who wants to reproduce

them. Since our formulation of the models is strongly dependent on the ASCEND

system, we include the code rather than just the equations. This allows us to

demonstrate the hierarchical nature of ASCEND. For brevity, we do not include

some of the standard procedures which are functionally identical for each model.

We also do not include the models we created to facilitate plotting of the columns.

1.6 Overview of Chapter 6

Chapter 6 may be published as a technical report within the Engineering

Design Research Center. It is a manual for using our column design application.

We do not go into detail of the algorithm code.

1.7 Overview of Chapter 7

In Chapter 7 we present conclusions as well as directions for future work.

7

CHAPTER 2

COLLOCATION METHODS FOR DISTILLATION DESIGN I:
MODEL DESCRIPTION AND TESTING

Robert S. Huss and Arthur W. Westerberg

Department of Chemical Engineering
and Engineering Design Research Center

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213

To be submitted to Industrial & Engineering Chemistry Research

8

Abstract

Fast and accurate distillation design requires a model that significantly

reduces the problem size while accurately approximating a full order distillation

column model. Variable number of trays and variable feed tray location make

optimization possible.

This collocation model builds on the concepts of past collocation models

for design of complex real-world separation systems. Two variable

transformations make this method unique. Polynomials cannot accurately fit

trajectories which flatten out. In columns, flat sections occur in the middle of large

column sections, or where concentrations go to zero or one. With an exponential

transformation of the tray number which maps zero to an infinite number of trays

onto the range zero to one, two collocation trays can accurately simulate a large

column section. With a hyperbolic tangent transformation of the mole fractions,

the model can simulate columns which reach high purities. Furthermore, this

model uses multiple collocation elements for a column section, which is more

accurate than a single high order collocation section.

In this paper, we describe the collocation method and present some testing

of the method. In two companion papers we will discuss applications for this

model and use of the model in the ASCEND system.

9

2.1 Introduction

Several researchers have explored and developed collocation for

distillation column modeling. In this paper, we present a collocation model which

expands on prior models, addressing the problems specific to steady-state,

continuous columns. We describe the formulation of the model in detail and

compare it to prior models, using rigorous column simulations as a benchmark.

2.2 Motivation

The desire for a method to perform minimum reflux calculations for highly

nonideal systems was the original motivation for this collocation method. For a

specific separation, the required reflux ratio decreases as the number of trays in

the column increases. As one increases the number of trays in a column section to

a very large number, a region of constant composition occurs, referred to as a

pinch. At a pinch point, the vapor and liquid passing each other are in

equilibrium. They are also in material balance with the compositions entering and

leaving at the end of that column section.

Consider a separation of a ternary mixture A, B, and C, where we want to

separate A from B and C (see Figure 2.1). Given the products and a specified

reflux ratio, Levy et al. [1985] solved this type of problem by starting from the

ends of the column and calculating the trajectories inward. When the

concentration changes in each section fall below some minimum value, they stop

calculating and assume this is the pinch point. If the trajectories intersect, then

they have a feasible column profile. If one trajectory just pinches on the other, they

have a minimum reflux profile.

For a larger number of species, one cannot completely specify a product for

a column. Typically one can ask that component splits satisfy inequalities -- e.g.,

we want at least 99.9% of A and 99% of B and no more than 1% of C and less than

0.01% of D to exit in the distillate. Solving such a problem requires one to discover

10

Figure 2.1. Minimum reflux trajectories and column configurations

which of these constraints are active. We saw that one can still use a pinch

strategically located, but we also discovered that one needs a tray by tray column

AB

C

Feed

Distillates

Bottoms

Saddle Pinch

Feed Pinch

I
II

Feed PinchFeed Pinch

Finite Tray Section

Infinite Tray Section

Infinite Tray Section

I II

Infinite Tray Section Infinite Tray Section

Saddle Pinch

11

section model in a form which can compute the number of trays it contains.

Conventional column models require one to specify the trays as an integer input.

This thinking led us to consider using a collocation model for the parts of

the column where Levy et al. [1985] used a tray by tray computation. For such a

column section, the number of trays is a continuous variable which the model can

compute.

Returning to the three component example, Levy et al. [1985] showed that,

as they decreased the concentration of C in the distillate, the minimum reflux

decreased. Therefore, for a specific separation between the key components, A

and B, the minimum reflux occurs when they allow no C in the distillate. In this

case the top section has a saddle pinch point along the A-B edge where the

concentration of C goes to zero. Levy et al. [1985] noticed that, as their

computations approached this saddle pinch, it, the feed composition, and the feed

pinch became colinear. Requiring colinearity of these points gave them a method

to determine minimum reflux without the needed tray by tray computation. For a

constant relative volatility, constant molar overflow system, they proved this

method becomes exactly Underwood’s method. They proposed using this

colinearity even for nonideal systems. In a similar manner and for

multicomponent nonideal systems, Koehler et al. [1991] used a minimum angle

criterion between the three points, and Julka and Doherty[1990] revised the

colinearity condition to one of having a set of pinch points and the feed

composition lie inside a minimum volume in composition space. All these

methods assume sharp splits as they are based on computing a saddle pinch

point. These geometric techniques do not guarantee a feasible column for

nonideal systems, and they do not work for nonsharp splits.

To guarantee the intersection of the column sections for sharp splits, one

must prove the existence of a tray by tray calculation linking a saddle pinch point

and the feed tray composition, a calculation that passes through an infinite

12

number of trays. This requirement led us to examine extending the collocation

model to handle an infinite number of trays. We looked at different

transformations to map tray number going from zero to infinity onto a variable z

that goes from zero to one. With such a model, we concluded we should be able to

compute minimum reflux for any column by computing pinch points and

properly located column sections that can have a finite or an infinite number of

trays. For case I shown in Figure 2.1, a finite collocation section simulates the

unknown number of trays. For case II, the infinite tray section between the saddle

pinch point and the feed tray is modeled by an infinite collocation section.

We began developing a collocation method capable of simulating infinite

column sections and discovered several other advantages and uses for

collocation. Distillation design requires an adaptable column model, with the

ability to compute the number of trays in each distillation section, a computation

that discovers how many trays one needs and where to place the feed. One can

simulate complex column configurations. Optimal design of distillation

sequences requires small robust models for each distillation column. Collocation

both reduces the size of a column model and provides a continuous variable for

the number of trays. Furthermore, the variable transformation required for

modeling an infinite tray section improved the accuracy whenever such

separation problem requires a relatively large number of trays.

2.3 Background of Collocation

Cho and Joseph [1983] developed a reduced-order method for modeling

staged separation processes. They used orthogonal collocation to obtain accurate

solutions of significantly reduced-order. Their model had a single collocation

section for each section of the column. They tested by modeling a simple absorber

system, and binary and three component distillation, and used the Antoine

equation for the equilibrium relationship. In later papers Srivastava and Joseph

[1984, 1987a] developed methods for handling multiple feeds and side draws.

13

They also developed a complex method for handling steep and flat composition

profiles by fitting the composition profiles with different polynomials for each

component. They developed a complicated approach using two sets of collocation

points, global and local, to fit both the key components and non key components

[Srivastava and Joseph, 1987b]. They tested these later ideas using constant

relative volatility systems.

Stewart, Levien, and Morari [1984] developed a collocation method that

stresses selecting gridpoints based on the stagewise nature of distillation. Their

method became stage-by-stage at full order, and had errors at least an order of

magnitude smaller than Cho and Joseph’s default choice of collocation points.

They tested for binary and six-component distillation columns with constant

relative volatility and for a ternary system using UNIQUAC for equilibrium.

Swartz and Stewart [1986] applied the method to design, iteratively passing from

the model to an SQP optimization algorithm. Swartz and Stewart [1987] also

developed a finite-element method for handling multiphase distillation problems.

Recently, Seferlis and Hrymak [1994] adapted the model of Stewart et al.

[1984] by using collocation elements to track irregularities in column profiles for

existing columns. They investigated optimal placing of the collocation elements,

based on comparison with the actual column. They obtained higher accuracy with

multiple collocation sections of lower order than with a single collocation section

of higher order.

Table 2.1 lists the characteristics of each of these collocation methods as

well as the characteristics of the model presented in this paper.

2.4 Description of Model

Collocation is generally thought of as a method for numerically solving

differential equations. The use of collocation for simulation of a distillation

column is an extension of this technique. Given a differential equation,

14

, y(0) = y0 (2.1)

we want to find y as a function of x. We can approximate y as a polynomial in x,

(2.2)

Table 2.1: Comparison of Collocation Methods

Elements/
Section

Placement
 of points

Thermo-
dynamics

tested

Variable
transformations

Cho and
Joseph 1983

Single Continuous
orthogonal
(Jacobi)

Antoine none

Srivastava and
Joseph 1987

Single(global),
Multiple(local)

Continuous
orthogonal
(Jacobi)

Constant
relative
volatility

none

Stewart et al
1984

Single Discrete
orthogonal
(Hahn)

UNIQUAC none

Swartz and
Stewart 1986

Single Discrete
orthogonal
(Hahn)

Ideal none

Swartz and
Stewart 1987

Multiple
(breakpoints at
phase changes)

Discrete
orthogonal
(Hahn)

Nonideal
three phase

none

Seferlis and
Hrymak 1994

Multiple Discrete
orthogonal
(Hahn)

Regression
of data

none

This work Multiple Continuous
(orthogonal
for 2 or 3
points)

UNIFAC/
Pitzer

Transform
tray number
and mole
fractions

dy
dx
------- f x y,()=

ŷ y0 a1x a2x2 … anxn+ + + +=

15

Figure 2.2. Collocation of a differential equation

We can then approximate y, dy/dx, and f as functions of x. At any point in x, we can

define an error for this approximation,

(2.3)

At n collocation points, x..xn, we say that the error =0 and get n equations to solve

for n coefficients to the polynomial. See Figure 2.2.

Collocation of a distillation column uses the same concepts. A set of

equations defines a distillation column tray, where x would be the tray location in

the column and y would be mole fractions. Polynomials defined by tray location

approximate the mole fractions and, at each collocation point, the set of equations

for a distillation column must be satisfied.

There are many equations in a distillation column model, even a reduced

order model. Rather than just list the basic equations, we are going to provide a

detailed degrees of freedom analysis to demonstrate the reason for using a certain

set of equations.

We begin the degrees of freedom analysis with a stream model. Gibbs

phase rule gives the number of degrees of freedom for a system in equilibrium.

x0 x1 x2 xn
x

y

y1 y2 yn

y0

error x() f x ŷ,() a1 2a2x1 … nanxn 1–+ + + 
 –=

16

F = 2 + nc - np (2.4)

F is the number of degrees of freedom for a given number of components, nc, and

a given number of phases, np. For a single phase, F is nc + 1. For a stream we also

need a flowrate which adds one more variable, giving nc + 2 degrees of freedom.

The set of variables could be the molar flowrates, temperature, and pressure.

Once we know nc + 2 of these variables and assume the phase, we can compute all

other molar properties. We shall assume a stream introduces a net of nc + 2 new

variables and shall assume all other properties are available.

A standard distillation tray has two input streams and two output streams,

as shown in Figure 2.3. The four streams introduce a net of 4(nc + 2) new

variables, which is the first entry on Table 2.2. By keeping track of the number of

variables and equations introduced by each new element of the model, we can

determine the degrees of freedom, and how many variables must be fixed to

obtain a system with the same number of equations and free variables. We can

write the following equations for a single tray.

Component Material Balances:

L(out)xi(out) - L(in)xi(in) = V(in)yi(in) - V(out)yi(out) (2.5)

Equilibrium:

, TL(out) = TV(out), PL(out) = PV(out) (2.6)

Heat balance:

L(in)h(in) - L(out)h(out) = V(in)H(in) - V(out)H(out) (2.7)

L, V, x, y, h, H are liquid flowrate, vapor flowrate, liquid mole fraction, vapor mole

fraction, liquid molar enthalpy, and vapor molar enthalpy, respectively. αi is the

relative volatility of species i, and α is the mole fraction average relative volatility.

The liquid and vapor molar enthalpies and the relative volatilities are functions of

yi out()
αi

α-----xi out()=

17

composition and temperature. We write equations 2.5 and 2.6 for each component

Figure 2.3. Diagram of tray

and equation 2.7 once. As shown in Table 2.2, the component material balances

therefore introduce nc equations. There are nc + 2 equilibrium equations. The

equilibrium equation also introduces one new variable, α. The heat balance,

which could be replaced by a constant molar overflow assumption, introduces

one equation. Therefore, the degrees of freedom for an isolated tray are 2(nc+2)+2.

Specifying two input streams, the pressure and α of the tray would be sufficient to

solve the tray model.

Figure 2.4 shows a diagram of a single collocation section. A collocation

section has a liquid input and vapor output at the top and a vapor input and

liquid output at the bottom. The example shown has two collocation trays which

are not connected. In this example, we number from the top of the collocation

Table 2.2: Degrees of Freedom for an Isolated Tray

New Variables New Equations

4 streams 4(nc+2)

CMB nc

Equilibrium 1 nc + 2

HB 1

totals 4(nc +2) +1 2nc +3

DOF for isolated tray 2(nc+2) + 2

18

section downward. Liquid and vapor streams passing each other have the same

Figure 2.4. Diagram of collocation section, I and II are material and energy
balance envelopes for a tray.

index. We use a general position index, w, which will be either the tray number or

a transformation of the tray number which we shall describe later. The index

denotes the distance from the top of the collocation section. We index each tray k

by wk, the position of the bottom of the tray. We index the liquid entering and the

vapor leaving the top of the tray by wtopk, which in tray location is wk-1, but with

a transformation on the tray location is more complicated. Equations 5, 6, and 7

become the following

L(wk)xi(wk) - L(wtopk)xi(wtopk) = V(wk)yi(wk) - V(wtopk)yi(wtopk) (2.8)

w0 x w0() y w0(), ,

wk x wk() y wk(), ,

wn 1+ x wn 1+() y wn 1+(), ,

wtopk, x(wtopk),

y(wtopk)

I

II

19

, TL(wk) = TV(wtopk), PL(wk) = PV(wtopk) (2.9)

L(wk)h(wk) - L(wtopk)h(wtopk) = V(wk)H(wk) - V(wtopk)H(wtopk) (2.10)

Starting with an isolated tray, Table 2.3 aids the degrees of freedom

analysis for a collocation tray. Collocation of the liquid mole fractions requires the

liquid input and output compositions for the tray to be on the polynomial

approximations of the liquid mole fraction. Collocating the liquid and vapor mole

fractions for nc-1 components creates 4(nc-1) equations. The number of variables

introduced (the polynomial coefficients) will depend on the order of the

polynomial, which we shall decide later.

Using a Lagrange polynomial, the following equations:

(2.11)

(2.12)

are the polynomial approximations of order n for the liquid and vapor mole

fractions at position w. We use a Lagrange form because the coefficients of the

polynomials, xi(wk) and yi(wk) are also the liquid and vapor mole fraction at

position wk, the location of the kth collocation point. The kth term of a Lagrange

polynomial, Wk, is defined by the following equation:

(2.13)

yi wtopk()
αi

α-----xi wk()=

xi w() Wk w() xi wk()
k 0=

n 1+

∑= i 1…nc 1–=

yi w() Wk w() yi wk()
k 0=

n 1+

∑= i 1…nc 1–=

Wk w()
w wj–

wk wj–

j 0=

n 1+

∏=

j k≠

20

Collocating the enthalpies of the liquid and vapor entering and leaving

introduces 4 equations. Again, the number of polynomial coefficients introduced

as new variables will depend on the order of the polynomial. The following

equations define the enthalpy polynomials.

(2.14)

(2.15)

Since a single tray is isolated, we can add some overall balance equations between

the tray and the end of the collocation section:

Table 2.3: Degrees of Freedom for a Single Tray

New Variables New Equations

tray model 2(nc+2) +2

collocate x, y, for nc -1 ? 4(nc-1)

collocate h for liquid and vapor ? 4

CMB around end nc

HB around end 1

Fix Pressures 3

Fix α at 1 1

totals 2nc+6 + ? 5nc+5

Net equations ?? 3nc-1

h w() Wk w() h wk()
k 0=

n 1+

∑=

H w() Wk w() H wk()
k 0=

n 1+

∑=

21

Component Mass Balances:

(2.16)

Heat balance:

(2.17)

The component mass balance adds nc equations, and the heat balance adds 1

equation. Since we are assuming a constant pressure column, we need to fix the

pressures of both input streams and one output stream, adding 3 equations.

Finally, we specify that α for the tray is fixed at 1.0. This leaves a total of 3nc-1

excess equations for each collocation tray. The question marks indicate that we

have not yet accounted for the polynomial coefficients.

Table 2.4 aids the degrees of freedom analysis for the entire section. The

section has ns trays, introducing ns(3nc - 1) net new equations. It also has two

input and two output streams, creating 4(nc+2) variables. Specifying the two

input streams creates 2(nc+2) equations. We can write the following balances over

the entire section:

Component Mass Balances:

(2.18)

L wk() xi wk() L wns 1+ 
  xi w ns 1+ 

 – =

V wk() yi wk() V w ns 1+ 
  yi w ns 1+ 

 –

L wk() h wk() L w ns 1+ 
  h w ns 1+ 

 – =

V wk() H wk() V w ns 1+ 
  H w ns 1+ 

 –

L 0() xi 0() L wns 1+ 
  xi w ns 1+ 

 – =

V 0() yi 0() V w ns 1+ 
  yi w ns 1+ 

 –

22

Heat balance:

(2.19)

The component mass balance creates nc equations, and the heat balance creates 1

equation. Fixing the pressures of the two output streams introduces 2 equations.

Collocating the liquid and vapor mole fractions introduces 4(nc-1) equations.

Again, the number of variables introduced depends on the order of the

polynomials. Collocating the enthalpies creates 4 equations. The net equations for

a collocation section is (ns+1)(3nc-1).

With nc-1 liquid and vapor polynomials, and 1 polynomial for the liquid

and vapor enthalpies, there are a total of 2nc polynomials, so the number of

variables introduced by the polynomials will be 2nc(n+1), where n is the order of

the polynomial. In principle we want to choose n so the number of equations and

Table 2.4: Degrees of Freedom for Section

New Variables New Equations

ns trays ns(3nc-1)

4 streams 4(nc+2)

2 stream specs 2(nc+2)

CMB nc

HB 1

Fix Pressures 2

collocate x, y for nc - 1 ? 4(nc-1)

collocate h for liquid and vapor ? 4

totals 4nc+8 + ? 7nc+7+ns(3nc-1)

Net equations (ns+1)(3nc-1)

L 0() h 0() L w ns 1+ 
  h w ns 1+ 

 – =

V 0() H 0() V w ns 1+ 
  H w ns 1+ 

 –

23

variables are equal for the section model:

2nc(n + 1) = (ns + 1) (3nc - 1) (2.20)

For three components and two stages, n is 3, while for four components and two

stages n is 3.25. In most cases, n is not an integer, so something is not right.

Previous papers select n = ns. This leaves (ns + 1)(nc - 1) excess equations. We

expect the number of trays and the order of the polynomials to be linked, but we

must remove the excess equations.

Cho and Joseph[1983] showed that when they assumed constant molar

overflow the component material balances between the trays and the end of the

collocation section given by equation 2.16 were held even when not enforced. We

have found that the error in the component mass balances is negligible even for

heat balanced columns. Rather than enforce the component mass balances

between each tray and the end of the collocation section, we can enforce only the

overall mass balance for each tray:

L(wk) - L(wns+1) = V(wk) - V(wns+1) (2.21)

This removes (nc - 1) equations per tray. Furthermore, if we enforce the

component mass balance over the entire section given by equation 18, we do not

need to calculate both output streams from the polynomials. Therefore, we can

ignore the polynomial equations for the compositions for one output stream,

removing the remaining nc-1 equations for the entire collocation section. This

removes the (ns + 1)(nc - 1) extra equations, giving us zero degrees of freedom if

we set n = ns. Therefore, for a two tray collocation section, we get a second degree

polynomial with three coefficients for each fitted component.

Another option is to add slacks to the ignored equations in the first

example. If the slacks are too large, one can add more trays. When the component

material balances between the individual trays and the top of the collocation

section are ignored, the components can be out of balance on individual trays

24

even though they will be in mass balance over the entire section. Our tests have

shown that even with nonideal systems with constant molar overflow, the

component mass balances are satisfied. Also the polynomial equations for the one

output stream that we ignored in the first case is satisfied. When we use heat

balances rather than constant molar overflow, the component mass balances have

very small errors, and the polynomial equations have slightly more significant

errors. However, even when the trajectories of the collocation section are

inaccurate, the residuals of these equations are not good indicators of the error.

A third alternative is to minimize the residuals of all the equations and

solve for a best set of ns+1 coefficients for each polynomial:

(2.22)

However, the arguments just given show that the additional equations did not

have significant error terms. Therefore, the optimization would probably only

yield a minor improvement on the first option.

We have used the first option in this work. The order of the polynomial

will be the same as the number of stages used as collocation points.

2.5 Point Placement

The most difficult decision in collocation is the placement of the collocation

points. Carnahan et al [69] showed that, for integration of differential equations,

collocation points placed at the zeros of an orthogonal polynomial were best.

However, this is not necessarily true for collocation of a distillation column. Cho

and Joseph [1983] placed their points at the zeros of Jacobi polynomials defined

by,

min ε()

eqnj εj=

25

(2.23)

where α and β are parameters. Their default choice of the parameters for the

Jacobi polynomial (α = 1, β = 1) resulted in evenly spaced points. They could have

moved the points toward either end of the collocation section by adjusting the

parameters and still have been using an orthogonal polynomial. Stewart et al.

[1984] showed that placing the collocation points at the zeros of the Hahn

polynomial created smaller errors than placing the points by the Jacobi

polynomial, using the default values for α and β. They argued that the Hahn

polynomial was a better choice because it maintained the stagewise nature of the

column and did not require manipulating parameters for best placement of the

collocation points. For full order, the collocation points would be placed exactly at

the tray locations.

However, the benefit of the Hahn polynomial appears to be due largely to

the fact that it spreads out the collocation points more than the default Jacobi

selection. As one spreads the collocation points out from being evenly spaced to

being all at the ends of the collocation section, the error will go through a

minimum. The Hahn placement is closer to this minimum than the default Jacobi,

but it is not the optimum. The following experiment demonstrates this. Three

different collocation models were used to approximate a three component,

constant relative volatility, constant molar overflow column with 15 trays above

and below the feed. Figure 2.5 shows the column trajectories for the three

different reflux ratios, generated by a tray-by-tray model. Two collocation sections

were used to model the column, one above and one below the feed. We did

several simulations with each collocation model with different spreads of the

collocation points. For any number of collocation trays, the following equation

defined the midpoint of the trays.

z
β

1 z–() z
α

Pn
α β,()

z() dz
0
1∫ 0=

j 0 1 …n 1–, ,=

26

wmid = w0 + fmid(wns+1 - w0) (2.24)

where fmid is 0.5 to have wmid at the actual center of the collocation section. For the

two tray model, the placement of the two collocation trays is defined by,

w1 = wmid + fint(wmid - w0) (2.25)

w2 = wmid - fint(wns+1 - wmid) (2.26)

where fint is 0.3333 for evenly spaced points.

For the three tray model, w2 is at wmid, and we define w1 and w3 as we

defined w1 and w2 for a two tray model. For the three tray model, an fint of 0.5

gives evenly spaced points.

For the four tray model, we define w1 and w4 as we defined w1 and w2 for a

two tray model. We place the interior points, w2 and w3, one third of the distance

Figure 2.5. Column trajectories for components c1, c2, and c3 for a range of
reflux ratios, r.

1.0 11.0 21.0 31.00.0

0.2

0.4

0.6

0.8

1.0

r=1
r=4
r=8
c1c2
c3

stage number

m
ol

e
fr

ac
ti

on

27

from wmid to w1 and w4 respectively. For the four tray model, an fint of 0.6 gives

evenly spaced points. For the two and three tray models, the Hahn placement is at

a spread factor of 0.53748 and 0.71864.

For the four tray model, the Hahn placement of the outer points

corresponds to a spread factor of 0.79244, but our placement of the inner points

does not correspond to the Hahn placement. Figure 2.6 shows the average error in

the mole fractions of the distillate over varying spread factors for each model at

the three reflux ratios. Each plot is on a different scale, shown by the labels on the

x axis, and the maximum error on the y axis. The Hahn placement points are

shown with a larger data point. The standard Jacobi placement is evenly spaced

points, which is at fint of 0.333, 0.5, and 0.6 for the two, three, and four tray

collocations respectively. So, for each case, the Hahn placement has a smaller

error than the default Jacobi placement, but not the minimum error possible. This

figure also shows that the optimal spread of the collocation points is different for

different reflux ratios.

For a low reflux ratio, the trajectories are very flat, and the minimum error

occurs with a very wide spread of the collocation points, to get the nonlinear

polynomial as flat as possible over the collocation section. As the reflux increases,

the trajectories become less flat and then even linear with a fairly large slope. For

these cases, there is an optimal spread of the collocation points. In the next

section, we will show how variable transformations are more significant than

point placement for increasing accuracy.

2.6 Variable Transformations

We use two variable transformations in this model to alleviate the problem

of flattened trajectories. When the mole fraction of a component is not changing

over part of a tray section, we call that a flattened trajectory. Flattened trajectories

28

Figure 2.6. Effect of point placement on error

cannot be fit well with polynomials, so we perform variable transformations to

alter the shape.

The first is a transformation of the tray number. To simulate a large number

of trays, or an infinite number of trays, we want an index that goes to a finite

value as the tray number goes to infinity. Even for finite columns with a large

number of trays, the trajectories flatten out as the number of trays increases. Some

possible transformations are:

(2.27)

(2.28)

In both these equations, s is stage number, z is the transform variable, and a is a

parameter. In both cases, z=0 when s=0, and z tends to 1 as s tends to infinity. To

discover the better form of the transformation, we first investigated fitting results

r=1
r=4
r=8

3 trays2 trays 4trays

0.3 0.5 0.7

8e-06

0.7 0.8 0.9

2.0e-06

0.4 0.6 0.8

6e-05

Spread factor

A
ve

ra
ge

 e
rr

or
 in

 m
ol

e
fr

ac
ti

on
 o

f d
is

ti
lla

te

0.6

z 1 e
as–()

–=

z s
s a+
------------=

29

from the Kremser approximation:

(2.29)

, (2.30)

Figure 2.7 shows that the variable transformation given by equation 2.27 did the

best at straightening out the trajectory. In the Appendix, we show that, with the

exponential variable transformation, the Kremser approximation can be exactly

straightened out for the correct choice of a. Figure 2.8 shows how the choice of a

affects the shape of the trajectories. At the proper selection of a, the data can be

fitwith a linear function. Therefore, we use the variable transformation in

equation 2.27.

Figure 2.7. Comparison of variable transformations on s

ys
1 A

s
–

1 A–
---------------y1

A A
s

–
1 A–

---------------- ŷ0–=

A L
KV
--------= ŷ0 Kx0=

0.0 0.2 0.4 0.6 0.8 1.0
z

0.6

0.7

0.8

0.9

1.0

z = s/smax
z = s/s+1.5
z = 1 - exp(-0.59s)

y

30

Figure 2.8. Effect of choice of a

Figure 2.9 shows column trajectories for a three component, constant

relative volatility, constant molar overflow column with fifty trays above and

below the feed, for three different reflux ratios, generated by a tray-by-tray model.

Over the range of reflux ratios, r, we tested the collocation model, comparing the

composition of the distillate product to the tray-by-tray calculation. The

collocation model used had two collocation sections per column section, with two

trays in each collocation section. We compared the s based and z based

collocations over a range of point placements, using the point placements

described in the last section. Figure 2.10 shows the average errors of both cases

over the same range of point spreads for different reflux ratios. The z based

collocation had lower average errors for every reflux ratio. For all but the lowest

reflux ratio, the best solution was achieved with the z based collocation.

The second variable transformation is one on the mole fractions. When

distilling to high purity, mole fractions go to one or zero, again flattening out the

0.0 0.2 0.4 0.6 0.8 1.0
z = 1 - exp(-as)

0.6

0.7

0.8

0.9

1.0
a = 0.1
a = 0.3
a = 0.59
a = 0.8

y

31

trajectory. We need to transform the asymptotic approach to zero and one into a

decreasing and increasing function that can be fitted by the polynomial used in

the collocation. We use the following transformation:

(2.31)

As the mole fraction goes to one or zero, the transformation variable, , goes to

negative infinity and plus infinity. Figure 2.11 shows the effect of this

transformation. For exponential approach to one and zero, the transformation

straightens the trajectory out, so the slope never goes to zero.

Without this transformation, modeling sharp splits is very difficult. As the

mole fractions of some of the components approach zero or one, the polynomial

will create a curved trajectory, “bouncing” off the boundary. It becomes

impossible to model a column with a component going to a mole fraction of 10-6

Figure 2.9. Column trajectories for a large column over a range of reflux ratios

2xi 1– x̂i()tanh=

x̂i

0.0 25.0 50.0 75.0 100.00.00

0.25

0.50

0.75

r=0.5
r=1
r=3

stage number

m
ol

e
fr

ac
ti

on

32

Figure 2.10. Error curves for s and z based collocation

Figure 2.11. Effect of transformation on mole fraction, x

0.4 0.6 0.8

z based
s based

spread factor

av
er

ag
e

er
ro

r
in

 d
is

ti
ll

at
e

0.3 0.5 0.7 0.90.0

0.005

0.010

0.015

0.020

0.025

-0.5

0.0

0.5

1.0

x

x

“stage”

x
or

^

x̂

33

or smaller. However, the above transformation will give the polynomial room to

move and will allow an asymptotic approach to the boundary. Figure 2.12 shows

the four possible models of a 63 tray column which is removing all of the heavy

component from the distillate. Figure 2.13 is a blowup of the trajectories for the

heavy component near the top of the column. The two simulations without the

transformation on mole fraction are curved and “bounce” up. The two solutions

using the transformation smoothly approach the top of the column.

Figure 2.14 shows the combined benefits of the two variable

transformation, showing two collocation models of a 103 tray column with high

purities. Both models used the transformation on mole fraction, since this

problem will not converge without it. For one, the polynomial is based on stage

number and, for the other, the polynomial is based on the transformed stage

number. The s based solution has high curvature in the bottom half of the column.

This also demonstrates why it is beneficial in an s based collocation for the

Figure 2.12. Effect of x transformation in a column simulation

0.0 10.0 20.0 30.0 40.0 50.0 60.00.0

0.5

1.0
x in z

in z
x in s

in s

m
ol

e
fr

ac
ti

on

s

x̂

x̂

34

Figure 2.13. Blowup of lower left corner

Figure 2.14. Effect of s transformation on a column with many trays

0.0 5.0 10.00.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

x in z
in z

x in s
in s

m
ol

e
fr

ac
ti

on
x̂

x̂

stage number

0.0 20.0 40.0 60.0 80.0 100.0
0.0

0.5

1.0
z based
s based

m
ol

e
fr

ac
ti

on

s

35

collocation points to be spread towards the ends of the collocation section to keep

the curvature to a minimum.

2.7 Formulation of Collocation Column Model

Our standard formulation of the collocation column model is shown by

Figure 2.15. Each column section is divided into two collocation sections with two

trays each. Sererflis and Hrymak[1994a] used multiple collocation sections so they

could use more collocation points in specific areas of the column where the

temperature and composition profiles changed rapidly. We observe that the areas

of activity are at the ends of column sections. By breaking each column section

into two parts, and using the transformation on stage number, we de-emphasize

the center of the column section by numbering the top collocation section

downward and the bottom collocation section upward. With this transformation,

the points at the beginning of a collocation section are stressed, and those at the

end are less important. Therefore, for large columns with relatively low reflux

ratios, the collocation points will be located where the compositions are changing,

and the area of no activity will join the two collocation sections, but no collocation

points need to be located there.

This standard formulation is sufficient for modeling large columns with

reasonable accuracy and is small enough to model small columns without

overkill. The model has four collocation sections with two trays each, a feed tray,

a condenser, and a reboiler. This is eleven tray calculations. Since the collocation

trays are not connected the way they would be for a tray-by-tray model, and since

there are polynomial equations, there are more equations than there would be for

an eleven tray column model. For a three component system, the collocation

model has 1811 equations and variables, including all thermodynamic equations.

A tray-by-tray model with 19 trays has 1856 equations and variables. For a four

component system, the collocation model has 2215 equations and variables

compared to 2205 for a tray-by-tray model with 18 trays. For a set number of trays

36

Figure 2.15. Column configuration

below 18, a tray-by-tray model might be more efficient, or a nonstandard

collocation model can be used with fewer collocation sections.

We space the collocation points in each section using two parameters as

described in the previous section.The parameter fmid sets where the center of the

collocation points is relative to the actual center of the collocation section, and fint

sets how spread out the points will be. For two and three tray collocation sections,

0

0

0

0

s or z

s or z

s or z

s or z

37

this formulation can emulate Jacobi or Hahn placement, and is easy to use.

2.8 Testing the Collocation Model

We have performed several tests of the collocation model using nonideal

thermodynamics. In each of the following examples, the standard collocation

model was used, with four collocation sections of two trays each. We used

UNIFAC liquid mixture and Pitzer vapor mixture models for the

thermodynamics and equilibrium, and assumed constant molar overflow. We

would like to note that performing tests like these is a nontrivial task. The process

of obtaining a full thermodynamic model is complex, but once a tray-by-tray

collocation model has been successfully refined and converged, it is relatively

easy to perform many sequential incremental changes to obtain a wealth of data.

