
TECHNICAL REPORT REFERENCES

17

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The Annual
AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March 1993.

TECHNICAL REPORT REFERENCES

16

here, but we are in the way of discovering them.

8 REFERENCES

Barton, P. I.; The Modeling and Simulation of Combined Discrete/Continuous Processes. PhD
thesis, Department of Chemical Engineering, Imperial College of Science, Technology and
Medicine, 1992.

Barton, P. I. and Pantelides, C. C.; Modeling of Combined Discrete/Continuous Processes.
AIChE Journal, 40(6):966–979, June 1994.

Epperly, T. G.; Implementation of an Ascend Interpreter. Technical Report. Engineering Design
Research Center. Carnegie Mellon University. Pittsburgh, PA, 1988.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

Pantelides, C. C.; SPEEDUP-Recent Advances in Process Simulation.Comput. Chem. Eng.,
12(7):745–755, 1988.

Pantelides, C. C. and Barton, P. I.; Equation-Oriented Dynamic Simulation: Current Status and
Future Perspectives.Comput. Chem. Eng., 17S:263–285, 1993.

Piela, P., Epperly, T., Westerberg, K., Westerberg, A. W.; An Object-Oriented Computer
Environment for Modeling and Analysis: The modeling language.Comput. Chem. Eng.,
15(1):53–72, 1991.

Piela, P.; ASCEND: An Object-Oriented Computer Environment for Modeling and Analysis.
PhD thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, April 1989.

Raman, R. and Grossmann, I. E.; Symbolic Integration of Logic in Mixed-Integer Linear
Programming Techniques for Process Synthesis.Comput. Chem. Eng., 17(9):909–927, 1993.

Raman, R. and Grossmann, I. E.; Modeling and Computational Techniques for Logic Based
Integer Programming.Comput. Chem. Eng., 18(7):563–578, 1994.

Turkay, M. and Grossmann, I. E.; Logic-Based MINLP Algorithms for the Optimal Synthesis of
Process Networks. Comput. Chem. Eng., 20(8):959–978, 1996.

Westerberg, A.W., Abbott, K. A., and Allan, B. A.; Plans for ASCEND IV: Our Next Generation
Equational-Based Modeling Environment. Boston, Massachusetts, November 1994.
AspenWorld’94.

Zaher, J. J.; Conditional Modeling. PhD thesis, Department of Chemical Engineering,Carnegie
Mellon University, Pittsburgh, Pennsylvania, May 1995.

TECHNICAL REPORT CONCLUSIONS

15

MODEL flowsheet;
(* units *)

f1 IS_A cheap_feed;
f2 IS_A expensive_feed;
c1,c2 IS_A single_compressor;
s1,s2 IS_A staged_compressor;
r1 IS_A cheap_reactor;
r2 IS_A expensive_reactor;
co1,co2 IS_A cooler;
h1,h2,h3 IS_A heater;
fl1 IS_A flash;
sp1 IS_A splitter;
m1 IS_A mixer;
v1 IS_A expansion_valve;

(* boolean variables *)
select_feed1, select_single1 IS_A boolean_var;
select_cheapr1, select_single2 IS_A boolean_var;

(* define sets *)
m1.n_inputs :==2;
sp1.n_outputs :== 2;

(* wire up flowsheet *)
f1.stream, f2.stream, c1.input, s1.input ARE_THE_SAME;
c1.output, s1.output, m1.feed[2] ARE_THE_SAME;
m1.out,co1.input ARE_THE_SAME;
co1.output, h1.input ARE_THE_SAME;
h1.output, r1.input, r2.input ARE_THE_SAME;
r1.output, r2.output,v1.input ARE_THE_SAME;
v1.output,co2.input ARE_THE_SAME;
co2.output, fl1.feed ARE_THE_SAME;
fl1.liq, h2.input ARE_THE_SAME;
fl1.vap, sp1.feed ARE_THE_SAME;
sp1.out[1], h3.input ARE_THE_SAME;
sp1.out[2],c2.input, s2.input ARE_THE_SAME;

 c2.output, s2.output,m1.feed[1] ARE_THE_SAME;
(* Conditional statements *)

