
 2

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.1 PRELIMINARIES

We will start off with some background information and some tips
that make the rest of the chapter easier to read. ASCEND is an
object-oriented (OO) language for hierarchical modeling that has
been somewhat specialized for mathematical models. Most of the
specialization is in the implementation and the user interface rather
than the language definition.

ASCEND is beginning its 4th generation. Some features we will
describe are not yet implemented and these are clearly marked (*
4+ *) as such. Any feature not so marked has been completely
implemented, and thus any mismatch between the description given
here and the software we distribute is a bug we want you to tell us
about. We will describe, starting in Section 1.1.2, the higher level
concepts of ASCEND, but first some important punctuation rules.

ASCEND is cAsE

sensitive!

The keywords that are shown capitalized (or in lower case) in this
chapter are that way because ASCEND is case sensitive. IS_A is an
ASCEND keyword; isa, Is_a, and all the other permutations you
can think of are NOT equivalent to IS_A. In declaring new types of
models and variables the user is free to use any style of
capitalization he or she may prefer, however, they must remain
consistent or undefined types and instances will result.

This case restriction makes our code very readable, but hard to type
without a smart editor. We have kept the case-sensitivity because,
like all mathematicians, we find ourselves running out of good
variable names if we are restricted to a 26 letter alphabet. We have
developed smart add-ins for two UNIX editors, EMACS and vi, for
handling the upper case keywords and some other syntax elements.
The use of these editors is described in another chapter.

1.1.1 PUNCTUATION

This section covers both the punctuation that must be understood to
read this document and the punctuation of ASCEND code.

keywords: ASCEND keywords and type names are given in the left column in
bold format. It is generally clear from the main text which are
keywords and which are type names.

Minor items: Minor headings that are helpful in finding details are given in the
left column inunderline format.

Tips: Special notes and hints are sometimes placed on the left.

 3

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

3: This indicates that what follows is specific to ASCEND IIIc and
may disappear in ASCEND IV. Generally ASCEND IV will
provide some equivalent functionality at 1/10th of the ASCEND III
price.

4 This indicates that what follows is specific to ASCEND IV
and may not be available in ASCEND IIIc. Generally ASCEND III
may provide some very klugey equivalent functionality, often at a
very high price in terms of increased compilation time or
debugging difficulty.

4+ ASCEND IV functionality that is not fully implemented at the time
of this writing.

LHS: Left Hand Side. Abbreviation used frequently.

RHS: Right Hand Side. Abbreviation used frequently.

Simple Names: In ASCEND simple names are made of the characters a through z,
A through Z, _, (*4+*: $). The underscore is used as a letter, but it
cannot be the first letter in a name. The “$” character is used
exclusively as the first character in the name of system defined
built-in parts. "$" is explained in more detail in Section 1.5.2.
Simple names should be no more than 80 characters long.

Compound names: Compound names are simple names strung together with dots (.).
See the description of "." below.

Groupings:

« » In documentation optional fields are surrounded by these markers.

(* *) Comment. *3* Anything inside these is a comment. Comments DO
NOT nest in ASCEND IIIc. Comments may extend over many
lines. *4* Comments DO nest in ASCEND IV.

() Rounded parentheses. Used to enclose arguments for functions, to
group terms in complex arithmetic, logical, or set expressions.

Efficiency tip: The compiler can simplify relation definitions in a particularly
efficient manner if constants are grouped together.

{ } Curly braces. Used to enclose units. For example, 1 {kg_mole/s}.
Curly braces are also used in TCL, the language of the ASCEND
user interface, about which we will say more in another chapter.

 4

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

[] Square brackets. Used to enclose sets or elements of sets.
Examples: my_integer_set :== [1,2,3], demonstrates the use of
square brackets in the assignment of a set. My_array[1]
demonstrates the use of square brackets in naming an array object
indexed over an integer set which includes the number 1.

. Dot. The dot is used, as in PASCAL and C, to construct the names
of nested objects. Examples: if object a has a part b, then the way to
refer to b is as a.b. Tray[1].vle shows a dot following a square
bracket; here Tray[1] has a part named vle.

.. Dot-dot or double dot. Integer range shorthand. For example,
my_integer_set :== [1,2,3] and my_integer_set :== [1..3] are
equivalent.

: Colon. A separator used in various ways, principally to set the
name of a relation apart from the definition.

:: Double colon. A separator used in the methods section for
accessing methods defined on types other than the type the method
is part of. Explained in Section 1.4.

; Semicolon. The separator of statements.

1.1.2 BASIC ELEMENTS

Boolean value TRUE or FALSE. Can’t get much simpler, eh? In the language
definition TRUE and FALSE do not map to 1 and 0 or any other
type of numeric value.

User interface tip: The ASCEND user interface programmers have found it very
convenient, however, to allow 1/0, Y/N, and other obvious boolean
conventions as interactive input when assigning boolean values. We
are lazy.

Integer value A signed whole number up to the maximum that can be represented
by the computer on which one is running ASCEND.
MAX_INTEGER is machine dependent. Examples are:

123
-5

Typically, 2147483647. MAX_INTEGER

Real value ASCEND represents reals almost exactly as any other
mathematically oriented programming language does. The mantissa
has an optional negative sign followed by a string of digits and at
most one decimal point. The exponent is the lettere followed by an
integer. The number must not exceed the largest the computer is

 5

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

able to handle. There can be no blank characters in a real.
MAX_REAL is machine dependent. The following are legitimate
reals in ASCEND:

-1
1.2
1.3e-2
7.888888e+34
.6E21

Normally MAX_REAL
is about 1.79E+308.

MAX_REAL

while the following are not:

1. 2 (*contains a blank within it*)
1.3e2.0 (*exponent has a decimal in it*)
+1.3 (*contains illegal unary + sign*)

Reals stored in SI units We store all real values as double precision numbers in the MKS
system of units. This eliminates many common errors in the
modeling of physical systems.

Dimensionality: Real values have dimensionality such as length/time for velocity.
Dimensionality is to be distinguished from the units such as ft/s.
ASCEND takes care of mapping between units and dimensions. A
value without units (this includes integer values) is taken to be
dimensionless. Dimensionality is built up from the following base
dimensions:

Name definition typical units

L length meter, m

M mass kilogram, kg

T time second, s

E electric current ampere, A

Q quantity mole, mole

TMP temperature Kelvin, K

LUM luminous intensity candela, cd

P plane angle radian, rad

S solid angle steradian, srad

 6

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

C currency currency, CR

The atom and constant definitions in the library illustrate the use of
dimensionality.

Dimensions may be any combination of these symbols along with
rounded parentheses, (), and the operators *, ^ and /. Examples
includeM/T or M*L^2/T^2/TMP {this latter means
(M*(L^2)/(T^2))/TMP }. The second operand for the “to the
power” operator, ^, must be an integer value (e.g., -2 or 3).

If the dimensionality for a real value is undefined, then ASCEND
gives it a wild card dimensionality. If ASCEND can later deduce its
dimensionality from its use in a model definition it will do so. For
example consider the real variablea, supposea has wild card
dimensionality,b has dimensionality ofL/T. Then the statement:

Example of a
dimensionally consistent
equation.

a + b = 3 {ft/s};

requires thata have the same dimensionality as the other two terms,
namely,L/T. ASCEND will assign this dimensionality toa.

Unit expression A unit expression may be composed of any combination of unit
names defined by the system and any numerical constants
combined with times (*), divide(/) and “to the power” (^) operators.
The RHS of ^ must be an integer. Parentheses can be used to group
subexpressions EXCEPT a divide operator may not be followed by
a grouped subexpression.

So, {kg/m/s} is fine, but {kg/(m*s)} is not. Although the two
expressions are mathematically equivalent, it makes the system
programming and output formatting easier to code and faster to
execute if we disallow expressions of the latter sort.

The units understood by the system are defined in the file compiler/
units_input as shown in Section 1.5.5. Note that several “units”
defined are really values of interesting constants in SI, e.g. R :==
1{GAS_C} yields the correct value of the thermodynamic gas
constant.

Units A unit expression must be enclosed in curly brackets {}. When a
real number is used in a mathematical expression in ASCEND, it
must have a set of units expressed with it. If it does not, ASCEND
assumes the number is dimensionless, which may not be the intent
of the modeler. An example is shown in the dimensionally
consistent equation above where the number 3 has the units {ft/s}
associated with it.