The two examples below where we performed a series of calculations to

determine the binary separations over a range of operations required 50 solutions

of the tray-by-tray and collocation models. Most of the work was done in getting

that first useful solution. Then the models could be resolved repeatedly as the

distillate to feed ratio was increased incrementally. The collocation has many

parameters that can be adjusted, but it is much more robust than a tray-by-tray

model. The process of solving these models will be discussed further in a two

follow-up papers.

The first example is the separation of a 50/50 mixture of methanol and

water. The column has 46 trays, and a reflux of 1.0. The purity of each product is

99.6%. Figure 2.16 shows a comparision between the tray-by-tray solution and the

collocation model. The curves are the tray-by-tray, and the points are the

collocation. The figure shows an excellent fit. Including all the thermodynamic

calculations, the tray-by-tray and collocation models had 3255 and 1407 equations

respectively. The error in the distillate composition is 0.02 percent.

Using the acetone, chloroform, benzene system, we performed many tests

of the collocation model. The feed was a 36/24/40 mixture of acetone,

38

chloroform, and benzene. A 33 tray column with a reflux ratio of 4.0 was used. We

performed a search over the range of distillate to feed ratios to find the maximum

binary separations, as done by Wahnschafft [1992]. Figure 2.17 shows the

comparison of the binary separation range plots with those for a tray-by-tray

calculation. The chloroform benzene binary separation factor is not meaningful

before a D:F of 0.3, since practically nothing of either component is coming out of

the distillate at low D:F. For the acetone-benzene binary separation factor curve

the average error was 1%, and for the acetone-chloroform separation factor curve

the average error was 3%. The collocation shows very good agreement with tray-

by-tray calculations. The error in the acetone concentration in the distillate was

less than 2% over the range of D:F ratios, with an average error of 1%. Figure 2.18

shows comparisons of three different column simulations on a ternary diagram.

Including all the thermodynamic calculations, the tray-by-tray and collocation

models had 3144 and 1811 equations respectively.

Figure 2.16. Comparison of collocation to rigorous model for methanol-water
column

1.0 10.0 19.0 28.0 37.0 46.0
Tray number

0.0

0.2

0.4

0.6

0.8

1.0

M
ol

e
fr

ac
ti

on

Methanol,

Water

Collocation sections

tray by tray

tray by tray

Collocation
Points

39

Figure 2.17. Comparison of collocation to rigorous model of separation range
over D:F ratio for acetone-benzene-chloroform system

Figure 2.18. Comparison of collocation to rigorous model for acetone-benzene-
chloroform column, for three different D:F ratios

0.0 0.1 0.2 0.3 0.4 0.50.0

0.2

0.4

0.6

0.8

1.0

D:F

B
in

ar
y

S
ep

ar
at

io
n

 R
an

ge

Ace - Chl

Ace - Ben

Chl - Ben

tbt
collocation

Acetone Chloroform

Benzene

D:F = 0.6

D:F = 0.9

D:F = 0.3
Distillation
Boundary

F

tbt
collocation

40

Figure 2.19. Comparison of collocation to rigorous model of separation range
over D:F ratio for acetone-ethanol-propanol-isobutanol-butanol system

Finally, we performed a set of tests on an equimolar mixture of acetone,

ethanol, propanol, isobutanol, and normal butanol, using a 23 tray column with a

reflux ratio of 0.8. Figure 2.19 shows the comparison of the binary separation

range plots for the components which are adjacent in the order of relative

volatility. The other binary separation ranges compare equally well but would

clutter the figure.

2.9 Conclusions

In this paper, we have demonstrated that this new collocation method can

accurately reduce the order of column models. The two variable transformations

greatly expand the capabilities of standard collocation methods. We have found

that the degrees of freedom selection is important, and demonstrated what

equations can be ignored. The choice of point placement is non-trivial, and no

particular polynomial will give optimal point placement. Variable

transformations more significantly reduce errors than proper point placement.

0.2 0.4 0.6 0.8 1.00.40

0.50

0.60

0.70

0.80

0.90

D:F

B
in

ar
y

S
ep

ar
at

io
n

 R
an

ge
acetone-ethanol

ethanol-propanol
propanol-isobutanol

isobutanol-butanol

tbt
collocation

41

In two companion papers, we will discuss how collocation provides the

missing link for simulation of minimum reflux conditions. We will also discuss a

design algorithm for designing arbitrary columns using the collocation model.

Acknowledgment

Support from Eastman Chemicals and DOE contract number DE FG02-

85ER13396 provide support for this research. Facilities support is from NSF grant

number EEC-8942146 which supports the EDRC, an NSF funded Engineering

Research Center.

42

Nomenclature

A Simplification variable for Kremser approximation (L/KV)

α Mole fraction average relative volatility

a Parameter for exponential transformation of stage location

α Parameter of Jacobi polynomial

αi Relative volatility of species i

β Parameter of Jacobi polynomial

fint Factor for selection of spread of collocation points

fmid Factor for selection of the midpoint of collocation points

h Liquid molar enthalpy

H Vapor molar enthalpy

K Equilibrium constant used in Kremser approximation

L Liquid molar flowrate

n Order of polynomial

nc Number of components

np Number of phases

ns Number of collocation points

P Pressure

Pn Jacobi polynomial of order n

s Stage location

T Temperature

V Vapor molar flowrate

Wk kth term of Lagrange polynomial

wk Position of bottom of tray k

wmid Midpoint for placement of collocation points

wtopk Position of top of tray k

xi Liquid mole fraction of component i

Transformed mole fraction

yi Vapor mole fraction of component i

z Transformed stage location

x̂i

43

References

Carnahan B., Luther H. A., Wilkes J. O., 1969, Applied Numerical Methods, Wiley,

New York.

Cho Y.S. and B. Joseph., 1983. “Reduced-Order Steady-State and Dynamic Models

for Separation Processes.” AIChE J. 29, 261-269, 270-276

Julka V., and M. F. Doherty, 1990. Geometric Behavior and Minimum Flows for

Nonideal Multicomponent Distillation. Chemical Engineering Science, 45, p.

1801-1822.

Koehler J., P Aguirre, and E. Blass., 1991. “Minimum Reflux Calculations for

Nonideal Mixtures Using the Reversible Distillation Model.” Chem. Eng. Sci.,

46. 3007-3021.

Levy S. G., D.B. Van Dongen, and M. G. Doherty., 1985“Design and Synthesis of

Homogeneous Azeotropic Distillations II: Minimum Reflux Calculations for

Nonideal an d Azeotropic Columns.” Ind. and Eng. Chem. Fun., 24 463-474

Seferlis P and A. N. Hrymak, 1994, ‘Optimization of Distillation units using

collocation models’, AIChe J. 40, 813-825

Seferlis P and A. N. Hrymak, 1994, “Adaptive Collocation of Finite Elements

Models for the Optimization of Multi-Stage Distillation Unit,” Chem. Eng. Sci..

49, 1369-1382

Stewart W. E., K. L. Levien, and M. Morari. 1984. “Collocation Methods in

Distillation.” in Westerberg, A.W., and H.H. Chien (eds), Proc. 2nd Intn’l Conf.

Foundations Computer-aided Process Design (FOCAPD’83), CACHE Corp,

Ann Arbor, MI, 535-569.

Swartz C. L. E. and Stewart W. E. 1986, “A Collocation Approach to Distillation

Column Design,” AIChE J. 32, 1832-1838

44

Swartz C. L.E. and Stewart W. E. 1987, “Finite-Element Steady State Simulation of

Multiphase Distillation,” AIChE J. 33, 1977-1985

Underwood, A. J. V. J. Inst. Pet. 1945, 31, 111

Underwood, A. J. V., J. Inst. Pet. 1946, 32, 598

Underwood, A. J. V., Chem. Eng. Prog. 1948, 44, 603

Wahnschafft O. M. 1992, “Synthesis of Separation Systems for Azeotropic

Mixtures with and Emphasis on Distillation-Based Methods,” Ph.D. Thesis,

Dept of Chem. Eng., Technical University of Munich.

45

Appendix

Rewriting the Kremser approximation to gather terms with s produces the

following equation.

(2.32)

Rewriting the variable transformation

(2.33)

for s in terms of z,

(2.34)

and placing it into the Kremser approximation produces the following equation.

(2.35)

If we define A = exp(B), then we can take the following steps

(2.36)

Now equation 2.35 becomes the following.

ys

y1 Aŷ0–

1 A–

y1 ŷ0–

1 A–
-----------------As

–=

z 1 e
as–()

–=

s ln 1 z–() a–
 
 

=

y z)()
y1 Aŷ0–

1 A–

y1 ŷ0–

1 A–
------------------A

ln 1 z–() a–
 
 

–=

A
ln 1 z–() a–

 
 

exp B()()
ln 1 z–() a–

 
 

=

exp ln exp B()()
ln 1 z–() a–

 
 

 
 
 

 
 
 

=

exp B ln 1 z–() a–
 
 

 
 

 
 

=

exp ln 1 z–() aB–
 
 

 
 

=

1 z–() aB–
=

46

(2.37)

Therefore, when -aB = 1, the equation is linear in z.

y z()
y1 Aŷ0–

1 A–

y1 ŷ0–

1 A–
------------------ 1 z–() aB–

–=

47

CHAPTER 3

COLLOCATION METHODS FOR DISTILLATION DESIGN II:
MINIMUM REFLUX

Robert S. Huss and Arthur W. Westerberg

Department of Chemical Engineering
and Engineering Design Research Center

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213

To be submitted to Industrial & Engineering Chemistry Research

48

Abstract

In this second paper on collocation methods for distillation design, we

address the minimum reflux problem. Existing minimum reflux techniques do

not work for nonsharp splits, as they use approximate geometric criteria to

simplify modeling of minimum reflux conditions to a set of pinch point

calculations for sharp splits. Collocation allows exact calculation of nonsharp

minimum reflux and provides the missing link that geometric criteria replace.

We examine the behavior of distillation near minimum reflux and get

results consistent with prior work. We also show that sensitivity of trace species

drops as less sharp splits for the key components are sought.

We have found that collocation can be applied to sharp split minimum

reflux problems, but we cannot exactly reproduce Underwood’s values for

constant relative volatility systems due to breakdown of the model near saddle

pinches. We discuss the modeling of minimum reflux conditions with collocation

and discuss the difficulties we have encountered.

We can accurately calculate minimum reflux for nonsharp splits for

nonideal systems, even when approaching a sharp split. We overestimate the

minimum reflux for the sharp split case, using nonsharp calculations at very low

impurities. We encourage discussion of the problems we have encountered.

49

3.1 Introduction

Several researchers have explored and developed collocation for

distillation column modeling. In the first paper in this series, we presented a

collocation model which expands on prior models, addressing the problems

specific to steady-state, continuous columns. In this paper we discuss use of the

collocation method for minimum reflux determinations.

Minimum reflux determination is useful during the early stages of

distillation design and for approximate design methods. Several methods of

varying complexity and accuracy exist for determining minimum reflux.

Underwood’s [1945, 1946, 1948] method is very quick but is accurate only for

ideal systems and only for sharp splits. As described in the motivation section of

paper I in this series, Doherty and coworkers,[1990,1991] have done a great deal

of work on distillation design and minimum reflux. Their methods rely on

approximate geometrical conditions to remove the need for infinite column

section calculations. The development of their techniques demonstrates how

nonsharp splits should be handled, but their minimum reflux algorithms were

developed only for sharp splits.

For sharp splits, Koehler et al. [1991] developed a minimum reflux

determination method that uses a reversible distillation model. They have shown

that for nonideal and azeotropic systems their method provides accurate results,

based on comparisons to rigorous column models with a large number of trays.

However, their method requires the nonkey components to be nondistributing

and is based on the same geometric considerations in Doherty and coworkers.

We present an approach for minimum reflux calculations that does not

require approximate geometric constraints. We discuss some interesting insights

as one moves from nonsharp to sharp splits. We also discuss computational

difficulties we found in realizing the theory with collocation models. By

presenting both the strong and weak points of collocation for distillation

50

modeling we hope to initiate discussions leading to better methods.

3.2 Pinch Points

When a distillation section has a very large number of trays in it, a region

of constant composition occurs. The liquid and vapor passing each other

approach being in equilibrium with each other, i.e., they approach being pinched.

Minimum reflux occurs when at least one column section is pinched. When

modeling minimum reflux conditions, “pinch point” calculations can sometimes

remove the need for tray-by-tray models of column sections. A pinch point is

calculated by requiring that the liquid and vapor passing each other are in

equilibrium and in mass and heat balance with the other end of the distillation

section. Therefore, if one half of a column has a large number of trays and is

pinched adjacent to the feed tray, the whole section can be modeled with only a

pinch point calculation. This simplification can be exploited for calculation of

minimum reflux.

3.3 Nonsharp Splits

A separation where all the components are distributed in some amount to

both products is nonsharp. In the case of a nonsharp split, there is a feasible

intersection region where the tray by tray trajectories from the top and bottom

product can intersect [Wahnschafft 1992]. Figure 3.1 shows a ternary diagram for

a nonsharp minimum reflux problem. The regions between the infinite reflux

(distillation) and minimum reflux (pinch point) curves for both the top and

bottom products are the only feasible regions where the trajectories can go. The

darkened region that shows the intersection of the feasible space for the top and

bottom trajectories shows the only feasible region for the feed tray. At minimum

reflux, the bottom section will pinch in this region. Figure 3.2 shows a blowup of

this region. Any trajectory from the bottom of the column will terminate on the

pinch point curve as the number of trays increases. As the trajectory from the

bottom of the column moves to the right, the reboil ratio (R) increases. However,

51

Figure 3.1. Pinch behavior for ternary nonsharp split

Figure 3.2. Blowup of Figure 3.1

Pinch point curves
Distillation curves

Feasible trajectory space

Light
Intermediate

Heavy

Increasing R

Increasing R

52

for the top section, the pinch point curve, representing the lowest reflux ratio (R)

is on the right, and the infinite reflux curve is on the left. Therefore along the

pinch point curve for the top half, the left most point corresponds to minimum R,

but maximum R, and the right most point corresponds to maximum R and

minimum R. However, R and R are linked by the mass balances and quality of the

feed.

V = V + (1-q)F (3.1)

(R+1)D = RB + (1-q)F (3.2)

For any given feasible column, R and R will decrease or increase together. Assume

that the grey point is a feasible intersection point. To decrease both R and R the

column must move towards the pinch point curve. Therefore, we know that the

nonsharp minimum reflux solution for this type of problem will have a pinched

bottom section and a finite top section. At some point along this line, R and R will

correspond to a feasible trajectory from the top of the column. The minimum

requirement to model this system is a pinch calculation from the distillate, then a

feed tray model, and then a tray-by-tray or reduced order model for the bottom

half of the column. We use the standard collocation model in our first paper [Huss

and Westerberg, 1995a] by enforcing a pinch at the junction of the two bottom

collocation sections and calculating the number of trays in the top section.

Figure 3.3 shows how this modeling requirement maps onto the standard

collocation model. We enforce a pinch between sections 3 and 4 by adding

equations forcing the liquid and vapor passing each other at the junction between

the two collocation sections to be in equilibrium and removing the requirement

that the liquid stream at the pinch must be on the polynomial for section 4.

53

Figure 3.3. Mapping of nonsharp minimum reflux on to standard collocation model

Section 3 will have completely flat trajectories. We evenly split the number of

trays needed in the top section between collocation sections 1 and 2. The number

of trays in the top section is solved for when we completely specify the distillate.

Note that this example is for a direct separation, splitting between the lightest

component and the intermediate. For an indirect separation, splitting between the

heaviest component and an adjacent intermediate, the column structure would be

inverted, but the solution method the same.

3.4 Sharp Splits

When a sharp split is specified, one assumes that the non-key components

are nondistributing. This forces a saddle pinch, since it takes an infinite number of

trays to completely remove a component. Figure 3.4 shows the trajectory for such

a case. When there is a saddle pinch, the pinch point is not adjacent to the feed

because it takes an infinite number of trays to remove the nondistributed

components from the feed as well as an infinite number of trays to get from the

Feed Pinch

Finite Tray Section

Infinite Tray Section

Enforced pinch

1

2

3

4 Remove from
polynomial

Finite

54

Figure 3.4. Pinch behavior for ternary sharp split

product to the pinch. When the pinch is not adjacent to the feed, a simple pinch

point calculation is not sufficient. A pinch point calculation could determine the

possible saddle pinch points, but any saddle pinch which is in mass balance with

the top of the column will necessarily be in mass balance with the feed tray. The

X’s in Figure 3.4 show multiple saddle pinch points. The pinch points move to the

left as the reflux ratio increases. These points represent the binary pinch point

curve between the light and intermediate. There is some missing connection

between the correct saddle pinch and the feed tray. Levy et al. [1985] noticed that

for ideal three component systems, the saddle pinch point, the feed tray pinch

point and the feed composition are colinear for sharp splits. They used this

colinearity to identify the correct saddle pinch point. For more components, Julka

and Doherty [1990] required that a set of pinch points, the feed composition, and

the feed tray must be in a minimum volume. Kohler et al. [1991] used a minimum

angle criterion for multi-component systems to achieve the same effect.

Pinch point curves

Bottoms, very little A

Distillation curves

Saddle pinch

Distillate, No C

Feasible trajectory space

Light
Intermediate

Heavy

55

The missing connection is actually an infinite set of stage-by-stage

calculations connecting the saddle pinch and the feed tray, i.e., the saddle pinch

and the feed tray must lie on the same tray by tray trajectory. We proposed that a

collocation model could approximate these calculations. We describe the details

of our collocation methods in full detail in the first paper of this series. When

defining the polynomials in terms of stage location, it is impossible to model an

infinite column section because the polynomials explode as the number of stages

increases. However, by performing a variable transformation on stage number, as

shown in equation 3.3, we can write the polynomials in terms of a bounded

variable. The transformation variable z will go to 1 as s goes to infinity.

(3.3)

We must show that a stage-by-stage trajectory from this pinch point leads to both

the top product and the feed tray. Therefore, we need an infinite column section

model. This can be achieved by collocating and doing a variable transformation

on the tray number so that, as the tray number goes to infinity, the reference

variable goes to some finite value.

Shortcut methods that require a sharp split determine a theoretical

minimum reflux for the case where the non-key components are non-distributing.

However, the actual column will not achieve this theoretical split. The minimum

reflux for the actual separation will be different than that for the non-distributing

sharp split. Levy et al. [1985] has shown that minimum reflux decreases sharply

as the impurity of the heavy nonkey decreases from 10-5 to 10-11.

Figure 3.5 shows how the sharp split problem maps onto the standard

collocation model. It is very similar to the nonsharp case, but we want sections 1

and 2 to bring us as close to the saddle pinch as they can. We have found that we

cannot enforce a saddle pinch in the same manner as the feed pinch. When slack

z 1 e
as–()

–=

56

Figure 3.5. Mapping of sharp minimum reflux on to standard collocation model

variables are added to the equilibrium equations for the pinch point, we find that

we can approach the pinch, but we cannot force the slack variables completely to

zero. Inaccuracies occur that we cannot compensate for, which we will discuss

later in the paper. Therefore, we approximate a sharp split minimum reflux by

simulating a large column section. The number of trays needed to approximate an

infinite number of trays is dependent on the relative volatilities. For components

with large relative volatilities, only a few trays are necessary to approximate an

infinite number of trays. Also, for multicomponent problems where a saddle

pinch occurs in both column sections, we use the standard collocation model with

all four collocation sections as large as possible.

3.5 Trends of Large Column Sections

We did many examples with constant relative volatility to compare with

Underwood’s method. We tested three ternary systems over a range of

separations. We examined systems with relative volatilities of 1.5, 1.2, 1.0;

Saddle Pinch

Feed Pinch

Infinite Tray Section

Infinite Tray Section

Infinite Tray Section

1

2

3

4

Enforced pinch

Remove from
polynomial

Finite but
large

57

3.0,2.0,1.0; and 9.0,3.0,1.0.

In each test, we did a direct split, forcing a pinch adjacent to the feed in the

bottom of the column, and determining the reflux vs. the number of trays in the

top section. For every case, it was possible to get exactly Underwood’s value of

the reflux ratio with some finite but large number of trays in the top. However, it

was also possible to increase the trays and get lower than Underwood’s reflux

ratio. When increasing the trays to larger numbers, the trajectory became

unsmooth, suggesting that the model was no longer accurate.

 Figure 3.6 shows the different reflux ratios for various recovery

specifications on the light and heavy key obtained by increasing the size of the top

section of the column, for the relative volatilities of 3, 2, 1. The large points mark

the number of trays and reflux required to get various levels of impurity of the

heaviest component in the distillate. These represent nonsharp minimum reflux

calculations. Beyond 10-9 is below the error tolerance so we cannot determine

nonsharp minimum reflux for these points as anything other than the answer

determined for 10-9. We can continue to increase the number of trays and get

smaller values for the reflux ratio. The straight lines indicate the Underwood

value for the various recoveries. For each recovery specification, some number of

trays will give us exactly Underwood’s value, but for even more trays we go

below Underwood.

Figure 3.7 shows how the minimum reflux decreases in increasing amounts

as you reduce the impurity. The grey points at zero are the Underwood values.

From this plot we can see that a straight line extrapolation from two points with

impurities of 10-7 and 10-8 will overestimate the minimum reflux. The degree of

the overestimation depends on the degree of separation between light and heavy

key.

For nonideal systems, the techniques are the same as above. However, we

58

Figure 3.6. Increasing trays and reducing reflux Relative volatilities (3,2,1)

Figure 3.7. Reflux ratio vs. impurity of heavy component.

10.0 20.0 30.0 40.0 50.0 60.0 70.03.5

4.5

5.5

6.5

7.5

8.5

Recovery 95%
Recovery 96%
Recovery 97%
Recovery 98%
Recovery 99%

1e-6 impurity
1e-7 impurity
1e-8 impurity
1e-9 impurity

R
ef

lu
x

Stages

0.00e+00 2.00e-07 4.00e-07 6.00e-07 8.00e-07 1.00e-063.5

4.5

5.5

6.5

7.5

8.5
0.95
0.96
0.97
0.98
0.99

R
ef

lu
x

R
at

io

Recovery of heavy in distillate (impurity)

59

have no Underwood value to compare to. For nonideal systems we have

successfully enforced pinches adjacent to the feed, allowing many nonsharp

minimum reflux determinations. For sharp splits, the behavior was similar to the

ideal examples, with inaccuracies forming at large numbers of trays. Figure 3.8

shows several column trajectories for nonsharp minimum reflux calculations for a

propanol, isobutanol, butanol system, where propanol and isobutanol were the

light and heavy key respectively. Recoveries of the light and heavy key in top and

bottom respectively were 0.8, 0.9, 0.95, and 0.99 for the four diagrams. For each

example, we varied the recovery of the heavy component, solving for the number

of trays required in the top half of the column. The bottom half of the column was

pinched adjacent to the feed, similar to the example shown in Figure 3.1. Note

that the last curves of plots (a) and (b) demonstrate the poor trajectories that can

occur when getting close to the saddle pinch.

Figure 3.9 shows the reflux ratio as a function of the impurity of the heavy

component for each recovery. For lower recoveries the effect of the amount of

impurity on the reflux ratio becomes smaller. For the 80% recovery example, the

sharp split minimum reflux could be extrapolated to zero with very little error.

However, for the 99% recovery the effect of the impurity is large, so we cannot be

sure how much we are overestimating the minimum reflux for a sharp split.

Figures 3.7 and 3.9 demonstrate how nonsharp minimum reflux

calculations can be useful for sharp split requirements. As Levy et al. [1985]

showed, the reflux ratio can be very sensitive to the impurity of the

nondistributing component. However, for lower recoveries, this sensitivity

decreases significantly. Even for relatively high recoveries, we can extrapolate

nonsharp minimum reflux calculations with low impurities and at worst slightly

overestimate the minimum reflux ratio.

60

Figure 3.8. Several nonsharp minimum reflux calculations for propanol,
isobutanol, butanol system, for varying recoveries and impurities of heavy

component.

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

Recovery of light key = 0.8 Recovery of light key = 0.9

Recovery of light key = 0.95
Recovery of light key= 0.99

ImpurityReflux
10-2

R=5.99939 10-3

R=4.14618 10-4

R=3.89194 10-5

R=3.68867

ImpurityReflux
10-4 11.0335
10-5 6.22446
4x10-6 0.88013

ImpurityReflux
10-2 20.2072
10-3 5.95716
10-4 4.79139
10-5 4.56987
3x10-6 4.52222

ImpurityReflux
0.05 3.74394
0.03 3.10089
0.01 2.88545
10-3 2.76625
10-4 2.67509

(b)(a)

(d)(c)

61

Figure 3.9. Reflux as a function of impurity of butanol for propanol, isobutanol,
butanol system.

3.6 Error Detection

Figure 3.10 is an example of the inappropriate trajectories that can occur. It

shows the trajectories over the transform variable z. The top of the column is on

the left. The vertical lines show the boundaries of the collocation sections. The

slope of the light component becomes positive at the top of the second collocation

section. This should not occur. Once this ragged sort of trajectory occurs, the

model can no longer be trusted. The model converges to a nonphysical solution.

Furthermore, even when the mole fraction trajectories appear smooth, the

trajectories of the transformed mole fraction may not be smooth. As we describe

in the first paper of this series [Huss and Westerberg, 1995a], we perform the

following transformation on mole fraction.

0.000 0.010 0.020 0.030 0.040 0.0500.0

15.0

20.0
0.8
0.9
0.95
0.99

5.0

10.0

R
efl

u
x

R
at

io

Recovery of Butanol in Distillate (impurity)

62

Figure 3.10. Example of inaccurate collocation of large column section. Relative
volatilities (3, 2, 1)

(3.4)

Figure 3.11 shows the mole fraction trajectories (x) and transformed mole

fraction trajectories for the same column. The top figure looks fine, but the

bottom one shows the error occurring in the trace component. One might believe

that a mole fraction of less than 10-5 is not going to affect the model, but since we

perform a variable transformation, re-emphasizing the mole fractions near zero

and one, they can be very significant.

Even though we have these clear signs of inaccuracies, some of the

constant relative volatility examples went below Underwood’s value before the

clear signs showed up. We created an extra tray in each section to test the

accuracy. The test tray took its input streams from the polynomials, and we

compared the output streams to the polynomial. We placed the test tray near the

0.0 1.0 2.0 3.00.0

0.2

0.4

0.6

0.8

1.0

C1
C2
C3

M
ol

e
Fr

ac
ti

on

z

2xi 1– x̂i()tanh=

x̂i()

63

Figure 3.11. Example if inaccuracy in trace component. Volatilities (3, 2, 1)

0.0

0.2

0.3

0.5

0.7

0.8

1.0

C1
C2
C3

0.0 0.5 1.0 1.6 2.1 2.6 3.1
-12.0

-9.7

-7.3

-5.0

-2.7

-0.3

2.0

C1
C2
C3

z

x

x̂

64

end of the collocation sections adjacent to the expected saddle pinch point. Figure

3.12 shows the error in four different polynomials, for a column recovering 98% of

the light key and 2% of the heavy key in the distillate. C1 and C3 were the active

components. The figure shows that C3 in section 1 (the top section in the column)

is most sensitive. This error reflects the behavior we see in Figure 3.11. The other

errors don’t show any erratic behavior as the number of trays increases. Figure

3.13 shows the error in C3 in section 1 for several recoveries. They all display the

same behavior. The error in the trace component in top section of the column

should be a good indicator of the onset of inaccuracies. Combined with

requirements that the light component monotonically decreases going down the

column, and that the transformed trace component monotonically increases going

down the column, we should detect any problems.

Figure 3.12. Error in polynomial prediction for isolated trays. Recovery of keys
98%, Relative volatilities (3, 2, 1)

30.0 33.0 36.0 39.0 42.0 45.0 48.0-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

C1, Section 1
C3, Section 1
C1, Section 2
C3, Section 2

Stages

er
ro

r

65

Figure 3.13. Error in C3, section 1 for a range of recoveries. Relative volatilities
(3, 2, 1)

3.7 Sharp Split Calculations

To guarantee appropriate trajectories, we added the following equations.

, n = 1..npoints (3.5)

, n = 1..npoints (3.6)

We put a lower bound of zero on and an upper bound of zero on .

Furthermore, we place a test tray at the bottom of the top collocation section and

bound the error on C3 to be between 0.1 and -0.1. Then we try to increase the

number of trays as far as possible without crossing those bounds. With this

technique, we tested the effect of the order of the collocation on the accuracy of

30.0 33.0 36.0 39.0 42.0 45.0 48.0-0.5

-0.3

-0.1

0.0

0.2

0.3
0.95
0.96
0.97
0.98
0.99

Stages

er
ro

r

xn
C1

xn 1+
C1

– diffn
C1

=

x̂n
C3

x̂n 1+
C3

– diffn
C3

=

diffn
C1

diffn
C3

66

the model. Figure 3.14 shows the data for the 3, 2, 1 system, using 2, 3, 4, and 5

points in each collocation section in the top of the column. The plot shows reflux

ratio as a function of recovery. Underwood’s values are shown by the striped line.

Figure 3.15 shows the same type of plot for the 9, 3, 1 system. We would expect

that all the curves would at least be above minimum reflux, which is reflected in

Figure 3.15, but the 4 point collocation in Figure 3.14 is below Underwood for

every recovery. It is possible that error occurs in the model before the trajectories

reflect this error. Figure 3.16 shows the same type of figure, but for 30 trays, rather

than the maximum before crossing the bounds. The columns in Figure 3.14 each

reached over 35 trays. Note that none of the models in Figure 3.16 are

underestimating the minimum reflux, and as the number of collocation points

increases we get closer to the Underwood value. This figure shows more what we

would expect, getting better accuracy as the number of collocation points

Figure 3.14. Reflux as a function of recovery and order. Volatilities 3, 2, 1

R
ef

lu
x

R
at

io

Recovery
0.950 0.960 0.970 0.980 0.9903.8

4.0

4.2

4.4

4.6

2 trays
3 trays
4 trays
5 trays
Underwood

67

Figure 3.15. Reflux as a function of recovery and order. Volatilities 9, 3, 1

Figure 3.16. Reflux at 30 trays as a function of recovery and order. Relative
volatilities 3, 2, 1

0.950 0.960 0.970 0.980 0.9900.90

0.95

1.00

1.05

1.10
2 points
3 points
4 points
5 points
Underwood

R
ef

lu
x

R
at

io

Recovery

0.950 0.960 0.970 0.980 0.9903.9

4.1

4.3

4.5

4.7

2 points
3 points
4 points
5 points
Underwood

R
ef

lu
x

R
at

io

Recovery

68

increases. It is possible that the 4 point collocation in Figure 3.14 is inaccurate

because the fourth order polynomial produces unrealistic trajectories.

When going to large number of trays, the choice of the parameter a in

equation 3.3 is potentially important. Experience has shown that a value of 0.1 is

good for most normal problems. When we do wish to go to an infinite number of

trays, (z = 1), it is possible to choose a such that the trajectory of one of the

components is straightened out. However, our efforts to solve for the parameter a

have not been successful. We have experimented with different values for a with

some success. Figures 3.17 and 3.18 show the affect of a on the reflux calculations

when using 2 point and 5 point collocations respectively. Each figure shows

Underwood’s values with a striped line and the closest approximation with a

thick grey line. These figures demonstrate that 2 and 5 point collocation do not

underestimate the minimum reflux when we use error detection. We believe that

2 point collocation sections are best for distillation modeling since higher order

Figure 3.17. Efect of parameter a on reflux determination with 2 collocation
points.

0.950 0.960 0.970 0.980 0.9903.9

4.1

4.3

4.5

4.7 a = 0.04
a = 0.07
a = 0.1
a = 0.13
a = 0.16
a = 0.19
Underwood

Recovery

R
efl

u
x

R
at

io

69

Figure 3.18. Effect of parameter a on reflux determination with 5 collocation
points

polynomials can have trajectories that are not realistic for distillation. However,

the 5 point collocation demonstrates how the accuracy can be improved with very

high order, and what the trend of collocation will be if it is accurate.

3.8 Minimum Reflux Algorithm

Figure 3.19 shows the suggested algorithm for minimum reflux

calculations using the collocation model. The first step, solving the standard

collocation model to full equilibrium and heat balance is described in more detail

in the third paper of this series [Huss and Westerberg, 1995b]. Through this step,

we get a fully thermodynamic, heat balanced model of a very small distillation

column with low reflux. If a pinch adjacent to the feed is expected, we enforce it,

short circuiting the collocation section between the pinch point and the end of the

column. The number of trays in this half of the column is no longer important, but

to get nice looking column profiles, we fix the average slope of one of the

components in that section and free up the number of trays. We discuss this

Recovery

R
efl

u
x

R
at

io

0.950 0.960 0.970 0.980 0.9903.90

4.00

4.10

4.20

4.30

4.40
a = 0.04
a = 0.07
a = 0.1
a = 0.13
a = 0.16
a = 0.19
Underwood

70

technique in detail in the third paper of this series [Huss and Westerberg, 1995b].

If no pinch adjacent to the feed is expected, we go directly to the next step,

meeting the recovery specification. Again, see the third paper of this series for a

detailed discussion of this technique. We free up the reflux ratio, distillate

flowrate, and number of trays top and bottom while incrementing the recovery of

the key components. The average slope technique mentioned above determines

the number of trays in each column section.

