The Importance of Directed Acyclic Graphs in Glass-box, Equation-based Modeling

November 19, 1997

(10X reduction in compiling times: 100 seconds 30 10?)

Q: How can we create 1000s of equations describing process flowsheet physics?

How do we get back tailored module efficiency?

Hypothesis: Passing objects makes reuse easier in glassbox equation-based modeling.

• Appears in limited tests to be good for users. (thesis)

• Definitely good for the computer. (today's talk)

Very Simple Flowsheet

Anonymous Subclass =

Formal Class + Constant Values + *Shared Structures Pattern*

13 classes, 26 anonymous subclasses, 300+ objects

Goal:

- Compile each anonymous subclass *once*. (expensive)
- *Share* as needed for repeated structures. (very cheap)

Intermediate Test (ASCEND IV)

2 Columns, 194 stages, 17,500 equations to solve

Equations compiled	Compile, seconds	Memory, megabytes	Anonymous Class Detection, seconds
Unshared 17,500	114	26	
Shared 118	35	11	2.5

Detection cost something like: O(Nodes) Scalable!

Conclusions from DAG work

- Exploiting the underlying DAG is important and cheap.
- Concepts useful in any *hierarchical* modeling system, any discipline.
- Concept can aid computing on scalar, vector, and distributed hardware.
- Glassbox equation-based systems can attain the same efficiencies as blackbox modular systems.

Object Passing Sample

Property_Data P("methanol", "water");

Liquid_Stream S[1..4](P, "UNIFAC");

Reactor R1(IN: S[1], OUT: S[2]);

Flash F1(IN: S[2], OUT: S[3], S[4]);

Substructure is part of Anonymous Subclass


```
TestClass(real_pointer a, real_pointer b) {
    equation: (*a) = (*b);
}

Example() {
    real x,y;
    TestClass test1(&x, &y);
    TestClass test2(&x, &x);
}
```