WHEN (select_feed1)
 CASE TRUE:

USE f1;
 CASE FALSE:

USE f2;
END;
WHEN (select_single1)
 CASE TRUE:

USE c1;
 CASE FALSE:

USE s1;
END;
WHEN (select_cheapr1)
 CASE TRUE:

USE r1;
 CASE FALSE:

USE r2;
END;
WHEN (select_single2)
 CASE TRUE:

USE c2;
 CASE FALSE:

USE s2;
END;

END flowsheet;

FIGURE8 ASCEND model for the superstructure of Figure 6

modeling tools required to accomplish this, showing how the expressiveness of the modeling

language increases with their incorporation. The computer implementation of these tools has been

completed. There are surely other applications of the tools we describe that are being overlooked

TECHNICAL REPORT FUTURE WORK

14

All these 16 configurations are encapsulated in oneASCEND model containing 4 WHEN

statements which depend on the value of 4 boolean variables. Figure 8 shows this model. The

procedural section of the model and the model for each unit operation has been omitted for

simplicity.

The mechanism suggested in section 4.2 has been implemented simultaneously with the

implementation of theWHEN statement and the logical relations. Its performance has been tested

in several small problems. As an example, it was applied to the system presented in Figure 7 and

Figure 8. The value of the four boolean variables will determine the structure of the problem to be

solved. As mentioned above, the values of the boolean variables could be defined interactively by

the user, but they also could be defined by some logic inference algorithm which would allow the

automatic change of the structure of the problem. The NLP contains 137 invariant equations and

68 variant equations for a total of 205. The configuration defined by one of the feeds, two single-

stage compressors and one of the reactors contains 169 equations, the 137 invariant and 32 active

equations out of the 68 variant equations. Switching form one structure to another is done without

the need of recompilation and, since to reconfigure the system requires only rebuilding several

list of pointers, it is computationally very efficient.

6 FUTURE WORK

The WHEN statement implementation described here help us with the representation of

conditional models, but, how about the solution of the same kind of problems?. Work is currently

being focused in the implementation of a solver which can deal with logic inference and

automatic switching among alternative configurations. Also, in the same way that we use the

WHEN and theSELECT statements in the declarative section of our modeling language, a SWITCH

statement will be implemented for the procedural section of the language. It will allow us the

conditional execution of procedures, working as an extension to the currentIF statement. Further

details will appear very soon with respect to these topics.

7 CONCLUSIONS

There is a contribution to be made in the modeling world. Namely, the efficient

representation of conditional models in an equation-based environment. We have described the

TECHNICAL REPORT AN EXAMPLE OF APPLICATION

13

objects defined in all the nonmatchingCASEs of theSELECT statements. The type of a dummy

instance is also called a dummy type, which basically contains only an empty list of declarative

statements. The list of parents of the dummy type is set toNULL, because this list would provide

no useful information and would have the potential of having a very large number of elements.

What we keep instead is only a counting of the number of parents, such that we can keep the

sanity of the deletion process. Statements in the nonmatchingCASEs of theSELECT statement that

do not involve the creation of a new object, are simplyNOT executed (i.e. assignments,

refinements, merging, etc.). On the other hand, statements in the matchingCASEs are executed as

if they were defined outside theSELECT statement. Figure 6 shows a graphic explanation of the

process of instantiation in conditional compilation.

5 AN EXAMPLE OF APPLICATION

The WHEN statement, theSELECT statement and logical relations have already been

incorporated to theASCEND system as they were outlined above. We are currently testing this

initial implementation, looking for improvements that could enhance its efficiency as modeling

tools. To give an example of the application of theWHEN statement, we developed a simplified

model for the superstructure given in Figure 7, taken from the work of Turkay and Grossmann

(1996). In this example there are two alternative feedstocks, two possible choices of the reactor

and two choices of the compression systems. Therefore, there are 24 = 16 feasible configurations

of the problem.