For nonsharp splits, the only remaining step is to fix the recovery of a third

component and solve for the number of trays in the finite column section. For a

sharp split, we recommend two steps. First, we increase the number of trays in

each section where a saddle pinch is expected, enforcing the bounds described

above. This may not work for azeotropic systems. For azeotropic systems, the

user would have to look at the plots of the column and decide if kinks occur, or

only use the test tray to detect error. The second method is to perform two

nonsharp calculations at very low impurities, but not close enough to zero to

require enough trays for inaccuracies to occur. Using these two points we can

extrapolate the reflux ratio at zero impurity.

71

Figure 3.19. Minimum reflux algorithm

3.9 Difficulties

As we demonstrated in the first paper of this series [Huss and Westerberg,

1995a], the variable transformations allow us to model larger columns with

Create column model and
solve to equilibrium and

heat balance with few trays
and low reflux

Enforce
feed pinch.

Perform nonsharp split
calculation for two points

near saddle pinch but away
from inaccurate trajectories

and extrapolate to zero

Increase trays in section(s)
where saddle pinch is

expected, restricting the
light component’s and trace
components’ trajectories to
be strictly monotonic. Also

bound error of test tray.

Pinch adjacent
to feed expected

Sharp or
nonsharp?

No pinch adjacent
to feed expected

Sharp

Specify product and
free up number of

trays in finite section

Done.Compare
answers.

Nonsharp

Meet recovery
specification on key

components

72

higher purities. However, as we’ve shown in this paper, difficulties still occur

when going towards saddle pinches. In this section we explicitly list the areas

where this model breaks down, providing reasons where we can. We provide this

description of difficulties to encourage discussion into the problems typically

enountered with any modeling technique.

When modeling a large column section in which the trajectories are flat, the

collocation may develop kinks. The exponential transformation on trays reduces

this effect but does not eliminate it. For an infinite column section it is

theoretically possible to select a value for parameter a to straighten one of the

components. However, in practice it is difficult to solve for the correct value for a.

Also, when dealing with a finite number of trays, z behaves somewhat similarly

to s. When this problem occurs away from a saddle pinch, it is possible to bypass

the difficulty by requiring a pinch point and ignoring a collocation point. But at

this point, we no longer have a collocation model for that section of the column.

Further difficulties occur when we approach a saddle pinch. The kinks in

the trajectory begin to occur when going to a large number of trays, but the pinch

point bypass does not work. In the case of a pinch adjacent to the feed, the

collocation section adjacent to the feed will be completely flat, and the forced

pinch will be at the end of that collocation section, as demonstrated in the right

half of Figure 3.10. In that case, we essentially short-circuit the collocation section

at the very bottom of the column by ignoring the polynomial definition for the

liquid stream entering that section. The collocation section between the pinch

point and the feed tray is capable of remaining constant throughout. But for the

saddle pinch case, the collocation sections on either side of the saddle pinch have

substantial change. In Figure 3.10, above the saddle pinch, the two remaining

components change. Below the pinch, all three components are moving. When we

try to enforce the saddle pinch by ignoring some polynomial definition in the top

collocation section, the model fails to converge.

73

3.10 Conclusions

Theoretically, collocation provides the missing link for simulation of

minimum reflux conditions. For nonsharp splits, we can exactly calculate the

minimum reflux. For sharp splits we can approximate minimum reflux,

overestimating the actual value. The minimum reflux problem exposes some

weaknesses of this collocation model. Even with variable transformations

enabling us to model higher purities and larger columns, the model breaks down

when approaching a saddle pinch. We observe that the approach allows us to

extrapolate to the saddle pinch.

Acknowledgment

Support from Eastman Chemicals and DOE contract number DE FG02-

85ER13396 provide support for this research. Facilities support is from NSF grant

number EEC-8942146 which supports the EDRC, an NSF funded Engineering

Research Center.

74

Nomenclature

a Parameter for exponential transformation of stage location

s Stage number

z Transformation variable on stage number

75

References

Huss, R. S. and A. W. Westerberg. 1995. “Collocation Methods for Distillation

Design I: Model Description and Testing” to be submitted.

Huss, R. S. and A. W. Westerberg. 1995. “Collocation Methods for Distillation

Design III: Flexible Column Design” to be submitted.

Julka V., and M. F. Doherty, 1990. Geometric Behavior and Minimum Flows for

Nonideal Multicomponent Distillation. Chemical Engineering Science, 45, p.

1801-1822.

Koehler J., P Aguirre, and E. Blass., 1991. “Minimum Reflux Calculations for

Nonideal Mixtures Using the Reversible Distillation Model.” Chem. Eng. Sci.,

46. 3007-3021.

Levy S. G., D.B. Van Dongen, and M. G. Doherty., 1985“Design and Synthesis of

Homogeneous Azeotropic Distillations II: Minimum Reflux Calculations for

Nonideal and Azeotropic Columns.” Ind. and Eng. Chem. Fun., 24 463-474

Underwood, A. J. V. J. Inst. Pet. 1945, 31, 111

Underwood, A. J. V., J. Inst. Pet. 1946, 32, 598

Underwood, A. J. V., Chem. Eng. Prog. 1948, 44, 603

76

CHAPTER 4

COLLOCATION METHODS FOR DISTILLATION DESIGN III:
FLEXIBLE COLUMN DESIGN

Robert S. Huss and Arthur W. Westerberg

Department of Chemical Engineering
and Engineering Design Research Center

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213

To be submitted to Industrial & Engineering Chemistry Research

77

Abstract

In this third paper on collocation methods for distillation design, we

explore the use of the collocation models for design of simple distillation columns

as well as flexible columns. Solvent recovery plants must deal with a wide range

of feeds and still return pure solvents. The design problem we address is a single

flexible column within the overall solvent recovery plant.

We have developed the models and algorithms in the ASCEND system. We

discuss the attributes and use of the ASCEND system. With ASCEND we can

create complex models with simple building blocks and interactively learn to

solve them.

We found the collocation model an excellent tool for distillation design,

allowing us to develop new concepts in design strategies. We designed a single

column as would exist in a flexible solvent recovery plant for an azeotropic

system. It was designed to handle three possible feeds, each with a distinct

separation task.

For each possible feed to a column, we approximate the operation of the

column for that feed by creating a quadratic approximation of the reflux ratio as a

function of the number of trays and feed location. We optimize the cost of the

column over the approximation range, and reapproximate if the minimum is on a

bound. We move the approximation range until the local optimum occurs within

that range.

78

4.1 Introduction

Several researchers have explored and developed collocation for

distillation column modeling. In the first paper in this series, we presented a

collocation model which expands on prior models, addressing the problems

specific to steady-state, continuous columns [Huss and Westerberg, 1995a]. In the

second paper, we discussed the use of the collocation method for minimum reflux

determinations [Huss and Westerberg, 1995b]. In this paper, we present

algorithms for designing distillations columns with the collocation model,

including methods for designing flexible distillation columns. We also discuss the

benefits of the ASCEND system for developing and using mathematical models.

4.2 Learning to Solve Models

A mathematical model begins as a set of equations and variables.

However, formulation is only a small part of modeling and design. For complex

models, solving is much harder than creating. We do not always know what parts

of the model will be known and what parts need to be solved for. Also, we need to

learn the best path to solution. The ASCEND system supports these needs.

ASCEND (Advanced System for Computations in ENgineering Design) is a rapid

model development tool, which has a strongly typed declarative modeling

language and incorporates object-oriented concepts [Piela et al., 1993]. It also has

an interactive model building and solving environment, which creates a great

deal of flexibility in model use.

With ASCEND, we can build a simple flash model from stream models and

a vapor-liquid equilibrium (VLE) model. We can then model a distillation column

with an array of flash models. This hierarchical building of models aids in

creating and organizing complex constructs. ASCEND also allows us to refine

existing models to include more complexity.

We typically solve a normal stage-by-stage distillation model with the

79

following steps. The initial model has no thermodynamics, simple stream models

with molar flowrates and mole fractions, constant relative volatility for the VLE,

and constant molar overflow. This is generally a simple type of model to solve,

but if it is difficult, we can solve each tray individually first. Any part of an

ASCEND model is accessible from the user interface. Once we solve the simple

column, we can “refine” the simple stream models to liquid and vapor stream

models and include enthalpy and Gibbs free energy calculations. To refine the

model we use the deferred binding capability of ASCEND. We can interactively

locate any part of a compiled (and perhaps solved) model and direct the type of

the part be changed to a more refined type compatible with its current type. The

compiler reinterprets and propagates the changes that result throughout the

model. Values of variables already solved for become initial values for the

modified model. Holding the temperatures constant and still using constant

relative volatility for the equilibrium, we calculate initial values for the

thermodynamic properties. Then the VLE can be refined to a thermodynamic

equilibrium model, requiring the partial molar Gibbs free energies of the

components in the liquid and vapor phase to be equal. The last step is to release

the constant molar overflow specification and include heat balances instead.

Using this incremental process, we can get a converged solution of a complex

thermodynamic distillation model without trying to solve the whole thing from

scratch.

 By formulating the collocation model in ASCEND, we achieved a great

deal of flexibility, as well as the ability to incrementally refine the model to

include complex thermodynamics. We describe the details of this model in the

first paper in this series.[Huss and Westerberg, 1995a] When creating a test model,

we refine a generic collocation model and decide the number of collocation

sections, the number of trays in each section, and the number of components.

Interactively, we can change the degrees of freedom for the column, the direction

for number staged (up or down) of each collocation section, and the spacing of

80

collocation sections and trays.

Figure 4.1. Column design application

ASCEND also has a scripting language with simple commands which

reproduce interactive actions as well as the capability for developing complex

procedures to automate the simulation process. We have used this scripting

language to develop solution and design algorithms. This language also allows us

81

to add to the graphical interface, creating our own applications which can run on

top of the ASCEND system. Figure 4.1 is a picture of the interactive window for

the application we created to design columns.

4.3 Design Methodology

We learned the following general strategy for designing a column given

the feed and a required separation. We present the algorithm in Figures 4.2 and

4.3. Figure 4.2 shows the algorithm for getting to a rigorous column model for a

specified feed, making no demands on the separation. Figure 4.3 shows the

algorithm for getting from this starting point to a column which meets the design

specifications. The steps in this algorithm are executed by the first two rows of

buttons on the interactive window shown in Figure 4.1.

The algorithm in Figure 4.2 begins by getting information about the

problem. We need to decide what components will be used, what the feed

flowrate and composition will be, and what the recovery specifications will be.

We then check on the nonideality of the components involved. The check is based

on a database of infinite dilution K values for all the components in our library.

From these values, we can guess if binary azeotropes are expected and if

heterogeneous behavior is expected. If the components in the system will exhibit

heterogeneous behavior, we stop because we currently cannot accurately model

this behavior. If azeotropes are expected without heterogeneous behavior, we can

model the system, but we need to be aware of distillation boundaries. After

checking the components, we generate a standard collocation model.

For a single feed column, this model has four collocation sections, two

above and two below the feed, with two trays in each collocation section.[Huss

and Westerberg, 1995a] We start with only two trays in each half of the column

and a reflux ratio of 0.5, so the initial models will solve even for systems with high

relative volatilities. We also start with the variable transformations on stage

number and mole fraction (described in Huss and Westerberg, 1995a) turned on,

82

Figure 4.2. Algorithm for creating and converging a collocation model

Check
components

Expect
heterogeneous
behavior

Stop, can't
model it.

Expect
azeotropes

No
azeotropes

Great! Should
work fine

Expect distillation
boundaries

Solve model with constant
relative volatilities and constant
molar overflow, getting initial

guesses for thermodynamic
variables.

Solve model with full
thermodynamic equilibrium

model and constant molar
overflow, getting better guesses

for enthalpies.

Solve model with
equilibrium and heat

balances

Create standard collocation
column model

What? Check
model.

Input information:
feed composition,
desired separation

Converged

Not
Converged

Converged

Not
Converged

Not
ConvergedOkay to work with

constant molar
overflow?

No

Yes Revert to converged
equilibrium model

with constant molar
overflow

If model can
be fixed, make
changes and
begin again

Converged

Possibly
problems with

thermodynamic
models

83

since they may be needed and have no negative effects.

Once we create the model, we compile it and solve it with constant relative

volatilities and constant molar overflow, fixing the reflux ratio, distillate flowrate,

and number of trays top and bottom. From this solution we get initial guesses for

the thermodynamic variables at standard conditions. This model has converged

for all the systems we have tested. We next solve the model with the equilibrium

equations included but still holding constant molar overflow. Then we turn on the

heat balance and solve the fully rigorous model. If the heat balanced column does

not converge, we can either return to the equilibrium model and gradually

approach the heat balanced column by incrementally reducing the heat duties on

each tray to zero using an algebraic continuation method, or we can decide to go

ahead with the constant molar overflow column.

If any of the models with thermodynamics do not converge, it is possible

that the thermodynamic models themselves are at fault. The collocation model

and design algorithms are not dependent on what particular thermodynamics we

use. If the thermodynamic models cause failure, we suggest changing them, but

that is not the focus of this paper.

Once we have converged a sufficiently rigorous model of the system, we

turn our attention to meeting the product specifications. Figure 4.3 shows that the

first step is to adjust the degrees of freedom, fixing the recoveries of the keys and

freeing the reflux ratio and distillate flowrate. Also, we define average slopes over

the collocation sections, which can be used to maintain a reasonable number of

trays for a given reflux ratio. Figure 4.4 shows how we define the average slope.

In this case, the light component changes from 0.95 at the distillate to 0.35 at the

feed tray, over a range of 50 trays. The average slope is therefore 0.012. If we fix

the average slope for one component and free up the number of trays, the number

of trays will change to maintain that slope if we change other variables. This

allows us to avoid the problem of determining how many trays the column might

84

Figure 4.3. Algorithm for designing a column to meet specifications

ξHKξLKFix and

Optimize cost function over

reflux ratio, number of trays

top and bottom, and distillate

flowrate, with bounds set on

the separations

Examine column. If
azeotropes were

expected it is likely a
distillation boundary
has been hit. This is
probably as close as
you can get to your

recovery
specifications.

Free reflux ratio and
distillate flowrate. Fix the

average slope of the
collocation sections

adjacent to the feed, and
free up the number of trays

in each column section

Attempt to meet
specification on light key

and heavy key, holding the
average slopes constant,
solving for reflux ratio,
distillate flowrate, and

number of trays top and
bottom.

Attempt to meet
specification on

light key and
heavy key

individually

Meet purity
specification on one
component for low
distillate or bottoms

flowrate. Then
increase the product

flowrate incrementally

MetNot Met

Not Met

Met

Met

Not Met

Standard

Azeotropic

Azeotropic
System

Not Azeotropic
?

?

85

Figure 4.4. Average slope definition

need for a particular separation. For any fixed number of trays, it may be possible

to solve for the reflux ratio and distillate flowrate for a given specification, but if

there are not enough trays it will be impossible. By fixing the average slope of one

component over each column section, the number of trays will increase as we

approach the recovery specification.

In the next step, we attempt to meet the specifications on both key

components while also meeting the requirement that the average slopes are 0.01/

tray, which is a reasonable value from our experience. We approach the

specifications with an algebraic continuation method, taking a fractional step

towards the desired settings. If the step succeeds, we take another step of the

same size. If the step fails, we take a smaller step. If the four specifications (two

key components and two slopes) cannot be met simultaneously, but the number

of trays has increased, we fix the number of trays and just try to meet the two

recovery specifications. Another alternative is to hold the slopes constant rather

0.0 20.0 40.0 60.0 80.0 100.0
0.0

0.5

1.0

s

0.95 0.35–
50

--------------------------- 0.012=

m
ol

e
fr

ac
ti

on

86

than trying to move them to 0.01/tray. If the specifications cannot be met

simultaneously, we then try to meet them each individually. If the specifications

still cannot be met, we check to see if azeotropes were expected. If they were, it is

likely that a distillation boundary has been hit.

We have an alternative for azeotropic systems where we expect to hit

distillation boundaries. When we know that we want a certain purity of key

components but cannot get high recoveries or do not know what the recoveries

will be, we can meet purity specifications instead. If, for example, we want 99%

purity of the light component in the distillate, we can first meet this purity

specification with a very low distillate flowrate, solving for the reflux ratio. We

will still use the slope criteria for setting the number of trays in each column

section. Once we have met the purity specification, we can incrementally increase

the distillate flowrate while holding the purity constant.

If the specifications can be met, we can attempt to optimize the column for

cost. We have a cost function, accounting for the capital cost of the column,

condenser, and reboiler, and the heat duties of both exchangers without heat

integration [Douglas, 1988]. Currently, we have failed to get MINOS attached to

ASCEND to solve the optimization problem for a fully thermodynamic column,

due perhaps to the nonlinearity of the thermodynamic models and possibly poor

variable bounding, but we can approach an optimal cost for a specified separation

by doing a simple gradient based optimization routine using an ASCEND script.

By specifying the recovery of both the key components and fixing the number of

trays top and bottom, we can solve for the reflux ratio and distillate flowrate and

the cost. By perturbing the number of trays and the feed location and resolving,

we determine a slope on the cost function and take a step to reduce it. We have

developed a simple routine in the script to minimize the cost over the number of

trays and the feed tray location.

87

4.4 Design Essentials and Tricks

While developing this design algorithm, we discovered certain essential

techniques and discovered some tricks that significantly improve our algorithm.

The first essential lesson is that we cannot simply specify a product purity and

solve for an appropriate reflux ratio. Even when there is a solution, this is a

difficult problem to converge and must be approached gradually. With the

standard degrees of freedom: feed, reflux ratio, distillate flowrate, number of

trays, it is difficult to make large changes in any of these variables. It is even more

difficult to switch the degrees of freedom for product purities or recoveries and

make large changes. We have also discovered that it is better to make both key

component specifications on the recoveries and release the reflux ratio and

distillate flowrate than to just make one purity specification and release either the

reflux ratio or the distillate flowrate. It is very easy to make purity specifications

that are impossible with either the reflux ratio or distillate flowrate fixed. When

we approach both key component recoveries simultaneously and solving for

reflux and distillate flowrate, we give the model more room to maneuver.

The main trick we discovered is using the average slope over a column

section to determine the number of trays in that section. This allowed us to solve

simultaneously for the reflux ratio, distillate flowrate, number of trays, and feed

location for a given recovery specification. This is not an essential technique

because it is not always possible to get a given slope for a given specification, but

it is very helpful for increasing the trays while approaching a product

specification. In the algorithm, we first use the slope criteria to get us as far as

possible towards the desired recoveries, which increases the number of trays. If it

fails to go the whole way, we can generally fix the trays at this point and continue

to go for the separation, solving for reflux and distillate flowrate.

4.5 Design Examples

We used the design algorithm discussed above to generate column designs

88

for different ideal and nonideal systems. For an ideal system with a simplified

cost function we used MINOS attached to ASCEND to minimize the cost with

constraints on the separation of the key components. The feed was 3 components,

3 mole/s of each component. The relative volatilities were 1.5 ,1.2, and 1.0. A

nominal solution requiring 95% purity of the key components had 30 trays in each

column section and a reflux ratio of 9.8, with a diameter of 1.3 meters, height of 42

meters, and an investment cost of 157,000 dollars per year. The optimal solution

had 19.5 trays top, 18.8 trays bottom, a reflux ratio of 14.5, with a diameter of 1.6

meters, height of 27 meters, and an investment cost of 130,000 dollars per year.

We used the algorithm shown in Figures 4.2 and 4.3 to design a column for

an equimolar feed of propanol, isobutanol and butanol, with 3 mole/s of each

component. The separation specification was 99% of the propanol in the distillate

and 1% of the isobutanol in the distillate. Using the algorithm it took 8 minutes to

create a model, solve it up to full thermodynamics and heat balance, and

incrementally meet the purity specifications, representing 9 solutions of the full

column model. All that was required was to enter the components, the feed

composition, and the purity specifications through the interface we placed on top

of ASCEND, as shown in Figure 4.1. The nominal solution had 59.25 trays, with

the feed tray 60.2% down the column, a reflux ratio of 6.12, and an annualized

cost of 178,000 dollars per year. We optimized this column using a simple gradient

search implemented from an ASCEND script, varying the total number of trays

and the feed tray location with the separation of the key components fixed. The

“optimal” solution had 52.28 trays, with the feed tray 52.7% down the column, a

reflux ratio of 6.021and a cost of 174,000 dollars per year. To test the optimization,

we increased the utilities cost by a factor of 10. As expected, the number of trays

increased (to 75.1). The feed tray location moved to 50.2% down the column, and

the reflux ratio decreased to 5.71. When we decreased the utilities cost by a factor

of 10, the number of trays decreased as expected to 49.66 while the reflux ratio

increased to 6.15. Each optimization took about 10 minutes to perform,

89

representing 30 column solutions. We performed these calculations on an HP700.

These design tests demonstrate that it is possible with this collocation

model to solve for the number of trays and the feed tray location, while

minimizing a cost function and holding a given specification. The time needed to

execute the algorithm will decrease as we increase our understanding of the

solution procedure.

4.6 Background on Flexible Distillation Design

Chemical plants use a wide variety of solvents which must be recovered

for reuse. However, the feed to a solvent recovery plant will vary as the chemical

plant demands change. Figure 4.5 shows a general picture of this type of problem.

Any number of plants will send their waste mixed solvents to the recovery plant.

Therefore, the feed to the recovery plant will change as the operation of the plants

change. Azeotropic systems are particularly difficult because a change in the feed

composition can move the system into a different distillation region. A simple,

but expensive, solution to this problem is to require a constant feed composition

to the recovery plant, using mixing to maintain the composition. A flexible

solvent recovery plant, capable of separating a range of feeds with the same

equipment, would be very useful to the chemical industry.

Very little work has been done on the specific problem of flexible

distillation design. A significant amount of work addresses the general problem

of process design flexibility. Halemane and Grossmann[1983] developed a

formulation for determining design flexibility and ensuring design feasibility. For

a convex constraint set, they showed that, by guaranteeing feasibility at critical

vertices, the design will be feasible over the entire parameter space. They

developed an approach to solving the two-stage programming formulation of the

flexible design problem. Grossmann, Halemane, and Swaney[1983] presented an

overview of optimization strategies for flexible chemical processes.

90

Figure 4.5. Solvent Recovery Plant Problem

Wagler and Douglas[1988] have addressed the specific problem of flexible

distillation design. They used the concept of critical vertices also and simplified

the problem further by combining vertices into “near critical points.” They

determined these near critical points by having a working knowledge of

characteristics of the system. Specifically for distillation, they showed that, for the

five constraints on product purity, flooding limit, weeping limit, feasible heat

exchanger operation, and feasible accumulator operation, two near critical points

could replace the five constraints. However, their results showed that the near

critical points did not guarantee feasibility for the heat exchangers. Also, they

assumed that the system they investigated had constant relative volatilities, and

they used the Fenske-Underwood-Gilliland shortcut method to design the

columns.

4.7 Problem Statement:

Design a separation system that is feasible over a specified range of feeds,

meeting product specifications, while minimizing the cost of the system.

Process 1 Process 2

Solvent
Recovery

Waste Mixed

Solvents

91

We can characterize the variability of the feed in a number of ways. It could

be gradually but continually changing, changing infrequently but abruptly, or

changing frequently and abruptly. We chose to address the problem of an

infrequently changing feed which changes abruptly to known points.

Figure 4.6 shows an example of this type of problem, using acetone,

chloroform, and benzene. There is a maximum boiling azeotrope between acetone

and chloroform, creating a distillation boundary between the azeotrope and

benzene, as shown on the ternary diagram. The three points represent the three

possible feed compositions. If designing a separation system individually for

these feeds, we might come up with the flowsheets shown. The solvent recovery

plant designed to handle any of these feeds could have only three columns, where

the same columns are used in different configurations for different feeds. For any

given feed, the columns may be operating close to flooding or weeping limits

rather than at more conventional flows.

4.8 Single Column Problem

For this paper, we only consider the problem of designing a single flexible

column. Flexible columns will be required by the type of problem shown above.

Even if different feeds to the solvent recovery plant require different flowsheets as

shown in Figure 4.6, a single column can be used in multiple flowsheets.

Therefore, a subproblem to the overall synthesis problem could involve designing

a column that is able to handle a set of different feeds, performing a specific

separation task for each.

Assuming such a problem, we allow the reflux ratio, distillate flowrate,

and feed tray position to be control variables. We must enforce flooding and

weeping limits on the column’s operation for each feed and design heat

exchangers for the condenser and reboiler that are large enough to handle the

operation of the column for all feeds. The objective is to design the column

meeting these specifications while minimizing the cost of the column. The

92

Figure 4.6. Solvent Recovery Plant Example

operating costs are averaged over the possible feeds weighting the cost by the

estimated probability of each feed over time.

4.9 Flexible Design Algorithm

Figure 4.7 shows the algorithm used to design a single flexible column. The

input information for this problem is the composition and flowrate of each feed

1 2

1 2 3

1 2 3

Acetone Chloroform

Benzene
A

B

C

A

B

C A

C

B

93

Figure 4.7. Flexible Design Algorithm

Input information: Number
of feeds, Composition of

each feed, Separation
specification for each feed

Create nominal design for
feed closest to equimolar
compositions and save it

Move base design to
new feed and product
specifications, holding

trays constant and
solving for reflux and
distillate flowrate, and

save it

Create nominal design
for new feed and save

it

For each feed, do
approximation of reflux

as a function of total
trays and feed tray

position

For each other feed:

Fail

Succeed

Use MINOS to
minimize cost with

approximations

Check if sitting
on bounds of

approximation

Redo
approximations for

each feed using
current information

if applicable

Optimum found
for current

approximation
accuracy

Yes

No

94

and the separation specification for each feed. With this information, we go

through the column design algorithm presented earlier in this paper to create a

nominal design for one of the feeds and save that solution. We choose the feed

closest to the average composition of the feeds, which makes it more likely that

the first nominal design will work for the other feeds.

For each other feed, we start with the nominal design and move its feed to

the new feed, holding the number of trays constant. We create a nominal design

for the new feed from scratch if we fail, getting a different number of trays for it.

We then move the number of trays for each nominal design to the average

number of trays.

We now have a nominal design for each possible feed. We save this

information in a file for each feed, as well as saving it within the current ASCEND

process. Within ASCEND we can make multiple saves of the values of existing

models in RAM. Reading and writing these “virtual” saves takes a tenth of a

second, while reading and writing to a file takes 30 seconds or more. We can read

the values for these nominal designs into the one column model depending on the

feed in which we are interested. Throughout the rest of the algorithm, we update

the saved values whenever we change the column design.

Figure 4.8. Data Point Placement

Ffrac

Stot Stot

Ffrac

(a) (b)

95

At this point we create an approximate model for each column to be used

for cost minimization. We record the reflux ratio over a range of total trays and

feed tray location. Figure 4.8a shows the normal placement of the data points.

Generally we will move 10% away from the base point. From these nine data

points we can fit reflux ratio as a quadratic function of the total number of stages,

Stot, and the location of the feed tray, Frac. Frac is the fraction of the column above

the feed tray. The approximation of the reflux ratio takes the following form.

(4.1)

(4.2)

Note that column diameter is not a concern here. For a given composition,

the column trajectories will be the same, regardless of the total flowrate of the

feed. The diameter can be determined once the reflux ratio, feed flowrate, and

flooding factor are known.

We use the full model as a basis for the approximate model’s cost

calculation based on the number of trays, reflux ratio, and total feed flowrate. We

set bounds for each approximation on Stot and Frac based on the range of the

approximation. Figure 4.8b shows the points we might get if the column could not

be moved fully 10% away from the base point. The dotted lines in both a and b

show the bounds for that approximation.

Using these approximations, and requiring that the total number of trays

and diameter is the same for each feed, we minimize the cost of the column.

MINOS is attached to ASCEND for optimization problems. The optimization is

formulated below:

R ŜkStot
k

k 0=

2

∑=

Ŝk F̂jkFrac
j

j 0=

2

∑=

96

min ColCost + RebCost + ConCost +WCost + SCost (4.3)

s.t. ColCost = ColCost(H,D) (4.4)

ConCosti = ConCosti(Feedi,Ri,Disti), i = 1..nfeeds (4.5)

RebCosti = RebCosti(Feedi,Ri,Disti), i = 1..nfeeds (4.6)

WCosti = WCosti(Feedi,Ri,Disti), i = 1..nfeeds (4.7)

SCosti = SCosti(Feedi,Ri,Disti), i = 1..nfeeds (4.8)

, i = 1..nfeeds (4.9)

, i = 1..nfeeds (4.10)

(4.11)

(4.12)

, i = 1..nfeeds (4.13)

, i = 1..nfeeds (4.14)

H = 2.15Stot (4.15)

Fi = Fi(Feedi,Ri,Di), i = 1..nfeeds (4.16)

Fi < 2.4, i = 1..nfeeds (4.17)

Fi > 0.8, i = 1..nfeeds (4.18)

Stot < StotU (4.19)

Stot > StotL (4.20)

ConCost ConCosti≥

RebCost RebCosti≥

WCost
Pi WCosti()

nfeeds

i 1=

nfeeds

∑=

SCost
Pi SCosti()

nfeeds

i 1=

nfeeds

∑=

Ri ŜikStoti
k

k 0=

2

∑≥

Ŝik F̂ijkFraci
j

j 0=

2

∑=

97

Fraci < FracUi, i = 1..nfeeds (4.21)

Fraci > FracLi , i = 1..nfeeds (4.22)

The cost functions in equations 4.4-4.8 are Guthrie cost calculations and are

functions of the total feed flowrate, the reflux ratio, distillate flowrate, and the

flooding factor [Douglas, 88]. The flooding factor, F, is a dimensionless quantity,

representing how close the column is to the flooding limit. For tray spacing of 2

feet, a flooding factor of 2.51 represents flooding [Douglas, 88]. Normally, we

would design at 60% of flooding, but, for the flexible design problem, the column

may need to run close to flooding for some feeds and close to weeping for others.

We are designing the condenser and the reboiler in equations 4.9 and 4.10

to be large enough for the largest demand. Since the cost of the exchangers is

based on area, an exchanger with the largest area will have the highest cost and

we assume can be operated to handle the other feeds. The utility costs in

equations 4.11 and 4.12 are a weighted average over all the feeds, where Pi is the

probability of feed i occurring over the time period of interest. Equations 4.13 and

4.14 are the reflux approximations for each feed. Note that equation 4.13 requires

the reflux ratio to be greater than or equal to the reflux required for the specified

separation. This allows the column to over-separate when the weeping limit is

encountered. Equation 4.15 relates the height of the column to the number of

trays. Fi is the flooding factor for column i and is a function of the total feed

flowrate, the reflux ratio, and the diameter. We determine the bounds used in

equations 4.19-4.22 based on the data points used for the approximation of each

column.

If the result from MINOS is on the bounds for the number of stages or the

feed tray location, Stot or Frac, we perform the approximation again about the

new point. If the point is in a corner, we need to generate 5 new points. If it is on

an edge, we only generate 3 new points. Figure 4.9 shows two steps from an

initial approximation. The first hits only the bound on Stot, so we use 6 existing

98

Figure 4.9. Reapproximation example

data points and create 3 more for the new approximation. The second

optimization hits the upper bound on both Stot and Frac, so we can use 4 existing

data points and must create 5. We keep looping through reapproximations and

optimizations until the optimum is not on the bound for trays or feed tray

location. This is a local minimum of cost based on the current approximation

range. At this point, we could reduce the approximation range and re-optimize to

get a more accurate solution.

4.10 Flexible Design Examples

We used the algorithm described above to design a flexible column for a

propanol, isobutanol, butanol system. There were four possible feeds, each

equally likely, and we required that 99% of the propanol and 1% of the isobutanol

would be in the distillate. The component flowrates of each feed are listed in Table

4.1. Table 4.1 also shows the reflux ratios for the initial solution of 86 trays. After

optimizing, the solution had 64.15 trays, and a cost of $210,000/year. The reflux

ratios, flooding factors, and feed locations for the final solution are also Table 4.1.

Frac

Stot

99

Our second example is an acetone, chloroform, benzene system. We used

approximately the three feeds shown on Figure 4.6. We desire a column that can

perform the first separation task in each flowsheet. The two feeds to the left of the

distillation boundary are separated to 99% pure acetone and the distillation

boundary. The feed to the right of the boundary is separated to 99% pure benzene

and a mixture of acetone and chloroform. We uses the alternative in Figure 4.3 for

azeotropic systems where we first meet the purity specification of one of the

product streams at a very low flowrate and then increase the flowrate of the

product. For example, we want the first two feeds to have 99% pure acetone from

the top, but the recovery of acetone will not be 99%. We set the distillate flowrate

to a small number and met the purity specification on acetone while solving for

the reflux ratio and the number of trays. Then we incrementally increased the

distillate flowrate as far as it would go while maintaining the purity on acetone.

Table 4.2 shows the information for this problem. The initial solution had

24.2 trays. The final solution had 27.7 trays, and a cost of $150,000/year. This

example demonstrates how a column can be designed for completely different

separation tasks.

Table 4.1: Flexible Design Example 1

Feed 1 Feed 2 Feed 3 Feed 4

Propanol feed 3 mole/s 1 mole/s 7 mole/s 3 mole/s

Isobutanol feed 3 mole/s 5 mole/s 3 mole/s 9 mole/s

Butanol Feed 3 mole/s 5 mole/s 3 mole/s 3 mole/s

Reflux ratio
(86 trays)

5.73 17.61 3.69 5.73

Reflux ratio 6.18 20.91 3.84 5.71

Flooding factor 1.52 1.67 2.35 1.43

Feed location 0.51 0.47 0.64 0.47

100

4.11 Conclusions

This collocation method is an excellent tool for distillation design. By

having the number of trays as a continuous variable, we are able to develop new

concepts and techniques for distillation design and optimize the size of the

distillation column. While developing the algorithms, we discovered some

techniques that significantly improve the performance and enabled us to

automate the design process. By modeling in the ASCEND system, we were able

to learn how to solve these problems and create the tools for anyone to use our

algorithms.