 7

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

Examples:

{kg_mole/s/m} same as {(kg_mole/s)/m}
{m^3/yr}
{3/100*ft} same as {0.03*ft}
{s^-1} same as {1/s}

Illegal unit examples are

{m/(K*kg_mole)} grouped subexpression used in denomi-
nator (should be written {m/K/kg_mole})
{m^3.5} power must be integer.

Symbol Value The format for a symbol is that of an arbitrary character string
enclosed between two single quotes. There is no way to embed a
single quote in a symbol: we are not in the escape sequence
business at this time. The following are legal symbols in ASCEND:

’H2O'
’r1'
’bill said,”foo” to who?’

while the following are not legal symbol values:

"ethanol" (double quotes not allowed)
water (no single quotes given)
’i can’t do this’ (no embedded quotes)

There is an arbitrary upper limit to the number of characters in a
symbol (something like 10,000) so that we may detect a missing
close quote without crashing.

Sets values Sets values are lists of elements, all of type integer_constant or all
of type symbol_constant, enclosed between square brackets []. The
following are examples of sets:

['methane', 'ethane', 'propane']
[1..5, 7, 15]
[2..n_stages]
[1, 4, 2, 1, 16]
[]

We will say more about
sets in 1.2.2.

The value range 1..5 is an allowable shorthand for the integers 1, 2,
3, 4 and 5 while the value range 2..n_stages (where n_stages must
be of type integer) means all integers from 2 to n_stages. If
n_stages is less than 2, then the third set is empty. The repeated

 8

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

occurrence of 1 in the fourth set is ignored. The fifth set is the
empty set.

We use the termset in an almost pure mathematical sense. The
elements have no order. One can only ask two things of a set: (1) if
an element is a member of it and (2) it cardinality (card(set)).
Repeated elements used in defining a set are ignored. The elements
of setscannot themselves be sets in ASCEND; i.e., there can be no
sets of set.

Sets are unordered. A set of integers may appear to be ordered to the modeler as the
natural numbers have an order. However, It is the user imposing
and using the ordering, not ASCEND. ASCEND sees these integers
as elements in the set with NO ordering. Therefore, there are no
operators in ASCEND such as successor or precursor member of a
set.

Arrays An array is a list of instances indexed over a set. The instances are
all of the samebase type (as that is the only way they can be
defined). An individual member of a list may later be more refined
than the other members (we shall illustrate that possibility). The
following are arrays in ASCEND.

stage[1..n_stages]
y[components]
column[areas][processes]

wherecomponents, areas andprocesses are sets. For
examplecomponents could be the set of symbols
['ethylene','propylene'], areas the set of symbols
['feed_prep','prod_purification'] while
processes could be the set['alcohol_manuf',
'poly_propropylene_manuf'] . Note that the third example
(column) is a list of lists (the way that ASCEND permits a multiply
subscripted array).

The following are elements in the above arrays:

stage[1]
y['ethylene']
column['feed_prep'][alcohol_manuf']

provided that n_stages is 1 or larger.

There can be any number of subscripts for an array. We point out,
however, that in virtually every application of arrays requiring
more than two subscripts, there is usually a some underlying
concept that should is much better modeled as an object than as part

 9

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

of a deeply subscripted array. In the following jagged array
example, there are really the concepts of unit operation and stream
that would be better understood if made explicit.

Arrays can be jagged Arrays can be ’sparse’ or jagged (* 4+ *). For example:

process[1..3] IS_A set OF integer;
process[1] :== [2];
process[2] :== [7,5,3];
process[3] :== [4,6];
FOR i in [1..3] CREATE

FOR j IN process[i] CREATE
flow[i][j] IS_A mass;

END;
END;

flow is an array with six elements spread over three rows. At
present, we only have sparse arrays ofrelations implemented, due
to historical, rather than technical, reasons. Sparse arrays of models
and variables should be implemented soon, since their not being
allowed is really just a bug.

Index variable One can introduce a variable as an index ranging over a set. Index
variables are local to the statements in which they occur. An
example of using an index variable is the following FOR statement:

FOR i IN components CREATE
VLE_equil[i]: y[i] = K[i]*x[i];

END;

In this examplei implicitly is of the same type as the values in the
setcomponents. If another objecti exists in the model
containing the FOR loop, it is ignored while executing the
statements in that loop. This may cause unexpected results and the
compiler will generate warnings about it.

Label: One can label statements which define relationships (objective
functions, equalities, and inequalities) in ASCEND. Labeling is
highly recommended because it makes models much more readable
and more easily debugged. Labels are also necessary for relations
which are going to be used in conditional modeling or
differentiation functions. A label is a sequence of alphanumeric
characters ending in a colon. An example of a labeled equation is:

mass_balance: m_in = m_out;

An example of a labeled objective function is:

 10

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

obj1: MAXIMIZE revenue - cost;

If a relation is defined within a FOR statement, it must have an
array indexed label so that each instance created using the
statement is distinguishable from the others. An example is:

FOR i IN components CREATE
equil[i]: y[i] = K[i]*x[i];

END;

The ASCEND interactive user interface identifies relationships by
their labels. If one has not provided such a label, the system
generates the label:

relation _modelname_linenumber

wheremodelname andlinenumber are that of the name of the
model and the line number in the model file on which the relation
statement ends, respectively. An example is

relation_mixture_14

for the unlabeled relation in the modelmixture ending on line14
of the file containing the mixture definition.

Lists Often in a statement one can include a list of names or expression.
A name list is one or more names where multiple list entries are
separated from each other by commas. Examples of a list of names
are:

T1, inlet_T, outlet_T
y[components], y_in
stage[1..n_stages]

1.1.3 BASIC CONCEPTS

Instances and types

This is an opportune time to emphasize the distinction between the
termsinstance andtype. A type in ASCEND is what we define
when we declare an ASCEND model or atom. It is the definition of
the attributes (parts) and attribute default values that an object will
have if it is created using the type definition.

In ASCEND there are two meanings (closely related) of an
instance.

 11

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

• An instance is a named part that exists within a type defini-
tion.

• An instance is a compiled object.

If one is in the context of the ASCEND interface, the system
compiles an instance of a model type to create an object with which
one carries out computations. The system requires the user to give a
simple name for this simulation instance. This name given is then
the first part of the qualified name for all the parts of the compiled
object.

Implicit types It is possible to create an instance that does not have a
corresponding type definition in the library. The type of such an
instance is said to beimplicit. The simplest example of an implicit
type is the type of an instance compiled from the built-in definition
integer_constant . For example:

i, j IS_A integer_constant; 1
i:== 2;
j:== 3;

Instances i and j, though ostensibly of the same type, are type
incompatible because they have been assigned distinct values.

Instances which are either explicitly or implicitly type incompatible
cannot be merged. This will be discussed further in Section 1.3.

Instantiation Creating an simulation based on a type definition is a 3 phase
process called compiling (or instantiation). When an instantiation
cannot be completed because some structural parameter (a
symbol_constant, real_constant, integer_constant, or set) does not
have a value there will be PENDING statements. The user interface
will warn that something is wrong.

In phase 1 all statements that create instance structure and assign
constant values are executed. This phase theoretically requires an
infinite number of passes through the structural statements of the
definition. We allow a maximum of 5 and have never needed more
than 3. There may be pending statements at the end of phase 1. The
compiler or interface will issue warnings about pending statements,
starting with warnings about unassigned constants.

Phase 2 compiles as many relation definitions as possible. Some
relations may be impossible to compile because the constants or
sets they depend on do not have values assigned. Other relations
may be impossible because they reference variables that do not
exist.

 12

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

Phase 3 executes the variable defaulting statements made in the
declarative section of each model IF AND ONLY IF there are no
pending statements from phase 1 anywhere in the simulation.

The first occurrence of each impossible statement will be explained
during a failed compilation. Impossible statements include:

• Relations containing undefined variables (often misspell-
ings).

• Assignments that are dimensionally inconsistent or con-
taining mismatched types.

• Structure building or modifying statements that refer to
model parts that cannot exist or that require a type-
incompatible refinement or merge.

