
1

Conditional Modeling in an Equation-Based

Environment

V. Rico-Ramírez, B. A. Allan and A. W. Westerberg1

Institute for Complex Engineered Systems
Carnegie Mellon University, Pittsburgh, PA 15213

Technical ReportICES 06-242-98

Abstract: We identify the modeling capabilities needed for the efficient representation of

conditional models in an equation-based environment and describe modeling tools for the

performance of each of these tasks: conditional configuration of a model structure, conditional

compilation and conditional execution of procedural statements. We also describe the details

of the computer implementation of these tools and show how the expressiveness of an

equation-based modeling language increases with their incorporation. Several chemical

engineering examples are presented to demonstrate the scope of application of the proposed

extensions.

Keywords: Modeling, Conditional models, Equation-based environment.

1. Author to whom all correspondence should be addressed.

2

Table of Contents

1 INTRODUCTION ... 3

2 BACKGROUND ... 4

3 CONDITIONAL MODELING TOOLS... 5

3.1 CONDITIONAL CONFIGURATION OF AMODEL STRUCTURE. 5

3.1.1 THE WHEN STATEMENT... 6

3.1.2 LOGICAL RELATIONS ... 7

3.1.2 THE CONDITION STATEMENT... 8

3.2 CONDITIONAL COMPILATION.. ... 9

3.3 CONDITIONAL EXECUTION OF PROCEDURAL CODE............. 11

4 DETAILS OF ACOMPUTATIONAL IMPLEMENTATION 11

4.1 THE WHEN CLASS... 12

4.1.1 FEEDING A CONDITIONAL MODEL TO ANONLINEAR

SOLVER.. 14

4.2 CONDITIONAL COMPILATION: THE SELECTSTATEMENT 15

5 EXAMPLES OF APPLICATION ... 16

5.1 THE WHEN STATEMENT.. 17

5.2 LOGICAL RELATIONS... 20

5.3 THE SELECTSTATEMENT.. 20

5.4 THE SWITCH STATEMENT... 20

6 CONCLUSIONS... 21

7 ACKNOWLEDGMENTS... 22

8 REFERENCES ... 22

INTRODUCTION

3

1 INTRODUCTION

At the lowest level, process models are represented by a large set of variables and a large

system of linear and/or nonlinear equations that relate them. In the equational-based modeling

approach the definition of the system of equations is independent of any particular application or

solution algorithm that may be used for their solution. For that reason, the solution to equation-

based models has been demonstrated as effective in solving the simulation, optimization,

parameter estimation and data reconciliation problems all using a single set of equations (Allan,

1997). In recent years, the equational-based modeling community has focused on the

development of tools for the formal definition of models describing the behavior of process

systems (Pantelides and Barton, 1993). However, while many currently available equation-based

modeling systems have been reported in the literature, only a few of them have given attention to

conditional models (Pantelides, 1988; Piela,1989; Barton, 1992).

A conditional model as defined by Zaher (1995) and Grossmann and Turkay (1996)

consists of a system of equations expressed by two sets: a globally defined invariant set of

equations and a variant (or locally defined) set of conditional equations which are expressed as

disjunctions. Grossmann and Turkay (1996) show that a conditional model can be represented as

the system of disjunctive equations:

whereh(x) and rik(x) represent the invariant and the variant sets of equations respectively,K

represents the set of disjunctions and the indexi is used to indicate thei-th term in each

disjunctionDk. The domain of validity of each set of variant equations is given by the inequality

constraints involving gik(x). Examples of conditional models in chemical engineering are

systems involving physicochemical discontinuities such as phase transitions.

The representation of conditional models is particularly difficult because it is necessary to

declare alternative modeling equations which become active depending on the values of the

modeling variables. Moreover, the solution to conditional models involves simultaneously

h x() 0=

r ik x() 0=

gik x() 0≤i Dk∈
k K∈ (1)

BACKGROUND

4

selecting the equations to be solved and solving them.

In this work, we describe the incorporation of a series of tools which enables the user of an

equation-based modeling environment with the capability of representing complex conditional

models. Following the equation oriented approach, this representation is intended to be

independent of any particular application or of any solver or algorithm used for finding a solution

to the system of equations. For the purpose of model representation, in this work we extend the

scope of the definition of a conditional model. Here, we consider as a conditional model any

problem including a set of disjunctive statements as part of its formulation. In other words, the

domain of validity of each particular set of alternatives equations does not have to be given by

inequality constraints. Any kind of logical , integer, or binary variables can be used for that

purpose instead. With that in mind, the expressiveness of our modeling tools can also be applied

to problems on which the selection of alternative configurations is based on algorithmic and

heuristic decisions, as in the case of pure MINLP problems; as a consequence, potential

applications of the new modeling capabilities vary from the simple substitution of one equation

for another (as in the case of the laminar-turbulent flow transition) to the substitution of a section

of a chemical plant for another (as can be required while analyzing and initializing a

superstructure).