FIGURE7 Superstructure taken from Turkay and Grossmann (1996).

f1

f2

c1

co1 h1

r2

r1

co2 fl1

h2

h3

c2

Feed 1 (cheap)

Feed 2(exp.)

Pby

<1000
ton/day

>90 %
pure C

high conv, high cost

low conv, low cost

A + B C
s1 v1

sp1
s2

m1

TECHNICAL REPORT DETAILS OF THEIMPLEMENTATION

12

The mechanism outline above is independent of a particular solver or solution algorithm.

Computationally speaking, to set a relation as active or inactive implies a simple bit operation.

Figure 5 shows the application of the previous steps to the example of the fluid flow transition.

4.3 CONDITIONAL COMPILATION : THE SELECT STATEMENT

During the execution of aSELECT statement, we must be able to identify if a name has not

already been created because it is included in a nonmatchingCASE of theSELECT statement, or

because the compiler still do not execute its defining statements. In order to accomplish this, we

create aUNIVERSAL dummy instance.This dummy instance is just a place holder for all the

FIGURE6 Instantiation process in conditional compilation

SELECT (reaction_system)

CASE ‘low_pressure’:

r1 IS_REFINED_TO low_pressure_reactor;

r1.P := 1 {atm};

CASE ‘high_pressure’:

r1 IS_REFINED_TO high_pressure_reactor;

r1.P := 10 {atm};

c1 IS_A cooler;

r1.output,c1.input ARE_THE_SAME;

END;
Universal Dummy

Instance

s1 IS_A single_compressor;

M
at

ch
in

g
 C

A
S

E

Execute Refinement

Execute Assignment

Do not Execute

Do not Execute

Do not Execute

reaction_system := ‘low_pressure’

r1 IS_A reactor;

reaction_system IS_A symbol_constant;

TECHNICAL REPORT DETAILS OF THEIMPLEMENTATION

11

provide a mechanism to select the structure of the problem:

1. Initially, all the equations resulting from the compilation are considered as active.

2. Then, all the equations which are implicitly or explicitly (inside models) stated in theCASE of

a WHEN statement are set as inactive. The equations set as inactive in this step constitute the

variant set of equations. All the equations which remain active constitute the invariant set of

equations.

3. Analyze theWHEN statements. According to the current values of the variables on which

eachWHEN statement depends, determine which of itsCASEs applies. The equations stated

implicitly or explicitly in such aCASE are set as active.

4. All the variables incident in the active set of equations are active. The current problem to be

solved consists of the active set of equations and variables.

FIGURE5 Feeding a conditional model to a NLP solver

1. Initially all the equations are active:

inveq

vareq1

vareq2

2. Equations stated in the CASEs of a

WHEN statement are set as inactive:

ACTIVE INACTIVE

inveq
vareq1

vareq2

Invariant Set Variant Set

3. Analyze WHENs

ACTIVE INACTIVE

inveq
vareq2

vareq1

4. Incident variables in active equations are active

Re
1

f
------- 2 D

3 ρ ∆P⋅ ⋅ ⋅

µ2
L⋅

 
 
 1 2⁄

⋅=

Re 64 f⁄=

Re 0.206307 f⁄()4
=

inveq:

vareq1:

vareq2:

WHEN laminar

CASE TRUE: USE vareq1;

CASE FALSE: USE vareq2;

END;

Flow transition:

laminar := TRUE;

TECHNICAL REPORT DETAILS OF THEIMPLEMENTATION

10

FIGURE4 WHEN instance implementation

step in the implementation of a conditional solver is to decide how the solver is going to be fed

with the correct structure and how to change this structure efficiently in an iterative solution

scheme. To perform this task, we will use the notion of active equation and active variable. By

active we mean “it is part of the problem currently being solved”. The following steps would

Pointer to Set of Values

Pointer to List of Instances

Values

Pointer to Instance:

MODEL or RELATION or NestedWHEN Instance :

Pointer to

Pointer to List of
WHEN instances

CASE structure:

...