 13

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.2 DATA TYPE DECLARATIONS

In the spectrum of OO languages, ASCEND is best considered as
being class-based, though it is rather more a hybrid. We have atom
and model definitions, calledtypes, and the compiled objects
themselves, calledinstances. ASCEND instances have a record of
what type they were constructed from.

Type qualifiers:

UNIVERSAL Universal is an optional modifier of all ATOM, CONSTANT. and
MODEL definitions. If UNIVERSAL precedes the definition, then
ALL instances of that type will actually refer to the first instance of
the type that is created. This saves memory.

Examples of universal type definitions are

UNIVERSAL MODEL methane REFINES
generic_component_model;

UNIVERSAL CONSTANT circle_constant REFINES
real_constant :== 3.14159;

UNIVERSAL ATOM counter_1 REFINES integer;

Tip: Don’t use
UNIVERSAL variables
in relations.

It is important to note that, because variables must store
information about which relations they occur in, it is a very bad
idea to use UNIVERSAL typed variables in relations. The
construction and maintenance of the relation list becomes very
expensive for universal variables.

1.2.1 MODELS

MODEL An ASCEND model has a declarative part and an optional
procedural part headed by the METHODS word. Models are
essentially containers for variables and relations. We will explain
the various statements that can be made within models in
Section 1.3 and Section 1.4.

Simple models:

foo MODEL foo;
(* statements about foo go here*)

METHODS
(* METHODs for foo go here*)

END foo;

 14

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

bar MODEL bar REFINES foo;
(*additional statements about foo *)

METHODS
(* additional METHODs for bar *)

END bar;

Parameterized Models (* 4+ *) Parameterizing models makes them easier to understand
and faster for the system to compile. The syntax for a parameterized
model vaguely resembles a function call in imperative languages,
but it is NOT. When constructing a reusable model, all the
constants that determine the sizes of arrays and other structures
should be declared in the parameter list so that

• the user knows what is required to reuse the model.
• the compiler knows what values must be set before it

should bother attempting to compile the model.

There is no reason that other items couldn’t also go in the parameter
list, such as key variables which might be considered inputs or
outputs or control parameters in the mathematical application of the
model. A simple example of parameterization would be:

column(n,s) MODEL column(ntrays WILL_BE integer_constant,
components IS_A set of symbol_constant);

stage[1..ntrays] IS_A simple_tray;
END column;

flowsheet MODEL flowsheet;
tower4size IS_A integer_constant;
tower4size :== 22;
ct IS_A column(tower4size, components

:== [’c5’,’c6’]);
(* additional flowsheet information *)

END flowsheet;

In this example, the column model takes the first argument, ntrays,
by reference. That isc.ntrays is an alias for the flowsheet
instancetower4size . tower4size must be compiled and
assigned a value before we will attempt to compile the column
model. The second argument is taken by value,[’c5’,’c6’],
and assigned to the components part that was declared with the
IS_A in the parameter list. There is only one name for this set,
c.components . Note that in the flowsheet model there is no part
that is a set of symbol_constant. The :== in the flowsheet definition
of ct is an argument list mnemonic which reminds us that this
argument is being passed by value rather than by reference. It
serves other purposes as well, which will be explained in a separate

 15

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

section devoted to the ins and outs of using parameterized types and
the construction of reusable libraries.

1.2.2 SETS

Arrays in ASCEND, as already discussed in Section 1.1.2, are
defined over sets. A set is simply an instance with a set value.

Set Declaration: A set is made of either symbol_constants or integer_constants, so a
set object is declared in one of two ways:

my_integer_set IS_A set OF integer_constant;
or
my_symbol_set IS_A set OF symbol_constant;

:== A set is assigned a value like so:

my_integer_set :== [1,4];

The RHS of such an assignment must be either the name of another
set instance or an expression enclosed in square brackets and made
up of only set operators, other sets, and the names of
integer_constants or symbol_constants. Sets can only be assigned
once.

Set Operations

UNION(list) A function taken over a list of sets. The result is the set that
includes all the members of all the sets in the list. The syntax is:

+ UNION(list_of_sets)

A+B is shorthand for
UNION(A,B)

Consider the following sets for the examples to follow.

A := [1, 2, 3, 5, 9];
B := [2, 4, 6, 8];

Then UNION(A, B) is equal to the set [1, 2, 3, 4, 5, 6, 8, 9] which
equals [1..6, 8, 9].

INTERSECTION() INTERSECTION(list of set expressions). Find the intersection
(and) of the sets listed. The syntax is

* INTERSECTION(list_of_sets)

A*B is shorthand for
INTERSECTION(A,B)

For the sets A and B defined just above,INTERSECTIION(A,
B) is the set [2] .

 16

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

Set difference: One can subtract one set from another. The result is the first set less
any members in the set union of the first and second set. The syntax
is

- first_set - second_set

For the sets A and B defined above, the set difference A - B is the
set [1, 3, 5, 9] while the set difference B - A is the set[4, 6, 8] .

CARD(set) Cardinality. Returns an integer value that is the number of items in
the set.

CHOICE(set) Choose one. The result of running the CHOICE function over a set
is an arbitrary (but consistent: for any set instance you always get
the same result) single element of that set.

RunningCHOICE(A) gives any member from the set A. The
result is a member, not a set. To make the result into a set, it must be
enclosed in square brackets. Thus[CHOICE(A)] is a set with a
single element arbitrarily chosen from the set A.

To reduce a set by one element, one can use the following

A_less_one IS_A set OF integer;
A_less_one :== A - [CHOICE(A)];

1.2.3 CONSTANTS

ASCEND supports real, integer, boolean and character constants.
Constants in ASCEND do not have any attributes other than their
value. Constants are scalar quantities that can be assigned exactly
once. Constants may only be assigned using the :== operator and
the RHS expression they are assigned from must itself be constant.
Constants do not have subparts. Integer and symbol constants may
be used in determining the definitions of sets.

Explicit refinements of the built-in constant types may be defined as
exemplified in the description of real_constant. Implicit type
refinements may be done by instantiating an incompletely defined
constant and assigning its final value.

Sets could be considered constant because they are assigned only
once, however sets are described separately because they are not
scalar quantities.

real_constant Real number with dimensionality. Note that the dimensionality of a
real constant can be specified via the type definition without

 17

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

immediately defining the value, as in the following pair of
definitions.

CONSTANT declaration

example:

CONSTANT molar_weight REFINES real_constant
DIMENSION M/Q;
CONSTANT hydrogen_weight REFINES molar_weight
:== 1.004{g/mole};

integer_constant Integer number. Principally used in determining model structure. If
appearing in equations, integers are evaluated as dimensionless
reals. Typical use is inside a MODEL definition and looks like:

n_trays IS_A integer_constant;
n_trays :== 50;
tray[1..n_trays] IS_A vl_equilibrium_tray;

symbol_constant Object with a symbol value. May be used in determining model
structure.

boolean_constant Logical value. May be used in determining model structure.

Setting constants

:== Constant and set assignment operator.

It is suggested, but not
required, that names of all
types that refine the built-
in constant types have
names that end in
_constant.

LHS_list :== RHS;

Here it is required that the one or more items in the LHS be of the
same constant type and that RHS is a single-valued expression
made up of values, operators, and other constants. The :== is used
to make clear to both the user and the system what scalar objects
are constants.

1.2.4 VARIABLES

There are four built-in types which may be used to construct
variables: symbol, boolean, integer, and real. At this time symbol
types have special restrictions. Refinements of these variable base
types are defined with the ATOM statement. Atom types may
declare attribute fields with types real, integer, boolean, symbol,
and set. These attributes are NOT independent objects and therefore
cannot be refined, merged, or put in a refinement clique
(ARE_ALIKEd).

ATOM The syntax for declaring a new atom type is

ATOM atom_type_name REFINES variable_type

 18

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

«DIMENSION dimension_expression»
«DEFAULT value»; (* note the ; *)
«initial attribute assignment;»

END atom_type_name;

DEFAULT,

DIMENSION, and

DIMENSIONLESS

The DIMENSION attribute is for variables whose base type is real.
It is an optional field. If not defined for any atom whose base type
is real, the dimensions will be left as undefined. Any variable which
is later declared to be one of these types will be givenwild card
dimensionality (represented in the interactive display by an asterisk
(*)). The system will deduce the dimensionality from its use in the
relationships in which it appears or in the declaring of default
values for it, if possible.

solver_var is a special
case of ATOM and we
will say much more
about it in Section 1.5.1.