2 BACKGROUND

Previous implementations of conditional statements in an equation-based modeling

environment have been reported. One such mechanism is theIF-THEN-ELSE construct ofSpeedUp

described by Pantelides (1988):

IF logical_condition THEN
equation1

ELSE
equation2

ENDIF

where both the logical conditions and the equations are expressed in terms of the model variables.

Such a construct defines two system states corresponding to theIF and theELSE clauses

respectively. Multiple states may be described by nesting severalIF statements.

CONDITIONAL MODELING TOOLS

5

Similarly, Barton (1992) and Barton and Pantelides (1994) incorporated theCASE equation

into gPROMS. TheCASE equation is used to define both the appropriate modeling equations in each

state and the logical conditions for transitions among states. It covers multiple states within only

one statement and has the advantage of successfully representing irreversible discontinuities.

There is a major difficulty in both of the previous approaches as tools for conditional

modeling. They only allow the substitution of one list of equations (or arrays of equations) for

another. In an equation-based modeling environment in which object oriented concepts like

hierarchy (building complex models from small models) and inheritance are constantly in use,

this approach places a significant limitation on one’s modeling efficiency. For instance, it makes

it very difficult to model unit replacement when searching over a superstructure.

3 CONDITIONAL MODELING TOOLS

Equation oriented modeling tools support the implementation of unit models and their

incorporation in a model library by means of a declarative modeling language; declarative in the

sense of explicit and symbolic, encapsulating the knowledge about models (Marquardt, 1996).

On the other hand, methods must also be attached to a model definition for the numerical

processing of the model equations.

In this paper, we identify three modeling capabilities which support the efficient

development of conditional models in both the declarative definition of equation-based models

and the procedural execution of methods:

• Conditional configuration of the model structure.

• Conditional compilation.

• Conditional execution of the procedural code of methods.

In the remaining of this section, we describe the syntax and semantics of the modeling

tools which allow the practical implementation of those modeling capabilities.

3.1 CONDITIONAL CONFIGURATION OF A MODEL STRUCTURE

Several numerical algorithms and methodologies for the solution of conditional models

have recently become available. See for example Zaher (1995), Grossmann and Turkay (1996)

CONDITIONAL MODELING TOOLS

6

and Turkay and Grossmann (1996). A common characteristic of any of those methodologies is

the fact that the dynamic switching among alternative model configurations is required during the

solution process. Hence, a declarative modeling language has to provide a means to represent all

the alternative structural configuration of the problem as well as the conditions which trigger the

switching among them.

3.1.1 TheWHEN Statement

Originally, the syntax for incorporating conditional dependence of some equations of the

model in an equation-based environment was suggested by Piela (1989). That syntax is very

similar to theCASE equation of gPROMS and suffer from the same limitations. Instead, in this

work we represent that conditional dependence by using an object oriented formalism. In an

object oriented approach any real or abstract entity is considered an object and any object can be

referenced by a unique identifier (Marquardt, 1996). For instance, in an object oriented

mathematical modeling language representing a model superstructure, a simple equation is

considered as an object and so is any submodel within the superstructure. Based on this concept,

we defined the syntax of a conditional statement able to represent alternative configurations of a

model, theWHEN statement:

definition_of_equation_1;
definition_of_model_1;

definition_of_model_n;

WHEN (list_of_variables)
CASE list_of_values_1:

USE identifier_of_equation_1;
CASE list_of_values_2:

USE identifier_of_model_1;

OTHERWISE:
USE identifier_of_model_n;

END WHEN;

The following are observations about the previous definition:

1 The declaration of the objects referenced within theCASEs of the WHEN statement is

independent of such a statement. As mentioned before, the solution algorithms of conditional

…
…

CONDITIONAL MODELING TOOLS

7

models requires having available the data structures of all those objects.

2 A list of variables is used to define the applicability of each of the alternative configuration.

The variables in that list can be of any type among boolean, integer or symbol or any

combination of them. By doing that, we place problems like logic based model and MINLP

formulations within our scope of application.