We demonstrated how a single column can be designed to deal with

different separation tasks, providing the building block for more complex flexible

design problems. This collocation method and these basic design algorithms

should enable development of an algorithm for design of solvent recovery plants.

However, we should note that this tool only finds the best design assuming the

Table 4.2: Flexible Design Example 2

Feed 1 Feed 2 Feed 3

Acetone
feed

3 mole/s 3 mole/s 1 mole/s

Chloroform
feed

3 mole/s 1 mole/s 6 mole/s

Benzene
feed

2 mole/s 3 mole/s 3 mole/s

Reflux ratio
(24 trays)

12.4 6.8 3.6

Reflux ratio 11.5 4.8 2.5

Flooding
factor

2.06 1.13 2.4

Feed
location

0.78 0.85 0.5

101

column must perform all the separation tasks. It may be more economical to have

extra columns or to store mixtures for a time. The overall flexible design problem

needs to address these issues.

Acknowledgment

Support from Eastman Chemicals and DOE contract number DE FG02-

85ER13396 provide support for this research. Facilities support is from NSF grant

number EEC-8942146 which supports the EDRC, an NSF funded Engineering

Research Center.

102

Nomenclature

R Reflux ratio

Stot Total number of stages in a column

Coefficient of reflux ratio fit.

Coefficient of reflux ratio fit.

Frac Fractional location of the feed tray down the column.

ColCost Material cost of column.

RebCost Material cost of reboiler.

ConCost Material cost of condenser.

Wcost Operating cost of cooling water.

Scost Operating cost of steam.

Feed Feed stream to column.

Dist Distillate product from column

nfeeds Number of possible feed streams.

H Height of column.

F Flooding factor.

StotU Upper bound on number of stages.

StotL Lower bound on number of stages.

FracU Upper bound on fractional location of feed tray for column.

FracL Lower bound on fractional location of feed tray.

Ŝ

F̂

103

References

Douglas J. M., 1988, Conceptual Design of Chemical Processes, McGraw-Hill

Grossmann, I. E, K. P. Halemane, and R.E. Swaney. 1983 “Optimization Strategies

for Flexible Chemical Processes.” Comp. Chem Eng. 7, 439-462

Halemane, K. P. and I. E. Grossmann. 1983. “Optimal PRocess Design Under

Uncertainty.” AIChE J. 29, 425-433

Huss, R. S. and A. W. Westerberg. 1995. “Collocation Methods for Distillation

Design I: Model Description and Testing” to be submitted.

Huss, R. S. and A. W. Westerberg. 1995. “Collocation Methods for Distillation

Design II: Minimum Reflux” to be submitted.

Piela, P., McKelvey, R., and Westerberg, A. 1993, “An Introduction to the ASCEND

Modeling System: Its Language and Interactive Environment,” J. Management

Information Systems, 9, 91-121

Wagler, R. M. and P. L Douglas. 1988 “A Method for the Design of FLexible

Distillation Sequences.” Canadian J. of Chem. Eng. 66, 565-581

104

CHAPTER 5

ASCEND MODEL DESCRIPTIONS

5.1 Introduction

In this chapter we will briefly describe the ASCEND models and structure

that we used for this thesis. In the Appendix we include the ASCEND code so

someone could reproduce the equations we have used. We only include enough

of each library to model a single acetone, chloroform, benzene column. We only

provide instruction for using the interface with the ASCEND system. We include

this lengthy ASCEND code to present the equations of our models for anyone

who wants to reproduce them. Since our formulation of the models is strongly

dependent on the ASCEND system, we include the code rather than just the

equations. This allows us to demonstrate the hierarchical nature of ASCEND.

105

For brevity, we do not include some of the standard procedures which are

functionally identical for each model. Specifically, we have removed the clear and

scale procedures from every model. Within each model, clear sets all the

variables’ fixed flags to FALSE, and includes all equations. The scale procedure

sets the nominal values of all the variables within the model based on their

current value and adjusts bounds relative to a scaling factor where reasonable. We

also do not include the models we created to facilitate plotting of the columns. If

anyone is interested in using these models in ASCEND, the system and models

are available from an ftp site at Carnegie Mellon University. Contact the authors

for more information.

5.2 Thermodynamics:

We are not going to describe in detail the thermodynamic models, but we

will describe the structure and use of the thermodynamics library. For our

purposes, the mixture model is the basic building block. The model mixture

simply contains a set of type symbol for the names of the components in the

mixture, and an array of mole fractions over that set. The only equation needed is

one requiring that the sum of the mole fractions equals 1.

The model homogeneous_mixture refines mixture, but does not add

anything to the model. This refinement merely gives us a type distinction for a

single phase mixture model with no thermodynamics. The model

td_homogeneous_mixture refines homogeneous_mixture, adding

thermodynamic variables, pure_component models and partial_component

models for each component. This can be refined to either UNIFAC_mixture,

Pitzer_mixture, or Wilson_mixture. UNIFAC_mixture and Wilson_mixture are

liquid mixture models, and Pitzer_mixture is a vapor mixture model.

The model heterogeneous_mixture refines mixture, adding structure and

equations for a multiphase mixture model without thermodynamics. This model

defines the phase equilibrium in terms of constant relative volatilities. The model

106

td_heterogeneous_mixture refines heterogeneous_mixture, adding

thermodynamics variables, and td_homogeneous_mixture models for each

phase. This can be refined to equilibrium_mixture, which merges the partial

molar Gibbs free energies of each component in the different phases, and releases

the constant relative volatilities. Also, td_heterogeneous_mixture can be refined

to murphree_equilibrium_mixture, which assumes vapor-liquid equilibrium

and adds an extra vapor mixture model to incorporate Murphree efficiencies.

5.3 Stream Models

The basic stream model which includes no thermodynamics has a total

flowrate, a molar flowrate for each component in the stream, and a simple

mixture model, named state, that has only mole fractions. The only equations in

the model molar_stream are those defining the relationship between the mole

fractions and the molar flowrates.

There are three refinements of this basic stream model, a liquid stream, a

vapor stream, and a vapor-liquid stream. Since each of these models will require

thermodynamics, we first create a thermodynamic stream model, td_stream,

which is a refinement of molar_stream. This model adds an array of component

constants data, one for each component. It also includes an energy flowrate which

will be useful for energy balances.

The models liquid_stream and vapor_stream are refinements of

td_stream, refining state to a Pitzer_mixture for the vapor and UNIFAC_mixture

for the liquid. These are full thermodynamic models from the thermodynamics

library for nonideal vapor and liquid mixtures. Both merge the molar enthalpy

from the mixture model with that defined in td_stream.

The model vapor_liquid_stream model refines state to a

td_heterogeneous_mixture, and defines that the phases will be vapor and liquid,

using Pitzer and UNIFAC mixture models.

107

This hierarchy of stream models allows us to model first using molar streams, and

then refine specific streams to being liquid, vapor, or liquid-vapor streams.

5.4 Flash Models

The building block for the flash library is VLE_flash. This model has no

thermodynamics, using molar streams and simple mixture models. Inputs, liquid

outputs, and vapor outputs are defined as arrays over sets that are as yet

undefined. A part named VLE is defined as a heterogeneous_mixture, which is a

multiphase mixture model using only constant relative volatilities. All of the

liquid output streams are defined to have identical mixtures. The same is true for

the vapor output streams. An array of fractions for the liquid and vapor outputs

defines the relative flowrates of each output stream.

A standard column tray has a liquid input, vapor input, liquid output, and

vapor output. The model simple_tray refines VLE_flash and defines that there

are two inputs, one named liquid and one named vapor, and that there is one liquid

output and one vapor output. Since this model still has no thermodynamics, we

define a constant molar overflow relationship between the input and output

liquid, creating a slack variable, cmo_ratio, which is fixed at 1.0 when constant

molar overflow is assumed.

A standard feed tray, simple_feed_tray is much like any other tray in a

column except that it has an extra input stream, which we name feed. We use the

standard definition of quality to formulate the equation defining the state of the

feed. For a q of 1.0, the liquid output will be equal to the liquid input plus the feed

stream.

The model condenser also refines VLE_flash, with one input stream

named vapor and two liquid outputs named liquid and distillate, and one vapor

output name vapor_product. We also create a stream named totprod that is the sum

of the distillate and vapor product streams. The reflux_ratio is defined relative to

108

the total product flowrate.

The model reboiler is very similar to the condenser model, but its single

input is a liquid stream. It has a single liquid output stream named bottoms and

two vapor output streams, one named vapor and one named vapor_product. Again,

a totprod is defined as the sum of the bottoms and vapor_product outputs. The

reboil_ratio is defined relative to this total product flowrate.

For each of the above models, we create a refinement to add

thermodynamics to the model, putting the prefix td_ before each model name. For

each model, the streams we consider liquids and vapors are refined to liquid and

vapor streams, and the VLE model is refined to td_heterogeneous_mixture. The

input stream named feed in the simple_feed_tray is refined to a

vapor_liquid_stream so we can control the quality of the feed stream directly. For

each model we create the variable Qin for the heat duty of the flash and define an

energy balance. When using the constant molar overflow assumption, Qin will be

non-zero, representing the non-adiabatic state. When we wish to enforce the heat

balance, cmo_ratio or q can be freed up, and the heat duty set to zero.

With this hierarchy of flash models, the generic model for a distillation

column is an array of VLE_flash, and we can refine the individual trays as

required for a particular column configuration.

5.5 Collocation Models

The model lagrange_polynomial is the building block for the polynomial

equations for any number of collocation points. The models lgr_1_point,

lgr_2_points, lgr_3_points, lgr_4_points, and lgr_5_points refine

lagrange_polynomial for 1,2,3,4, or 5 collocation points.

The model collpoint relates stage number, s, with the transform variable z,

using the parameters a and up_down. The change in z across the collocation point

109

depends on the value of a and whether the numbering is going up or down the

collocation section.

The model z_set contains an array of collpoint models and the

lagrange_polynomial model. This model contains equations equating either the s

values or the z values for the collocation points with the points defining the

polynomial in the lagrange_polynomial. When we wish to use the variable

transformation on stage number, we uninclude the equations for s (s_based) and

include the equations for z (z_based).

The model coll is the generic collocation section model. It includes an array

of simple_tray models, as well as the z_set model. It contains equations for

polynomials of mole fraction or transformed mole fraction. Again, when we wish

to use the variable transformation, we include the equations named trans and

uninclude the equations named frac.

The model coll_stack is an array of coll models, merging the streams

joining the models. We use coll_stack to model a column section. It can have any

number of collocation sections.

The model coll_column is an array of coll_stack models, with

simple_feed_tray between them and a condenser at the top and a reboiler at the

bottom. We also define the recovery of each component in the distillate,

xsi[components] and the binary separation of each pair of components,

binary_sep[components][components].

The model td_coll refines coll to include thermodynamics in the model. It

refines the trays to td_simple_tray, and the end streams to td_stream. The model

h_coll refines td_coll to include polynomial equations for the enthalpy.

The model td_coll_stack refines coll_stack to include thermodynamics.

Each collocation section is refined to td_coll. The model td_coll_column refines

110

coll_column also to include thermodynamics. It refines each coll_stack to

td_coll_stack, each feed tray to td_simple_feed_tray, the condenser to

td_condenser, and the reboiler to td_reboiler. Finally, equilibrium_coll_column

refines td_coll_column to include equilibrium equations. It refines the vapor-

liquid model on each tray is to equilibrium_mixture.

We also have plotting models which we link to the collocation models, but

we do not include them here, as they are quite long, and do not contribute to the

model.

5.6 Column Cost Models

The model cost_calc includes the Guthrie cost calculations for the column,

condenser, reboiler, cooling water, and steam. It also includes some range

calculations on the operating costs if the total flowrate of the feed changed. The

model cost_column includes both a coll_column model and a cost_calc model,

linking the variables that the cost calculation needs to the column model.

We use reflux_fit to determine the coefficients of the approximation

polynomial for reflux ratio from the data points collected with the column model.

The model appoximate_column is a column cost model using the approximation

polynomial for reflux ratio. The approximate cost calculation also uses some

variables from the column model at the center point of the approximation to

calculate the operating costs.

The model apcol_set contains an array of approximate_column models,

linking the variables that should not change if the same column is to be used by

each potential feed. It also includes an overall cost calculation, taking the cost for

the reboiler and condenser from the largest of the possible columns and averaging

the operating costs based on the probability of each feed.

Finally, standard_cost refines column_w_plot, linking a cost_column

111

model with the plotting model and the approximate models (col_set). It also

includes a reflux_fit (col_fit) model for each potential feed and links the

coefficients from col_fit to col_set. This is the model we refine to create new

designs.

112

CHAPTER 6

USE OF THE FLEXIBLE COLUMN CREATOR

6.1 Use of the Application

To run the Flexible Column Creator, the user must be running ASCEND.

From the command line in ASCEND, he can start the application by typing,

source main.tcl

assuming he is in the column design directory. This should read in the libraries

needed and create the application window, shown in Figure 6.1. First we will

describe the general structure of the window.

At the top are the menus, under that are entry boxes for choosing a file and

113

model name. Under that are two list boxes for choosing components. Under that

are a set of buttons. And under the buttons is a message box, which will contain a

description of whatever button or region the mouse is over.

Figure 6.1. Column Design Interface

6.2 File Menu

Open Settings will bring up a file select box for the user to choose a

114

settings file to source. We use the suffix .col for settings files, and they contain

code for regaining any choices the user has made in the application, like the

components selected, the feed and recovery specifications, etc.

Save Settings will bring up a file select box for the user to choose a name

for the creation of a settings file. If the user chooses an already existing filename, it

will be overwritten. We use the suffix .col for settings files, but it is not mandatory.

Disable Message Box will remove the message box from the window.

Enable Message Box will restore the message box to the window.

Write Values will write the current model in ASCEND to a values file,

naming it modelname.values, where modelname is the user defined name for the

model. It will overwrite any existing file of that name.

Read Values will read in the values file created by Write Values.

Save All Values is for saving the current set of solutions for the flexible

design problem. The flexible design problem will solve the column for the

different potential feeds and create virtual saves of each solution. This will read

each virtual save and create a separate values file for it.

Update Values is also for the flexible design problem. It will read in each of

the values files created by Save All Values and create a virtual save for each of

them. This is useful for continuing with a flexible design model on a different day.

The user can read in the settings from the other day, read and compile the model,

and then update the values.

Quit destroys the window. It does not quit ASCEND, destroy any models,

nor clear any tcl variables.

115

6.3 Options Menu

List components alphabetically reorders the components library list to be

alphabetical.

List components by boiling point reorders the components library list to

be in the order of increasing boiling point.

Set globals creates an input window where the user can view or change

the important variables that the application uses. Most of these can be changed

through the interface, or are changed when different parts of the algorithm are

executed. The variables plot_dir, values_dir, and logfile set the destination

directory for plots, values and log files. The variable delta sets how big of a step

the meet specifications procedure will take. Also max and min set the range of the

approximation for the flexible design problem.

Color Settings creates a window for changing the color settings of the

application. Standard names of colors can be input for each entry, or, by pressing

Control-Mouse1, the user will bring up a color select box.

Procedure Menus will create extra menus for the procedures used by the

application. In most cases, clicking these procedures in their menus will not work,

because they require arguments, but it is useful for the more advanced user to

have a list of the procedures available.

6.4 Entry Boxes

The first thing a user should do is enter their own file and model name in

the two entry boxes in the top of the window.

File Name is the entry box for the name of the file to which the model will

be written.

Model Name is the entry box for the name of the model.

116

6.5 Component Lists

Components Library is the list of all the components currently in the

ASCEND components library. The library listing can be shown either in

alphabetical order or by boiling point order. The options menu allows the user to

change this.

Your Components is the list of the components the user has chosen.

The user can select components from the left list box by clicking on them

and then hitting the ----> key. Any number of components can be selected.

The user can remove components from his own list by selecting a

component in the right list and hitting the Remove button.

The Check button checks the components for possible azeotropes and puts

them in boiling point order. This check is done against a database we created by

doing infinite dilution equilibrium calculations for each binary pair. From this

database we can guess if binary azeotropes or heterogeneous behavior will occur.

If heterogeneous behavior is expected, we warn the user that the models will be

inaccurate, since we do not consider liquid-liquid equilibrium yet.

6.6 Settings Buttons

The Set Feed button brings up an entry window, asking the user first for

how many feeds he wants. This is for the flexible design problem, not for multiple

feeds to a single column. If a standard design is desired, the user should input 1.

Then a dialog box will pop up, asking for the molar flowrate of each component

in each feed. If the user wants to do a flexible design problem, he can input how

every many feeds he wishes.

The Set Recovery button brings up a dialog box asking the user to pick the

light and heavy key and set the recovery of each. The recovery is the fraction

leaving the top of the column, so the light key recovery must be higher than the

117

heavy key recovery.

The Write Model button will create an ASCEND model named whatever

the user entered in the Model Name entry line in the file the user entered on the

File Name line. If the file already exists, the model will be appended to it. If it

does not already exist, it will create the file.

6.7 Creating Buttons

The Read and Compile button will read the file into ASCEND and compile

it. It will also run the values and specify procedures and export it to the Browser.

At this point, or at any later point, the user can explore and manipulate this model

like any other in ASCEND.

The Solve Column button will run the SolvCol1 procedure described

above. The I/O window will show the progress of this procedure.

The Plot Column button can be used at any time once the model is read

and compiled in ASCEND. It will create a plot file with the same name as the

model with the suffix plot, e.g. mymodel.plot. It will also try to plot it with

whatever plotting command the ASCEND user has set in the Utilities window.

6.8 Running Buttons

The SetupMeetSpec button gives the user 3 choices about how to

approach the recovery specification. We suggest option 1 be tried first. It will

attempt to meet the recovery specifications while trying to move the average

slopes of the key components in the top and bottom to 0.01. This is not always

achievable, but it is a reasonable starting point and will increase the number of

trays in each column section. Option 2 has a similar effect, but assumes that the

initial slopes are good ones. The third option is suggested as a second attempt

option, after doing 1 or 2. Once a fairly large number of trays are modeled, it is

reasonable to fix them and just go for the recoveries.

118

The Meet Specs button will run the MultipleMeetSpec procedure with the

settings made with the Setup MeetSpec button. If the multiple specifications

cannot be met, it will prompt the user to ask if he wants to try for each key

recovery separately. Note that the settings given to MultipleMeetSpec can be

accessed with the Set globals choice in the Options menu. They are keys (full

ASCEND name of the key components), specs (specifications for the key

components), and delta (initial step size towards specification).

The Optimize This button will use our gradient based optimization

procedure to try to minimize the cost of the column by adjusting the number of

trays and the feed tray location, while holding the recovery specifications and

solving for the reflux ratio and distillate flowrate.

The Setup All button will attempt to get starting solutions for each

possible feed for the flexible design problem. If it has problems, it will prompt the

user for choices on meeting the specifications.

6.9 Flexible Optimization

Do Optimization will try to do the full flexible design optimization

routine. First it will create the initial approximation and locally optimize this.

Then it will move the approximation as needed and re-optimize iteratively until

the local optimum is within the borders of the approximation. Then it will reduce

the range of the approximation and initiate the approximation again and resolve

the optimization problem.

Initiate Approximation will do only do the approximation for each of the

columns and one optimization, setting up the optimization problem.

Optimize Once will find the local minimum for a particular level of

approximation, moving the approximation region and re-optimizing until the

minimum does not occur on a boundary of the approximation region.

119

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

We have developed a general collocation method capable of modeling

ideal, nonideal, and azeotropic distillation column over a wide range of operating

conditions. The model can simulate fewer trays than there are collocation points

or near pinch conditions. It can also model systems with very high separations,

with trace components below 10-8.

We found that the collocation method could accurately reduce the order of

column models. The variable transformations on stage location and mole fraction

greatly expanded the capabilities of the collocation method, overshadowing the

120

effect of point placement. We also demonstrated that the choice of point

placement is nontrivial, and that the optimum point placement will be different

for different systems.

We explored conditions near minimum reflux by simulating large column

sections with the collocation model. We demonstrated that the sensitivity of reflux

ratio to the amount of trace species can be significant, but that it drops sharply

when the separation between key components is nonsharp. We demonstrated that

a pinch point calculation connected to a finite column section is the appropriate

model for nonsharp minimum reflux calculations, and that by making the finite

column section large we can approach saddle pinch conditions. We encountered

numerical instability with the collocation model near the saddle pinch point and

compensated for this by detecting the error with an extra collocation point. To

approximate sharp split minimum reflux, we approach the saddle pinch to the

limit of the stability of the model. Generally we believe this approximation will

over-approximate the actual minimum reflux.

We developed design algorithms for standard column design and flexible

column design. We have found the ASCEND system an excellent tool for learning

how to define and solve models. We designed a single column as would exist in a

flexible solvent recovery plant for an azeotropic system. It was designed to handle

three possible feeds, each with a distinct separation task. Our flexible

optimization approach does not involve complex manipulations of the equations

involved.

We have created a design tool which can be used with the ASCEND system

to design standard columns or flexible columns. It can be used with little

knowledge of the models involved, but it can be a powerful research tool to the

experienced modeler.

121

7.2 Future Directions

Primarily, this collocation method can be used for designing standard

distillation columns. With this model, the number of trays in each column section

is a continuous variable, allowing optimization for the size of the column and

feed tray location. We hope others will incorporate this model into design tools.

Some companies have already expressed an interest in doing so.

This method does introduce many adjustable parameters which perform

adequately at the values we have been using them. However, we believe there is

room for improvement through understanding the physical effect of these

parameters. As an example, the affect of the parameter a is to de-emphasize the

section of the column where little activity occurs. For a low relative volatility

system, it takes many trays to approach a pinch condition. However, for high

relative volatilities the column profile can flatten out in only a few trays. This

parameter will affect these two systems differently.

Our main hope for future research is in flexible distillation design. One

possible direction is to employ the methods described by Sargent [1994] using the

collocation model. He describes the use of a state-task-network to represent the

superstructure of a distillation sequence. We could model such a superstructure

with linked collocation elements. The same network could perform several

separation tasks, with specific parts of the network representing different

columns for different structures.

122

Nomenclature

A Simplification variable for Kremser approximation (L/KV)

α Mole fraction average relative volatility

a Parameter for exponential transformation of stage location

α Parameter of Jacobi polynomial

αi Relative volatility of species i

β Parameter of Jacobi polynomial

ColCost Material cost of column.

ConCost Material cost of condenser.

Dist Distillate product from column

fint Factor for selection of spread of collocation points

fmid Factor for selection of the midpoint of collocation points

F Flooding factor.

Coefficient of reflux ratio fit.

Feed Feed stream to column.

Frac Fractional location of the feed tray down the column.

FracU Upper bound on fractional location of feed tray for column.

FracL Lower bound on fractional location of feed tray.

h Liquid molar enthalpy

H Vapor molar enthalpy

H Height of column.

K Equilibrium constant used in Kremser approximation

L Liquid molar flowrate

n Order of polynomial

nc Number of components

np Number of phases

ns Number of collocation points

nfeeds Number of possible feed streams.

P Pressure

F̂

123

Pn Jacobi polynomial of order n

R Reflux ratio

RebCost Material cost of reboiler.

s Stage location

Coefficient of reflux ratio fit.

Scost Operating cost of steam.

Stot Total number of stages in a column

StotU Upper bound on number of stages.

StotL Lower bound on number of stages.

T Temperature

V Vapor molar flowrate

Wk kth term of Lagrange polynomial

wk Position of bottom of tray k

wmid Midpoint for placement of collocation points

Wcost Operating cost of cooling water.

wtopk Position of top of tray k

xi Liquid mole fraction of component i

Transformed mole fraction

yi Vapor mole fraction of component i

z Transformed stage location

Ŝ

x̂i

124

References

Carnahan B., Luther H. A., Wilkes J. O., 1969, Applied Numerical Methods, Wiley,

New York.

Cho Y.S. and B. Joseph., 1983. “Reduced-Order Steady-State and Dynamic Models

for Separation Processes.” AIChE J. 29, 261-269, 270-276

Douglas J. M., 1988, Conceptual Design of Chemical Processes, McGraw-Hill

Grossmann, I. E, K. P. Halemane, and R.E. Swaney. 1983 “Optimization Strategies

for Flexible Chemical Processes.” Comp. Chem Eng. 7, 439-462

Halemane, K. P. and I. E. Grossmann. 1983. “Optimal PRocess Design Under

Uncertainty.” AIChE J. 29, 425-433

Julka V., and M. F. Doherty, 1990. Geometric Behavior and Minimum Flows for

Nonideal Multicomponent Distillation. Chemical Engineering Science, 45, p.

1801-1822.

Koehler J., P Aguirre, and E. Blass., 1991. “Minimum Reflux Calculations for

Nonideal Mixtures Using the Reversible Distillation Model.” Chem. Eng. Sci.,

46. 3007-3021.

Levy S. G., D.B. Van Dongen, and M. G. Doherty., 1985“Design and Synthesis of

Homogeneous Azeotropic Distillations II: Minimum Reflux Calculations for

Nonideal and Azeotropic Columns.” Ind. and Eng. Chem. Fun., 24 463-474

Piela, P., McKelvey, R., and Westerberg, A. 1993, “An Introduction to the ASCEND

Modeling System: Its Language and Interactive Environment,” J. Management

Information Systems, 9, 91-121

Seferlis P and A. N. Hrymak, 1994, ‘Optimization of Distillation units using

collocation models’, AIChe J. 40, 813-825

125

Seferlis P and A. N. Hrymak, 1994, “Adaptive Collocation of Finite Elements

Models for the Optimization of Multi-Stage Distillation Unit,” Chem. Eng. Sci..

49, 1369-1382

Stewart W. E., K. L. Levien, and M. Morari. 1984. “Collocation Methods in

Distillation.” in Westerberg, A.W., and H.H. Chien (eds), Proc. 2nd Intn’l Conf.

Foundations Computer-aided Process Design (FOCAPD’83), CACHE Corp,

Ann Arbor, MI, 535-569.

Swartz C. L. E. and Stewart W. E. 1986, “A Collocation Approach to Distillation

Column Design,” AIChE J. 32, 1832-1838

Swartz C. L.E. and Stewart W. E. 1987, “Finite-Element Steady State Simulation of

Multiphase Distillation,” AIChE J. 33, 1977-1985

Underwood, A. J. V. J. Inst. Pet. 1945, 31, 111

Underwood, A. J. V., J. Inst. Pet. 1946, 32, 598

Underwood, A. J. V., Chem. Eng. Prog. 1948, 44, 603

Wagler, R. M. and P. L Douglas. 1988 “A Method for the Design of FLexible

Distillation Sequences.” Canadian J. of Chem. Eng. 66, 565-581

Wahnschafft O. M. 1992, “Synthesis of Separation Systems for Azeotropic

Mixtures with and Emphasis on Distillation-Based Methods,” Ph.D. Thesis,

Dept of Chem. Eng., Technical University of Munich.

126

Appendix

(***\
 system.lib
 by Benjamin A. Allan
 Part of the Ascend Library
This file is part of the Ascend modeling library.
Copyright (C) 1994
The Ascend modeling library is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Ascend Language Interpreter is distributed in hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with
the program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
***)
(*===*
 S Y S T E M . L I B

 AUTHOR: Benjamin A. Allan
 DATES: 06/94 - Original Code
 CONTENTS: Basic definitions for relation, solver_var,
 and generic_real. This file is necessary for all
 other ASCEND models to work on ASCEND3C
 REQUIRES:
 ===)
RELATION_DEFINITION
 included IS_A boolean;
 included := TRUE;
END;
ATOM solver_var REFINES real;
 lower_bound IS_A real;
 upper_bound IS_A real;
 nominal IS_A real;
 fixed IS_A boolean;
 fixed := FALSE;
END solver_var;
ATOM generic_real REFINES solver_var

DIMENSIONLESS
DEFAULT 0.5;

 lower_bound := -1e50;
 upper_bound := 1e50;
 nominal := 0.5;
END generic_real;

127

(***\
 atoms.lib
 by Joseph J. Zaher,
 Benjamin A. Allan,
 Robert S. Huss
 Part of the Ascend Library
This file is part of the Ascend modeling library.
Copyright (C) 1994
The Ascend modeling library is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Ascend Language Interpreter is distributed in hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with
the program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
***)
(*==*
 A T O M S . L I B

 AUTHOR: Joseph J. Zaher
 DATES: 07/91 - Original code.
 02/92 - Eliminated “display_units” assignments, added
 commonly used UNIVERSAL constants and transport
 quantities.
 04/92 - Added electro-magnetic quantities.
 06/92 - Converted by Ben Allan to be compatible with ASCEND3C
 08/92 - Additional monetary atoms added by Bob Huss
 CONTENTS: ASCEND atom definitions for engineering variable types.
 Many of the anticipated dimensional variables which occur
 in engineering design calculations are given to provide a
 means of standardization. Chosen defaults, nominal, and
 lower and upper bound values should be re-specified if
 necessary to enhance the convergence properties of
 specific models. Units to be displayed are to be controlled
 using the UNITS tool kit of the environment.
 REQUIRES: system.lib
 ==)

ATOM constant REFINES real;
END constant;
UNIVERSAL ATOM gas_constant REFINES real

DIMENSION M*L^2/T^2/Q/TMP
DEFAULT 1{GAS_C};

END gas_constant;
UNIVERSAL ATOM circle_constant REFINES real

DIMENSIONLESS
DEFAULT 1{PI};

END circle_constant;
UNIVERSAL ATOM scaling_constant REFINES real

DIMENSIONLESS
DEFAULT 1e8;

END scaling_constant;

ATOM temperature REFINES solver_var
DIMENSION TMP
DEFAULT 298.0{K};

128

 lower_bound := 0.0{K};
 upper_bound := 10000{K};
 nominal := 298.0{K};

END temperature;
ATOM pressure REFINES solver_var

DIMENSION M/L/T^2
DEFAULT 1.0{atm};

 lower_bound := 0.0{psia};
 upper_bound := 1000{atm};
 nominal := 1.0{atm};

END pressure;
ATOM molar_mass REFINES solver_var

DIMENSION M/Q
DEFAULT 100.0{g/g_mole};

 lower_bound := 0.0{g/g_mole};
 upper_bound := 1e9{g/g_mole};
 nominal := 100.0{g/g_mole};

END molar_mass;
ATOM mass REFINES solver_var

DIMENSION M
DEFAULT 10.0{kg};

 lower_bound := 0.0{kg};
 upper_bound := 1e50{kg};
 nominal := 10.0{kg};

END mass;
ATOM mole REFINES solver_var

DIMENSION Q
DEFAULT 10.0{lb_mole};

 lower_bound := 0.0{lb_mole};
 upper_bound := 1e50{lb_mole};
 nominal := 10.0{lb_mole};

END mole;
ATOM mass_rate REFINES solver_var

DIMENSION M/T
DEFAULT 50{g/s};

 lower_bound := 0.0{g/s};
 upper_bound := 1e50{g/s};
 nominal := 100.0{g/s};

END mass_rate;
ATOM molar_rate REFINES solver_var

DIMENSION Q/T
DEFAULT 100.0{lb_mole/hour};

 lower_bound := 0.0{lb_mole/hour};
 upper_bound := 1e50{lb_mole/hour};
 nominal := 100.0{lb_mole/hour};

END molar_rate;
ATOM molar_volume REFINES solver_var

DIMENSION L^3/Q
DEFAULT 1000.0{cm^3/g_mole};

 lower_bound := 0.0{cm^3/g_mole};
 upper_bound := 1e50{cm^3/g_mole};
 nominal := 1000.0{cm^3/g_mole};

END molar_volume;
ATOM volume REFINES solver_var

DIMENSION L^3
DEFAULT 100.0{ft^3};

 lower_bound := 0.0{ft^3};
 upper_bound := 1e50{ft^3};
 nominal := 100.0{ft^3};

129

END volume;
ATOM volume_rate REFINES solver_var

DIMENSION L^3/T
DEFAULT 100.0{gpm};

 lower_bound := 0.0{gpm};
 upper_bound := 1e50{gpm};
 nominal := 100.0{gpm};

END volume_rate;
ATOM volume_expansivity REFINES solver_var

DIMENSION 1/TMP
DEFAULT 0.001{1/K};

 lower_bound := 0.0{1/K};
 upper_bound := 1e50{1/K};
 nominal := 0.001{1/K};

END volume_expansivity;
ATOM molar_density REFINES solver_var

DIMENSION Q/L^3
DEFAULT 0.1{mole/m^3};

 lower_bound := 0.0{mole/m^3};
 upper_bound := 1e50{mole/m^3};
 nominal := 0.1{mole/m^3};

END molar_density;
ATOM mass_density REFINES solver_var

DIMENSION M/L^3
DEFAULT 1.0{g/cm^3};

 lower_bound := 0.0{g/cm^3};
 upper_bound := 1e50{g/cm^3};
 nominal := 1.0{g/cm^3};

END mass_density;
ATOM molar_energy REFINES solver_var

DIMENSION M*L^2/T^2/Q
DEFAULT 10000.0{BTU/lb_mole};

 lower_bound := -1e50{BTU/lb_mole};
 upper_bound := 1e50{BTU/lb_mole};
 nominal := 10000.0{BTU/lb_mole};

END molar_energy;
ATOM energy REFINES solver_var

DIMENSION M*L^2/T^2
DEFAULT 100000.0{BTU};

 lower_bound := -1e50{BTU};
 upper_bound := 1e50{BTU};
 nominal := 100000.0{BTU};