Pointer back to
WHEN instance

ATOM or CONSTANT Instance :

List of pointers to
WHEN instances

...

Pointer to
Instance

TypeWHEN_INST

Interface Pointer

Pointer to Parent

Type Description

Flags

Pointer to List of
Variables

Pointer to List of
CASE structures

Pointer to List of
WHEN instances

WHEN INSTANCE:

MODEL Instance

Pointer back to
WHEN instance

TECHNICAL REPORT DETAILS OF THEIMPLEMENTATION

9

4 DETAILS OF THE IMPLEMENTATION

4.1 THE WHEN INSTANCE

The implementation of theASCEND III interpreter was described by Epperly (1988).

Regarding conditional modeling, he proposed to build a complete instance tree for eachCASE

within the WHEN statement. However, he also recognizes the combinatorial nature of that

approach that makes it unacceptable: for example, for a type containing twoWHEN statements

each having threeCASEs, nine complete instance trees would be created.

In this work, the definition of aWHEN type and aWHEN instance allows us to create a

single instance tree in which all the structural alternatives are embedded. Figure 4 shows this

implementation. AWHEN instance has no children and have only one parent, aMODEL instance.

Basically, aWHEN instance is constituted by two list of pointers: a list of pointers to atom or

constant instances on which theWHEN statement depends, and a list of pointers toCASE

structures. At the same time, eachCASE structure contains a list of values and another list of

pointers to instances. The instances pointed for the CASE correspond to the instances (relation,

arrays of relations, models, array of models) which will be “active” if the list of values of the

CASE matches the current values of the conditional variables. Because of the refinement and

merging operations, the instances pointed for the aWHEN instance have to be able to point back to

theWHEN instance. Therefore, all these instance types (atoms, constants, models, relations) have

also a list of pointers toWHEN instances.

With this implementation, the data structures required for all the alternative configurations

are available (i. e. all the models or relation in eachCASE are compiled), however, by visiting the

instance tree and analyzing all the WHEN statements in it, we can set as “active” only the parts of

the problem corresponding to the configuration consistent with the current values of the

conditional variables. In the next section, the steps used to determine the current configuration of

the problem are described.

4.2 FEEDING A CONDITIONAL MODEL TO AN NLP SOLVER

The implementation of theWHEN statement inASCEND would allow us to have available

the data structure for all the variables and equations of the conditional model. Therefore, the first

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

8

However, the goal of theSELECT statement is completely different from that of theWHEN

statement: theSELECT statement is used to express conditional compilation. The following are

important observations:

1. The selection of the statements to be executed is computed in terms of a ordered list (note that

the list is enclosed in parentheses) ofconstant integer, booleans or symbols.

2. Any declarative statement is allowed in the list of statements of eachCASE, includingWHEN

and nestedSELECT statements.

Also, two main limitations should be identified:

1 The same name cannot be created in more than one CASE. We suggest instead that a name

should be defined outside theSELECT statement and refined differently in eachCASE.

2 SELECT statements are not allowed inside aFOR loop.

 Figure 3 shows a similarASCEND model from that shown previously in Figure 1(b), the

difference is that we use the SELECT statement rather than theWHEN statement.

method IS_A symbol_constant;
method :== ‘rigorous’;

SELECT (method)
CASE ‘rigorous’:

rigorous_flash IS_A td_VLE_flash;
CASE ‘simplified’:

simplified_flash IS_A VLE_flash;
END;

FIGURE3 Application of theSELECT statement.

This time, the symbol method is a constant, once it is defined, its value will not change.