3 Practically speaking, to “USE” an object means that the variables and equations contained in

that object will become an active part of the system of nonlinear equations representing the

current configuration of the problem.

4 Complex re/configurations of the problem are readily represented because of the object

oriented approach of the statement.

The syntax of the WHEN statement given above can successfully represent the conditional

dependence of alternative sets of equations and variables. However, it does not say anything about

(and is independent of) how to represent the conditions that trigger the dynamic switching among

configurations.

3.1.2 Logical Relations

The way in which existent solution algorithms select a particular configuration varies.

MINLP algorithms employ the manipulation of binary variables based on heuristics. Some other

approaches use logic for improving the solution of conditional models (Raman and Grossmann,

1994; Turkay and Grossmann, 1996). Also, the boundary crossing algorithm given by Zaher

(1991) expresses the truth value of inequality constraints as boolean values of logical conditions.

In general, the use of binary, integer or boolean variables is already well supported by

existing equational-based approaches. Nevertheless, here we describe our approach to the

incorporation of logical relations as a declarative modeling tool. This Incorporation enables a

equational-based environment with the ability to deal with the logic based formalisms required by

most of the solution algorithms mentioned above.

In this implementation of logical relations, we maintain the equational-based approach.

That is, the user states the logical relations that must be true at the solution to the problem but not

how to solve them. Each logical equation has a residual attached to it. This residual will indicate

if the expression is satisfied or not. Therefore, this interpretation requires that we provide a solver

CONDITIONAL MODELING TOOLS

8

that knows how to deal with logical relations, insisting on the residual of such equations being

true as they look for a solution. The work of Raman and Grossman (1993) can be used as a

starting point for such a solver implementation. They used formal procedures for performing logic

inference depending on the way in which the logical relations are present (Conjunctive Normal

form (CNF) or Disjunctive Normal Form (DNF)).

The syntax for the representation of logical relations is rather simple:

logical term <==> logical term;

The symbol “<==>” indicates that we have a logical relation which equals the two logical terms.

In each of the two terms, logical operators among boolean variables such asAND, NOT, andOR are

allowed. Equality in a logical equation can also be interpreted as anif and only if implication

between two logical terms expressed in clausal form. Also, it should be noted that we can express

any logical clause using the proposed syntax by simply writing the clause in one of the terms, and

the constant boolean valueTRUE in the other term of the logical equality. It is important to

emphasize that by checking the value of the appropriate boolean variables after each iteration, the

incorporation of logical relations will allow, if required, automatic change of the structure of the

problem in an iterative solution scheme.

3.1.3 TheCONDITION Statement

While defining the syntax of a logical relation, we limited ourselves to use only boolean

variables, pursuing consistency and readability of the declarative code. We stated before, however,

that in some solution algorithms for conditional models the truth value of a boolean variable may

depend on constraints expressed in terms of the real variables of the model. As a cure for that

limitation, we propose the definition of theCONDITION statement and theSATISFIED logical

operator as follows:

CONDITION
 identifier: real_expression;
END CONDITION;

boolean_variable == SATISFIED(identifier,tolerance);

The real expression is defined and labeled inside theCONDITION statement and then the logical

CONDITIONAL MODELING TOOLS

9

operatorSATISFIED gives the truth value of such an expression (the residual of the real expression

is compared against the tolerance defined in theSATISFIED operator). The benefits of the

CONDITION statement are:

1. It contributes to the separation of equations into those in given terms of real variables and

those given in terms of discrete variables, making the declarative code easier to read and

understand.

2. It makes the life of a compiler easier. Since the logical expressions are decoupled from the

expressions on which they depend, it avoids relations containing implicit relations.

3. It provides a very simple way of saying that the relations included in the statement are not

going to be solved. They are not a part of our nonlinear system of equations and are used only

as expressions with a truth value associated to them.

As a summary of this subsection, theWHEN statement provides an efficient means to

declare alternative modeling configurations, while the conditions triggering the reconfiguration of

the system can be represented by the use of logical relations and theCONDITION statement. When

working together, these modeling capabilities meet the representation needs of most of the

solution algorithms for conditional models reported in the literature.

3.2 CONDITIONAL COMPILATION

Aside from the flexibility that conditional statements such as theWHEN statement gives to

the configuration of a model structure, another application of conditional tools is the economy of

programming. An example commonly occurring in chemical engineering is the selection of the

thermodynamic model to be used for equilibrium calculations. In general, it is convenient to code

all of the alternative methods so that, depending on the species appearing in the equilibrium

system, we can select the method most appropriate or reliable.