END energy;
ATOM energy_rate REFINES solver_var

DIMENSION M*L^2/T^3
DEFAULT 100000.0{BTU/hour};

 lower_bound := -1e50{BTU/hour};
 upper_bound := 1e50{BTU/hour};
 nominal := 100000.0{BTU/hour};

END energy_rate;
ATOM heat_capacity REFINES solver_var

DIMENSION M*L^2/T^2/Q/TMP
DEFAULT 1.00e5{J/mole/K};

 lower_bound := 0.0{J/mole/K};
 upper_bound := 1e60{J/mole/K};
 nominal := 1.00e5{J/mole/K};

END heat_capacity;
ATOM molar_entropy REFINES solver_var

DIMENSION M*L^2/T^2/Q/TMP

130

DEFAULT 100.0{BTU/lb_mole/R};
 lower_bound := -1e50{BTU/lb_mole/R};
 upper_bound := 1e50{BTU/lb_mole/R};
 nominal := 100.0{BTU/lb_mole/R};

END molar_entropy;
ATOM entropy REFINES solver_var

DIMENSION M*L^2/T^2/TMP
DEFAULT 1000.0{BTU/R};

 lower_bound := -1e50{BTU/R};
 upper_bound := 1e50{BTU/R};
 nominal := 1000.0{BTU/R};

END entropy;
ATOM entropy_rate REFINES solver_var

DIMENSION M*L^2/T^3/TMP
DEFAULT 1000.0{BTU/hour/R};

 lower_bound := -1e50{BTU/hour/R};
 upper_bound := 1e50{BTU/hour/R};
 nominal := 1000.0{BTU/hour/R};

END entropy_rate;
ATOM factor REFINES solver_var

DIMENSIONLESS
DEFAULT 1.0;

 lower_bound := -1e50;
 upper_bound := 1e50;
 nominal := 1.0;

END factor;
ATOM fraction REFINES solver_var

DIMENSIONLESS
DEFAULT 0.5;

 lower_bound := 0.0;
 nominal := 1.0;
 upper_bound := 1.0;

END fraction;
ATOM monetary_unit REFINES solver_var

DIMENSION C
DEFAULT 100.0{USdollar};

 lower_bound := -1e50{USdollar};
 upper_bound := 1e50{USdollar};
 nominal := 100.0{USdollar};

END monetary_unit;
ATOM cost_per_volume REFINES solver_var

DIMENSION C/L^3
DEFAULT 1.0{USdollar/gallon};

 lower_bound := 0.0{USdollar/gallon};
 upper_bound := 1e50{USdollar/gallon};
 nominal := 1.0{USdollar/gallon};
END cost_per_volume;
ATOM cost_per_mass REFINES solver_var

DIMENSION C/M
DEFAULT 1.0{USdollar/lbm};

 lower_bound := 0.0{USdollar/lbm};
 upper_bound := 1e50{USdollar/lbm};
 nominal := 1.0{USdollar/lbm};
END cost_per_mass;
ATOM cost_per_time REFINES solver_var

DIMENSION C/T
DEFAULT 1.0{USdollar/min};

 lower_bound := 0.0{USdollar/min};
 upper_bound := 1e50{USdollar/min};

131

 nominal := 1.0{USdollar/min};
END cost_per_time;

ATOM distance REFINES solver_var
DIMENSION L
DEFAULT 10.0{ft};

 lower_bound := 0.0{ft};
 upper_bound := 1e50{ft};
 nominal := 10.0{ft};

END distance;
ATOM area REFINES solver_var

DIMENSION L^2
DEFAULT 10.0{ft^2};

 lower_bound := 0.0{ft^2};
 upper_bound := 1e50{ft^2};
 nominal := 10.0{ft^2};

END area;
ATOM time REFINES solver_var

DIMENSION T
DEFAULT 60.0{s};

 lower_bound := -1e50{s};
 upper_bound := 1e50{s};
 nominal := 60.0{s};

END time;

132

(***\
 components.lib
 by Joseph J. Zaher
 Part of the Ascend Library
This file is part of the Ascend modeling library.
Copyright (C) 1994
The Ascend modeling library is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Ascend Language Interpreter is distributed in hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with
the program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
***)
(**
 **
 ** C O M P O N E N T S . L I B
 ** --
 **
 ** AUTHOR: Joseph J. Zaher
 **
 ** DATES: 07/91 - Original code.
 ** 02/92 - Made compatible with new set version of ASCEND.
 ** Expanded data base, revised vapor pressure data,
 ** and added UNIFAC group and subgroup sets with help
 ** of Bob Huss.
 ** 07/92 - Expanded data base with help of Kay C. Dee.
 ** 08/92 - Replaced name attribute of each component with a
 ** formula attribute. Component names are free to be
 ** specified by the user.
 ** 03/94 - Made compatible with gnu-ascend.
 ** 08/94 - Made compatible with H,G or H,S thermo library,
 ** and with Wilson models written by Boyd Safrit.
 **
 ** CONTENTS: ASCEND structure for component physical property constants.
 ** All anticipated constants which may be used by the models
 ** of “thermodynamics.lib” are created in a general model where
 ** a consistent reference state (298.15{K} and 1.0{atm}) is
 ** chosen. Specific refinements to actual chemical species are
 ** made UNIVERSAL to ensure only one instantiation of the
 ** constants for each component is maintained throughout a
 ** user’s simulation. A reference enthalpy and entropy is
 ** chosen by default to be those of formation of the component
 ** from its elements at the reference state.
 **
 ** REQUIRES: “atoms.lib”
 **
 **)
UNIVERSAL MODEL UNIFAC_constants;
 groups IS_A set OF symbol;
 sub[groups] IS_A set OF symbol;
 subgroups IS_A set OF symbol;
 group[subgroups] IS_A symbol;
 a[groups][groups] IS_A constant;
 R[subgroups], Q[subgroups] IS_A constant;

133

 groups := [‘CH2’, ‘C=C’, ‘ACH’, ‘ACCH2’,
 ‘OH’, ‘CH3OH’, ‘H2O’, ‘ACOH’,
 ‘CH2CO’, ‘CCl3’, ‘CCOO’];
 sub[‘CH2’] := [‘CH3’, ‘CH2’, ‘CH’, ‘C’];
 sub[‘C=C’] := [‘CH2=CH’, ‘CH=CH’, ‘CH2=C’,
 ‘CH=C’, ‘C=C’];
 sub[‘ACH’] := [‘ACH’, ‘AC’];
 sub[‘ACCH2’] := [‘ACCH3’, ‘ACCH2’, ‘ACCH’];
 sub[‘OH’] := [‘OH’];
 sub[‘CH3OH’] := [‘CH3OH’];
 sub[‘H2O’] := [‘H2O’];
 sub[‘ACOH’] := [‘ACOH’];
 sub[‘CH2CO’] := [‘CH3CO’, ‘CH2CO’];
 sub[‘CCl3’] := [‘CHCl3’, ‘CCl3’];
 sub[‘CCOO’] := [‘CH3COO’, ‘CH2COO’];
 subgroups := UNION(sub[i] | i IN groups);
 group[sub[‘CH2’]] := ‘CH2’;
 group[sub[‘C=C’]] := ‘C=C’;
 group[sub[‘ACH’]] := ‘ACH’;
 group[sub[‘ACCH2’]] := ‘ACCH2’;
 group[sub[‘OH’]] := ‘OH’;
 group[sub[‘CH3OH’]] := ‘CH3OH’;
 group[sub[‘H2O’]] := ‘H2O’;
 group[sub[‘ACOH’]] := ‘ACOH’;
 group[sub[‘CH2CO’]] := ‘CH2CO’;
 group[sub[‘CCl3’]] := ‘CCl3’;
 group[sub[‘CCOO’]] := ‘CCOO’;
 a[‘CH2’][‘CH2’] := 0.0{K};
 a[‘CH2’][‘C=C’] := -200{K};
 a[‘CH2’][‘ACH’] := 61.13{K};
 a[‘CH2’][‘ACCH2’] := 76.50{K};
 a[‘CH2’][‘OH’] := 986.5{K};
 a[‘CH2’][‘CH3OH’] := 697.2{K};
 a[‘CH2’][‘H2O’] := 1318.0{K};
 a[‘CH2’][‘ACOH’] := 1333.0{K};
 a[‘CH2’][‘CH2CO’] := 476.4{K};
 a[‘CH2’][‘CCl3’] := 24.90{K};
 a[‘CH2’][‘CCOO’] := 232.1{K};
 a[‘C=C’][‘CH2’] := 2520{K};
 a[‘C=C’][‘C=C’] := 0.0{K};
 a[‘C=C’][‘ACH’] := 340.7{K};
 a[‘C=C’][‘ACCH2’] := 4102{K};
 a[‘C=C’][‘OH’] := 693.9{K};
 a[‘C=C’][‘CH3OH’] := 1509.0{K};
 a[‘C=C’][‘H2O’] := 634.2{K};
 a[‘C=C’][‘ACOH’] := 547.4{K};
 a[‘C=C’][‘CH2CO’] := 524.5{K};
 a[‘C=C’][‘CCl3’] := 4584.0{K};
 a[‘C=C’][‘CCOO’] := 71.23{K};
 a[‘ACH’][‘CH2’] := -11.12{K};
 a[‘ACH’][‘C=C’] := -94.78{K};
 a[‘ACH’][‘ACH’] := 0.0{K};
 a[‘ACH’][‘ACCH2’] := 167.0{K};
 a[‘ACH’][‘OH’] := 636.10{K};
 a[‘ACH’][‘CH3OH’] := 637.3{K};
 a[‘ACH’][‘H2O’] := 903.8{K};
 a[‘ACH’][‘ACOH’] := 1329.0{K};
 a[‘ACH’][‘CH2CO’] := 25.77{K};
 a[‘ACH’][‘CCl3’] := -231.9{K};

134

 a[‘ACH’][‘CCOO’] := 5.994{K};
 a[‘ACCH2’][‘CH2’] := -69.70{K};
 a[‘ACCH2’][‘C=C’] := -269.7{K};
 a[‘ACCH2’][‘ACH’] := -146.80{K};
 a[‘ACCH2’][‘ACCH2’] := 0.0{K};
 a[‘ACCH2’][‘OH’] := 803.20{K};
 a[‘ACCH2’][‘CH3OH’] := 603.2{K};
 a[‘ACCH2’][‘H2O’] := 5695.00{K};
 a[‘ACCH2’][‘ACOH’] := 547.4{K};
 a[‘ACCH2’][‘CH2CO’] := -52.10{K};
 a[‘ACCH2’][‘CCl3’] := -12.14{K};
 a[‘ACCH2’][‘CCOO’] := 5688.0{K};
 a[‘OH’][‘CH2’] := 156.40{K};
 a[‘OH’][‘C=C’] := 8694.0{K};
 a[‘OH’][‘ACH’] := 89.60{K};
 a[‘OH’][‘ACCH2’] := 25.82{K};
 a[‘OH’][‘OH’] := 0.0{K};
 a[‘OH’][‘CH3OH’] := -137.1{K};
 a[‘OH’][‘H2O’] := 353.50{K};
 a[‘OH’][‘ACOH’] := -259.7{K};
 a[‘OH’][‘CH2CO’] := 84.0{K};
 a[‘OH’][‘CCl3’] := -98.12{K};
 a[‘OH’][‘CCOO’] := 101.1{K};
 a[‘CH3OH’][‘CH2’] := 16.51{K};
 a[‘CH3OH’][‘C=C’] := -52.39{K};
 a[‘CH3OH’][‘ACH’] := -50.00{K};
 a[‘CH3OH’][‘ACCH2’] := -44.50{K};
 a[‘CH3OH’][‘OH’] := 249.1{K};
 a[‘CH3OH’][‘CH3OH’] := 0.0{K};
 a[‘CH3OH’][‘H2O’] := -181.0{K};
 a[‘CH3OH’][‘ACOH’] := -101.7{K};
 a[‘CH3OH’][‘CH2CO’] := 23.39{K};
 a[‘CH3OH’][‘CCl3’] := -139.4{K};
 a[‘CH3OH’][‘CCOO’] := -10.72{K};
 a[‘H2O’][‘CH2’] := 300.00{K};
 a[‘H2O’][‘C=C’] := 692.7{K};
 a[‘H2O’][‘ACH’] := 362.30{K};
 a[‘H2O’][‘ACCH2’] := 377.60{K};
 a[‘H2O’][‘OH’] := -229.10{K};
 a[‘H2O’][‘CH3OH’] := 289.6{K};
 a[‘H2O’][‘H2O’] := 0.0{K};
 a[‘H2O’][‘ACOH’] := 324.5{K};
 a[‘H2O’][‘CH2CO’] := -195.40{K};
 a[‘H2O’][‘CCl3’] := 353.7{K};
 a[‘H2O’][‘CCOO’] := 14.42{K};
 a[‘ACOH’][‘CH2’] := 275.8{K};
 a[‘ACOH’][‘C=C’] := 1665.0{K};
 a[‘ACOH’][‘ACH’] := 25.34{K};
 a[‘ACOH’][‘ACCH2’] := 244.2{K};
 a[‘ACOH’][‘OH’] := -451.6{K};
 a[‘ACOH’][‘CH3OH’] := -265.2{K};
 a[‘ACOH’][‘H2O’] := -601.8{K};
 a[‘ACOH’][‘ACOH’] := 0.0{K};
 a[‘ACOH’][‘CH2CO’] := -356.1{K};
 a[‘ACOH’][‘CCl3’] := 0.0{K};
 a[‘ACOH’][‘CCOO’] := -449.4{K};
 a[‘CH2CO’][‘CH2’] := 26.76{K};
 a[‘CH2CO’][‘C=C’] := -82.92{K};
 a[‘CH2CO’][‘ACH’] := 140.10{K};

135

 a[‘CH2CO’][‘ACCH2’] := 365.80{K};
 a[‘CH2CO’][‘OH’] := 164.5{K};
 a[‘CH2CO’][‘CH3OH’] := 108.7{K};
 a[‘CH2CO’][‘H2O’] := 472.5{K};
 a[‘CH2CO’][‘ACOH’] := -133.1{K};
 a[‘CH2CO’][‘CH2CO’] := 0.0{K};
 a[‘CH2CO’][‘CCl3’] := -354.6{K};
 a[‘CH2CO’][‘CCOO’] := -213.7{K};
 a[‘CCl3’][‘CH2’] := 36.70{K};
 a[‘CCl3’][‘C=C’] := -185.1{K};
 a[‘CCl3’][‘ACH’] := 288.5{K};
 a[‘CCl3’][‘ACCH2’] := 33.61{K};
 a[‘CCl3’][‘OH’] := 742.1{K};
 a[‘CCl3’][‘CH3OH’] := 649.1{K};
 a[‘CCl3’][‘H2O’] := 826.7{K};
 a[‘CCl3’][‘ACOH’] := 0.0{K};
 a[‘CCl3’][‘CH2CO’] := 552.1{K};
 a[‘CCl3’][‘CCl3’] := 0.0{K};
 a[‘CCl3’][‘CCOO’] := 176.5{K};
 a[‘CCOO’][‘CH2’] := 114.8{K};
 a[‘CCOO’][‘C=C’] := 269.3{K};
 a[‘CCOO’][‘ACH’] := 85.84{K};
 a[‘CCOO’][‘ACCH2’] := -170.0{K};
 a[‘CCOO’][‘OH’] := 245.4{K};
 a[‘CCOO’][‘CH3OH’] := 249.6{K};
 a[‘CCOO’][‘H2O’] := 10000.0{K};
 a[‘CCOO’][‘ACOH’] := -36.72{K};
 a[‘CCOO’][‘CH2CO’] := 372.2{K};
 a[‘CCOO’][‘CCl3’] := -209.7{K};
 a[‘CCOO’][‘CCOO’] := 0.0{K};
 R[‘CH3’] := 0.9011;
 R[‘CH2’] := 0.6744;
 R[‘CH’] := 0.4469;
 R[‘C’] := 0.2195;
 R[‘CH2=CH’] := 1.3454;
 R[‘CH=CH’] := 1.1167;
 R[‘CH2=C’] := 1.1173;
 R[‘CH=C’] := 0.8886;
 R[‘C=C’] := 0.6605;
 R[‘ACH’] := 0.5313;
 R[‘AC’] := 0.3652;
 R[‘ACCH3’] := 1.2663;
 R[‘ACCH2’] := 1.0396;
 R[‘ACCH’] := 0.8121;
 R[‘OH’] := 1.000;
 R[‘CH3OH’] := 1.4311;
 R[‘H2O’] := 0.9200;
 R[‘ACOH’] := 0.8952;
 R[‘CH3CO’] := 1.6724;
 R[‘CH2CO’] := 1.4457;
 R[‘CHCl3’] := 2.87007;
 R[‘CCl3’] := 2.6401;
 R[‘CH3COO’] := 1.9031;
 R[‘CH2COO’] := 1.6764;
 Q[‘CH3’] := 0.848;
 Q[‘CH2’] := 0.540;
 Q[‘CH’] := 0.228;
 Q[‘C’] := 0.0;
 Q[‘CH2=CH’] := 1.176;

136

 Q[‘CH=CH’] := 0.867;
 Q[‘CH2=C’] := 0.988;
 Q[‘CH=C’] := 0.676;
 Q[‘C=C’] := 0.485;
 Q[‘ACH’] := 0.40;
 Q[‘AC’] := 0.120;
 Q[‘ACCH3’] := 0.968;
 Q[‘ACCH2’] := 0.660;
 Q[‘ACCH’] := 0.348;
 Q[‘OH’] := 1.200;
 Q[‘CH3OH’] := 1.432;
 Q[‘H2O’] := 1.400;
 Q[‘ACOH’] := 0.680;
 Q[‘CH3CO’] := 1.488;
 Q[‘CH2CO’] := 1.180;
 Q[‘CHCl3’] := 2.410;
 Q[‘CCl3’] := 2.184;
 Q[‘CH3COO’] := 1.728;
 Q[‘CH2COO’] := 1.420;
END UNIFAC_constants;
MODEL component_constants;
 formula IS_A symbol;
 groups IS_A set OF symbol;
 subgroups IS_A set OF symbol;
 wilson_set IS_A set OF symbol;
 mw,
 Tb, Tc, Pc, Vc, Zc, omega,
 cpvapa, cpvapb, cpvapc, cpvapd,
 Hf, Gf, vpa, vpb, vpc, vpd,
 Hv, Tliq, Vliq, T0, P0, H0, G0, S0 IS_A constant;
 nu[subgroups] IS_A constant;
 lambda[wilson_set] IS_A constant;
 del_ip[wilson_set] IS_A constant;
 T0 := 298.15{K};
 P0 := 1.0{atm};
END component_constants;
UNIVERSAL MODEL chloroform REFINES component_constants;
 formula := ‘CHCl3’;
 groups := [‘CCl3’];
 subgroups := [‘CHCl3’];
 wilson_set := [‘CHCl3’,’C6H6’,’(CH3)2CO’];
 mw := 119.378{g/g_mole};
 Tb := 334.3{K};
 Tc := 536.4{K};
 Pc := 54.0{atm};
 Vc := 239.0{cm^3/g_mole};
 Zc := 0.293;
 omega := 0.216;
 cpvapa := 5.733{cal/g_mole/K};
 cpvapb := 4.522e-2{cal/g_mole/K^2};
 cpvapc := -4.397e-5{cal/g_mole/K^3};
 cpvapd := 1.590e-8{cal/g_mole/K^4};
 Hf := -101238{J/g_mole};
 Gf := -68524{J/g_mole};
 vpa := -6.95546;
 vpb := 1.16625;
 vpc := -2.13970;
 vpd := -3.44421;
 Hv := 29702{J/g_mole};

137

 Vliq := 80.173{cm^3/g_mole};
 Tliq := 293.15{K};
 H0 := -101238{J/g_mole};
 G0 := -68524{J/g_mole};
 S0 := (-101238{J/g_mole} +68524{J/g_mole})/298.15{K};
 nu[‘CHCl3’] := 1;
 lambda[‘(CH3)2CO’] := 1.49288;
 lambda[‘C6H6’] := 1.92309;
 lambda[‘CHCl3’] := 1.0;
 del_ip[‘(CH3)2CO’] := -1359.32 {J/g_mole};
 del_ip[‘C6H6’] := -1638.28 {J/g_mole};
 del_ip[‘CHCl3’] := 0.0 {J/g_mole};
END chloroform;
UNIVERSAL MODEL acetone REFINES component_constants;
 formula := ‘(CH3)2CO’;
 groups := [‘CH2’, ‘CH2CO’];
 subgroups := [‘CH3’, ‘CH3CO’];
 wilson_set := [‘H2O’,’CH3OH’,’CHCl3’,’C6H6’,’(CH3)2CO’];
 mw := 58.08{g/g_mole};
 Tb := 329.4{K};
 Tc := 508.1{K};
 Pc := 46.4{atm};
 Vc := 209.0{cm^3/g_mole};
 Zc := 0.232;
 omega := 0.309;
 cpvapa := 1.505{cal/g_mole/K};
 cpvapb := 6.244e-2{cal/g_mole/K^2};
 cpvapc := -2.992e-5{cal/g_mole/K^3};
 cpvapd := 4.867e-9{cal/g_mole/K^4};
 Hf := -217536{J/g_mole};
 Gf := -153028{J/g_mole};
 vpa := -7.45514;
 vpb := 1.20200;
 vpc := -2.43926;
 vpd := -3.35590;
 Hv := 29116{J/g_mole};
 Vliq := 73.333{cm^3/g_mole};
 Tliq := 293.15{K};
 H0 := -217536.0{J/g_mole};
 G0 := -153028{J/g_mole};
 S0 := (-217536{J/g_mole} +153028{J/g_mole})/298.15{K};
 nu[‘CH3’] := 1;
 nu[‘CH3CO’] := 1;
 lambda[‘H2O’] := 0.16924;
 lambda[‘CH3OH’] := 0.65675;
 lambda[‘CHCl3’] := 1.29452;
 lambda[‘C6H6’] := 0.75632;
 lambda[‘(CH3)2CO’] := 1.0;
 del_ip[‘CH3OH’] := 23.2321 {J/g_mole};
 del_ip[‘H2O’] := 1674.817 {J/g_mole};
 del_ip[‘C6H6’] := 1364.63 {J/g_mole};
 del_ip[‘CHCl3’] := -468.831 {J/g_mole};
 del_ip[‘(CH3)2CO’] := 0.0 {J/g_mole};
END acetone;
UNIVERSAL MODEL benzene REFINES component_constants;
 formula := ‘C6H6’;
 groups := [‘ACH’];
 subgroups := [‘ACH’];
 wilson_set := [‘CHCl3’,’C6H6’,’(CH3)2CO’];

138

 mw := 78.114{g/g_mole};
 Tb := 353.252{K};
 Tc := 562.2{K};
 Pc := 48.3{atm};
 Vc := 259.0{cm^3/g_mole};
 Zc := 0.271;
 omega := 0.212;
 cpvapa := -8.101{cal/g_mole/K};
 cpvapb := 1.133e-1{cal/g_mole/K^2};
 cpvapc := -7.206e-5{cal/g_mole/K^3};
 cpvapd := 1.703e-8{cal/g_mole/K^4};
 Hf := 82980.0{J/g_mole};
 Gf := 129662.0{J/g_mole};
 vpa := -6.98273;
 vpb := 1.33213;
 vpc := -2.62863;
 vpd := -3.33399;
 Hv := 30760.0{J/g_mole};
 Vliq := 88.2644{cm^3/g_mole};
 Tliq := 289.0{K};
 H0 := 82980.0{J/g_mole};
 G0 := 129662.0{J/g_mole};
 S0 := (82980.0{J/g_mole} -129662.0{J/g_mole})/298.15{K};
 nu[‘ACH’] := 6;
 lambda[‘CHCl3’] := 0.52431;
 lambda[‘(CH3)2CO’] := 0.87629;
 lambda[‘C6H6’] := 1.0;
 del_ip[‘CHCl3’] := 1614.0 {J/g_mole};
 del_ip[‘(CH3)2CO’] := -156.458 {J/g_mole};
 del_ip[‘C6H6’] := 0.0 {J/g_mole};
END benzene;

139

(***\
 H_G_thermodynamics.lib
 by Joseph J. Zaher,
 Modified structurally by Robert S. Huss
 Part of the Ascend Library
 This file is part of the Ascend modeling library.
 Copyright (C) 1994
 The Ascend modeling library is free software; you can redistribute
 it and/or modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of the
 License, or (at your option) any later version.
 The Ascend Language Interpreter is distributed in hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 General Public License for more details.
 You should have received a copy of the GNU General Public License along with
 the program; if not, write to the Free Software Foundation, Inc., 675
 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
 ***)
(**
 **
 ** T H E R M O D Y N A M I C S . L I B
 ** --
 **
 ** AUTHOR: Joseph J. Zaher
 **
 ** DATES: 07/91 - Original code.
 ** 02/92 - Made compatible with new set version of ASCEND.
 ** Scaled equations to enhance convergence, updated
 ** vapor pressure correlation, added Pitzer extension
 ** to vapor mixtures and UNIFAC extension to liquid
 ** mixtures with help of Bob Huss.
 ** 03/92 - Removed stream model. Library remains purely
 ** intensive without any assumption to static or
 ** dynamic modeling.
 ** 07/92 - Structural changes to provide a common thermodynamic
 ** properties root model as the library interface.
 ** Modified the existing phase distribution model
 ** to incorporate an intensive mass balance over the
 ** phases. Residual quantities for pure vapor
 ** components estimate corrections from ideal gas
 ** behavior while residual quantities for pure liquid
 ** components estimate corrections from incompressible
 ** fluid behavior.
 ** 08/92 - Allowed component names in mixtures to be freely
 ** specified by user.
 ** 03/94 - Made compatible with gnu-ascend.
 ** 05/94 - Removed refinement link of models correction and
 ** and partial_component which should not contain T,
 ** P, and R anyway. The interface to the library
 ** is now returned to model thermodynamic_properties
 ** where refinement to pure_component,
 ** homogeneous_mixture, or heterogeneous_mixture
 ** is possible.
 ** 06/94 - Changed canonical variables from V, H, and S to
 ** V, H, and G. Also, liquid component model was
 ** condensed, eliminating instance saturated.
 **
 ** 08/94 - Slight structural changes made by Bob Huss to

140

 ** allow refinement of non-thermodynamic models,
 ** and to include Wilson liquid mixture written
 ** by Boyd Safrit.
 **
 ** CONTENTS: ASCEND structure for calculating the basic set of intensive
 ** thermodynamic properties molar volume, enthalpy, and
 ** entropy for single and multiple phase streams of pure and
 ** mixed components. Specify procedures are included which
 ** have been designed to provide a means of calculating ideal
 ** approximations when base models are used. For pure
 ** component vapors, the ideal gas law can be obtained whereas
 ** for pure component liquids, incompressibility can be
 ** specified. Ideal vapor and liquid mixtures are maintained
 ** by setting all partial molar excess properties to zero.
 ** Distribution of components among multiple phases can be
 ** ideally computed using constant relative volatilities.
 **
 ** For more rigorous non-ideal calculations, some generalized
 ** refinements of the base models are provided. For pure
 ** component vapors, a Pitzer correlation of the two term
 ** virial equation allows a more accurate compressibility and
 ** residual calculation. The widely used Rackett correlation
 ** is accurate in estimating the effect of temperature on
 ** liquid volumes. Non-ideal vapor mixtures are computed using
 ** an extension of the Pitzer correlation where the exact
 ** composition dependence of the second virial coefficient is
 ** given by statistical mechanics. A reliable UNIFAC model
 ** estimates non-ideal liquid mixtures. Phase equilibrium
 ** can be enforced rigorously among multiple phases which
 ** in turn will allow calculation of the true relative
 ** volatilities.
 **
 ** REQUIRES: “atoms.lib”
 ** “components.lib”
 **
 **)
MODEL thermodynamic_properties;
 T IS_A temperature;
 P IS_A pressure;
 V IS_A molar_volume;
 H IS_A molar_energy;
 G IS_A molar_energy;
 R IS_A gas_constant;
 scale IS_A scaling_constant;

INITIALIZATION
PROCEDURE specify;

 T.fixed := TRUE;
 P.fixed := TRUE;
 V.fixed := TRUE;
 H.fixed := TRUE;
 G.fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END thermodynamic_properties;
MODEL pure_component REFINES thermodynamic_properties;
 data IS_A component_constants;

141

END pure_component;
MODEL Pitzer_component REFINES pure_component;
 P*V/R/data.Tc = T/data.Tc + (P/data.Pc)*
 (0.083 - 0.422*(data.Tc/T)^1.6 + data.omega*
 (0.139 - 0.172*(data.Tc/T)^4.2));
 H/R/data.Tc = data.H0/R/data.Tc +
 data.cpvapa*(T - data.T0)/R/data.Tc +
 data.cpvapb*(T^2 - data.T0^2)/2/R/data.Tc +
 data.cpvapc*(T^3 - data.T0^3)/3/R/data.Tc +
 data.cpvapd*(T^4 - data.T0^4)/4/R/data.Tc +
 (P/data.Pc)*
 (0.083 - 1.097*(data.Tc/T)^1.6 + data.omega*
 (0.139 - 0.894*(data.Tc/T)^4.2));
 G/R/data.Tc = data.G0/R/data.Tc -
 (data.H0 - data.G0)*(T/data.T0 - 1)/R/data.Tc -
 data.cpvapa*(T*ln(T/data.T0) - T + data.T0)/R/data.Tc -
 data.cpvapb*(T^2 - 2*T*data.T0 + data.T0^2)/2/R/data.Tc -
 data.cpvapc*(T^3/2 - 3*T*data.T0^2/2 + data.T0^3)/3/R/data.Tc -
 data.cpvapd*(T^4/3 - 4*T*data.T0^3/3 + data.T0^4)/4/R/data.Tc +
 T*ln(P/data.P0)/data.Tc +
 (P/data.Pc)*
 (0.083 - 0.422*(data.Tc/T)^1.6 + data.omega*
 (0.139 - 0.172*(data.Tc/T)^4.2));
 T.lower_bound := 1.0e-12{K};
 P.lower_bound := 1.0e-12{Pa};
 V := 24{liter/mole};

INITIALIZATION
PROCEDURE specify;

 T.fixed := TRUE;
 P.fixed := TRUE;

END specify;
END Pitzer_component;
MODEL Rackett_component REFINES pure_component;
 VP IS_A pressure;
 ln(VP/data.Pc)*T/data.Tc =
 data.vpa*sqrt(sqr(1.0 - T/data.Tc)) +
 data.vpb*sqrt(sqr(1.0 - T/data.Tc))^1.5 +
 data.vpc*sqrt(sqr(1.0 - T/data.Tc))^3.0 +
 data.vpd*sqrt(sqr(1.0 - T/data.Tc))^6.0;
 V/data.Vliq =
 data.Zc^(sqrt(sqr(1.0 - T/data.Tc))^(2/7))/
 data.Zc^(sqrt(sqr(1.0 - data.Tliq/data.Tc))^(2/7));
 H/R/data.Tc = data.H0/R/data.Tc +
 data.cpvapa*(T - data.T0)/R/data.Tc +
 data.cpvapb*(T^2 - data.T0^2)/2/R/data.Tc +
 data.cpvapc*(T^3 - data.T0^3)/3/R/data.Tc +
 data.cpvapd*(T^4 - data.T0^4)/4/R/data.Tc +
 (VP/data.Pc)*
 (0.083 - 1.097*(data.Tc/T)^1.6 + data.omega*
 (0.139 - 0.894*(data.Tc/T)^4.2)) -
 (data.Hv/R/data.Tc)*sqrt(sqr((data.Tc-T)/(data.Tc-data.Tb)))^0.38 +
 (P - VP)*(data.Vliq/R/data.Tc)*
 (data.Zc^(sqrt(sqr(1.0 - T/data.Tc))^(2/7))/
 data.Zc^(sqrt(sqr(1.0 - data.Tliq/data.Tc))^(2/7)))*(1.0 -
 (-2/7)*(T/data.Tc)*(sqrt(sqr(1 - T/data.Tc))^(-5/7))*ln(data.Zc));
 G/R/data.Tc = data.G0/R/data.Tc -
 (data.H0 - data.G0)*(T/data.T0 - 1)/R/data.Tc -
 data.cpvapa*(T*ln(T/data.T0) - T + data.T0)/R/data.Tc -
 data.cpvapb*(T^2 - 2*T*data.T0 + data.T0^2)/2/R/data.Tc -

142

 data.cpvapc*(T^3/2 - 3*T*data.T0^2/2 + data.T0^3)/3/R/data.Tc -
 data.cpvapd*(T^4/3 - 4*T*data.T0^3/3 + data.T0^4)/4/R/data.Tc +
 T*ln(VP/data.P0)/data.Tc +
 (VP/data.Pc)*
 (0.083 - 0.422*(data.Tc/T)^1.6 + data.omega*
 (0.139 - 0.172*(data.Tc/T)^4.2)) +
 (P - VP)*(data.Vliq/R/data.Tc)*
 (data.Zc^(sqrt(sqr(1.0 - T/data.Tc))^(2/7))/
 data.Zc^(sqrt(sqr(1.0 - data.Tliq/data.Tc))^(2/7)));
 VP.lower_bound := 1.0e-12{Pa};
 V := 0.1{liter/mole};

INITIALIZATION
PROCEDURE specify;

 T.fixed := TRUE;
 P.fixed := TRUE;

END specify;
END Rackett_component;
MODEL partial_component;
 V IS_A molar_volume;
 H IS_A molar_energy;
 G IS_A molar_energy;
 scale IS_A scaling_constant;