ATOM solver_var REFINES real DEFAULT 0.5 {?};
lower_bound IS_A real;
upper_bound IS_A real;
nominal IS_A real;
fixed IS_A boolean;
fixed := FALSE;
lower_bound := -1e20 {?};
upper_bound := 1e20 {?};
nominal := 0.5 {?};

END solver_var;

The default field is also optional. If the atom has a declared
dimensionality, then this value must be expressed with units which
are compatible with this dimensionality. In thesolver_var
example, we see a DEFAULT value of 0.5 with the unspecified unit
{?} which leaves the dimensionality wild.

real Real valued variable quantity. At present all variables that you want
to be attended to by solver tools must be refinements of the type
solver_var. This is so that parametric values can be included in
equations without treating them as variables.

integer Integer valued variable quantity. We find these mighty convenient
for use in certain procedural computations and as attributes of
solver_var atoms.

boolean Truth valued variable quantity. These are principally used as flags
on solver_vars and relations. They can also be used procedurally.

symbol *4+* Symbol valued variable quantity. At present, symbols, like
symbol_constants, can only be assigned once. This restriction is a
holdover from ASCEND III that should go away soon, as it is ideal
to have manipulable character strings in any language.

 19

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

Setting variables

:= Procedural equals differs from the ordinary equals (=) in that it
means the left-hand-side (LHS) variables are to be assigned the
value of the right-hand-side (RHS) expression when this statement
is processed. Processing happens in the last phase of compiling
(INSTANTIATION on page 12) or when executing a method
interactively through the ASCEND user interface. The order the
system encounters these statements matters, therefore, with a later
result overwriting an earlier one if both statements have the same
the same LHS variable.

Note that variable assignments (also known as “defaulting
statements”) written in the declarative section are executed only
after an instance has been fully created. This is a frequent source of
confusion and errors, therefore we recommend that you DO NOT
ASSIGN VARIABLES IN THE DECLARATIVE SECTION.

Note that := IS NOT =. We use an ordinary equals (=) when defining an equation to state
that the LHS expression is to equal the RHS expression at the
solution for the model.

Tabular assignments (* 4+ *) Assigning values en masse to arrays of variables that are
defined associatively on sets without order presents a minor
challenge. The solution proposed in ASCEND IV (but not yet
implemented as we’ve not had time or significant user demand) is
to allow a tabular data statement to be used to assign the elements
of arrays of variables or constants. The DATA statement may be
used to assign variables in the declarative or methods section of a
model (though we discourage its use declaratively for variable
initialization) or to assign constant arrays of any type, including
sets, in the declarative section. Here are some examples:

DATA MODEL tabular_ex;
lset,rset,cset IS_A set OF integer_constant;
rset :== [1..3];
cset :== rset - [2];
lset :== [5,7];
a[rset][cset] IS_A real;
b[lset][cset][rset] IS_A real_constant;

(* rectangle table *)
DATA FOR a:
COLUMNS 1,3; (*order last subscript cset*)
UNITS {kg/s}, {s}; (* columnar units *)

 20

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

(* give leading subscripts *)
[1] 2.8, 0.3;
[2] 2.7, 1.3;
[3] 3.3, 0.6;
END;

(* 2 layer rectangle table *)
CONSTANT DATA FOR b:
COLUMNS 1..3; (* order last subscript rset *)
(* UNITS omitted, so either the user gives
value in the table or values given are DIMEN-
SIONLESS. *)
(* ordering over [lset][cset] required *)
[5][1] 3 {m}, 2{m}, 1{m};
[5][3] 0.1, 0.2, 0.3;
[7][1] -3 {m/s}, -2{m/s}, -1{m/s};
[7][3] 4.1 {1/s}, 4.2 {1/s}, 4.3 {1/s};
END;

END tabular_ex;

For sparse arrays of variables or constants (when sparse arrays are
properly implemented), the COLUMNS and (possibly) UNITS
keywords are omitted and the array subscripts are simply
enumerated along with the values to be assigned.

1.2.5 RELATIONS

Mathematical expression: The syntax for a mathematical expression is any legal combination
of variable names and arithmetic operators in the normal notation.
An expression may contain any number of matched rounded
parentheses, (), to clarify meaning. The following is a legal
arithmetic expression:

y^2+(sin(x)-tan(z))*q

Each additive term in a mathematical expression (terms are
separated by + or - operators) must have the same dimensionality.

An expression may contain an index variable as a part of the
calculation if that index variable is over a set whose elements are of
type integer. (See the FOR/CREATE and FOR/DO statements
below.) An example is:

term[i] = a[i]*x^(i-1);

Numerical relations The syntax for a numeric relation is either

 21

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

optional_label: LHS relational_operator RHS;
or
optional_label: objective_type LHS;

Objective_type is eitherMAXIMIZE orMINIMIZE . RHS and
LHS must be one or more variables, constants, and operators in a
normal algebraic expression. The operators allowed are defined
below and in 1.5.2. Variable integers, booleans, and symbols are not
allowed as operands in numerical relations, nor are boolean
constants. Integer indices declared in FOR/CREATE loops are
allowed in relations, and they are treated as integer constants.

Relational operators:

=, >=, <=, <, >,

<>

These are the numerical relational operators for declarative use.

Ftot*y['methane'] = m['methane'];
y['ethanol'] >= 0;

Equations must be dimensionally correct.

MAXIMIZE,

MINIMIZE

Objective function indicators.

Binary Operators: +, -, *, /, ^. We follow the usual algebraic order of operations for
binary operators.

+ Plus. Numerical addition or set union.

- Minus. Numerical subtraction or set difference.

* Times. Numerical multiplication or set intersection.

/ Divide. Numeric division. In most cases it implies real division and
not integer division.

^ Power. Numeric exponentiation. If the value of y in x^y is not
integer, then x must be greater than 0.0.

Unary Operators: -,function()

- Unary minus. Numeric negation. There is no unary + operator.

function () unary real valued functions. The unary real functions we support
are given in section 1.5.2.

Real functions of lists:

 22

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

SUM(list) Add all expressions in the function’s list.

For the SUM, the base type real items can be arbitrary arithmetic
expressions. The resulting items must all be dimensionally
compatible.

An examples of the use is:

SUM(y[components]) = 1;

or, equivalently, one could write:

SUM(y[i] | i IN components) = 1;

Empty sum() yields wild

0.

When a SUM is compiled over a list which is empty it generates a
wild dimensioned 0. This will sometimes cause our dimension
checking routines to fail. The best way to prevent this is to make
sure the SUM never actually encounters an empty list. For example:

SUM((Q[i]
|i IN possibly_empty_set), 0{watt});

In the above, the variablesQ[i] (if they exist) have the
dimensionality associated with an energy rate. When the set is
empty, the 0 is the only term in the sum and establishes the
dimensionality of the result. When the set is NOT empty the
compiler will simplify away thetrailing 0 in the sum.

PROD(list) Multiply all the expressions in the product’s list. The product of an
empty list is a dimensionless value, 1.0.

Possible future functions: (Not implemented - only under confused consideration at this
time.) The following functions only work in methods as they are
not smooth function and would destroy a Newton-based solution
algorithm if used in defining a model equation:

MAX(list) maximum value on list of arguments

MIN(list) minimum value on list of arguments

 23

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.2.6 DERIVATIVES IN RELATIONS (* 4+ *)

1.2.7 EXTERNAL RELATIONS

1.2.8 CONDITIONAL RELATIONS (* 4+ *)

1.2.9 LOGICAL RELATIONS (*4+*)

Logical expression (The following is proposed but not implemented at this time.)
An expression whose value is TRUE or FALSE is a logical
expression. Such expressions may contain boolean variables. If
A,B , andlaminar areboolean , then the following is a logical
expression:

A+ (B * laminar)

The plus operator acts like an OR among the terms while the times
operator acts like an AND. Think of TRUE being equal to 1 and
FALSE being equal to 0 with the 1+1=0+1=1+0=1, 0+0=0, 1*1=1
and 0*1=1*0=0*0=0. IfA = FALSE, B=TRUE andlaminar is
TRUE, this expression has the value

FALSE OR (TRUE AND TRUE) -->TRUE

or in terms of ones and zeros

0 + (1 * 1) --> 1.