In this kind of problems the decision as to which configuration we are going to use has to

be made at the moment in which we create the model to be solved and not during the solution

process. In other words, what we require is building only the appropriate configuration of the

problem rather than having available all the possible configurations.

Here we propose a modeling tool to incorporate conditional compilation into an equation-

CONDITIONAL MODELING TOOLS

10

based environment, theSELECT statement. While this conditional tools is flexible enough to

represent all of the alternatives, its presence will indicate that only those alternatives consistent

with the model data will become available after the process of instantiation of the model.

Even though the syntax for theSELECT statement is similar to that described for theWHEN

statement, some important differences can be identified:

• In the WHEN statement the declaration of the object is external to the conditional statement

since of all the alternatives are going to be created anyway. In theSELECT statement the actual

declaration of an object (or any other declarative statement affecting objects) is done within

each CASE of the conditional statement, explicitly discriminating among alternative

configurations.

• The selection among alternatives in theSELECT statement depends on constant booleans,

integer or symbols. Since these values imply a one time structural decision they must not be

modified during the solution of the problem.

Hence, the following is the syntax proposed for the conditional compilation tool:

defintion_of_constants;
assignment_of_constant_values;

SELECT (list_of_constants)
CASE list_of_values_1:

list1_of_declarative_statements;
CASE list_of_values_2:

list2_of_declarative_statements;

OTHERWISE:
listn_of_declarative_statements;

END SELECT;

Summarizing, theSELECT statement provides the capability of conditional compilation. It allows

the representation of structural alternatives pursuing the economy programming but, since only

the desired data structure is created, it does not affect the computational requirements of the

model.

…

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

11

3.3 CONDITIONAL EXECUTION OF PROCEDURAL CODE

Because of the use of conditional statements in the declarative description of a model, it

must also exist a similar feature which gives the user the ability of the conditional execution of

methods. For instance, each alternative configuration of a model may require different

initialization and different selection of the independent variables for the solution process. Hence,

we propose a conditional SWITCH statement as follows:

SWITCH (list_of_variables)
CASE list_of_values_1:

list1_of_procedural_statements;
CASE list_of_values_2:

list2_of_procedural_statements;

OTHERWISE:
listn_of_procedural_statements;

END SWITCH;

Basically, this statement has the same application as those conditional statements already existent

in procedural modeling languages like C and FORTRAN. The procedural statements in each of

the cases do not involve new object definitions, they are only useful for the numerical processing

of objects already created.

4 DETAILS OF A COMPUTATIONAL IMPLEMENTATION

The language tools introduced in the previous section provide a general framework for the

representation of conditional models. In this section we present an overview of the

implementation details and issues that had to be addressed in order to get a prototype for testing

the scope and application of the modeling tools.

Some of the main issues in the computer implementation of the conditional tools are:

• The implementation of theWHEN statement must provide an efficient means to generate all of

the possible alternative configurations of the problem. That is, the combinatorial nature of the

problem must be encapsulated without being memory intensive.

• The solution to a conditional model will reduce to solving a system of equations in which the

…

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

12

variables and equations of the system may constantly change during the solution process. The

issue here is how we are going to supply a conditional modeling solver with the correct set of

variables and equations.

• The development of an approach to the implementation of conditional compilations in a

declarative modeling language is a hard problem by itself.

4.1 THE WHEN CLASS

We keep the object oriented philosophy through the computer implementation of a tool for

conditional configuration o the model structure. See Marquardt (1996) for a thorough review of

this methodology. In a typical object oriented modeling environment all objects which share the

same set of attributes can be viewed as an instance of a class (or type). Each model is a structured

class built hierarchically from instances of other models or elementary classes.

An early approach for the implementation of conditional modeling tools was described by

Epperly (1988). He proposed to build a complete instance tree for eachCASE within the

conditional statement. However, he also recognizes the combinatorial nature of that approach that

makes it unacceptable; for example, for a type containing two conditional statements each having

threeCASEs, nine complete instance trees would be created.