INITIALIZATION
PROCEDURE specify;

 V.fixed := TRUE;
 H.fixed := TRUE;
 G.fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END partial_component;
MODEL mixture;
 components IS_A set OF symbol;
 y[components] IS_A fraction;
 scale IS_A scaling_constant;

SUM(y[i] | i IN components) = 1.0;
INITIALIZATION

PROCEDURE specify;
 y[components-[CHOICE(components)]].fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END mixture;
MODEL homogeneous_mixture REFINES mixture;
END homogeneous_mixture;
MODEL td_homogeneous_mixture REFINES homogeneous_mixture;
 T IS_A temperature;
 P IS_A pressure;
 V IS_A molar_volume;
 H IS_A molar_energy;
 G IS_A molar_energy;
 R IS_A gas_constant;
 data[components] IS_A component_constants;
 pure[components] IS_A pure_component;
 partial[components] IS_A partial_component;

143

 T, pure[components].T ARE_THE_SAME;
 P, pure[components].P ARE_THE_SAME;
 pure[components] ARE_ALIKE;
 V*data[CHOICE(components)].Pc/R/
 data[CHOICE(components)].Tc =

SUM(y[i]*partial[i].V | i IN components)*
 data[CHOICE(components)].Pc/R/
 data[CHOICE(components)].Tc;
 H/R/data[CHOICE(components)].Tc =

SUM(y[i]*partial[i].H | i IN components)/R/
 data[CHOICE(components)].Tc;
 G/R/data[CHOICE(components)].Tc =

SUM(y[i]*partial[i].G | i IN components)/R/
 data[CHOICE(components)].Tc;

FOR i IN components CREATE
 data[i], pure[i].data ARE_THE_SAME;

END;
 y[components].lower_bound := 1.0e-12;

INITIALIZATION
PROCEDURE specify;

RUN pure[components].specify;
RUN partial[components].specify;

 y[components].fixed := TRUE;
 y[CHOICE(components)].fixed := FALSE;

END specify;
END td_homogeneous_mixture;
MODEL Pitzer_mixture REFINES td_homogeneous_mixture;
 pure[components] IS_REFINED_TO Pitzer_component;

FOR i IN components CREATE
 (partial[i].V - pure[i].V)*data[i].Pc/R/data[i].Tc =
 -1.0*
 (0.083 - 0.422*(data[i].Tc/T)^1.6 + data[i].omega*
 (0.139 - 0.172*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 +
 0.50*(1.0 - y[i])*1.0*

SUM(y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/
 (1.0 + data[j].Zc/data[i].Zc))*
 (0.083 - 0.422*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 +
 0.5*(data[i].omega + data[j].omega)*
 (0.139 - 0.172*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2))
 | j IN components - [i]);
 (partial[i].H - pure[i].H)/R/data[i].Tc =
 -(P/data[i].Pc)*
 (0.083 - 1.097*(data[i].Tc/T)^1.6 + data[i].omega*
 (0.139 - 0.894*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 +
 0.50*(1.0 - y[i])*(P/data[i].Pc)*

SUM(y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/
 (1.0 + data[j].Zc/data[i].Zc))*
 (0.083 - 1.097*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 +
 0.5*(data[i].omega + data[j].omega)*
 (0.139 - 0.894*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2))
 | j IN components - [i]);
 (partial[i].G - pure[i].G - R*T*ln(y[i]))/R/data[i].Tc =
 -(P/data[i].Pc)*
 (0.083 - 0.422*(data[i].Tc/T)^1.6 + data[i].omega*
 (0.139 - 0.172*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 +
 0.50*(1.0 - y[i])*(P/data[i].Pc)*

SUM(y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/
 (1.0 + data[j].Zc/data[i].Zc))*
 (0.083 - 0.422*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 +

144

 0.5*(data[i].omega + data[j].omega)*
 (0.139 - 0.172*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2))
 | j IN components - [i]);

END;
 V := 24{liter/mole};
 partial[components].V := 24{liter/mole};
 pure[components].V := 24{liter/mole};

INITIALIZATION
PROCEDURE specify;

RUN td_homogeneous_mixture::specify;
 partial[components].V.fixed := FALSE;
 partial[components].H.fixed := FALSE;
 partial[components].G.fixed := FALSE;

END specify;
END Pitzer_mixture;
MODEL UNIFAC_mixture REFINES td_homogeneous_mixture;
 pure[components] IS_REFINED_TO Rackett_component;
 subgroups IS_A set OF symbol;
 groups IS_A set OF symbol;
 comps[subgroups] IS_A set OF symbol;
 rv[components] IS_A constant;
 qs[components] IS_A constant;
 Jv[components] IS_A factor;
 Ls[components] IS_A factor;
 theta[subgroups] IS_A factor;
 eta[subgroups] IS_A factor;
 uc IS_A UNIFAC_constants;
 subgroups := UNION(data[i].subgroups | i IN components);
 groups := UNION(data[i].groups | i IN components);

FOR k IN subgroups CREATE
 comps[k] := [i IN components | k IN data[i].subgroups];

END;
FOR k IN subgroups CREATE

 theta[k] = uc.Q[k]* SUM(data[i].nu[k]*y[i] | i IN comps[k]);
 eta[k] =

SUM(theta[m] | m IN subgroups*uc.sub[uc.group[k]]) +
SUM(SUM(theta[m]*exp(-uc.a[g][uc.group[k]]/T)

 | m IN subgroups*uc.sub[g])
 | g IN groups - [uc.group[k]]);

END;
FOR i IN components CREATE

 rv[i] = Jv[i]* SUM(rv[j]*y[j] | j IN components);
 qs[i] = Ls[i]* SUM(qs[j]*y[j] | j IN components);
 partial[i].V,
 pure[i].V ARE_THE_SAME;

 (partial[i].H - pure[i].H)/R/data[i].Tc =
SUM(theta[k]*
SUM(SUM(theta[n]*

 ((uc.a[g][uc.group[k]] -
 uc.a[uc.group[n]][uc.group[k]])/data[i].Tc)*
 exp(-(uc.a[g][uc.group[k]] +
 uc.a[uc.group[n]][uc.group[k]])/T)*

SUM(data[i].nu[m]*uc.Q[m]
 | m IN data[i].subgroups*uc.sub[g])
 | g IN data[i].groups - [uc.group[n]])
 | n IN subgroups)/eta[k]/eta[k]
 | k IN subgroups) -

SUM((data[i].nu[k]*uc.Q[k]/(

145

SUM(data[i].nu[m]*uc.Q[m]
 | m IN data[i].subgroups*uc.sub[uc.group[k]]) +

SUM(SUM(data[i].nu[m]*uc.Q[m]*exp(-uc.a[g][uc.group[k]]/T)
 | m IN data[i].subgroups*uc.sub[g])
 | g IN data[i].groups - [uc.group[k]])))*

SUM(SUM(theta[n]*
 ((uc.a[g][uc.group[k]] -
 uc.a[uc.group[n]][uc.group[k]])/data[i].Tc)*
 exp(-(uc.a[g][uc.group[k]] +
 uc.a[uc.group[n]][uc.group[k]])/T)*

SUM(data[i].nu[m]*uc.Q[m]
 | m IN data[i].subgroups*uc.sub[g])
 | g IN data[i].groups - [uc.group[n]])
 | n IN subgroups)/eta[k]
 | k IN data[i].subgroups);
 (partial[i].G - pure[i].G - R*T*ln(y[i]))/R/data[i].Tc =
 (1.0 - Jv[i] + ln(Jv[i]) -
 5.0*qs[i]*(1.0 - Jv[i]/Ls[i] + ln(Jv[i]/Ls[i])) +
 qs[i]*(1 - ln(Ls[i])))*T/data[i].Tc -

SUM(theta[k]*(
SUM(data[i].nu[m]*uc.Q[m]

 | m IN data[i].subgroups*uc.sub[uc.group[k]]) +
SUM(SUM(data[i].nu[m]*uc.Q[m]*exp(-uc.a[g][uc.group[k]]/T)

 | m IN data[i].subgroups*uc.sub[g])
 | g IN data[i].groups - [uc.group[k]]))/eta[k]
 | k IN subgroups)*T/data[i].Tc +

SUM(data[i].nu[k]*uc.Q[k]*ln((
SUM(data[i].nu[m]*uc.Q[m]

 | m IN data[i].subgroups*uc.sub[uc.group[k]]) +
SUM(SUM(data[i].nu[m]*uc.Q[m]*exp(-uc.a[g][uc.group[k]]/T)

 | m IN data[i].subgroups*uc.sub[g])
 | g IN data[i].groups - [uc.group[k]]))/eta[k])
 | k IN data[i].subgroups)*T/data[i].Tc;

END;
 Jv[components].lower_bound := 1.0e-12;
 Ls[components].lower_bound := 1.0e-12;
 theta[subgroups].lower_bound := 0.0;
 eta[subgroups].lower_bound := 0.0;
 V := 0.1{liter/mole};
 partial[components].V := 0.1{liter/mole};
 pure[components].V := 0.1{liter/mole};

INITIALIZATION
PROCEDURE specify;

RUN td_homogeneous_mixture::specify;
 partial[components].V.fixed := FALSE;
 partial[components].H.fixed := FALSE;
 partial[components].G.fixed := FALSE;

FOR i IN components DO
 rv[i] := 0.0;
 qs[i] := 0.0;

FOR k IN data[i].subgroups DO
 rv[i] := rv[i] + data[i].nu[k]*uc.R[k];
 qs[i] := qs[i] + data[i].nu[k]*uc.Q[k];

END;
END;

END specify;
END UNIFAC_mixture;
MODEL Wilson_mixture REFINES td_homogeneous_mixture;
 pure[components] IS_REFINED_TO Rackett_component;

146

 lambda[components][components] IS_A factor;
FOR i IN components CREATE

FOR j IN components CREATE
 lambda[i][j] = (pure[j].V/pure[i].V)*
 exp(-pure[i].data.del_ip[pure[j].data.formula]/(R*T));

END;
END;
FOR i IN components CREATE

 partial[i].V, pure[i].V ARE_THE_SAME;
 partial[i].G - pure[i].G - R*T*ln(y[i]) = R*T*(-ln(

SUM(y[j]*lambda[i][j]
 | j IN components)) + 1 -

SUM((y[k]*lambda[k][i]) / (
SUM(y[j]*lambda[k][j]

 | j IN components))
 | k IN components));
 partial[i].H - pure[i].H = R*T^2*((SUM(y[j]*
 (-lambda[i][j] * ln(lambda[i][j]))/T
 | j IN components)) /

SUM(y[j]*lambda[i][j]
 | j IN components) +

SUM((
SUM(y[l]*lambda[k][l]*y[k]*((-lambda[k][i] *

 ln(lambda[k][i]))/T)
 | l IN components) - y[k]*lambda[k][i] *

SUM(y[l]*((-lambda[k][l] * ln(lambda[k][l]))/T)
 | l IN components)) / (

SUM(y[l]*lambda[k][i]
 | l IN components)^2)
 | k IN components));

END;
 V := 0.1{liter/mole};
 partial[components].V := 0.1{liter/mole};
 pure[components].V := 0.1{liter/mole};

INITIALIZATION
PROCEDURE specify;

RUN td_homogeneous_mixture::specify;
 partial[components].V.fixed := FALSE;
 partial[components].G.fixed := FALSE;
 partial[components].H.fixed := FALSE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END Wilson_mixture;
MODEL heterogeneous_mixture REFINES mixture;
 reference IS_A symbol;
 phases IS_A set OF symbol;
 mix[phases] IS_A homogeneous_mixture;
 alpha[phases-[reference]][components] IS_A factor;
 ave_alpha[phases-[reference]] IS_A factor;
 phi[phases] IS_A fraction;
 components, mix[phases].components ARE_THE_SAME;

FOR i IN components CREATE
 y[i] = SUM(phi[j]*mix[j].y[i] | j IN phases);

FOR j IN phases - [reference] CREATE
 ave_alpha[j]*mix[j].y[i] =
 alpha[j][i]*mix[reference].y[i];

147

END;
END;

INITIALIZATION
PROCEDURE specify;

RUN mix[phases].specify;
 alpha[phases - [reference]][components].fixed := TRUE;
 y[components-[CHOICE(components)]].fixed := TRUE;
 mix[phases].y[components].fixed := FALSE;
 phi[phases-[reference]].fixed := TRUE;

END specify;
END heterogeneous_mixture;
MODEL td_heterogeneous_mixture REFINES heterogeneous_mixture;
 T IS_A temperature;
 P IS_A pressure;
 V IS_A molar_volume;
 H IS_A molar_energy;
 G IS_A molar_energy;
 R IS_A gas_constant;
 data[components] IS_A component_constants;
 mix[phases] IS_REFINED_TO td_homogeneous_mixture;

FOR i IN components CREATE
 data[i],
 mix[phases].data[i] ARE_THE_SAME;

END;
 T, mix[phases].T ARE_THE_SAME;
 P, mix[phases].P ARE_THE_SAME;
 V*data[CHOICE(components)].Pc/R/
 data[CHOICE(components)].Tc =

SUM(phi[j]*mix[j].V | j IN phases)*
 data[CHOICE(components)].Pc/R/
 data[CHOICE(components)].Tc;
 H/R/data[CHOICE(components)].Tc =

SUM(phi[j]*mix[j].H | j IN phases)/R/
 data[CHOICE(components)].Tc;
 G/R/data[CHOICE(components)].Tc =

SUM(phi[j]*mix[j].G | j IN phases)/R/
 data[CHOICE(components)].Tc;
 components, mix[phases].components ARE_THE_SAME;
 V := 30{liter/mol};
END td_heterogeneous_mixture;
MODEL equilibrium_mixture REFINES td_heterogeneous_mixture;

FOR i IN components CREATE
FOR j IN phases - [reference] CREATE

 mix[j].partial[i].G, mix[reference].partial[i].G ARE_THE_SAME;
END;

END;
INITIALIZATION

PROCEDURE specify;
RUN td_heterogeneous_mixture::specify;

 T.fixed := FALSE;
 alpha[phases - [reference]][components].fixed := FALSE;
 ave_alpha[phases - [reference]] := 1.0;
 ave_alpha[phases - [reference]].fixed := TRUE;

END specify;
END equilibrium_mixture;
MODEL murphree_equilibrium_mixture REFINES td_heterogeneous_mixture;
 (* ASSUMES vapor-liquid pd, with liquid reference *)
 vap_eq IS_A Pitzer_mixture;
 equil_alpha[components] IS_A factor;

148

 ref_y[components] IS_A fraction;
 murph_eff IS_A factor;
 vap_eq, mix[‘vapor’] ARE_ALIKE;
 T, vap_eq.T ARE_THE_SAME;
 P, vap_eq.P ARE_THE_SAME;
 components, vap_eq.components ARE_THE_SAME;

FOR i IN components CREATE
 data[i],
 vap_eq.data[i] ARE_THE_SAME;

END;
SUM(ref_y[components]) = 1;
FOR i IN components CREATE

 vap_eq.y[i] = equil_alpha[i]*mix[reference].y[i];
 vap_eq.partial[i].G,
 mix[reference].partial[i].G ARE_THE_SAME;

END;
FOR i IN components - [CHOICE(components)] CREATE

 murph_eff*(vap_eq.y[i] - ref_y[i]) =
 mix[‘vapor’].y[i] - ref_y[i];

END;
INITIALIZATION

PROCEDURE specify;
RUN td_heterogeneous_mixture::specify;

 alpha[phases - [reference]][components].fixed := FALSE;
 ave_alpha[phases - [reference]] := 1.0;
 ave_alpha[phases - [reference]].fixed := TRUE;

RUN vap_eq.specify;
 vap_eq.y[components].fixed := FALSE;
 equil_alpha[components].fixed := FALSE;
 ref_y[components - [CHOICE(components)]].fixed := TRUE;
 murph_eff.fixed := TRUE;
 T.fixed := FALSE;

END specify;
END murphree_equilibrium_mixture;

149

(***\
 stream.lib
 by Robert S. Huss
 Part of the Ascend Library
 This file is part of the Ascend modeling library.
 Copyright (C) 1993,1994
 The Ascend modeling library is free software; you can redistribute
 it and/or modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of the
 License, or (at your option) any later version.
 The Ascend Language Interpreter is distributed in hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 General Public License for more details.
 You should have received a copy of the GNU General Public License along with
 the program; if not, write to the Free Software Foundation, Inc., 675
 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
 ***)
(*
 S T R E A M . L I B

 AUTHOR: Robert S. Huss
 DATES: 5/93 - Original code.
 9/93 - Slight changes to original code,
 added vapor_liquid_stream model.
 6/94 - Made compatible with ASCEND3C
 8/94 - Made compatible with H_G_thermodynamics.lib.
 Can still be used with H_S_thermodynamics.lib
 3/95 - Added relation scaling for absolute convergence
 CONTENTS: Stream definitions, ranging from a simple molar
 stream to a thermodynamic multiphase stream.
 Molar stream can be refined to include
 thermodyanmic models, if data are available
 for each component.
 REQUIRES:
 “system.lib”
 “atoms.lib”
 “components.lib”
 “H_S_thermodynamics.lib” or “H_G_thermodynamics.lib”
 *)
MODEL molar_stream;
 components IS_A set OF symbol;
 state IS_A mixture;
 Ftot,f[components] IS_A molar_rate;
 scale IS_A scaling_constant;
 Ftot_scale IS_A real;
 components, state.components ARE_THE_SAME;

FOR i IN components CREATE
 f_def[i]: f[i]/Ftot_scale = Ftot*state.y[i]/Ftot_scale;

END;
 Ftot_scale := 1000 {mole/s};

INITIALIZATION
PROCEDURE seqmod;

RUN state.specify;
 state.y[components].fixed := FALSE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
 f[components].fixed := TRUE;

150

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END molar_stream;
MODEL td_stream REFINES molar_stream;
 data[components] IS_A component_constants;
 Htot IS_A energy_rate;
 H IS_A molar_energy;
 Htot_scale IS_A real;
 Htot_def: Htot/Htot_scale = H*Ftot/Htot_scale;
 Htot_scale := 1{MW};

INITIALIZATION
PROCEDURE seqmod;

RUN molar_stream::seqmod;
 H.fixed := TRUE;

END seqmod;
END td_stream;
MODEL vapor_stream REFINES td_stream;
 state IS_REFINED_TO Pitzer_mixture;

FOR i IN components CREATE
 data[i],state.data[i] ARE_THE_SAME;

END;
 H, state.H ARE_THE_SAME;

INITIALIZATION
PROCEDURE seqmod;

RUN molar_stream::seqmod;
END seqmod;

END vapor_stream;
MODEL liquid_stream REFINES td_stream;
 state IS_REFINED_TO UNIFAC_mixture;

FOR i IN components CREATE
 data[i],state.data[i] ARE_THE_SAME;

END;
 H, state.H ARE_THE_SAME;

INITIALIZATION
PROCEDURE seqmod;

RUN molar_stream::seqmod;
END seqmod;

END liquid_stream;
MODEL multiphase_stream REFINES td_stream;
 state IS_REFINED_TO td_heterogeneous_mixture;

FOR i IN components CREATE
 data[i],state.data[i] ARE_THE_SAME;

END;
 H, state.H ARE_THE_SAME;
 phases IS_A set OF symbol;
 phase_flow[phases] IS_A molar_rate;
 phases,state.phases ARE_THE_SAME;

FOR k IN phases CREATE
 phase_flow_def[k]: phase_flow[k]/Ftot_scale =
 state.phi[k]*Ftot/Ftot_scale;

END;
INITIALIZATION

PROCEDURE seqmod;
RUN molar_stream::seqmod;

END seqmod;
END multiphase_stream;

151

MODEL vapor_liquid_stream REFINES multiphase_stream;
 phases := [‘liquid’,’vapor’];
 state.reference := ‘liquid’;
 state.mix[‘liquid’] IS_REFINED_TO UNIFAC_mixture;
 state.mix[‘vapor’] IS_REFINED_TO Pitzer_mixture;
END vapor_liquid_stream;

152

(***\
 flash.lib
 by Robert S. Huss
 Part of the Ascend Library
This file is part of the Ascend modeling library.
Copyright (C) 1994
The Ascend modeling library is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Ascend Language Interpreter is distributed in hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with
the program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.
***)
(*
 F L A S H . L I B

 AUTHOR: Robert S. Huss
 DATES: 5/93 - Original code.
 9/93 - Slight changes to original code.
 6/94 - Made compatible with ASCEND3C
 CONTENTS: Vapor-liquid-equilibrium flash models.
 Molar flash models:
 VLE_flash: Basic molar flash model with constant
 relative volatility. Any number of input streams,
 any number of liquid and vapor output streams.
 simple_tray: Refines VLE_flash. Specifies
 1 liquid and 1 vapor input streams, 1 liquid
 and 1 vapor output streams.
 simple_feed_tray: Refines VLE_flash. Specifies
 1 liquid, 1 vapor, and 1 feed input streams,
 1 liquid, 1 vapor output streams;
 multiple_feed_tray: Refines VLE_flash. Any
 number of ‘feed’ inputs, 1 liquid, 1 vapor input,
 1 liquid, 1 vapor output.
 condenser: Refines VLE_flash. 1 vapor input,
 2 liquid outputs (liquid, distillate), 1 vapor
 output (vapor_product).
 reboiler: Refines VLE_flash. 1 liquid input,
 2 vapor outputs (vapor, vapor_product), 1 liquid
 output (bottoms).
 Thermodynamic flash models (td): Refine molar
 flash models to incorporate thermodynamics.
 data[components] must be defined, and feed streams
 must be refined to thermodynamic stream models. With td
 models, ideal and rigorous thermodynamic models are
 possible. Models are: td_VLE_flash, td_simple_tray,
 td_simple_feed_tray, td_multiple_feed_tray,
 td_condenser, td_rebolier. The variable
 ‘can_be_adiabatic’ defines whether or not the
 flash type would typically be adiabatic in a
 standard column.
 murphree_equilibrium_mixture: Refinement of
 multiphase_mixture in thermodynamics library
 to incorporate Murphree Vapor Efficiency

153

 into a tray model. When used with a tray
 model, the ref_y variables should be ARE_THE_SAME’d
 to the incoming vapor to get Murphree Vapor
 Efficiency. This model can be used to get
 a pseudo efficiency by using the overall
 mixture composition y[components] as the
 reference composition.
 murph_tray: Refinement of td_simple_tray to
 include Murphree efficiency. Uses
 murphree_equilibrium_mixture.
 REQUIRES: “atoms.lib”
 “components.lib”
 “H_S_thermodynamics.lib” or “H_G_thermodynamics.lib”
 “stream.lib”
*)
MODEL VLE_flash;
 components IS_A set OF symbol;
 alpha[components] IS_A factor;
 inputs, liqouts, vapouts IS_A set OF symbol;
 input[inputs],
 liqout[liqouts],
 vapout[vapouts] IS_A molar_stream;
 VLE IS_A heterogeneous_mixture;
 scale IS_A scaling_constant;
 F_scale IS_A real;
 F_scale, totfeed.Ftot_scale ARE_THE_SAME;
 (* Linking *)
 components,
 input[inputs].components,
 totfeed.components,
 VLE.components ARE_THE_SAME;

FOR i IN components CREATE
 alpha[i], VLE.alpha[‘vapor’][i] ARE_THE_SAME;

END;
 (* defining equilibrium *)
 VLE.phases := [‘liquid’,’vapor’];
 liqout[liqouts].state,
 VLE.mix[‘liquid’] ARE_THE_SAME;
 vapout[vapouts].state,
 VLE.mix[‘vapor’] ARE_THE_SAME;
 VLE.reference := ‘liquid’;
 (* Mass balances *)
 totfeed IS_A molar_stream;
 liqsplit[liqouts],
 vapsplit[vapouts] IS_A fraction;

FOR i IN components CREATE
 totfeedflow[i]: totfeed.f[i]/F_scale =

SUM(input[inputs].f[i])/F_scale;
END;
FOR i IN components - [CHOICE(components)] CREATE

 totfeed.state.y[i], VLE.y[i] ARE_THE_SAME;
END;
FOR j IN liqouts CREATE

 liqoutflow[j]: liqout[j].Ftot/F_scale =
 VLE.phi[‘liquid’]*totfeed.Ftot*liqsplit[j] / F_scale;

END;
FOR j IN vapouts CREATE

 vapoutflow[j]: vapout[j].Ftot/F_scale =
 VLE.phi[‘vapor’]*totfeed.Ftot*vapsplit[j]/F_scale;

154

END;
 sum_liqsplit: SUM(liqsplit[liqouts]) = 1.0;
 sum_vapsplit: SUM(vapsplit[vapouts]) = 1.0;

INITIALIZATION
PROCEDURE seqmod;

RUN VLE.specify;
 VLE.y[components].fixed := FALSE;
 liqsplit[liqouts].fixed := TRUE;
 liqsplit[CHOICE(liqouts)].fixed := FALSE;
 vapsplit[vapouts].fixed := TRUE;
 vapsplit[CHOICE(vapouts)].fixed := FALSE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN input[inputs].specify;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END VLE_flash;
MODEL simple_tray REFINES VLE_flash;
 inputs := [‘liquid’,’vapor’];
 liqouts := [‘liquid’];
 vapouts := [‘vapor’];
 cmo_ratio IS_A factor;
 cmo: cmo_ratio*input[‘liquid’].Ftot/F_scale
 = liqout[‘liquid’].Ftot/F_scale;

INITIALIZATION
PROCEDURE seqmod;

RUN VLE.specify;
 VLE.y[components].fixed := FALSE;
 VLE.phi[VLE.phases].fixed := FALSE;
 cmo_ratio.fixed := TRUE;

END seqmod;
END simple_tray;
MODEL simple_feed_tray REFINES VLE_flash;
 q IS_A factor;
 inputs := [‘feed’,’liquid’,’vapor’];
 liqouts := [‘liquid’];
 vapouts := [‘vapor’];
 qeq: liqout[‘liquid’].Ftot/F_scale =
 (input[‘liquid’].Ftot
 + q*input[‘feed’].Ftot)/F_scale;
 q := 1.0;

INITIALIZATION
PROCEDURE seqmod;

RUN VLE.specify;
 VLE.y[components].fixed := FALSE;
 VLE.phi[VLE.phases].fixed := FALSE;
 q.fixed := TRUE;

END seqmod;
END simple_feed_tray;
MODEL condenser REFINES VLE_flash;
 reflux_ratio IS_A factor;
 prodsplit[‘distillate’,
 ‘vapor_product’] IS_A fraction;
 totprod IS_A molar_stream;
 inputs := [‘vapor’];

155

 liqouts := [‘liquid’,’distillate’];
 vapouts := [‘vapor_product’];

 components, totprod.components ARE_THE_SAME;

 reflux_def: liqout[‘liquid’].Ftot =
 reflux_ratio*totprod.Ftot;

FOR i IN components CREATE
 totprodflow[i]: totprod.f[i]/F_scale =
 (liqout[‘distillate’].f[i] +
 vapout[‘vapor_product’].f[i])/F_scale;

END;
 split_def_distillate:
 totprod.Ftot*prodsplit[‘distillate’]/F_scale
 = liqout[‘distillate’].Ftot/F_scale;
 split_def_vapor_product:
 totprod.Ftot*prodsplit[‘vapor_product’]/F_scale =
 vapout[‘vapor_product’].Ftot/F_scale;
 prodsplit[‘distillate’] := 1.0;
 prodsplit[‘vapor_product’] := 0.0;

INITIALIZATION
PROCEDURE seqmod;

RUN VLE.specify;
 VLE.y[components].fixed := FALSE;
 reflux_ratio.fixed := TRUE;
 VLE.phi[VLE.phases].fixed := FALSE;
 prodsplit[‘vapor_product’].fixed := TRUE;

END seqmod;
END condenser;
MODEL reboiler REFINES VLE_flash;
 reboil_ratio IS_A factor;
 prodsplit[‘bottoms’,
 ‘vapor_product’] IS_A fraction;
 totprod IS_A molar_stream;
 inputs := [‘liquid’];
 liqouts := [‘bottoms’];
 vapouts := [‘vapor’,’vapor_product’];
 components, totprod.components ARE_THE_SAME;
 reboil_def: vapout[‘vapor’].Ftot/F_scale =
 reboil_ratio*totprod.Ftot/F_scale;

FOR i IN components CREATE
 totprodflow[i]: totprod.f[i]/F_scale =
 liqout[‘bottoms’].f[i]/F_scale +
 vapout[‘vapor_product’].f[i]/F_scale;

END;
 split_def_bottoms:
 totprod.Ftot*prodsplit[‘bottoms’]/F_scale
 = liqout[‘bottoms’].Ftot/F_scale;
 split_def_vapor_product:
 totprod.Ftot*prodsplit[‘vapor_product’]/F_scale
 = vapout[‘vapor_product’].Ftot/F_scale;
 prodsplit[‘bottoms’] := 1.0;
 prodsplit[‘vapor_product’] := 0.0;

INITIALIZATION
PROCEDURE seqmod;

RUN VLE.specify;
 VLE.y[components].fixed := FALSE;
 VLE.phi[VLE.phases].fixed := FALSE;
 reboil_ratio.fixed := TRUE;

156

 prodsplit[‘vapor_product’].fixed := TRUE;
END seqmod;

END reboiler;
MODEL td_VLE_flash REFINES VLE_flash;
 Qin IS_A energy_rate;
 data[components] IS_A component_constants;
 can_be_adiabatic IS_A boolean;
 can_be_adiabatic := TRUE;
 VLE IS_REFINED_TO td_heterogeneous_mixture;
 input[inputs] IS_REFINED_TO td_stream;
 liqout[liqouts] IS_REFINED_TO liquid_stream;
 vapout[vapouts] IS_REFINED_TO vapor_stream;
 H_scale IS_A real;
 H_scale,
 vapout[CHOICE(vapouts)].Htot_scale ARE_THE_SAME;

FOR i IN components CREATE
 data[i],
 input[inputs].data[i],
 VLE.data[i] ARE_THE_SAME;

END;
 (* heat balance *)
 energy_bal: (SUM(input[inputs].Htot) + Qin)/H_scale =
 (SUM(liqout[liqouts].Htot) +

SUM(vapout[vapouts].Htot))/H_scale;
INITIALIZATION

END td_VLE_flash;
MODEL td_simple_tray REFINES simple_tray;
 Qin IS_A energy_rate;
 data[components] IS_A component_constants;
 can_be_adiabatic IS_A boolean;
 can_be_adiabatic := TRUE;
 VLE IS_REFINED_TO td_heterogeneous_mixture;
 input[inputs] IS_REFINED_TO td_stream;
 liqout[liqouts] IS_REFINED_TO liquid_stream;
 vapout[vapouts] IS_REFINED_TO vapor_stream;
 H_scale IS_A real;
 H_scale, vapout[‘vapor’].Htot_scale ARE_THE_SAME;

FOR i IN components CREATE
 data[i],
 input[inputs].data[i],
 VLE.data[i] ARE_THE_SAME;

END;
 (* heat balance *)
 energy_bal: (SUM(input[inputs].Htot) + Qin)/H_scale =
 (SUM(liqout[liqouts].Htot) +

SUM(vapout[vapouts].Htot))/H_scale;
INITIALIZATION

PROCEDURE heat_balance;
 cmo_ratio.fixed := FALSE;
 Qin.fixed := TRUE;

END heat_balance;
END td_simple_tray;
MODEL td_simple_feed_tray REFINES simple_feed_tray;
 Qin IS_A energy_rate;
 data[components] IS_A component_constants;
 can_be_adiabatic IS_A boolean;
 can_be_adiabatic := TRUE;
 VLE IS_REFINED_TO td_heterogeneous_mixture;
 input[‘feed’] IS_REFINED_TO vapor_liquid_stream;

157

 input[inputs] IS_REFINED_TO td_stream;
 liqout[liqouts] IS_REFINED_TO liquid_stream;
 vapout[vapouts] IS_REFINED_TO vapor_stream;
 H_scale IS_A real;
 H_scale, vapout[‘vapor’].Htot_scale ARE_THE_SAME;

FOR i IN components CREATE
 data[i],
 input[inputs].data[i],
 VLE.data[i] ARE_THE_SAME;

END;
 liqout[liqouts].state,
 input[‘feed’].state.mix[‘liquid’] ARE_ALIKE;
 vapout[‘vapor’].state,
 input[‘feed’].state.mix[‘vapor’] ARE_ALIKE;
 input[‘feed’].state.phi[‘liquid’] := 1.0;
 input[‘feed’].state.phi[‘vapor’] := 0.0;
 (* heat balance *)
 energy_bal: (SUM(input[inputs].Htot) + Qin)/H_scale =
 (SUM(liqout[liqouts].Htot) +

SUM(vapout[vapouts].Htot))/H_scale;
INITIALIZATION

PROCEDURE heat_balance;
 q.fixed := FALSE;
 Qin.fixed := TRUE;

END heat_balance;
END td_simple_feed_tray;
MODEL td_reboiler REFINES reboiler;
 Qin IS_A energy_rate;
 data[components] IS_A component_constants;
 can_be_adiabatic IS_A boolean;
 can_be_adiabatic := FALSE;
 VLE IS_REFINED_TO td_heterogeneous_mixture;
 input[inputs] IS_REFINED_TO td_stream;
 liqout[liqouts] IS_REFINED_TO liquid_stream;
 vapout[vapouts] IS_REFINED_TO vapor_stream;
 H_scale IS_A real;
 H_scale, vapout[‘vapor’].Htot_scale ARE_THE_SAME;

FOR i IN components CREATE
 data[i],
 input[inputs].data[i],
 VLE.data[i] ARE_THE_SAME;

END;
 (* heat balance *)
 energy_bal: (SUM(input[inputs].Htot) + Qin)/H_scale =
 (SUM(liqout[liqouts].Htot) +

SUM(vapout[vapouts].Htot))/H_scale;
INITIALIZATION

END td_reboiler;
MODEL td_condenser REFINES condenser;
 Qin IS_A energy_rate;
 data[components] IS_A component_constants;
 can_be_adiabatic IS_A boolean;
 can_be_adiabatic := FALSE;
 VLE IS_REFINED_TO td_heterogeneous_mixture;
 input[inputs] IS_REFINED_TO td_stream;
 liqout[liqouts] IS_REFINED_TO liquid_stream;
 vapout[vapouts] IS_REFINED_TO vapor_stream;
 H_scale IS_A real;
 H_scale, input[‘vapor’].Htot_scale ARE_THE_SAME;

158

FOR i IN components CREATE
 data[i],
 input[inputs].data[i],
 VLE.data[i] ARE_THE_SAME;

END;
 (* heat balance *)
 energy_bal: (SUM(input[inputs].Htot) + Qin)/H_scale =
 (SUM(liqout[liqouts].Htot) +

SUM(vapout[vapouts].Htot))/H_scale;
INITIALIZATION

END td_condenser;
MODEL murph_tray REFINES td_simple_tray;
 murph_eff IS_A factor;
 VLE IS_REFINED_TO murphree_equilibrium_mixture;
 murph_eff, VLE.murph_eff ARE_THE_SAME;

FOR i IN components - [CHOICE(components)] CREATE
 VLE.ref_y[i],
 input[‘vapor’].state.y[i] ARE_THE_SAME;

END;
INITIALIZATION

PROCEDURE seqmod;
RUN VLE.specify;

 VLE.y[components].fixed := FALSE;
 VLE.phi[VLE.phases].fixed := FALSE;
 cmo_ratio.fixed := TRUE;
 VLE.ref_y[components].fixed := FALSE;

END seqmod;
END murph_tray;

159

(**
 collocation.lib
 by Robert S. Huss
 Part OF the ASCEND Library
This file is part of the Ascend modeling library.
Copyright (C) 1994
The Ascend modeling library is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The Ascend Language Interpreter is distributed in hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with
the program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING.