Obviously, that value will always be a user decision. In the example of Figure 3, only the list of

statements in the firstCASE will be executed,i.e., only the model rigorous_flash will be created.

To emphasize, the SELECT statement provides the capability of conditional compilation. An

application of this capability may be the selection of the thermodynamic model to be used for

equilibrium calculations: Wilson orUNIFAC or NRTL, etc.

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

7

separate the two logical terms of the relation. In each of the two terms, logical operators such as

AND, OR, andNOT are allowed. Equality in a logical equation can also be interpreted as anif

and only if implication between two logical terms expressed in clausal form. Also, it should be

noted that we can express any logical clause using the proposed syntax by simply writing the

clause in one of the terms, and the constant boolean valueTRUE in the other term of the logical

equality. Example (a) is a more complete version of the model presented in Figure 1 In this case

it can be noted that the value of a boolean variable (laminar) depends on the truth value of a real

expression (condition). In such a case, the real expression is defined and labeled inside the

CONDITIONAL statement and then the logical operatorSATISFIED gives the truth value of the

expression. That is, for example, if the truth value of the real expression isTRUE, the result of

SATISFIED(label of expression) will beTRUE. The objective of theCONDITIONAL statement is

threefold: 1) it makes the life of the compiler easier, since the logical expressions are decoupled

from the expressions on which they depend, avoiding relations containing implicit relations, 2)

the use of this syntax forces the user to define a boolean variable (laminar in the example) which

will have the same truth value as the real expression. That is useful for browsing purposes and,

finally, 3) It is a very simple way of saying that the relations included in the statement are not

going to be solved, they are used only as expressions with a truth value associated to them.

It is important to emphasize that, by checking the value of the appropriate boolean

variables after each iteration, the incorporation of logical relations will allow, if required,

automatic change of the structure of the problem in an iterative solution scheme.

3.3 THE SELECT STATEMENT

The syntax for theSELECT statement is very similar to that described for theWHEN

statement:

SELECT (list_of_constants)
CASE list_of_values_1:

list1_of_declarative_statements;
CASE list_of_values_2:

list2_of_declarative_statements;
CASE list_of_values_nminus1:

listnminus1_of_declarative_statements;
 OTHERWISE:

listn_of_declarative_statements;
END;

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

6

3.2 INCORPORATION OF LOGICAL RELATIONS

Motivated by some recent applications of logic in the solution of conditional models

(Raman and Grossmann, 1994; Turkay and Grossmann, 1996) and trying to expand theASCEND

capabilities for modeling, an implementation of logical relations as a modeling tool is presented.

To our knowledge, no general purpose equation-based modeling environment provides this

capability.

In the implementation of logical relations, the equation based approach is maintained.

That is, the user states the logical relations that must be true at the solution to the problem but not

how to solve them. Each logical equation has a residual attached to it. This residual will indicate

if the expression is satisfied or not. Therefore, this incorporation also means that we need to

provide a solver which knows how to deal with logical relations. The work of Raman and

Grossman (1993) can be used as a starting point for such a solver implementation. They used

formal procedures for performing logic inference depending on the way in which the logical

relations are present (CNF or DNF).

(a) (b)
laminar IS_A boolean;
Re,f,k IS_A factor;

 valve_open IS_A boolean;
CONDITIONAL pump_on IS_A boolean;

condition: Re <= 2100; full_tank IS_A boolean;
END;

 valve_open == pump_on AND NOT(full_tank);
laminar == SATISFIED(condition);

eq1: Re = 64/f;
eq2: Re = (0.206307/f)^4;
WHEN (laminar)

CASE TRUE:
USE eq1;

CASE FALSE:
USE eq2;

END;

FIGURE2 Examples of the syntax for the implementation of logical relations

Figure 2 illustrates two examples of the syntax proposed for the implementation of logical

relations. The symbol double equality will indicate that we have a logical relation and will

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

5

understood. Figure 1 shows two incompleteASCEND models in which theWHEN statement is

used, each in a different manner.