In this work, we introduce the definition of an elementary class, theWHEN class. Instances

of this class will allows us to create a single instance tree in which all the structural alternatives

are embedded. Figure 1 shows our approach to the implementation of aWHEN instance. AWHEN

instance has only one parent, aMODEL instance. Basically, aWHEN instance is constituted by two

lists of pointers: a list of pointers to instances of the conditional variables on which theWHEN

statement depends, and a list of pointers toCASE structures. At the same time, eachCASE structure

contains a list of values and another list of pointers to instances. The instances for aCASE

correspond to the instances of objects (relations, arrays of relations, models, array of models) that

will be “active” when the values of theCASE list of values matches the current values of the

conditional variables. Early approaches to the implementation show us that, in order to efficiently

support refinement and merging operations in an object oriented environment representing

conditional models, the instances referenced by aWHEN instance have to be able to point back to

the WHEN instance. Therefore, all these instances (atoms, constants, models, relations) should

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

13

have a list of pointers toWHEN instances.

FIGURE1 WHEN instance implementation

With this implementation, the data structures required for all the alternative configurations

are available (i. e. all the objects referenced in eachCASE are compiled). By visiting the instance

Pointer to Set of Values

Pointer to List of Instances

Values

Pointer to

Pointer to

Pointer to List of
WHEN instances

CASE structure

...

Pointer back to
WHEN instance

ATOM or CONSTANT Instance

List of pointers to
WHEN instances

...

Pointer to
Instance

Class:WHEN

Pointer to Parent

Class attributes

Pointer to List of
Variables

Pointer to List of
CASE structures

Pointer to List of
WHEN instances

WHEN INSTANCE :

MODEL Instance

Pointer back to
WHEN instance

List of Variables

List of WHEN instances

List of WHEN instances

List of Instances

MODEL or RELATION or
Nested WHEN Instance

List of CASEs

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

14

tree and analyzing all the WHEN statements in it, we can set as “active” only the parts of the

problem corresponding to the configuration consistent with the current values of the conditional

variables.

4.1.1 Feeding a Conditional Model to a Nonlinear Solver

The implementation of theWHEN statement in an equation-based environment would

allow us to have available the data structure for all the variables and equations of the conditional

model. Therefore, the first step in the implementation of a conditional solver is to decide how the

solver is going to be fed with the correct structure and how to change this structure efficiently in

an iterative solution scheme. To perform this task, we will use the notion of active equation and

active variable. By active we mean “it is part of the problem currently being solved.”

Computationally speaking, to set a relation as active or inactive implies a simple bit operation.

The following steps provide a mechanism to select the structure of the problem:

1. Initially, we consider all the equations resulting from the compilation as active.

2. Then, we set as inactive all of the equations referenced within aWHEN statement. The

equations set as inactive in this step constitute the variant set of equations. All the equations

which remain active constitute the invariant set of equations.

3. We analyze theWHEN statements. According to the current values of the variables on which

eachWHEN statement depends, we determine which of itsCASEs applies. The equations

stated within such aCASE are set as active.

4. All the variables incident in the active set of equations are active. The current problem to be

solved consists of the active set of equations and variables.

Figure 2 shows the application of the previous steps to the example of the fluid flow

transition. The mechanism outline above is independent of a particular solver or solution

algorithm. However, we must emphasize that a change in the configuration of the problem during

an iterative solution process may also cause a change in the partitioning of the variables and in the

partitioning of the equations. Therefore, any solver using that mechanism must have that into

consideration. Zaher (1995) developed algorithms for simplifying the partitioning of variables and

equations in a conditional model.

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

15

4.2 CONDITIONAL COMPILATION : THE SELECT STATEMENT

During the process of instantiation of a model, it is necessary to differentiate between

those objects that are not instantiated because they are defined within nonmatchingCASEs of a

SELECT statement from those objects that are not instantiated because a deficiency in their

declarative definition. In order to do that, we define an elementary “dummy” class. It is necessary

to build only one “universal” instance of this class. Then, the dummy instance becomes a place

holder for all the objects defined in all the nonmatchingCASEs of theSELECT statements.

Moreover, statements in the nonmatchingCASEs of theSELECT statement that do not involve the

creation of a new object, are simplyNOT executed (i.e. assignments, refinements, merging, etc.).

On the other hand, statements in the matchingCASEs are executed as if they were defined outside

the SELECT statement. Figure 3 shows a graphic explanation of the process of instantiation in

conditional compilation.