Logical relations are then made by putting together logical
expressions with the boolean relational operators == and !=. Since
we have no logical solving engine we have not pushed the syntax or
the semantics of logical relations very hard yet.

1.2.10 EXPLANATIONS (* 4+ *)

 24

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.3 DECLARATIVE STATEMENTS

We have already seen several examples that included declarative
statements. Here we will be more systematic in defining things. The
statements we describe are legal within the declarative portion of an
ATOM or MODEL definition. The declarative portion stops at the
keyword METHODS if it is present in the definition or at the end of
the definition.

Statements Statements in ASCEND terminate with a semicolon (;). Statements
may extend over any number of lines. They may have blank lines in
the middle of them. There may be several statements on a single
line.

Compound statements Some statements in ASCEND can contain other statements as a part
of them. The declarative compound statements are the FOR/
CREATE and the EXPLANATIONS statements. The procedural
compound statements allowed only in methods are the FOR/DO
and the IF statements. Compound statements end with "END;", and
they can be nested.

CASE statements coming

eventually

(*4+*) WHEN/CASE and SELECT/CASE are also compound
statements. They will handle conditional equations and conditional
compilation, respectively, in a later version of ASCEND IV.

Type declarations are not
statements.

MODEL and ATOM type definitions and METHOD definitions are
not really compound statements because they require a name
following their END word that matches the name given at the
beginning of the definition. These definitions cannot be nested.

ASCEND operator

synopses:

We’ll start with an extremely brief synopsis of what each does and
then give detailed descriptions.

IS_A Constructor. Calls for one or more named instances to be compiled
of the type specified.

(* 4+ *) May be followed by COMPLETE to indicate that the
instance created is to be type-locked after it is compiled.

ALIASES (* 4+ *) Part renaming statement. Establishes another name in the scope
where the alias statement appears for an instance at the same scope
or in a child instance.

WILL_BE (* 4+ *) Forward declaration statement. Promises that a part with the given
name and type will be constructed by an as yet unknown IS_A
statement.

 25

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

IS (* 4+ *) Global object renaming statement. Establishes another name in the
scope where the IS statement occurs for an already existing object
that occurs somewhere in the universe of simulations.

ARE_THE_SAME Merge. Calls for two or more instances already compiled to be
merged recursively. This essentially means combining all the
values in the instances into the most refined of the instances and
then destroying all the extra, possibly less refined, instances. The
remaining instance has its original name and also all the names of
the instances destroyed during the merge.

ARE_ALIKE Refinement clique constructor. Causes a group of instances to
always be of the same explicit type. Refining one of them causes a
refinement of all the others.

IS_REFINED_TO Reconstructor. Causes the already compiled instance(s) named to
have their type changed to a more refined type. This causes an
incremental recompilation of the instance(s).

(* 4+ *) May be followed by the word COMPLETE to type-lock
the instance after the reconstruction is finished.

ARE_CONNECTED

(*4+*)

Creates an array of particular equations that connect two locked
instances. This has the same mathematical effect as merging the
instances, but does not invalidate other objects that may have been
derived on the two locked instances.

FOR/CREATE Indexed execution of other declarative statements. Required for
creating arrays of relations over indexed variables and sparse arrays
of other objects.

Reminder: In the following statement descriptions, we show keywords in
capital letters. These words must appear in capital letters as shown
in ASCEND statements. We show optional parts to a statement
enclosed in double angle brackets (« ») and user supplied names in
lower-caseitalic letters. (Remember that ASCEND treats the
underscore (_) as a letter). The user may substitute any name
desired for these names. We use names that describe the kind of
name the user should use.

Operators in detail:

IS_A statement This statement has the syntax

list_of_instance_names IS_A model_name;

or

 26

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

list_of_instance_names IS_A COMPLETEmodel_name;

The IS_A statement allows us to declareinstances of a giventype
to exist within a model definition. Iftype has not been defined
(loaded in the ASCEND environment) then this statement is an
error and the MODEL it appears in is irreparably damaged (at least
until you delete the type definitions and reload a corrected file).

If a name is used twice in IS_A statements at the same scope
ASCEND will complain and execute only the first IS_A statement
encountered. Duplicate naming is a serious error. Labels on
relations share the same name space as other objects.

Several examples of IS_A appear throughout this chapter, e.g. page
1.

(* 4+ *) IS_A COMPLETE tells the compiler that the model should
be constructed immediately and locked so that no reconstruction is
possible. This means that no further constant assignments, set
assignments, refinements, or merges are to be allowed within the
model, so if the model definition is incomplete the result will not be
interactively reparable. Instances that have been locked can be used
to determine the structure of other instances, and they can be stored
in a particularly efficient manner.

ALIASES (* 4+ *) This statement has the syntax

list_of_instances ALIASES instance_name ;

We use this statement to point at an already existing instance. For
example, say we want a flash tank model to have a variable T, the
temperature of the vapor-liquid mixture in the tank.

MODEL tank;
feed, liquid, vapor IS_A stream;
state IS_A VLE_mixture;
T ALIASES state.T;
liquor_temperature ALIASES T;

END tank;

We might also want a more descriptive name than T, so ALIASES
can also be used to establish a second name at the same scope, e.g.
liquor_temperature .

An ALIASES statement will not be executed until the RHS
instance has been created with an IS_A. Since ASCEND uses an
infinite pass compiler, this is not usually a problem.

 27

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

WILL_BE (* 4+ *) list_of_instances WILL_BE model_name ;

The most common use of this forward declaration is as a statement
within the parameter list of a model definition. In parameter lists,
list_of_instances must contain exactly one instance. The
secondary use of WILL_BE is to establish that an array of a
common base type exists and its elements will be filled in
individually by IS_A or ARE_THE_SAME or ALIASES
statements. WILL_BE allows us to avoid costly reconstruction or
merge operations by establishing a placeholder instance which
contains just enough type information to let us check the validity of
other statements that require type compatibility while delaying
construction until it is called for by the filling in statements.
Instances declared with WILL_BE are never compiled if they are
not ultimately resolved to another instance created with IS_A.
Unresolved WILL_BE instances will appear in the user interface as
objects of type PENDING_INSTANCE_model_name.

IS (* 4+ *) One of:

list_of_instances IS simulation_name;

list_of_instances IS simulation_name OF model_name;

list_of_instances IS COMPLETEsimulation_name;

list_of_instances IS COMPLETEsimulation_name OF
model_name;

Heresimulation_name is the full name of any object in the universe
of already constructed objects. Thesimulation_name may be a
qualified identifier, i.e. the full path name to any part of a global
object. A local name is established for the global object. The OF
model_name is optionally allowed to permit type checking of the
found object. The COMPLETE modifier says that once found the
object is to belocked. This lock may have unexpected l side-effects,
so care should be taken when applying it.

(* 4++ *) We expect the IS syntax to be eventually extended to
include objects in other instances of the ASCEND environment
running anywhere on the network or in any other network object
that can supply equivalent functionality.

IS_REFINED_TO This statement has the syntax

list_of_instances IS_REFINED_TO model_name ;

or

 28

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

(* 4+ *) list_of_instances IS_REFINED_TO COM-
PLETE model_name ;

We use this statement to change the type of each of the instances
listed to the typemodel_name. The modeler has to have defined
each member on the list of instances. Themodel_name has to be a
type which refines the types of all the instances on the list.

An example of its use is as follows. First we define the parts called
fl1, fl2 and fl3 which are of type flash.

fl1, fl2, fl3 IS_A flash;

Assume that there exists in the previously defined model definitions
the type adiabatic_flash that is a refinement of flash. Then we can
make fl1 and fl3 into more refined types by stating:

fl1, fl3 IS_REFINED_TO adiabatic_flash;

(* 4+ *) IS_REFINED_TO COMPLETE tells the compiler that the
model should be reconstructed immediately and locked so that no
further reconstruction is possible. This means that no further
constant assignments, set assignments, refinements, or merges are
to be allowed within the model, so if the refined model definition is
incomplete the result will not be interactively reparable. Instances
that have been locked can be used to determine the structure of
other instances, and they can be stored in a particularly efficient
manner.