 **)
(*
 C O L L O C A T I O N . L I B

 AUTHOR: Robert S. Huss
 DATES: 5/95 - First Public Release
 CONTENTS: Collocation models for distillation modeling.
 REQUIRES: “atoms.lib”
 “components.lib”
 “H_S_thermodynamics.lib” or “H_G_thermodynamics.lib”
 “plot.lib”
 “stream.lib”
 “flash.lib”
*)
MODEL lagrange_polynomial;
 npoints,
 ntrays,
 order IS_A integer;
 W[0..npoints][0..order],
 w_tray[0..ntrays+1],
 w_points[0..npoints],
 w_mid IS_A factor;
 f_int,
 f_mid IS_A fraction;
 scale IS_A scaling_constant;
 change[1..ntrays] IS_A factor;
 change[1..ntrays] := 1.0;
 npoints := 2*ntrays + 1;
 order := ntrays;
 f_mid := 0.5;
 w_tray[0],
 w_points[0] ARE_THE_SAME;
 w_tray[ntrays+1],
 w_points[npoints] ARE_THE_SAME;
 w_mid = w_tray[0] + f_mid*(w_tray[ntrays+1] - w_tray[0]);

FOR i IN [0..npoints] CREATE
FOR k IN [0..ntrays] CREATE

 W[i][k] = PROD((w_points[i] - w_tray[j])
 / (w_tray[k] - w_tray[j]) | j IN
 [0..k-1,k+1..ntrays]);

END;

160

END;
INITIALIZATION

PROCEDURE specify;
 w_points[0..npoints].fixed := TRUE;
 f_int.fixed := TRUE;
 f_mid.fixed := TRUE;
 change[1..ntrays].fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END lagrange_polynomial;
MODEL lgr_1_point REFINES lagrange_polynomial;
 ntrays := 1;
 w_mid,
 w_tray[1] ARE_THE_SAME;
END lgr_1_point;
MODEL lgr_2_points REFINES lagrange_polynomial;
 ntrays := 2;
 f_int := 0.333;
 w_tray[1] = w_mid - change[1]*f_int
 *(w_mid - w_tray[0]);
 w_tray[2] = w_mid + change[2]*f_int
 *(w_tray[ntrays+1] - w_mid);
END lgr_2_points;
MODEL lgr_3_points REFINES lagrange_polynomial;
 ntrays := 3;
 f_int := 0.5;
 w_tray[1] = w_mid - change[1]*f_int
 *(w_mid - w_tray[0]);
 w_tray[2], w_mid ARE_THE_SAME;
 w_tray[3] = w_mid + change[3]*f_int
 *(w_tray[ntrays+1] - w_mid);
END lgr_3_points;
MODEL lgr_4_points REFINES lagrange_polynomial;
 ntrays := 4;
 f_int := 0.6;
 w_tray[1] = w_mid - f_int*change[1]
 *(w_mid - w_tray[0]);
 w_tray[2] = w_mid - f_int*change[2]
 *(w_mid - w_tray[0])/3;
 w_tray[3] = w_mid + f_int*change[3]
 *(w_tray[ntrays+1] - w_mid)/3;
 w_tray[4] = w_mid + f_int*change[4]
 *(w_tray[ntrays+1] - w_mid);
END lgr_4_points;
MODEL lgr_5_points REFINES lagrange_polynomial;
 ntrays := 5;
 f_int := 0.66666667;
 w_tray[1] = w_mid - f_int*(w_mid - w_tray[0]);
 w_tray[2] = w_mid - f_int*(w_mid - w_tray[0])/2;
 w_tray[3], w_mid ARE_THE_SAME;
 w_tray[4] = w_mid + f_int*(w_tray[ntrays+1] - w_mid)/2;
 w_tray[5] = w_mid + f_int*(w_tray[ntrays+1] - w_mid);
END lgr_5_points;
MODEL collpoint;
 a,
 z,s,

161

 ztop IS_A factor;
 scale IS_A scaling_constant;
 up_down IS_A real;
 s_def: z = 1-exp(-a*s);
 ztopdefn: ztop = 1-(1-z)*exp(-up_down*a);
 a := 0.1;
 z := 0.5;
 ztop := 0.5;
 s := 1;
 a.lower_bound := 0.0;
 a.upper_bound := 3.0;
 z.lower_bound := -0.5;
 ztop.lower_bound := -0.5;
 z.upper_bound := 1.0;
 ztop.upper_bound := 1.0;
 s.lower_bound := 0.0;

INITIALIZATION
PROCEDURE seqmod;

 a.fixed := TRUE;
 s.fixed := TRUE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE s_off;

 s_def.included := FALSE;
 s.fixed := TRUE;

END s_off;
END collpoint;
MODEL z_set;
 ntrays IS_A integer;
 a,
 s_values[0..ntrays+1],
 z_values[0..ntrays+1],
 stot IS_A factor;
 up_down IS_A real;
 z[0..ntrays+1] IS_A collpoint;
 ztop,
 zbot IS_A factor;
 lgr IS_A lagrange_polynomial;
 z_on IS_A boolean;
 scale IS_A scaling_constant;
 z_on := FALSE;
 lgr.ntrays, ntrays ARE_THE_SAME;
 stot = s_values[ntrays+1] - s_values[0];

FOR j IN [0..ntrays+1] CREATE
 z[j].z,
 z_values[j] ARE_THE_SAME;
 z[j].s,
 s_values[j] ARE_THE_SAME;

END;
 up_down,
 z[0..ntrays+1].up_down ARE_THE_SAME;
 s_values[0] := 0;

162

 z_values[0] := 0;
 a,z[0..ntrays+1].a ARE_THE_SAME;
 stot.lower_bound := 0.0;

FOR j IN [1..ntrays] CREATE
 lgr.w_points[2*j-1],
 lgr.w_tray[j] ARE_THE_SAME;

END;
 (* z_based *)

FOR j IN [1..ntrays] CREATE
 z_based_odd[2*j-1]: lgr.w_points[2*j-1] =
 z_values[j];
 z_based_even[2*j]: lgr.w_points[2*j] =
 z[j].ztop;

END;
 z_based_0: lgr.w_points[0] = z_values[0];
 z_based_n: lgr.w_points[lgr.npoints] =
 z_values[ntrays+1];
 (* s_based *)

FOR j IN [1..ntrays] CREATE
 s_based_odd[2*j-1]: lgr.w_points[2*j-1] =
 s_values[j];
 s_based_even[2*j]: lgr.w_points[2*j] =
 s_values[j] + z[0].up_down;

END;
 s_based_0: lgr.w_points[0] = s_values[0];
 s_based_n: lgr.w_points[lgr.npoints] =
 s_values[ntrays+1];
 ztop = (up_down+1)*z_values[ntrays+1]/2 +(1-up_down)*z_values[0]/2;
 zbot = (up_down+1)*z_values[0]/2 +(1-up_down)*z_values[ntrays+1]/2;
 tray_delta IS_A factor;
 s_values[ntrays] + tray_delta = s_values[ntrays+1];

INITIALIZATION
PROCEDURE specify;

RUN lgr.specify;
 lgr.w_points[0..lgr.npoints].fixed := FALSE;
 a.fixed := TRUE;
 s_values[0].fixed := TRUE;
 stot.fixed := TRUE;

IF (z_on) THEN
RUN z_based_poly;

ELSE
RUN s_based_poly;

END;
END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE z_based_poly;

FOR j IN [1..ntrays] DO
 z_based_odd[2*j-1].included := TRUE;
 z_based_even[2*j].included := TRUE;
 s_based_odd[2*j-1].included := FALSE;
 s_based_even[2*j].included := FALSE;

END;
 z_based_0.included := TRUE;
 z_based_n.included := TRUE;
 s_based_0.included := FALSE;
 s_based_n.included := FALSE;

163

 z_on := TRUE;
END z_based_poly;
PROCEDURE s_based_poly;

FOR j IN [1..ntrays] DO
 z_based_odd[2*j-1].included := FALSE;
 z_based_even[2*j].included := FALSE;
 s_based_odd[2*j-1].included := TRUE;
 s_based_even[2*j].included := TRUE;

END;
 z_based_0.included := FALSE;
 z_based_n.included := FALSE;
 s_based_0.included := TRUE;
 s_based_n.included := TRUE;
 z_on := FALSE;

END s_based_poly;
PROCEDURE s_off;

RUN z[ntrays..ntrays+1].s_off;
END s_off;
PROCEDURE pin_end;

 tray_delta.fixed := TRUE;
 tray_delta := 1.0;
 lgr.change[ntrays].fixed := FALSE;

END pin_end;
END z_set;
MODEL coll;
 components,
 active_components IS_A set OF symbol;
 inactive_component IS_A symbol;
 ntrays,
 x_order,
 y_order IS_A integer;
 topliq,
 botliq,
 topvap,
 botvap IS_A molar_stream;
 x_coeff[active_components]
 [0..x_order],
 y_coeff[active_components]
 [0..y_order],
 cmo[1..ntrays],
 cmotot IS_A factor;
 tray[1..ntrays] IS_A simple_tray;
 z_set IS_A z_set;
 z_on,
 hat_on IS_A boolean;
 x[1..ntrays][components] IS_A fraction;
 y[1..ntrays][components] IS_A fraction;
 x_hat[1..ntrays][components] IS_A factor;
 scale IS_A scaling_constant;
 active_components := components - [inactive_component];
 z_on := FALSE;
 hat_on := FALSE;

FOR i IN components CREATE
FOR j IN [1..ntrays] CREATE

 x[j][i] = (1+z_set.up_down)
 *tray[ntrays+1-j].liqout[‘liquid’].state.y[i]/2
 + (1-z_set.up_down)
 *tray[j].liqout[‘liquid’].state.y[i]/2;
 y[j][i] = (1+z_set.up_down)

164

 *tray[ntrays+1-j].input[‘vapor’].state.y[i]/2
 + (1-z_set.up_down)
 *tray[j].input[‘vapor’].state.y[i]/2;
 x_hat[j][i] = (1+z_set.up_down)
 *tray_x_hat[‘out’][i][ntrays+1-j]/2
 + (1-z_set.up_down)
 *tray_x_hat[‘out’][i][j]/2;

END;
END;

 x_order := ntrays;
 y_order := ntrays;
 z_on,
 z_set.z_on ARE_THE_SAME;
 y_coeff[active_components][0..y_order] := 0.5;
 x_coeff[active_components][0..x_order] := 0.5;
 components,
 topliq.components,
 topvap.components,
 botliq.components,
 botvap.components,
 tray[1..ntrays].components ARE_THE_SAME;
 ntrays,z_set.ntrays ARE_THE_SAME;
 tray[1..ntrays].VLE ARE_ALIKE;
 tray[1..ntrays] ARE_ALIKE;
 (* constant molar overflow model - instead of heat balance *)

FOR j IN [1..ntrays] CREATE
 cmo[j]*tray[j].input[‘liquid’].Ftot = botliq.Ftot;

END;
 cmotot*topliq.Ftot = botliq.Ftot;

FOR i IN components CREATE
 overall_MB[i]: topliq.f[i] - topvap.f[i] =
 botliq.f[i] - botvap.f[i];

END;
 tray[1..ntrays].liqout[‘liquid’].state ARE_ALIKE;
 tray[1..ntrays].vapout[‘vapor’].state ARE_ALIKE;
 (* xtrans stuff *)
 tray_x_hat[‘in’,’out’][components][1..ntrays],
 tray_y_hat[‘in’,’out’][components][1..ntrays],
 end_x_hat[‘top’,’bot’][components],
 end_y_hat[‘top’,’bot’][components] IS_A factor;
 td IS_A real;
 td := 1.0;
 tray_x_hat[‘in’,’out’][components][1..ntrays].nominal := 20;
 tray_y_hat[‘in’,’out’][components][1..ntrays].nominal := 20;
 end_x_hat[‘top’,’bot’][components].nominal := 20;
 end_y_hat[‘top’,’bot’][components].nominal := 20;
 tray_x_hat[‘in’,’out’][components][1..ntrays] := 1;
 tray_y_hat[‘in’,’out’][components][1..ntrays] := 1;
 end_x_hat[‘top’,’bot’][components] := 1;
 end_y_hat[‘top’,’bot’][components] := 1;

FOR i IN components CREATE
 (2.0*botliq.state.y[i] - 1.0)
 = tanh(end_x_hat[‘bot’][i]*td);
 (2.0*topliq.state.y[i] - 1.0)
 = tanh(end_x_hat[‘top’][i]*td);
 (2.0*botvap.state.y[i] - 1.0)
 = tanh(end_y_hat[‘bot’][i]*td);
 (2.0*topvap.state.y[i] - 1.0)
 = tanh(end_y_hat[‘top’][i]*td);

165

END;
FOR i IN components CREATE

FOR j IN [1..ntrays] CREATE
 (2.0*tray[j].liqout[‘liquid’].state.y[i] - 1.0)
 = tanh(tray_x_hat[‘out’][i][j]*td);
 (2.0*tray[j].input[‘liquid’].state.y[i] - 1.0)
 = tanh(tray_x_hat[‘in’][i][j]*td);
 (2.0*tray[j].vapout[‘vapor’].state.y[i] - 1.0)
 = tanh(tray_y_hat[‘out’][i][j]*td);
 (2.0*tray[j].input[‘vapor’].state.y[i] - 1.0)
 = tanh(tray_y_hat[‘in’][i][j]*td);

END;
END;

 (* polynomial *)
 (* Overall material balances *)

FOR j IN [1..ntrays] CREATE
 tot_trayMB[j]: botvap.Ftot - botliq.Ftot =
 tray[j].vapout[‘vapor’].Ftot -
 tray[j].input[‘liquid’].Ftot;

END;
FOR i IN active_components CREATE

FOR j IN [1..ntrays] CREATE
 frac_x_in[j][i]: tray[j].input[‘liquid’].state.y[i] =

SUM(z_set.lgr.W[2*j][k]*x_coeff[i][k]
 | k IN [0..x_order]);
 frac_y_in[j][i]: tray[j].input[‘vapor’].state.y[i] =

SUM(z_set.lgr.W[2*j-1][k]*y_coeff[i][k]
 | k IN [0..y_order]);
 frac_x_out[j][i]: tray[j].liqout[‘liquid’].state.y[i] =

SUM(z_set.lgr.W[2*j-1][k]*x_coeff[i][k]
 | k IN [0..x_order]);
 frac_y_out[j][i]: tray[j].vapout[‘vapor’].state.y[i] =

SUM(z_set.lgr.W[2*j][k]*y_coeff[i][k]
 | k IN [0..y_order]);

END;
END;
FOR i IN active_components CREATE

FOR j IN [1..ntrays] CREATE
 trans_x_out[j][i]: tray_x_hat[‘out’][i][j] =

SUM(z_set.lgr.W[2*j-1][k]*x_coeff[i][k]
 | k IN [0..x_order]);
 trans_x_in[j][i]: tray_x_hat[‘in’][i][j] =

SUM(z_set.lgr.W[2*j][k]*x_coeff[i][k]
 | k IN [0..x_order]);
 trans_y_out[j][i]: tray_y_hat[‘out’][i][j] =

SUM(z_set.lgr.W[2*j][k]*y_coeff[i][k]
 | k IN [0..y_order]);
 trans_y_in[j][i]: tray_y_hat[‘in’][i][j] =

SUM(z_set.lgr.W[2*j-1][k]*y_coeff[i][k]
 | k IN [0..y_order]);

END;
END;
FOR i IN active_components CREATE

 frac_x_top[1][i]: topliq.state.y[i]
 = SUM(((z_set.up_down+1)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[0][k]/2)*x_coeff[i][k]
 | k IN [0..x_order]);

166

 frac_y_top[1][i]: topvap.state.y[i]
 = SUM(((z_set.up_down+1)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[0][k]/2)*y_coeff[i][k]
 | k IN [0..y_order]);
 frac_y_bot[1][i]: botvap.state.y[i]
 = SUM(((z_set.up_down+1)
 *z_set.lgr.W[0][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2)
 *y_coeff[i][k]
 | k IN [0..y_order]);

END;
FOR i IN active_components CREATE

 trans_x_top[1][i]: end_x_hat[‘top’][i]
 = SUM((((z_set.up_down+1)*z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)*z_set.lgr.W[0][k]/2))*x_coeff[i][k]
 | k IN [0..x_order]);
 trans_y_top[1][i]: end_y_hat[‘top’][i]
 = SUM((((z_set.up_down+1)*z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)*z_set.lgr.W[0][k]/2))*y_coeff[i][k]
 | k IN [0..y_order]);
 trans_y_bot[1][i]: end_y_hat[‘bot’][i]
 = SUM(((z_set.up_down+1)*z_set.lgr.W[0][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2)*y_coeff[i][k]
 | k IN [0..y_order]);

END;
 slope[components] IS_A factor;

FOR i IN components CREATE
 slope[i] = (sqrt(sqr(topliq.state.y[i]
 - botliq.state.y[i])))/z_set.stot;

END;
 aslope[components] IS_A factor;
 intercept[components] IS_A fraction;
 slope_slack[1..ntrays][components] IS_A factor;

FOR i IN components CREATE
 botpoint[i]: botliq.state.y[i] = aslope[i]*z_set.zbot +
 intercept[i];
 toppoint[i]: topliq.state.y[i] = aslope[i]*z_set.ztop +
 intercept[i];

FOR j IN [1..ntrays] CREATE
 midpoint[j][i]: tray[j].liqout[‘liquid’].state.y[i] =
 aslope[i]*(z_set.z_values[j] - z_set.zbot) +
 intercept[i] + slope_slack[j][i];

END;
END;

INITIALIZATION
PROCEDURE standard_poly;

 frac_x_in[1..ntrays][active_components].included :=TRUE;
 frac_y_in[1..ntrays][active_components].included :=TRUE;
 frac_x_out[1..ntrays][active_components].included :=TRUE;
 frac_y_out[1..ntrays][active_components].included :=TRUE;
 frac_x_top[1][active_components].included :=TRUE;
 frac_y_top[1][active_components].included :=TRUE;
 frac_y_bot[1][active_components].included :=TRUE;
 trans_x_out[1..ntrays][active_components].included :=FALSE;
 trans_x_in[1..ntrays][active_components].included :=FALSE;

167

 trans_y_out[1..ntrays][active_components].included :=FALSE;
 trans_y_in[1..ntrays][active_components].included :=FALSE;
 trans_x_top[1][active_components].included :=FALSE;
 trans_y_top[1][active_components].included :=FALSE;
 trans_y_bot[1][active_components].included :=FALSE;
 hat_on :=FALSE;

END standard_poly;
PROCEDURE trans_poly;

 frac_x_in[1..ntrays][active_components].included :=FALSE;
 frac_y_in[1..ntrays][active_components].included :=FALSE;
 frac_x_out[1..ntrays][active_components].included :=FALSE;
 frac_y_out[1..ntrays][active_components].included :=FALSE;
 frac_x_top[1][active_components].included :=FALSE;
 frac_y_top[1][active_components].included :=FALSE;
 frac_y_bot[1][active_components].included :=FALSE;
 trans_x_out[1..ntrays][active_components].included :=TRUE;
 trans_x_in[1..ntrays][active_components].included :=TRUE;
 trans_y_out[1..ntrays][active_components].included :=TRUE;
 trans_y_in[1..ntrays][active_components].included :=TRUE;
 trans_x_top[1][active_components].included :=TRUE;
 trans_y_top[1][active_components].included :=TRUE;
 trans_y_bot[1][active_components].included :=TRUE;
 hat_on :=TRUE;

END trans_poly;
PROCEDURE seqmod;

 cmo[1..ntrays].fixed := TRUE;
 cmotot.fixed := TRUE;

RUN tray[1..ntrays].seqmod;
RUN z_set.specify;
RUN tray[1..ntrays].input[tray[1].inputs].seqmod;
RUN topliq.seqmod;
RUN botvap.seqmod;
RUN topvap.seqmod;
RUN botliq.seqmod;
IF (hat_on) THEN

RUN trans_poly;
ELSE

RUN standard_poly;
END;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN topliq.specify;
RUN botvap.specify;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE s_off;

RUN z_set.s_off;
END s_off;
PROCEDURE z_based_poly;

RUN z_set.z_based_poly;
END z_based_poly;
PROCEDURE s_based_poly;

RUN z_set.s_based_poly;
END s_based_poly;

END coll;

168

MODEL coll_stack;
 components,active_components IS_A set OF symbol;
 inactive_component IS_A symbol;
 straight_choice IS_A symbol;
 ncolls IS_A integer;
 coll[1..ncolls] IS_A coll;
 split[1..ncolls] IS_A fraction;
 stot IS_A factor;
 scale IS_A scaling_constant;
 components,
 coll[1..ncolls].components ARE_THE_SAME;
 active_components,
 coll[1..ncolls].active_components ARE_THE_SAME;
 inactive_component,
 coll[1..ncolls].inactive_component ARE_THE_SAME;

FOR j IN [1..ncolls-1] CREATE
 coll[j].botvap,
 coll[j+1].topvap ARE_THE_SAME;
 coll[j].botliq,
 coll[j+1].topliq ARE_THE_SAME;

END;
FOR j IN [1..ncolls] CREATE

 tray_split[j]: coll[j].z_set.stot = split[j]*stot;
 split[j] := 1.0/ncolls;

END;
 coll[1..ncolls].tray[1] ARE_ALIKE;
 coll[1..ncolls].tray[1].VLE ARE_ALIKE;
 stot_def: stot = SUM(coll[j].z_set.stot | j IN [1..ncolls]);
 stot.lower_bound := 1e-8;

INITIALIZATION
PROCEDURE seqmod;

RUN coll[1..ncolls].seqmod;
FOR j IN [1..ncolls] DO

 coll[j].z_set
 .z_values[coll[j].ntrays+1].fixed := FALSE;
 coll[j].z_set.stot.fixed := FALSE;

END;
 stot.fixed := TRUE;
 split[1..ncolls-1].fixed := TRUE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN coll[1].topliq.specify;
RUN coll[ncolls].botvap.specify;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END coll_stack;
MODEL coll_column;
 nfeeds IS_A integer;
 condenser IS_A condenser;
 coll_stack[1..nfeeds+1] IS_A coll_stack;
 feed_tray[1..nfeeds] IS_A simple_feed_tray;
 reboiler IS_A reboiler;
 components IS_A set OF symbol;
 stot,
 s_stack[1..nfeeds+1] IS_A factor;

169

 split[1..nfeeds+1] IS_A fraction;
 xsi[components] IS_A fraction;
 xsi_set[components] IS_A fraction;
 xsi_diff[components] IS_A fraction;
 scale IS_A scaling_constant;
 components,
 condenser.components,
 coll_stack[1..nfeeds+1].components,
 feed_tray[1..nfeeds].components,
 reboiler.components ARE_THE_SAME;

FOR j IN [1..nfeeds+1] CREATE
 s_stack[j],
 coll_stack[j].stot ARE_THE_SAME;

END;
 stot = SUM(s_stack[1..nfeeds+1]);

FOR j IN [1..nfeeds+1] CREATE
 tray_split[j]: s_stack[j] = split[j]*stot;
 split[j] := 1.0/(nfeeds+1);

END;
 condenser.liqout[‘liquid’],
 coll_stack[1].coll[1].topliq ARE_THE_SAME;
 condenser.input[‘vapor’],
 coll_stack[1].coll[1].topvap ARE_THE_SAME;

FOR j IN [1..nfeeds] CREATE
 coll_stack[j].coll[coll_stack[j].ncolls].botliq,
 feed_tray[j].input[‘liquid’] ARE_THE_SAME;
 coll_stack[j].coll[coll_stack[j].ncolls].botvap,
 feed_tray[j].vapout[‘vapor’] ARE_THE_SAME;
 coll_stack[j+1].coll[1].topliq,
 feed_tray[j].liqout[‘liquid’] ARE_THE_SAME;
 coll_stack[j+1].coll[1].topvap,
 feed_tray[j].input[‘vapor’] ARE_THE_SAME;

END;
 coll_stack[nfeeds+1].coll[coll_stack[nfeeds+1].ncolls].botliq,
 reboiler.input[‘liquid’] ARE_THE_SAME;
 coll_stack[nfeeds+1].coll[coll_stack[nfeeds+1].ncolls].botvap,
 reboiler.vapout[‘vapor’] ARE_THE_SAME;
 condenser.VLE,
 coll_stack[1..nfeeds+1].coll[1].tray[1].VLE,
 feed_tray[1..nfeeds].VLE,
 reboiler.VLE ARE_ALIKE;
 condenser.liqout[‘liquid’].state,
 coll_stack[1..nfeeds+1].coll[1].tray[1].liqout[‘liquid’].state,
 feed_tray[1..nfeeds].liqout[‘liquid’].state,
 reboiler.liqout[‘bottoms’].state ARE_ALIKE;
 condenser.vapout[‘vapor_product’].state,
 coll_stack[1..nfeeds+1].coll[1].tray[1].vapout[‘vapor’].state,
 feed_tray[1..nfeeds].vapout[‘vapor’].state,
 reboiler.vapout[‘vapor’].state ARE_ALIKE;

FOR i IN components CREATE
 OverallMB[i]: SUM(feed_tray[1..nfeeds].input[‘feed’].f[i]) =
 condenser.totprod.f[i] +
 reboiler.totprod.f[i];

END;
FOR i IN components CREATE

 xsi[i]* SUM(feed_tray[k].input[‘feed’].f[i] | k IN [1..nfeeds])
 = condenser.totprod.f[i];
 xsi_diff[i] = 0.5*sqr(xsi[i] - xsi_set[i]);

END;

170

 recovery: MINIMIZE SUM(xsi_diff[i] | i IN components);
 binary_sep[components][components] IS_A factor;

FOR i IN components CREATE
FOR j IN components CREATE

 binary_sep[i][j] = (condenser.totprod.f[i] /
 (condenser.totprod.f[i] +
 condenser.totprod.f[j]) -
 reboiler.totprod.f[i] /
 (reboiler.totprod.f[i] +
 reboiler.totprod.f[j]));
 sep_opt[i][j]: MINIMIZE -sqr(binary_sep[i][j]);

END;
END;

INITIALIZATION
PROCEDURE seqmod;

RUN condenser.seqmod;
RUN coll_stack[1..nfeeds+1].seqmod;
RUN feed_tray[1..nfeeds].seqmod;
RUN reboiler.seqmod;

 OverallMB[components].included := FALSE;
 reboiler.reboil_ratio.fixed := FALSE;
 condenser.totprod.Ftot.fixed := TRUE;
 xsi_set[components].fixed := TRUE;
 recovery.included := FALSE;
 sep_opt[components][components].included := FALSE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN feed_tray[1..nfeeds].input[‘feed’].specify;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE standard_poly;

RUN coll_stack[1..nfeeds+1].standard_poly;
END standard_poly;
PROCEDURE trans_poly;

RUN coll_stack[1..nfeeds+1].trans_poly;
END trans_poly;
PROCEDURE z_based_poly;

RUN coll_stack[1..nfeeds+1].z_based_poly;
END z_based_poly;
PROCEDURE s_based_poly;

RUN coll_stack[1..nfeeds+1].s_based_poly;
END s_based_poly;
PROCEDURE propogate_feed;

FOR i IN components DO
 condenser.alpha[i] := feed_tray[1].alpha[i];

FOR k IN [2..nfeeds] DO
 feed_tray[k].alpha[i] :=
 feed_tray[1].alpha[i];

END;
FOR k IN [1..nfeeds+1] DO

FOR j IN [1..coll_stack[k].ncolls] DO
 coll_stack[k].coll[j].tray[1..coll_stack[k]
 .coll[j].ntrays].alpha[i]
 := feed_tray[1].alpha[i];

END;

171

END;
 reboiler.alpha[i] := feed_tray[1].alpha[i];

END;
END propogate_feed;
PROCEDURE overallMB;

 OverallMB[components].included := TRUE;
 feed_tray[1].totfeedflow[components].included := FALSE;

END overallMB;
END coll_column;
MODEL td_coll REFINES coll;
 data[components] IS_A component_constants;
 tray[1..ntrays] IS_REFINED_TO td_simple_tray;
 topliq IS_REFINED_TO td_stream;
 topvap IS_REFINED_TO td_stream;
 botliq IS_REFINED_TO td_stream;
 botvap IS_REFINED_TO td_stream;
 tray[1..ntrays].liqout[‘liquid’].state ARE_ALIKE;
 tray[1..ntrays].vapout[‘vapor’].state ARE_ALIKE;

FOR i IN components CREATE
 data[i],
 tray[1..ntrays].data[i],
 topliq.data[i],
 topvap.data[i],
 botliq.data[i],
 botvap.data[i] ARE_THE_SAME;

END;
END td_coll;
MODEL h_coll REFINES td_coll;
 h_order IS_A integer;
 h_order,ntrays ARE_THE_SAME;
 h_coeff[‘liquid’,’vapor’][0..h_order] IS_A molar_energy;
 Qtot,
 Qin[1..ntrays] IS_A energy_rate;
 h_exist,
 hb_on IS_A boolean;
 h_exist := TRUE;
 hb_on := FALSE;
 Overall_HB: Qtot + topliq.Htot + botvap.Htot =
 botliq.Htot + topvap.Htot;

FOR j IN [1..ntrays] CREATE
 tot_trayHB[j]: Qin[j] +topliq.Htot - topvap.Htot =
 tray[j].liqout[‘liquid’].Htot -
 tray[j].input[‘vapor’].Htot;

END;
(* end points *)
 h_end_topliq: topliq.H = SUM(((z_set.up_down+1)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)*z_set.lgr.W[0][k]/2)
 *h_coeff[‘liquid’][k]
 | k IN [0..h_order]);
 h_end_topvap: topvap.H = SUM(((z_set.up_down+1)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2
 + (1-z_set.up_down)*z_set.lgr.W[0][k]/2)
 *h_coeff[‘vapor’][k]
 | k IN [0..h_order]);
 h_end_botliq: botliq.H = SUM(((z_set.up_down+1)
 *z_set.lgr.W[0][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2)

172

 *h_coeff[‘liquid’][k]
 | k IN [0..h_order]);
 h_end_botvap: botvap.H = SUM(((z_set.up_down+1)
 *z_set.lgr.W[0][k]/2
 + (1-z_set.up_down)
 *z_set.lgr.W[z_set.lgr.npoints][k]/2)
 *h_coeff[‘vapor’][k]
 | k IN [0..h_order]);
(* interior points *)

FOR j IN [1..ntrays] CREATE
 h_int_liqout[j]: tray[j].liqout[‘liquid’].H =

SUM(z_set.lgr.W[2*j-1][k]*h_coeff[‘liquid’][k]
 | k IN [0..h_order]);
 h_int_liqin[j]: tray[j].input[‘liquid’].H =

SUM(z_set.lgr.W[2*j][k]*h_coeff[‘liquid’][k]
 | k IN [0..h_order]);
 h_int_vapout[j]: tray[j].vapout[‘vapor’].H =

SUM(z_set.lgr.W[2*j][k]*h_coeff[‘vapor’][k]
 | k IN [0..h_order]);
 h_int_vapin[j]: tray[j].input[‘vapor’].H =

SUM(z_set.lgr.W[2*j-1][k]*h_coeff[‘vapor’][k]
 | k IN [0..h_order]);

END;
INITIALIZATION

PROCEDURE seqmod;
RUN td_coll::seqmod;

 tray[1..ntrays].input[tray[1].inputs].H.fixed := FALSE;
 topvap.H.fixed := FALSE;
 botliq.H.fixed := FALSE;