FIGURE2 Feeding a conditional model to a nonlinear solver

1. Initially all the equations are active:

inveq

vareq1

vareq2

2. Equations stated in the CASEs of a

WHEN statement are set as inactive:

ACTIVE INACTIVE

inveq
vareq1

vareq2

Invariant Set Variant Set

3. Analyze WHENs

ACTIVE INACTIVE

inveq
vareq2

vareq1

4. Incident variables in active equations are active

Re
1

f
------- 2 D

3 ρ ∆P⋅ ⋅ ⋅

µ2
L⋅

 1 2⁄

⋅=

Re 64 f⁄=

Re 0.206307 f⁄()4
=

inveq:

vareq1:

vareq2:

WHEN laminar

CASE TRUE: USE vareq1;

CASE FALSE: USE vareq2;

END;

Flow transition:

laminar := TRUE;

EXAMPLES OFAPPLICATION

16

5 EXAMPLES OF APPLICATION

One of the goals of our research group has been to improve the ability to develop and solve

process models. The main result of this effort has been the development ofASCEND (Pielaet al.,

1991). ASCEND is both an object oriented mathematical modeling environment and a solving and

debugging engine. Westerberget al. (1994) discuss the essential features of the currentASCEND

system and present several ways in which we can improve it to solve larger models and to increase

its scope as a modeling environment. We implemented the conditional modeling tools explained

above into theASCEND modeling environment. In this section, we show some examples to

illustrate the expressiveness of the new modeling capabilities.

FIGURE3 Instantiation process in conditional compilation

SELECT (name_of_constant)

CASE value_1:

refinement

assignment;

CASE value_2:

refinement;

assignment;

declaration_of_object_1;

merging;

END SELECT;
Universal Dummy

Instance

M
at

ch
in

g
 C

A
S

E

Execute Refinement

Execute Assignment

Do not Execute

Do not Execute

Do not Execute

declaration_of_object_2;

EXAMPLES OFAPPLICATION

17

5.1 THE WHEN STATEMENT

 Figure 4 shows two partialASCEND models in which theWHEN statement is used, each in

a different manner.

(a) (b)
laminar IS_A boolean; method IS_A symbol;
Re,f,k IS_A factor; simplified_flash IS_A VLE_flash;

rigorous_flash IS_A td_VLE_flash;
eq1: Re = 64/f;
eq2: Re = (0.206307/f)^4; WHEN (method)

CASE ‘rigorous’:
WHEN (laminar) USE rigorous_flash;

CASE TRUE: CASE ‘simplified’:
USE eq1; USE simplified_flash;

CASE FALSE: END WHEN;
USE eq2;

END WHEN;

FIGURE4 Two different applications of theWHEN statement.

In case (b) the value of the symbol ‘method’ is used to select between two alternative

configurations of the problem, a flash calculation assuming constant relative volatility

(VLE_flash) or a flash calculation using a more rigorous thermodynamic calculation

(td_VLE_flash). In this manner, one can readily change the number of variables and equations

describing the model. Which option is going to be used and, therefore, the value of the symbol

‘method’, is a user decision. For example, the user may select the simplified model when looking

for good initial values for the variables and then switch to the rigorous model simply by changing

the value of the symbol ‘method’ he had selected. Once a configuration has been select, it will be

kept unless the user decides to change it. Note that the user does not have to recompile the model

to switch. Since the system has compiled the data structure for both of the problems the user can

readily switch back and forth between the simplified model and the more complicated one.

On the other hand, in case (a) we cannot expect the boolean value of the variable laminar

to be a user decision. Its value will depend on the value of the Reynolds number which is an

unknown in the problem. Actually, the value of the variable laminar will be the truth value of the

expression Re<2100. In an iterative solution scheme, we will expect that the value of the boolean

variable laminar will change, and so will the structure of the system of equations that we have to

EXAMPLES OFAPPLICATION

18

solve.

Another example of the application of theWHEN statement is the synthesis of process

networks using superstructure optimization. We developed a simplified model for the

superstructure given in Figure 5, taken from the work of Turkay and Grossmann (1996). In this

example there are two alternative feedstocks, two possible choices of the reactor and two choices

of the compression systems. Therefore, there are 24 = 16 feasible configurations for the problem.

FIGURE5 Superstructure taken from Turkay and Grossmann (1996).

All 16 configurations are encapsulated in oneASCEND model containing 4WHEN statements

which depend on the value of 4 boolean variables. Figure 6 shows this model. The procedural

section of the model and the model for each unit operation has been omitted for simplicity.