ARE_THE_SAME The format for this instruction is

list_of_instancesARE_THE_SAME;

All items on the list must have compatible types. For the example
in Fig. 1, consider a model where we define the following parts:

a1 IS_A A;
b1 IS_A B;
c1 IS_A C;
d1 IS_A D;
e1 IS_A E;

Then the following ARE_THE_SAME statement is legal

a1, b1, c1 ARE_THE_SAME;

while the following are not

b1, d1 ARE_THE_SAME;

 29

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

a1, c1, d1 ARE_THE_SAME;
b1, e1 ARE_THE_SAME;

When compiling a model, ASCEND will put all of the instances
mentioned as being the same into an ARE_THE_SAME “clique.”
ASCEND lists members of this clique when one asks via the
interface for the aliases of any object in a compiled model.

Merging any other item with a member of the clique makes it the
same as all the other items in the clique, i.e., it adds the newly
mentioned items to the existing clique.

ASCEND merges all members of a clique by first checking that all
members of the clique are type compatible. It then changes the type
designation of all clique members to that of the most refined
member.

Figure 1. Diagram of the model type hierarchy A,B,C,D,E

It next looks inside each of the instances, all of which are now of
the same type, and puts all of the parts with the same name into
their respective ARE_THE_SAME cliques. The process repeats by
processing these cliques until all parts of all parts of all parts, etc.,
are their respective most refined type or discovered to be type
incompatible.

There are now lots of cliques associated with the instances being
merged. The type associated with each such clique is now either a
model, an array, or an atom (i.e., a variable, constant, or set). If a

A

C

D

E

B

refines refines

refines

 30

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

model, only one member of the clique generates its equations. If a
variable, it assigns all members to the same storage location.

Note that the values of constants and sets are essentiallytype
information, so merging two already assigned constants is only
possible if merging them does not force one of them to be assigned
a new value.

ARE_ALIKE The format for this statement is

list_of_instance_names ARE_ALIKE;

The compiler places all instances in the list into an ARE_ALIKE
clique. It checks that the members are type compatible and then it
converts each into the most refined type of any instance in the
clique. At that point the compiler stops. It does not continue by
placing the parts into cliques nor does it assign common storage
locations, etc. It may be thought of as a partial merge. There are
important consequences of modeling with such a partial merge.

One consequence of ARE_ALIKE is to prevent model misuse
when configuring models. For example, suppose a modeler creates
a pressure changing model. The modeler is not concerned about the
type of the streams into and out of the device but does care that
these streams are of the same final type. For example, the modeler
wants both to be liquid streams if either is or both to be vapor
streams if either is. By declaring both to be streams only but
declaring the two streams to be alike, the modeler accomplishes this
intent. Suppose the modeler merges the inlet stream with a liquid
outlet stream from a reactor. The merge operation makes the inlet
stream into a liquid stream. The outlet stream, being in an
ARE_ALIKE clique with the inlet stream, also becomes a liquid
stream. Any subsequent merge of the outlet stream with a vapor
stream will lead to an error due to type incompatibility when
ASCEND attempts to compile that merge. Without the
ARE_ALIKE statement, the compiler would detect no such
incompatibility.

Another purpose is the propagation of type through a model.
Altering the type of the inlet stream through merging it with a
liquid stream automatically made the outlet stream into a liquid
stream.

If all the liquid streams within a distillation column are alike, then
the modeler can make them all into streams with a particular set of
components in them and with the same method used for physical

 31

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

property evaluation by merging only one of them with a liquid
stream of this type.

Finally, because ARE_ALIKE does not recursively put the parts of
ARE_ALIKEd instances into ARE_ALIKE cliques, it is possible to
ARE_ALIKE model instances which have compatible explicit
types but incompatibleimplicit types. This can lead to unexpected
problems later and makes the ARE_ALIKE instruction a candidate
for disappearing in a future release of ASCEND IV.

ARE_CONNECTED

(*4+*)

name: pair_of_instances ARE_CONNECTED;

Causes an array of equalities (namedname[]) to be written
between the variables of two identically typed, locked instances.
This can end up being an enormous array and we take that into
account internally since all the equations are essentially of the form
a.x = b.x; If name is omitted, we will make one up for you,
just as with other relations. The subscript of the relation array will
be[1..n] wheren is the number of variables that occurs in each
of the objects.

FOR/CREATE The FOR/CREATE statement is a compound statement that looks
like a loop. It isn’t, however, necessarily compiled as a loop. What
FOR really does is specify an index set value. Its format is:

FOR index_variable IN set CREATE
list_of_statements;

END;

This statement must be in the non-procedural part of the model
definition only. Every statement in the list should have at least one
occurrence of the index variable, else the same statement will be
produced multiple times. An example is

FOR i IN components CREATE
a.y[i], b[i] ARE_THE_SAME;
y[i] = K[i]*x[i];

END;

At present IS_A, ALIASES, and WILL_BE are not allowed within
FOR statements because we have not yet implemented sparse
arrays of general objects. This is a known bug. Eventually these
operators must be allowed for indexed sparse array instances, as
illustrated in ARRAYS CAN BE JAGGED on page 9.

 32

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.4 PROCEDURAL STATEMENTS

METHODS This statement separates the method definitions in ASCEND from
the declarative statements. All statements following this statement
are to define methods in ASCEND while all before it are for the
declarative part of ASCEND. The syntax for this statement is
simply

METHODS

with no punctuation. The next code must be a METHOD or the
END of the type being defined. If there are no method definitions,
this statement may be omitted.

Initialization routines:

METHOD A method in ASCEND must appear following the METHODS
statement within a model. The system executes procedural
statements of the method in the order they are written.

At present, there are no local variables or other structures in
methods except loop indices. A method may be written recursively,
but there is an arbitrary stack depth limit (currently set to 20 in
compiler/initialize.h) to prevent the system from crashing on
infinite recursions.

Specifically disallowed in methods are IS_A, ALIASES,
WILL_BE, IS, IS_REFINED_TO, ARE_THE_SAME and
ARE_ALIKE statements as these “declare” the structure of the
model and belong only in the declarative section.

The syntax for a method declaration is

METHOD method_name;
«procedural statement;» (*one or more*)

END method_name;

Procedural assignment The syntax is

instance_name := mathematical_expression;
or
array_name[set_name] := expression;
or
list_of_instance_names := expression.

 33

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

Its meaning is that the value for the variable(s) on the LHS is set to
the value of the expression on the RHS.

DATA statements (DATA on page 20) can (should, rather) also
appear in methods.

FOR/DO statement This statement is similar to the FOR/CREATE statement except it
can only appear in a method definition. An example would be

FOR i IN [1..n_stages] DO
T[i] := T[1] + (i-1)*DT;
...

END;

Here we actually execute using the values of iin the sequence
given.So,

FOR i IN [n_stages..1] DO ... END;

is an empty loop, while

FOR i IN [n_stages..1] DECREASING DO ... END;

is a backward loop.

IF The IF statement can only appear in a method definition. Its syntax
is

IF (logical_expression)THEN
list_of_statements

ELSE
list_of_statements

END;

or

IF (logical_expression) THEN
list_of_statements

END;

If the logical expression has a value of TRUE, ASCEND will
execute the statements in the THEN part. If the value is FALSE,
ASCEND executes the statements in the optional ELSE part.

SWITCH Vicente’?

CALL External calls?

RUN This statement can appear only in a method. Its format is:

 34

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

RUN name_of_method ;
or
RUN part_name.name_of_method ;
or
RUN model_type :: name_of_method ;

The named method can be defined in the current model (the first
syntax), or in any of its parts (the second syntax). Methods defined
in a part will be run in the scope of that part, not at the scope of the
RUN statement.

Type access to methods: Whenmodel_type:: appears, the type named must be a type that the
current model is refined from. In this way, methods may be defined
incrementally. For example:

MODEL foo;
x IS_A generic_real;

METHODS
METHOD specify;

x.fixed:= TRUE;
END specify;
END foo;

MODEL bar REFINES foo;
y IS_A generic_real;

METHODS
METHOD specify;

RUN foo::specify;
y.fixed := TRUE;

END specify;
END bar;

 35

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.5 MISCELLANY

1.5.1 VARIABLES FOR SOLVERS

solver_var Solver_var is the base-type for allcomputable variables in the
current ASCEND system. Any instances of an atom definition that
refines solver_var are considered potential variables when
constructing a problem for one of the solvers.