IF (hb_on) THEN
RUN heat_balance;

END;
END seqmod;
PROCEDURE heat_balance;

RUN tray[1..ntrays].heat_balance;
 Qtot.fixed := TRUE;
 cmotot.fixed := FALSE;
 Qin[1..ntrays].fixed := TRUE;
 cmo[1..ntrays].fixed := FALSE;
 hb_on := TRUE;

END heat_balance;
PROCEDURE CMO;

 tray[1..ntrays].cmo_ratio.fixed := TRUE;
 tray[1..ntrays].Qin.fixed := FALSE;
 Qtot.fixed := FALSE;
 cmotot.fixed := TRUE;
 Qin[1..ntrays].fixed := FALSE;
 cmo[1..ntrays].fixed := TRUE;
 hb_on := FALSE;

END CMO;
END h_coll;
MODEL td_coll_stack REFINES coll_stack;
 data[components] IS_A component_constants;
 coll[1..ncolls] IS_REFINED_TO td_coll;
 hb_on IS_A boolean;
 hb_on := FALSE;

FOR i IN components CREATE
 data[i],
 coll[1..ncolls].data[i] ARE_THE_SAME;

173

END;
 coll[1..ncolls].tray[1].liqout[‘liquid’].state ARE_ALIKE;
 coll[1..ncolls].tray[1].vapout[‘vapor’].state ARE_ALIKE;

INITIALIZATION
PROCEDURE heat_balance;

RUN coll[1..ncolls].heat_balance;
 hb_on := TRUE;

END heat_balance;
PROCEDURE CMO;

RUN coll[1..ncolls].CMO;
 hb_on := FALSE;

END CMO;
PROCEDURE seqmod;

RUN coll_stack::seqmod;
FOR j IN [1..ncolls] DO

IF coll[j].h_exist THEN
 coll[j].botliq.H.fixed := FALSE;

END;
END;
IF (hb_on) THEN

RUN heat_balance;
END;

END seqmod;
END td_coll_stack;
MODEL td_coll_column REFINES coll_column;
 reduce IS_A factor;
 reduce := 0.5;
 data[components] IS_A component_constants;
 condenser IS_REFINED_TO td_condenser;
 feed_tray[1..nfeeds] IS_REFINED_TO td_simple_feed_tray;
 reboiler IS_REFINED_TO td_reboiler;
 coll_stack[1..nfeeds+1] IS_REFINED_TO td_coll_stack;
 hb_on IS_A boolean;
 hb_on := FALSE;

FOR i IN components CREATE
 data[i],
 condenser.data[i],
 coll_stack[1..nfeeds+1].coll[1].data[i],
 feed_tray[1..nfeeds].data[i],
 reboiler.data[i] ARE_THE_SAME;

END;
 condenser.liqout[‘liquid’].state,
 coll_stack[1..nfeeds+1].coll[1].tray[1].liqout[‘liquid’].state,
 feed_tray[1..nfeeds].liqout[‘liquid’].state,
 reboiler.liqout[‘bottoms’].state ARE_ALIKE;
 condenser.vapout[‘vapor_product’].state,
 coll_stack[1..nfeeds+1].coll[1].tray[1].vapout[‘vapor’].state,
 feed_tray[1..nfeeds].vapout[‘vapor’].state,
 reboiler.vapout[‘vapor_product’].state ARE_ALIKE;

INITIALIZATION
PROCEDURE heat_balance;

RUN coll_stack[1..nfeeds+1].heat_balance;
RUN feed_tray[1..nfeeds].heat_balance;

 hb_on := TRUE;
END heat_balance;
PROCEDURE CMO;

RUN coll_stack[1..nfeeds+1].CMO;
 feed_tray[1..nfeeds].q.fixed := TRUE;
 feed_tray[1..nfeeds].Qin.fixed := FALSE;

174

 hb_on := FALSE;
END CMO;
PROCEDURE reduce_Q;

FOR i IN [1..nfeeds+1] DO
FOR j IN [1..coll_stack[i].ncolls] DO

 coll_stack[i].coll[j].Qtot :=
 coll_stack[i].coll[j].Qtot*reduce;

FOR k IN [1..coll_stack[i].coll[j].ntrays] DO
 coll_stack[i].coll[j].Qin[k] :=
 coll_stack[i].coll[j].Qin[k]*reduce;
 coll_stack[i].coll[j].tray[k].Qin :=
 coll_stack[i].coll[j].tray[k].Qin*reduce;

END;
END;

END;
FOR i IN [1..nfeeds] DO

 feed_tray[i].Qin :=
 feed_tray[i].Qin*reduce;

END;
END reduce_Q;
PROCEDURE zero_Q;

 reduce := 0;
RUN reduce_Q;

END zero_Q;
PROCEDURE seqmod;

RUN coll_column::seqmod;
IF (hb_on) THEN

RUN heat_balance;
END;

END seqmod;
END td_coll_column;
MODEL equilibrium_coll_column REFINES td_coll_column;
 condenser.VLE IS_REFINED_TO equilibrium_mixture;
 feed_tray[1..nfeeds]
 .input[‘feed’].state IS_REFINED_TO equilibrium_mixture;

INITIALIZATION
PROCEDURE seqmod;

RUN td_coll_column::seqmod;
 condenser.VLE.T.fixed := FALSE;

END seqmod;
END equilibrium_coll_column;
MODEL basic_coll_column REFINES coll_column;
 nfeeds := 1;
 coll_stack[1..2].ncolls := 2;
 coll_stack[1..2].coll[1].z_set.up_down := -1.0;
 coll_stack[1..2].coll[2].z_set.up_down := 1.0;
END basic_coll_column;
MODEL cost_calc;
 Afrac IS_A real; (* fraction of area taken by tray *)
 Fp1,
 Fm1 IS_A real; (* material factors for column p 574*)
 Fd2,
 Fp2,
 Fm2 IS_A real; (* material factors for exchangers p 572*)
 M_S IS_A real;
 Tin IS_A real; (* in temperature of cooling water *)
 Uc IS_A real; (* heat transfer coefficient for condenser *)
 CpW IS_A real; (* heat capacity of cooling water *)
 Hs IS_A real; (* heat of vaporization of steam *)

175

 Cw IS_A real; (* price of cooling water *)
 Cs IS_A real; (* price of steam *)
 Tray_height IS_A real; (* height of each tray *)

 cost IS_A factor;
 column_cost,
 condenser_cost,
 condenser_min,
 condenser_max,
 reboiler_cost,
 reboiler_min,
 reboiler_max,
 water_cost,
 water_min,
 water_max,
 steam_cost,
 steam_min,
 steam_max IS_A cost_per_time;
 scale IS_A scaling_constant;
 Area IS_A area; (* total cross-sectional area of column *)
 V[1..nsections] IS_A molar_rate; (* vapor molar flowrate *)
 V_bar[1..nsections] IS_A molar_volume; (* vapor molar volume *)
 M_g IS_A molar_mass; (*average molar mass of vapor *)
 D IS_A distance; (* diameter of column *)
 H IS_A distance; (* height of column *)
 pi IS_A circle_constant;
 DT_C IS_A temperature; (* change in cooling water temperature *)
 Ac,
 Ar,
 Acmin,
 Acmax,
 Armin,
 Armax IS_A area; (* area of condenser and reboiler *)
 QC,
 QR IS_A energy_rate; (* heat duty of condenser and reboiler *)
 Tc IS_A temperature; (* temperature of condenser *)
 Tout IS_A temperature;
 Fc1 IS_A factor;
 Fc2 IS_A factor;
 nsections IS_A integer;
 Feedtot,
 Feedmax,
 Feedmin IS_A molar_rate;
 F[1..nsections],
 Fmax,
 Fmin IS_A factor; (* flooding factor *)
 LMT IS_A factor; (* log mean temperature difference in condenser *)
 stot IS_A factor; (* total number of trays in column *)
 F[1..nsections] := 1.51{};
 Fmax := 2.5;
 Fmin := 0.75;
 Afrac := 0.88{};
 Fp1 := 1.0{};
 Fm1 := 1.0{};
 Fd2 := 1.0{};
 Fp2 := 0.0{};
 Fm2 := 1.0{};
 M_S := 900{USdollar};
 Tin := 459.67{R} + 70{R};

176

 Tout := 459.67{R} + 90{R};
 Uc := 100{BTU/hr/ft^2/R};
 CpW := 1{cal/mole/K};
 Hs := 933{BTU/lbm};
 Cw := 0.03{USdollar}/1000{gallon};
 Cs := 2.5{USdollar}/1000{lbm};
 Tray_height := 2.0{ft};

 V_bar[1..nsections] := 24{liter/mol};
 M_g := 70{g/mol};
 Tc := 350{K};
 QC := -30{kW};
 QR := 30{kW};

FOR j IN [1..nsections] CREATE
 Area = 1{ft^2}*V[j]*1{hr/lb_mole}
 *sqrt(M_g*1{lb_mole^2/lbm/ft^3}
 *V_bar[j])/Afrac/F[j]/3600;

END;
 F[1]*Feedmin = Fmin*Feedtot;
 F[1]*Feedmax = Fmax*Feedtot;
 Acmin*F[1] = Fmin*Ac;
 Acmax*F[1] = Fmax*Ac;
 Armin*F[1] = Fmin*Ar;
 Armax*F[1] = Fmax*Ar;

D = (4*Area/pi)^0.5;
 H = Tray_height*1.15*stot;
 Fc1 = Fm1*Fp1;
 Fc2 = (Fd2+Fp2)*Fm1;
 DT_C = (Tout - Tin);
 LMT = ln((Tc-Tin)/(Tc-Tout));
 Ac = -QC*LMT/((Tout-Tin)*Uc);
 Ar = QR/11250{BTU/hr/ft^2};
 Tout IS_REFINED_TO temperature;
 Tout = Tc - 5{K};
 c1: column_cost = (M_S/280/3{yr})*(120*(D/1{ft})
 ((H/1{ft})^0.8))(2.18 + Fc1);
 c2: condenser_cost = (M_S/280/3{yr})*(101.3)
 (2.29+Fc2)((Ac/1{ft^2})^0.65);
 c3: reboiler_cost = (M_S/280/3{yr})*(101.3)
 (2.29+Fc2)((Ar/1{ft^2})^0.65);
 c4: water_cost = Cw*(-QC)*1{ml/g}*18{g/mole}/(CpW*DT_C);
 c5: steam_cost = Cs*QR/Hs;
 condenser_min = (M_S/280/3{yr})*(101.3)*(2.29+Fc2)
 *((Acmin/1{ft^2})^0.65);
 condenser_max = (M_S/280/3{yr})*(101.3)*(2.29+Fc2)
 *((Acmax/1{ft^2})^0.65);
 reboiler_min = (M_S/280/3{yr})*(101.3)*(2.29+Fc2)
 *((Armin/1{ft^2})^0.65);
 reboiler_max = (M_S/280/3{yr})*(101.3)*(2.29+Fc2)
 *((Armax/1{ft^2})^0.65);
 water_min*F[1] = Fmin*water_cost;
 water_max*F[1] = Fmax*water_cost;
 steam_min*F[1] = Fmin*steam_cost;
 steam_max*F[1] = Fmax*steam_cost;
 c_tot1: cost*1.0{USdollar/yr} = column_cost
 + condenser_cost + reboiler_cost
 + water_cost + steam_cost;

INITIALIZATION

177

PROCEDURE seqmod;
 F[1].fixed := TRUE;
 Fmin.fixed := TRUE;
 Fmax.fixed := TRUE;

END seqmod;
PROCEDURE specify;

 Tc.fixed := TRUE;
 M_g.fixed := TRUE;
 QC.fixed := TRUE;
 QR.fixed := TRUE;
 V[1..nsections].fixed := TRUE;
 V_bar[1..nsections].fixed := TRUE;
 stot.fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END cost_calc;
MODEL cost_column;
 cost_calc IS_A cost_calc;
 col IS_A td_coll_column;
 cost_calc.Tc,
 col.condenser.VLE.T ARE_THE_SAME;
 cost_calc.QC,
 col.condenser.Qin ARE_THE_SAME;
 cost_calc.QR,
 col.reboiler.Qin ARE_THE_SAME;
 cost_calc.nsections := col.nfeeds+1;

FOR j IN [1..col.nfeeds+1] CREATE
 cost_calc.V[j],
 col.coll_stack[j].coll[1]
 .tray[1].vapout[‘vapor’].Ftot ARE_THE_SAME;
 cost_calc.V_bar[j],
 col.coll_stack[j].coll[1]
 .tray[1].vapout[‘vapor’].state.V ARE_THE_SAME;

END;
 cost_calc.stot,
 col.stot ARE_THE_SAME;
 cost_calc.M_g = SUM(col.feed_tray[1].data[i].mw
 *col.feed_tray[1].vapout[‘vapor’].state.y[i]
 | i IN col.components);
 cost_calc.Feedtot,
 col.feed_tray[1].input[‘feed’].Ftot ARE_THE_SAME;

INITIALIZATION
PROCEDURE seqmod;

RUN col.seqmod;
RUN cost_calc.seqmod;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN col.feed_tray[1..col.nfeeds].input[‘feed’].specify;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END cost_column;
MODEL reflux_fit;

178

 npoints,
 order IS_A integer;
 reflux[1..npoints],
 stot[1..npoints],
 frac[1..npoints],
 R_hat[1..npoints],
 error[1..npoints],
 stot_coeff[1..npoints][0..order],
 frac_coeff[0..order][0..order],
 tot_error IS_A factor;

FOR i IN [1..npoints] CREATE
 R_hat[i] = stot_coeff[i][0] +

SUM(stot_coeff[i][k]*(PROD(stot[i] | m IN [1..k]))
 | k IN [1..order]);

FOR k IN [0..order] CREATE
 stot_coeff[i][k] = frac_coeff[k][0] +

SUM(frac_coeff[k][j]*(PROD(frac[i] | m IN [1..j]))
 | j IN [1..order]);

END;
 error[i] = 0.5*sqr(reflux[i] - R_hat[i]);

END;
 tot_error = SUM(error[i] | i IN [1..npoints]);
 MINIMIZE tot_error;

INITIALIZATION
PROCEDURE specify;

 reflux[1..npoints].fixed := TRUE;
 stot[1..npoints].fixed := TRUE;
 frac[1..npoints].fixed := TRUE;
 frac_coeff[0..order][0..order].fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE free;

 frac_coeff[0..order][0..order].fixed := FALSE;
END free;
PROCEDURE zero_error;

 error[1..9].fixed := TRUE;
 frac_coeff[0..order][0..order].fixed := FALSE;
 error[1..9] := 0.0;

END zero_error;
END reflux_fit;
MODEL approximate_column;
 order IS_A integer;
 frac_coeff[0..order][0..order],
 stot_coeff[0..order],
 reflux_ratio,
 calc_reflux_ratio,
 stot,
 s_stack[1..2] IS_A factor;
 split[1..2] IS_A fraction;
 cost IS_A factor;
 column_cost,
 condenser_cost,
 reboiler_cost,
 water_cost,
 steam_cost IS_A cost_per_time;
 Afrac,

179

 M_S,
 Tin,
 Uc,
 CpW,
 Hs,
 Cw,
 Cs,
 Tray_height,
 Qc0,
 Qr0,
 V0 IS_A real;
 Area,
 Ac,
 Ar IS_A area;
 Feed,
 Distillate,
 V IS_A molar_rate;
 V_bar IS_A molar_volume;
 M_g IS_A molar_mass;
 D,
 H IS_A distance;
 pi IS_A circle_constant;
 DT_C,
 Tout IS_A temperature;
 QC,
 QR IS_A energy_rate;
 Fc1,
 Fc2,
 F,
 LMT IS_A factor;
 D_F IS_A fraction;
 F := 1.51 {};
 Afrac := 0.88{};
 M_S := 900{USdollar};
 Tin := 459.67{R} + 70{R};
 Tout := 459.67{R} + 90{R};
 Uc := 100{BTU/hr/ft^2/R};
 CpW := 1{cal/mole/K};
 Hs := 933{BTU/lbm};
 Cw := 0.03{USdollar}/1000{gallon};
 Cs := 2.5{USdollar}/1000{lbm};
 Tray_height := 2.0{ft};

 V_bar := 24{liter/mol};
 M_g := 70{g/mol};
 QC := -30{kW};
 QR := 30{kW};
 Qc0 := -30{kW};
 Qr0 := 30{kW};
 V0 := 3{mol/s};
 Area = 1{ft^2}*V*1{hr/lb_mole}
 *sqrt(M_g*1{lb_mole^2/lbm/ft^3}
 *V_bar)/Afrac/F/3600;
 D = (4*Area/pi)^0.5;
 H = Tray_height*1.15*stot;
 QC = V*Qc0/V0;
 QR = V*Qr0/V0;
 Ac = -QC*LMT/((Tout-Tin)*Uc);
 Ar = QR/11250{BTU/hr/ft^2};

180

 V = Distillate*(reflux_ratio+1);
 Distillate = D_F*Feed;
 c1: column_cost =
 (M_S/280/3{yr})*120*(D/1{ft})*(H/1{ft})^0.8*(2.18+Fc1);
 c2: condenser_cost =
 (M_S/280/3{yr})*(101.3)*(2.29+Fc2)*(Ac/1{ft^2})^0.65;
 c3: reboiler_cost = (M_S/280/3{yr})*(101.3)
 (2.29+Fc2)((Ar/1{ft^2})^0.65);
 c4: water_cost = Cw*(-QC)*1{ml/g}*18{g/mole}/(CpW*DT_C);
 c5: steam_cost = Cs*QR/Hs;
 cost*1.0{USdollar/yr} = column_cost
 + condenser_cost + reboiler_cost +
 water_cost + steam_cost;
 calc_reflux_ratio = stot_coeff[0] +

SUM(stot_coeff[k]*(PROD(stot | i IN [1..k]))
 | k IN [1..order]);

FOR k IN [0..order] CREATE
 stot_coeff[k] = frac_coeff[k][0] + SUM(frac_coeff[k][j]
 *(PROD(split[1] | i IN [1..j]))
 | j IN [1..order]);

END;
 stot = SUM(s_stack[i] | i IN [1..2]);

FOR i IN [1..2] CREATE
 stot*split[i] = s_stack[i];

END;
 equal: reflux_ratio = calc_reflux_ratio;
 inequal: calc_reflux_ratio <= reflux_ratio;
 (* test_opt: MINIMIZE cost; *)
 frac_coeff[0..order][0..order].lower_bound := -1e6;
 stot_coeff[0..order].lower_bound := -1e6;
 reflux_ratio.lower_bound := 0.1;
 calc_reflux_ratio.lower_bound := 0.1;
 stot.lower_bound := 1;
 split[1..2].lower_bound := 0.1;
 s_stack[1..2].lower_bound := 1;
 cost.lower_bound := 0.0;
 column_cost.lower_bound := 0.0{USdollar/yr};
 condenser_cost.lower_bound := 0.0{USdollar/yr};
 reboiler_cost.lower_bound := 0.0{USdollar/yr};
 water_cost.lower_bound := 0.0{USdollar/yr};
 steam_cost.lower_bound := 0.0{USdollar/yr};
 Area.lower_bound := 0.0001{ft^2};
 V.lower_bound := 0.0{mol/s};
 V_bar.lower_bound := 0.0{liter/mol};
 M_g.lower_bound := 0.0{g/mol};
 D.lower_bound := 1.0{ft};
 H.lower_bound := 4.0{ft};
 DT_C.lower_bound := 0.0{R};
 QC.lower_bound := -10000{kW};
 QR.lower_bound := -10000{kW};
 F.lower_bound := 0.2;
 D_F.lower_bound := 0.01;
 Distillate.lower_bound := 0.0{mol/s};
 Feed.lower_bound := 0.0{mol/s};
 Fc1.lower_bound := 0.0;
 Fc2.lower_bound := 0.0;
 frac_coeff[0..order][0..order].upper_bound := 1e6;
 stot_coeff[0..order].upper_bound := 1e6;
 reflux_ratio.upper_bound := 40.0;

181

 calc_reflux_ratio.upper_bound := 40.0;
 stot.upper_bound := 100.0;
 split[1..2].upper_bound := 0.9;
 s_stack[1..2].upper_bound := 100.0;
 cost.upper_bound := 1e9;
 column_cost.upper_bound := 1e9{USdollar/yr};
 condenser_cost.upper_bound := 1e9{USdollar/yr};
 reboiler_cost.upper_bound := 1e9{USdollar/yr};
 water_cost.upper_bound := 1e9{USdollar/yr};
 steam_cost.upper_bound := 1e9{USdollar/yr};
 Area.upper_bound := 1e9{ft^2};
 V.upper_bound := 1e9{mol/s};
 V_bar.upper_bound := 500{liter/mol};
 M_g.upper_bound := 500{g/mol};
 D.upper_bound := 50.0{ft};
 H.upper_bound := 200.0{ft};
 DT_C.upper_bound := 300.0{R};
 QC.upper_bound := 10000{kW};
 QR.upper_bound := 10000{kW};
 F.upper_bound := 2.4;
 D_F.upper_bound := 0.99;
 Distillate.upper_bound := 1e9{mol/s};
 Feed.upper_bound := 1e9{mol/s};
 Fc1.upper_bound := 2.4;
 Fc2.upper_bound := 2.40;

INITIALIZATION
PROCEDURE seqmod;

 frac_coeff[0..order][0..order].fixed := TRUE;
 inequal.included := FALSE;

END seqmod;
PROCEDURE specify;

RUN seqmod;
 stot.fixed := TRUE;
 split[1].fixed := TRUE;
 V_bar.fixed := TRUE;
 M_g.fixed := TRUE;
 DT_C.fixed := TRUE;
 F.fixed := TRUE;
 D_F.fixed := TRUE;
 Feed.fixed := TRUE;
 Fc1.fixed := TRUE;
 Fc2.fixed := TRUE;
 Tout.fixed := TRUE;
 LMT.fixed := TRUE;

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
END approximate_column;
MODEL apcol_set;
 nfeed_points IS_A integer;
 apcol[1..nfeed_points] IS_A approximate_column;
 prob[1..nfeed_points] IS_A fraction;
 apcol[1..nfeed_points].order := 2;
 cost,
 min_d,
 max_d IS_A factor;
 column_cost,

182

 condenser_cost,
 reboiler_cost,
 water_cost,
 steam_cost IS_A cost_per_time;

SUM(prob[j] | j IN [1..nfeed_points]) = 1;
 column_cost, apcol[1].column_cost ARE_THE_SAME;
 water_cost = SUM(prob[j]*apcol[j].water_cost | j IN
 [1..nfeed_points]);
 steam_cost = SUM(prob[j]*apcol[j].steam_cost | j IN
 [1..nfeed_points]);
 con_equal: condenser_cost =

SUM(prob[j]*apcol[j].condenser_cost | j IN
 [1..nfeed_points]);
 reb_equal: reboiler_cost =

SUM(prob[j]*apcol[j].reboiler_cost | j IN
 [1..nfeed_points]);

FOR j IN [1..nfeed_points] CREATE
 con_inequal[j]: apcol[j].condenser_cost <= condenser_cost;
 reb_inequal[j]: apcol[j].reboiler_cost <= reboiler_cost;

END;
 cost*1.0{USdollar/yr} = column_cost + condenser_cost +
 reboiler_cost + water_cost + steam_cost;

FOR j IN [1..nfeed_points] CREATE
 prob[j] := 1.0/nfeed_points;

END;
 apcol[1..nfeed_points].stot ARE_THE_SAME;
 apcol[1..nfeed_points].D ARE_THE_SAME;
 MINIMIZE cost;

INITIALIZATION
PROCEDURE bounds;

FOR j IN [1..nfeed_points] DO
 apcol[j].stot.lower_bound := min_d*apcol[j].stot;
 apcol[j].split[1].lower_bound := min_d*apcol[j].split[1];
 apcol[j].stot.upper_bound := max_d*apcol[j].stot;
 apcol[j].split[1].upper_bound := max_d*apcol[j].split[1];

END;
END bounds;
PROCEDURE F_bounds_on;

 apcol[1..nfeed_points].F.lower_bound := 0.8;
 apcol[1..nfeed_points].F.upper_bound := 2.4;

END F_bounds_on;
PROCEDURE F_bounds_off;

 apcol[1..nfeed_points].F.lower_bound := 0.0;
 apcol[1..nfeed_points].F.upper_bound := 20;

END F_bounds_off;
PROCEDURE seqmod;

RUN apcol[1..nfeed_points].seqmod;
 prob[2..nfeed_points].fixed := TRUE;
 apcol[2..nfeed_points].F.fixed := FALSE;
 con_inequal[1..nfeed_points].included := FALSE;
 reb_inequal[1..nfeed_points].included := FALSE;

END seqmod;
PROCEDURE specify;

RUN apcol[1..nfeed_points].specify;
 prob[2..nfeed_points].fixed := TRUE;
 apcol[2..nfeed_points].F.fixed := FALSE;
 con_inequal[1..nfeed_points].included := FALSE;
 reb_inequal[1..nfeed_points].included := FALSE;

183

END specify;
PROCEDURE reset;

RUN clear;
RUN specify;

END reset;
PROCEDURE free;

RUN reset;
 apcol[1].stot.fixed := FALSE;
 apcol[1].F.fixed := FALSE;
 apcol[1..nfeed_points].split[1..2].fixed := FALSE;
 apcol[1..nfeed_points].equal.included := FALSE;
 apcol[1..nfeed_points].inequal.included := TRUE;
 con_equal.included := FALSE;
 reb_equal.included := FALSE;
 con_inequal[1..nfeed_points].included := TRUE;
 reb_inequal[1..nfeed_points].included := TRUE;

END free;
END apcol_set;
MODEL standard_cost REFINES column_w_plot;

 nfeed_points IS_A integer;
 current_col IS_A mutable_integer;
 feed[1..nfeed_points] IS_A molar_stream;
 col_set IS_A apcol_set;
 col_fit[1..nfeed_points] IS_A reflux_fit;
 col_fit[1..nfeed_points].order,
 col_set.apcol[1].order ARE_THE_SAME;

FOR k IN [1..nfeed_points] CREATE
FOR i IN [0..col_fit[1].order] CREATE

FOR j IN [0..col_fit[1].order] CREATE
 col_fit[k].frac_coeff[i][j],
 col_set.apcol[k].frac_coeff[i][j] ARE_THE_SAME;

END;
END;

END;

 current_col := 1;
 col_fit[1..nfeed_points].npoints := 9;

 col_set.nfeed_points,
 nfeed_points ARE_THE_SAME;
 cc IS_A cost_column;
 feed[1..nfeed_points].components,
 components ARE_THE_SAME;

 cc.col,
 col ARE_THE_SAME;
 col.nfeeds := 1;
 col.coll_stack[1..2].ncolls := 2;
 col.coll_stack[1..2].coll[1].z_set.up_down := -1.0;
 col.coll_stack[1..2].coll[2].z_set.up_down := 1.0;
 col.coll_stack[1..col.nfeeds+1].coll
 [1..col.coll_stack[1].ncolls].z_set.lgr IS_REFINED_TO lgr_2_points;
 col IS_REFINED_TO td_coll_column;
 col.coll_stack[1..2].coll[1..2] IS_REFINED_TO h_coll;
 cc.cost_calc.Afrac,
 col_set.apcol[1..nfeed_points].Afrac ARE_THE_SAME;
 cc.cost_calc.M_S,
 col_set.apcol[1..nfeed_points].M_S ARE_THE_SAME;

184

 cc.cost_calc.Fc1,
 col_set.apcol[1..nfeed_points].Fc1 ARE_THE_SAME;
 cc.cost_calc.Fc2,
 col_set.apcol[1..nfeed_points].Fc2 ARE_THE_SAME;
 cc.cost_calc.Cw,
 col_set.apcol[1..nfeed_points].Cw ARE_THE_SAME;
 cc.cost_calc.CpW,
 col_set.apcol[1..nfeed_points].CpW ARE_THE_SAME;
 cc.cost_calc.Cs,
 col_set.apcol[1..nfeed_points].Cs ARE_THE_SAME;
 cc.cost_calc.Hs,
 col_set.apcol[1..nfeed_points].Hs ARE_THE_SAME;
 cc.cost_calc.V_bar[1],
 col_set.apcol[1..nfeed_points].V_bar ARE_THE_SAME;
 cc.cost_calc.Tray_height,
 col_set.apcol[1..nfeed_points].Tray_height ARE_THE_SAME;
 cc.cost_calc.Uc,
 col_set.apcol[1..nfeed_points].Uc ARE_THE_SAME;

INITIALIZATION
PROCEDURE seqmod;

 plots.z_space.fixed := TRUE;
 plots.box_height.fixed := TRUE;

RUN cc.seqmod;
RUN col_set.seqmod;
RUN feed[1..nfeed_points].specify;

END seqmod;
PROCEDURE specify;

RUN seqmod;
RUN col.feed_tray[1..col.nfeeds].input[‘feed’].specify;

END specify;
PROCEDURE spec1;

RUN reset;
 col.stot.fixed := TRUE;
 col.split[1].fixed := TRUE;
 col.s_stack[1..2].fixed := FALSE;

END spec1;
PROCEDURE setapcol;

 col_set.apcol[current_col].Qc0 := col.condenser.Qin;
 col_set.apcol[current_col].Qr0 := col.reboiler.Qin;
 col_set.apcol[current_col].V0 := col.condenser.input[‘vapor’].Ftot;
 col_set.apcol[current_col].D_F :=
 col.condenser.totprod.Ftot/col.feed_tray[1].input[‘feed’].Ftot;
 col_set.apcol[current_col].F := cc.cost_calc.F[1];
 col_set.apcol[current_col].DT_C := cc.cost_calc.DT_C;
 col_set.apcol[current_col].M_g := cc.cost_calc.M_g;
 col_set.apcol[current_col].LMT := cc.cost_calc.LMT;
 col_set.apcol[current_col].Tout := cc.cost_calc.Tout;
 col_set.apcol[current_col].Tin := cc.cost_calc.Tin;
 col_set.apcol[current_col].Feed := cc.cost_calc.Feedtot;
 col_set.apcol[current_col].stot := col.stot;
 col_set.apcol[current_col].split[1] := col.split[1];

END setapcol;
PROCEDURE setfeed;

FOR i IN components DO
 col.feed_tray[1].input[‘feed’].f[i] :=
 feed[current_col].f[i];

END;
END setfeed;

185

PROCEDURE setup_opt;
RUN col_set.bounds;
RUN col_set.F_bounds_on;
FOR j IN [1..nfeed_points] DO

FOR k IN [1..3] DO
IF (col_fit[j].stot[k] > col_set.apcol[j].stot.lower_bound) THEN

 col_set.apcol[j].stot.lower_bound :=
 col_fit[j].stot[k];

END;
END;
FOR k IN [7..9] DO

IF (col_fit[j].stot[k] < col_set.apcol[j].stot.upper_bound) THEN
 col_set.apcol[j].stot.upper_bound :=
 col_fit[j].stot[k];

END;
END;
FOR k IN [1,4,7] DO

IF (col_fit[j].frac[k] <
 col_set.apcol[j].split[1].upper_bound) THEN
 col_set.apcol[j].split[1].upper_bound :=
 col_fit[j].frac[k];

END;
END;
FOR k IN [3,6,9] DO

IF (col_fit[j].frac[k] >
 col_set.apcol[j].split[1].lower_bound) THEN
 col_set.apcol[j].split[1].lower_bound :=
 col_fit[j].frac[k];

END;
END;

END;
END setup_opt;

END standard_cost;
MODEL acb1 REFINES standard_cost;
 col.components := [‘c1_acetone’,’c2_chloroform’,’c3_benzene’];
 col.coll_stack[1..col.nfeeds+1].inactive_component := ‘c2_chloroform’;
 col.data[‘c1_acetone’] IS_REFINED_TO acetone;
 col.data[‘c2_chloroform’] IS_REFINED_TO chloroform;
 col.data[‘c3_benzene’] IS_REFINED_TO benzene;
 nfeed_points := 1;

INITIALIZATION
PROCEDURE values;

 col.feed_tray[1].alpha[‘c1_acetone’] := 1.4;
 col.feed_tray[1].alpha[‘c2_chloroform’] := 1.2;
 col.feed_tray[1].alpha[‘c3_benzene’] := 1.0;
 col.feed_tray[1].input[‘feed’].f[‘c1_acetone’] := 3.0 {mole/s};
 col.feed_tray[1].input[‘feed’].f[‘c2_chloroform’] := 3.0 {mole/s};
 col.feed_tray[1].input[‘feed’].f[‘c3_benzene’] := 3.0 {mole/s};
 feed[1].f[‘c1_acetone’] := 3.0 {mole/s};
 feed[1].f[‘c2_chloroform’] := 3.0 {mole/s};
 feed[1].f[‘c3_benzene’] := 3.0 {mole/s};
 col.condenser.totprod.Ftot := 3.0 {mol/s};

RUN col.propogate_feed;
FOR j IN [1..2] DO

 col.coll_stack[j].split[1] := 0.5;
 col.coll_stack[j].stot := 2;
 col.coll_stack[j].coll[1].z_set.stot := 1;
 col.coll_stack[j].coll[1..col.coll_stack[1].ncolls].z_set.a := 0.1;

END;

186

 col.feed_tray[1].q := 1.0;
 col.condenser.prodsplit[‘vapor_product’] := 0.0;
 col.reboiler.prodsplit[‘vapor_product’] := 0.0;
 col.condenser.reflux_ratio := 0.5;

END values;
END acb1;