We have tested the mechanism to pass the correct submodel to a solver suggested in

section 4.1.1 on several small problems. As an example, we applied it to the system presented in

Figure 5 and Figure 6. The value of the four boolean variables determine the structure of the

problem solved. As mentioned above, the values of the boolean variables can be defined

interactively by the user, but they also could be defined by some logic inference algorithm which

would allow the automatic change of the structure of the problem. The nonlinear system contains

137 invariant equations and 68 variant equations for a total of 205. The configuration defined by

one of the feeds, two single-stage compressors and one of the reactors contains 169 equations, the

137 invariant and 32 active equations out of the 68 variant equations. Switching from one

f1

f2

c1

co1 h1

r2

r1

co2 fl1

h2

h3

c2

Feed 1 (cheap)

Feed 2(exp.)

Pby

<1000
ton/day

>90 %
pure C

high conv, high cost

low conv, low cost

A + B C
s1 v1

sp1
s2

m1

EXAMPLES OFAPPLICATION

19

structure to another is done without the need of recompilation and, since to reconfigure the

system requires only rebuilding several list of pointers, it is computationally very efficient.

MODEL flowsheet;
(* units *)

f1 IS_A cheap_feed;
f2 IS_A expensive_feed;
c1,c2 IS_A single_compressor;
s1,s2 IS_A staged_compressor;
r1 IS_A cheap_reactor;
r2 IS_A expensive_reactor;
co1,co2 IS_A cooler;
h1,h2,h3 IS_A heater;
fl1 IS_A flash;
sp1 IS_A splitter;
m1 IS_A mixer;
v1 IS_A expansion_valve;

(* boolean variables *)
select_feed1,select_single1 IS_A boolean_var;
select_cheapr1,select_single2 IS_A boolean_var;

(* define sets *)
m1.n_inputs :==2;
sp1.n_outputs :== 2;

(* wire up flowsheet *)
f1.stream, f2.stream, c1.input, s1.input ARE_THE_SAME;
c1.output, s1.output, m1.feed[2] ARE_THE_SAME;
m1.out,co1.input ARE_THE_SAME;
co1.output, h1.input ARE_THE_SAME;
h1.output, r1.input, r2.input ARE_THE_SAME;
r1.output, r2.output,v1.input ARE_THE_SAME;
v1.output,co2.input ARE_THE_SAME;
co2.output, fl1.feed ARE_THE_SAME;
fl1.liq, h2.input ARE_THE_SAME;
fl1.vap, sp1.feed ARE_THE_SAME;
sp1.out[1], h3.input ARE_THE_SAME;
sp1.out[2],c2.input, s2.input ARE_THE_SAME;
c2.output, s2.output,m1.feed[1] ARE_THE_SAME;

(* Conditional statements *)
WHEN (select_feed1)
 CASE TRUE:

USE f1;
 CASE FALSE:

USE f2;
END WHEN;
WHEN (select_single1)
 CASE TRUE:

USE c1;
 CASE FALSE:

USE s1;
END WHEN;
WHEN (select_cheapr1)
 CASE TRUE:

USE r1;
 CASE FALSE:

USE r2;
END WHEN;
WHEN (select_single2)
 CASE TRUE:

USE c2;
 CASE FALSE:

USE s2;
END WHEN;

END flowsheet;

FIGURE6 ASCEND model for the superstructure of Figure 5

EXAMPLES OFAPPLICATION

20

5.2 LOGICAL RELATIONS

Figure 7 illustrates two examples of the syntax we have used for the implementation of

logical relations. Example (b) is simply to show the use of the logical operatorsAND, OR andNOT.

Example (a) is a more complete version of the model presented in Figure 4. In this case we note

that the value of the boolean variable (laminar) depends on the truth value of a real expression

(condition). In that way, a change in the truth value of the real expression triggers a change in the

configuration of the system because of theWHEN statement depending on that boolean variable.

(a) (b)
laminar IS_A boolean;
Re,f,k IS_A factor;

 valve_open IS_A boolean;
CONDITION pump_on IS_A boolean;

condition: Re <= 2100; full_tank IS_A boolean;
END;

 valve_open<==>pump_on AND NOT(full_tank);
laminar <==> SATISFIED(condition);

eq1: Re = 64/f;
eq2: Re = (0.206307/f)^4;
WHEN (laminar)

CASE TRUE:
USE eq1;

CASE FALSE:
USE eq2;

END WHEN;

FIGURE7 Examples of the syntax for the implementation of logical relations

5.3 THE SELECT STATEMENT

Figure 8 shows anASCEND model which is similar to that shown previously in

Figure 4(b). The difference is that we use the SELECT statement rather than theWHEN statement.

This time, the symbol ‘method’ is a constant, and once it is defined, its value will not change. That

value will always be a user decision. In the example of Figure 8, only the list of statements in the

first CASE are compiled.