Solver_var has wild card dimensionality. (Wild card means that
until ASCEND can decide what its dimensionality is, it has none
assigned. ASCEND can decide on dimensionality while compiling
or executing.) In system.lib we define the following parts with
associated initial values for each:

Attributes: type default

lower_bound real 0.0

upper_bound real 0.0

nominal real 0.0

fixed boolean FALSE

lower_boundandupper_bound are bounds for a variable which are
monitored and maintained during solving. The nominal value the
value used to scale a variable when solving. The flagfixed indicates
if the variable is to be held fixed during solving. All atoms which
are refinements of solver_var will have these parts. The refining
definitions may reassign the default values of the attributes.

The latest full definition of solver_var is always in the file
system.lib.

generic_real One should not declare a variable to be of type solver_var. The
nominal value and bound values will get you into trouble when
solving. If you are programming and do not wish to declare variable
types, then declare them to be of type generic_real. This type has
nominal value of 0.5 and lower and upper bounds of -1.0e50 and
1.0e50 respectively. It is dimensionless. Generic_real is the first
refinement of solver_var and is also defined in system.lib

Kluges for MILPs Also defined in system.lib are the types for integer, binary, and
semi-continuous variables.

 36

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

solver_semi,

solver_integer,

solver_binary

We define basic refinements of solver_var to support solvers which
are more than simply algebraic. Various mixed integer-linear
program solvers can be fed solver_semi based atoms defining semi-
continuous variables, solver_integer based atoms defining integer
variables, and solver_binary based atoms defining binary variables.

Integers are relaxable. All these types have associated boolean flags which indicate that
either the variable is to be treated according to its restricted
meaning or it is to be relaxed and treated as a normal algebraic
variable.

Kluges for ODEs We have an alternate version of system.lib called ivpsystem.lib
which adds extra flags to the definition of solver_var in order to
support initial value problem (IVP) solvers (integrators).
Integration in the ASCEND IV environment is explained in another
chapter.

ivpsystem.lib Having ivpsystem.lib is a temporary, but highly effective, way to
keep people who want to use ASCEND only for algebraic purposes
from having to pay for the IVP overhead. Algebraic users load
system.lib. Users who want both algebraic and IVP capability load
ivpsystem.lib instead of system.lib. This method is temporary
because part of the extended definition of ASCEND IV is that
differential calculus constructs will be explicitly supported by the
compiler. Calculus is not yet implemented, however.

1.5.2 SUPPORTED ATTRIBUTES

(* 4+ *) The solver_var, and in fact most objects in ASCEND IV, should
have built-in support for (and thereby efficient storage of) quite a
few more attributes than are defined above. These built-in attributes
are not instances of any sort, merely values. The syntax for naming
one of these supported attributes is:
object_name.$ supported_attribute_name.

Supported attributes may have symbol, real, integer, or boolean
values. Note that the$ syntax is essentially the same as the
derivative syntax for relations; derivatives are a supported attribute
of relations. The supported attributes must be defined at the time the
ASCEND compiler is built. The storage requirement for a
supported boolean attribute is 1 bit rather than the 24 bytes required
to store a run time defined boolean flag. Similarly, the requirement
for a supported real attribute is 4 or 8 bytes instead of 24 bytes.

1.5.3 SINGLE OPERAND REAL FUNCTIONS :

exp() exponential (i.e., exp(x) = ex)

 37

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

ln() log to the base e

sin() sine. argument must be an angle.

cos() cosine. argument must be an angle.

tan() tangent. argument must be an angle.

arcsin() inverse sine. return value is an angle.

arccos() inverse cosine. return value is an angle.

arctan() inverse tangent. return value is an angle.

erf() error function

sinh() hyperbolic sine

cosh() hyperbolic cosine

tanh() hyperbolic tangent

arcsinh() inverse hyperbolic sine

arccosh() inverse hyperbolic cosine

arctanh() inverse hyperbolic tangent

lnm() modified ln function. This lnm function is parameterized by a
constant a, which is typically set to about 1.e-8. lnm(x) is defined as
follows:

ln(x) for x > a

(x-a)/a + ln(a) for x <= a.

Below the value a (default setting is 1.0e-8), lnm takes on the value
given by the straight line passing through ln(a) and having the same
slope as ln(a) has at a. This function and its first derivative are
continuous. The second derivative contains a jump at a.

The lnm function can tolerate a negative argument while the ln
function cannot. At present the value of a is controllable via the
user interface of the ASCEND solvers.

Operand dimensionality
must be correct.

The operands for an ASCEND function must be dimensionally
consistent with the function in question. Most transcendental
functions require dimensionless arguments. The trigonometric

 38

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

functions require arguments with dimensionality of plane angles, P.
ASCEND functions return dimensionally correct results.

The operands for ASCEND functions are enclosed within rounded
parentheses, (). An example of use is:

y = A*exp(-B/T);

Discontinuous functions: Discontinuous functions may destroy a Newton-based solution
algorithm if used in defining a model equation:

abs() absolute value of argument. Any dimensionality is allowed in an
abs() function.

1.5.4 LOGICAL FUNCTIONS

SATISFIED()

(*4+*)

Vicente’ needs to fill in this section with whatever logical functions
are needed.

1.5.5 UNITS

The following section defines the dimensions and units and all the
attendant conversion factors. Note that all conversions are simply
multiplicative. This information is from the file compiler/
units_input in the ASCEND source code.

Note that the units_input file can easily have additional units
defined to suit the needs of local users. We are always on the
lookout for new and interesting units, so if you have some send
them in.

Units input file
by Tom Epperly
Version: $Revision: 1.11 $
Date last modified: $Date: 1995/02/19 23:03:44 $
Copyright(C) 1990 Thomas Guthrie Epperly
#
This is a file defining the conversion factors ASCEND will recognize when
it sees them as {units). Note that the assignment x:= 0.5 {100}; yields
x == 50, and that there are no 'offset conversions,' e.g. F=9/5C+32;
Added money which isn't really time 3-94 BAA
Expanded, including some of Karl's units, constants. 4-94 BAA
Updated with supplementary SI dimensions and less ambiguous mole dim. jz/baa
#
Please keep unit names to 20 characters or less as this makes life pretty
#

1.5.5.1 DEFINE THE SYSTEM UNITS IN SI MKS system
define kilogram M; # internal mass unit SI
define mole Q; # internal quantity unit SI

 39

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

define second T; # internal time unit SI
define meter L; # internal length unit SI
define Kelvin TMP; # internal temperature unit SI
define currency C; # internal currency unit
define ampere E; # internal electric current unit SI suggested
define candela LUM; # internal luminous intensity unit SI
define radian P; # internal plane angle unit SI suggested
define steradian S; # internal solid angle unit SI suggested
#

1.5.5.2 distance
#
pc = 3.08374e+16*meter;
parsec = pc;
kpc = 1000*pc;
Mpc = 1e6*pc;
km = meter*1000;
m = meter;
dm = meter/10;
cm = meter/100;
mm = meter/1000;
um = meter/1000000;
nm = 1.e-9*meter;
kilometer = km;
centimeter = cm;
millimeter = mm;
micron=um;
nanometer = nm;
angstrom = m/1e10;
fermi = m/1e15;
#
mi = 1609.344*meter;
yd = 0.914412*meter;
ft = 0.304804*meter;
inch = 0.0254*meter;
mile = mi;
yard = yd;
feet = ft;
foot = ft;
in = inch;
#

1.5.5.3 mass
#
metton = kilogram *1000;
mton = kilogram *1000;
kg = kilogram;
g = kilogram/1000;
gram = g;
mg = g/1000;
milligram = mg;

 40

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

ug= kilogram*1e-9;
microgram = ug;
ng=kilogram*1e-12;
nanogram=ng;
pg=kilogram*1e-15;
picogram=pg;
#
amu = 1.661e-27*kilogram;
lbm = 4.535924e-1*kilogram;
ton = lbm*2000;
oz = 0.028349525*kilogram;
slug = 14.5939*kilogram;
#

1.5.5.4 time
#
yr = 31557600*second;
wk = 604800*second;
dy = 86400*second;
hr = 3600*second;
min = 60*second;
sec = second;
s = second;
ms = second/1000;
us = second/1e6;
ns = second/1e9;
ps = second/1e12;
year = yr;
week = wk;
day = dy;
hour = hr;
minute = min;
millisecond = ms;
microsecond = us;
nanosecond = ns;
picosecond = ps;
#