(a) (b)
laminar IS_A boolean; method IS_A symbol;
Re,f,k IS_A factor; simplified_flash IS_A VLE_flash;

rigorous_flash IS_A td_VLE_flash;
eq1: Re = 64/f;
eq2: Re = (0.206307/f)^4; WHEN (method)

CASE ‘rigorous’:
WHEN (laminar) USE rigorous_flash;

CASE TRUE: CASE ‘simplified’:
USE eq1; USE simplified_flash;

CASE FALSE: END;
USE eq2;

END;

FIGURE1 Two different applications of theWHEN statement.

In case (b) the value of the symbol method is used only to select between two alternative

configurations of the problem, a flash calculation assuming constant relative volatility

(VLE_flash) or a flash calculation using a more rigorous thermodynamic calculation

(td_VLE_flash). The method that is going to be used and, therefore, the value of the symbol

method, is a user decision. We can expect that the user will select the simplified model looking

for good initial values of the variables and then he will switch to the rigorous model by changing

the value of the symbol method. Once a configuration has been select, it will be kept unless the

user decides to change it. Note that the user does not have to recompile the model to make the

switching, since the data structure for both of the problems is available and, therefore, the

reconfiguration of the system can be done automatically by simply changing the value of the

conditional variable. An example of this application would be the synthesis of process networks.

On the other hand, in case (a) we cannot expect the boolean value of the variable laminar

to be a user decision. Its value will depend on the value of the Reynolds number which is an

unknown in the problem. Actually, the value of the variable laminar will be the truth value of the

expression Re<2100. Here we have a conditional model. In an iterative solution scheme, we will

expect that the value of the boolean variable laminar will change, and so will the structure of the

system of equations that we have to solve.

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

4

statement is:

WHEN (list_of_variables)
CASE list_of_values_1:

USE name_of_equation_1;
USE name_of_model_1;

CASE list_of_values_2:
USE name_of_equation_2;
USE name_of_model_2;

CASE list_of_values_nminus1:
USE name_of_equation_nminu1;
USE name_of_model_nminus1;

 OTHERWISE:
USE name_of_equation_n;
USE name_of_model_n;

END;

The following are important observations about the implementation:

1 TheWHEN statement does not mean conditional compilation. We create and have available

the data structures for all of the variables and equations in each of the models. This is actually

a requirement for the solution algorithms of conditional models. All the models and equations

whose name is given in each of the cases should be declared inside the model which contains

theWHEN statement. It is important to recognize this feature, since conditional compilation in

ASCEND IV is explained later with the description of theSELECT statement.

2 The variables in the list of variables can be of any type among boolean, integer or symbol or

any combination of them. That is, we are not limited to the use of boolean variables.

Obviously, The list of values in each case must be in agreement with the list of variables in

the number of elements and type of each element. In other words, order matters in the list of

variables of theWHEN statement, and parentheses are enclosing this list to make clear such a

feature.

3 Names of arrays of models or equations are also allowed inside the scope of each case.

The described extension (allowing the user to define the domain of validity of both models

and equations inside the cases of aWHEN statement) enormously increases the scope of modeling

in an equation based modeling environment. Of course, this implementation may be possible in

other modeling environments which support object oriented concepts, but we have proposed it as

an extension to theASCEND modeling language becauseASCEND is the best one locally

TECHNICAL REPORT CONTRIBUTIONS TOMODELING

3

respectively. Multiple states may be described by nesting severalIF statements.

Similarly, Barton (1992) and Barton and Pantelides (1994) incorporated theCASE equation

to gPROMS. TheCASE equation is used to define both the appropriate modeling equations in each

state and the logical conditions for transitions among states. It covers multiple states within only

one statement and has the advantage of successfully representing irreversible discontinuities.