5.4 THE SWITCH STATEMENT

The use of the SWITCH statement for the conditional execution of procedural code is

illustrated in Figure 9. In that example, the average value of the constant relative volatility is set

CONCLUSIONS

21

to 1.5 if the simplified flash model is used. If the rigorous model is used, then a procedure

defining the initial values and degrees of freedom for an adiabatic operation is executed.

method IS_A symbol_constant;
method :== ‘rigorous’;

SELECT (method)
CASE ‘rigorous’:

rigorous_flash IS_A td_VLE_flash;
CASE ‘simplified’:

simplified_flash IS_A VLE_flash;
END SELECT;

FIGURE8 Application of theSELECT statement.

METHODS
METHOD values;

RUN reset;
SWITCH (method)

CASE ‘rigorous’:
RUN adiabatic;

CASE ‘simplified’:
ave_alpha := 1.5;

END SWITCH;
END values;

FIGURE9 Application of theSWITCH statement.

6 CONCLUSIONS

We developed an efficient modeling tools for the representation of conditional models in

an equation-based environment and discussed the details of their practical implementation. The

incorporation of these tools into the ASCEND environment shows how the expressiveness of an

equation-based modeling language increases with this extension. Even though the new modeling

capabilities are independent of any numerical technique used for the solution of a conditional

model, they were developed in such a way that the needs of most of the existent solution

algorithms will be met. Our work is currently being focused in the development and

implementation of approaches to the solution to conditional models, investigating alternatives to

the traditional MINLP techniques. Our experience in the application of the boundary crossing

ACKNOWLEDGMENTS

22

algorithm given by Zaher (1991) and our complementarity representation of conditional models

will soon become available.

7 ACKNOWLEDGMENTS

This work has been supported by the Engineering Design Research Center at Carnegie

Mellon University, by the Computer Aided Process Design Consortium, and by the “Consejo

Nacional de Ciencia y Tecnología (CONACYT)”.

8 REFERENCES

Allan, B. A.; A More Reusable Modeling System; PhD thesis, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,1997.

Barton, P. I.; The Modeling and Simulation of Combined Discrete/Continuous Processes. PhD
thesis, Department of Chemical Engineering, Imperial College of Science, Technology and
Medicine, 1992.

Barton, P. I. and Pantelides, C. C.; Modeling of Combined Discrete/Continuous Processes.
AIChE Journal, 40(6):966–979, June 1994.

Epperly, T. G.; Implementation of an Ascend Interpreter. Technical Report. Engineering Design
Research Center. Carnegie Mellon University. Pittsburgh, PA, 1988.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

Marquardt, W.; Trends in Computer-Aided Process Modeling.Comput. Chem. Eng., 20(6):591-
609, 1996.

Pantelides, C. C.; SPEEDUP-Recent Advances in Process Simulation.Comput. Chem. Eng.,
12(7):745–755, 1988.

Pantelides, C. C. and Barton, P. I.; Equation-Oriented Dynamic Simulation: Current Status and
Future Perspectives.Comput. Chem. Eng., 17S:263–285, 1993.

Piela, P., Epperly, T., Westerberg, K., Westerberg, A. W.; An Object-Oriented Computer
Environment for Modeling and Analysis: The modeling language.Comput. Chem. Eng.,
15(1):53–72, 1991.

Piela, P.; ASCEND: An Object-Oriented Computer Environment for Modeling and Analysis.
PhD thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, April 1989.

REFERENCES

23

Raman, R. and Grossmann, I. E.; Symbolic Integration of Logic in Mixed-Integer Linear
Programming Techniques for Process Synthesis.Comput. Chem. Eng., 17(9):909–927, 1993.

Raman, R. and Grossmann, I. E.; Modeling and Computational Techniques for Logic Based
Integer Programming.Comput. Chem. Eng., 18(7):563–578, 1994.

Turkay, M. and Grossmann, I. E.; Logic-Based MINLP Algorithms for the Optimal Synthesis of
Process Networks. Comput. Chem. Eng., 20(8):959–978, 1996.

Westerberg, A.W., Abbott, K. A., and Allan, B. A.; Plans for ASCEND IV: Our Next Generation
Equational-Based Modeling Environment. Boston, Massachusetts, November 1994.
AspenWorld’94.

Zaher, J. J.; Conditional Modeling. PhD thesis, Department of Chemical Engineering,Carnegie
Mellon University, Pittsburgh, Pennsylvania, May 1995.

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The Annual
AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March 1993.