1.5.5.5 molecular quantities
#
kg_mole=1000*mole;
g_mole = mole;
gm_mole = mole;
kmol = 1000*mole;
mol = mole;
mmol = mole/1000;
millimole=mmol;
umol = mole/1e6;
micromole=umol;
lb_mole = 4.535924e+2*mole;
#

 41

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.5.5.6 temperature
#
K = Kelvin;
R = 5*Kelvin/9;
Rankine = R;
#

1.5.5.7 money
#
dollar = currency;
US = currency;
USdollar=currency;
CR = currency;
credits=currency;
#

1.5.5.8 reciprocal time (frequency)
#
rev = 1.0;
cycle = rev;
rpm = rev/minute;
rps = rev/second;
hertz = cycle/second;
Hz = hertz;
#

1.5.5.9 area
#
ha = meter^2*10000;
hectare=ha;
acre= meter^2*4046.856;
#

1.5.5.10 volume
#
l = meter^3/1000;
liter = l;
ml = liter/1000;
ul = liter/1e6;
milliliter = ml;
microliter = ul;
#
hogshead=2.384809e-1*meter^3;
cuft = 0.02831698*meter^3;
impgal = 4.52837e-3*meter^3;
gal = 3.785412e-3*meter^3;
barrel = 42.0*gal;
gallon = gal;
quart = gal/4;
pint = gal/8;
cup = gal/16;
floz = gal/128;
#

 42

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.5.5.11 force
#
N = kilogram*meter/second^2;
newton = N;
dyne = N*1.0e-5;
pn=N*1e-9;
picoNewton=pn;
#
lbf = N*4.448221;
#

1.5.5.12 pressure
#
Pa = kilogram/meter/second^2;
MPa = 1.0e+6*Pa;
bar =1.0e+5*Pa;
kPa = 1000*Pa;
pascal = Pa;
#
atm = Pa*101325.0;
mmHg = 133.322*Pa;
torr = 133.322*Pa;
psia = 6894.733*Pa;
psi = psia;
ftH2O = 2989*Pa;
#

1.5.5.13 energy
#
J = kilogram*meter^2/second^2;
joule = J;
MJ = J * 1000000;
kJ = J * 1000;
mJ=J*1.0e-3;
uJ=J*1.0e-6;
nJ=J*1.0e-9;
milliJoule=mJ;
microJoule=uJ;
nanoJoule=nJ;
erg = J*1.0e-7;
#
BTU = 1055.056*J;
pCu = BTU * 1.8;
cal = J*4.18393;
calorie = cal;
kcal=1000*calorie;
Cal=1000*calorie;
#

1.5.5.14 power
#
W = J/second;

 43

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

EW = 1.0e+18*W;
PW = 1.0e+15*W;
TW = 1.0e+12*W;
GW = 1.0e+9*W;
MW = 1.0e+6*W;
kW = 1000*W;
mW = W/1000;
uW = W/1000000;
nW = W/1e9;
pW = W/1e12;
fW = W/1e15;
aW = W/1e18;
terawatt = TW;
gigawatt = GW;
megawatt = MW;
kilowatt = kW;
watt = W;
milliwatt = mW;
microwatt = uW;
nanowatt = nW;
picowatt = pW;
femtowatt = fW;
attowatt = aW;
aWW= 1*EW;
#
hp= 7.456998e+2*W;
#

1.5.5.15 absolute viscosity
#
poise = Pa*s;
cP = poise/100;
#

1.5.5.16 electric charge
#
coulomb=ampere*second;
C = coulomb;
coul = coulomb;
mC = 0.001*C;
uC = 1e-6*C;
nC = 1e-9*C;
pC = 1e-12*C;
#

1.5.5.17 misc. electro-magnetic fun
#
V = kilogram*meter^2/second^3/ampere;
F = ampere^2*second^4/kilogram/meter^2;
ohm = kilogram*meter^2/second^3/ampere^2;
mho = ampere^2*second^3/kilogram/meter^2;
S = mho;

 44

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

siemens = S;
A=ampere;
amp = ampere;
volt = V;
farad= F;
mA= A/1000;
uA= A/1000000;
kV= 1000*V;
MV= 1e6*V;
mV= V/1000;
mF = 0.001*F;
uF = 1e-6*F;
nF = 1e-9*F;
pF = 1e-12*F;
kohm = 1000*ohm;
Mohm = 1e6*ohm;
kS = 1000*S;
mS = 0.001*S;
uS = 1e-6*S;
Wb = V*second;
weber = Wb;
tesla = Wb/m^2;
gauss = 1e-4*tesla;
H = Wb/A;
henry = H;
mH = 0.001*H;
uH = 1e-6*H;
#

1.5.5.18 numeric constants of some interest
to set a variable or constant to these, the code is (in the declarations)
ATOM constant REFINES real; END constant;
MODEL gizmo;
x IS_A constant;
x := 1 {PI};
...
molecule = 1.0;
PI=3.141592653589793; # Circumference/Diameter ratio
EULER_C = 0.57721566490153286; # euler gamma
GOLDEN_C = 1.618033988749894; # golden ratio
HBAR = 1.055e-34*J*second; # Reduced Planck’s constant
PLANCK_C = 2*PI*HBAR; # Planck's constant
LIGHT_C = 2.99793e8 * meter/second; # Speed of light in vacuum
MU0 = 4e-7*PI*kg*m/(C*C); # Permeability of free space
EPSILON0 = 1/LIGHT_C/LIGHT_C/MU0; # Permittivity of free space
BOLTZMAN_C = 1.3805e-23 * J/K; # Boltzman's constant
AVOGADRO_C = 6.023e23 *molecule/mole; # Avogadro's number of molecules
GRAVITY_C = 6.673e-11 * N*m*m/(kg*kg); # Newtons gravitational constant
GAS_C = BOLTZMAN_C*AVOGADRO_C; # Gas constant
INFINITY=1.0e38; # damn big number;
#

 45

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

eCHARGE = 1.602e-19*C; # Charge of an electron
EARTH_G = 9.80665 * m/(s*s); # Earth's gravitational field, somewhere
eMASS = 9.1095e-31*kilogram; # Electron rest mass, I suppose
pMASS = 1.67265e-27*kilogram; # Proton mass
#

1.5.5.19 constant based conversions
#
eV = eCHARGE * V;
keV = 1000*eV;
MeV = 1e6*eV;
GeV = 1e9*eV;
TeV = 1e12*eV;
PeV = 1e15*eV;
EeV = 1e18*eV;
#
lyr = LIGHT_C * yr; # Light-year
#
oersted = gauss/MU0;
#

1.5.5.20 subtly dimensionless measures
#
rad = radian;
srad = steradian;
deg = radian*1.74532925199433e-2;
degrees = deg;
grad = 0.9*deg;
arcmin = degrees/60.0;
arcsec = arcmin/60.0;
#

1.5.5.21 light quantities
#
cd = candela;
lm = candela*steradian;
lumen = lm;
lx = lm/meter^2;
lux= lx;
#

1.5.5.22 misc. rates
#
gpm = gallon/minute;
#

1.5.5.23 time variant conversions
#
MINIMUMWAGE = 4.75*US/hr;
SPEEDLIMIT = 65*mi/hr;
#
conversions we'd like to see, but probably won't
milliHelen = beauty/ship;
guy = quart;

 46

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

there's at least 4 guys for every gal around here.

 47

DRAFT ASCEND IV documentation of September 4, 1996 5:43 pm DRAFT DRAFT DRAFT

1.6 GRAMMAR

The grammar presented here is a stripped down BNF description of
the ASCEND language. It includes some features for which we
have syntax but no semantics as yet. Therefore, the authoritative
definition of the language is the informal one given above.

Mismatches between the informal description and the performance
of ASCEND IV software are thus bugs. The implemented
ASCEND language is merely an instance of a type that exists in the
collective head of the developers and users of ASCEND and Art
Westerberg.

1.6.1 FLEX DEFINITIONS

I need a volunteer to take scanner.l and ascend.y and strip them
down to a text file that looks reasonable.

1.6.2 YACC DEFINITIONS