There is a major difficulty in both of the previous approaches as tools for conditional

modeling. They only allow the substitution of a list of equations (or arrays of equations) for

another. In an equation-based modeling environment in which concepts like hierarchy (building

complex models from small models) and inheritance (adding new features to a model) are

constantly in use, that represents a severe disadvantage in efficiency. Thinking of how many

equations have to be written down when substituting some of the units of a superstructure makes

obvious the lack of flexibility in the scope of these approaches.

3 CONTRIBUTIONS TO MODELING

One of the goals of our research group has been to improve the ability to develop and

solve process models. The main result of this effort has been the development ofASCEND (Pielaet

al., 1991). Westerberget al. (1994) discuss the essential features of the currentASCEND system

and present several ways in which we can improve it to solve larger models and to increase its

scope as a modeling environment. In this section, we describe the tools which will allowASCEND

to represent conditional models efficiently: theWHEN statement and logical relations. Also,

conditional compilation is incorporated with the implementation of theSELECT statement, to our

knowledge, for the first time in an equation-based modeling environment.

3.1 THE WHEN STATEMENT

Originally, the syntax for incorporating conditional dependence of some equations of the

model in an equation-based environment was suggested by Piela (1989). That syntax is very

similar to theCASE equation ofgPROMS and suffers the same limitations. Instead, we want to take

advantage of the fact thatASCEND is based on object oriented concepts where model definitions

can contain parts that contain parts to any level. Furthermore, inASCEND, a simple relation is

treated as an object by itself and can have a name. Based on these ideas, the syntax for theWHEN

TECHNICAL REPORT BACKGROUND

2

whereg(x) and hik(x) represent the invariant and the variant sets of equations respectively,K

represents the set of disjunctions and the indexi is used to indicate thei-th term in each

disjunctionDk.

While many currently available equation-based modeling systems have been reported in

the literature, only a few of them have given attention to conditional models (Pantelides, 1988;

Piela,1989; Barton, 1992). In this work, we describe the incorporation of a series of tools which

enables the user of an equation-based modeling environment with the capability of representing

complex conditional models. This representation is intended to be independent of any particular

application, or of any solver or algorithm used for finding a solution to the system of equations.

Potential applications of this capability varies from the simple substitution of one equation for

another (as in the case of the laminar-turbulent flow transition), to the substitution of a section of a

chemical plant for another (as can be required while analyzing and initializing a superstructure).

2 BACKGROUND

Previous implementations of conditional statements in an equation-based modeling

environment have been reported. One such mechanism is theIF-THEN-ELSE construct ofSpeedUp

described by Pantelides (1988):

IF logical_condition THEN
equation1

ELSE
equation2

ENDIF

where both the logical conditions and the equations are expressed in terms of the model variables.

Such a construct defines two system states corresponding to theIF and theELSE clauses

g x() 0=

hik x() 0=

r ik x() 0≤i Dk∈
k K∈

x R
n∈

(1)

TECHNICAL REPORT INTRODUCTION

1

Conditional Modeling in ASCEND IV

V. Rico-Ramírez, B. A. Allan and A. W. Westerberg

Technical Report
Engineering Design Research Center

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract: Modeling tools for the efficient representation of conditional models in an

equation-based environment are described in this paper. The practical implementation of these

tools has been incorporated to the ASCEND system. Examples are presented to show their

scope of application.

Keywords: Modeling, Conditional models, Equation-based environment.

1 INTRODUCTION

In recent years, much attention has been focused on tools for the formal definition of

models describing the behavior of process systems (Pantelides and Barton, 1993). At the lowest

level, process models are represented by a large set of variables and a large system of linear and/or

nonlinear equations that related them. This paper focuses in the representation of conditional

models. A conditional model consists of a system of equations expressed by two sets: a globally

defined invariant set of equations and a variant (or locally defined) set of conditional equations

which are expressed as disjunctions. Zaher(1993), and Grossmann and Turkay (1996), show that

a conditional model can be represented as the system of disjunctive equations:

