
CARNEGIE MELLON UNIVERSITY

REPRESENTATION, ANALYSIS AND

SOLUTION OF CONDITIONAL MODELS

IN AN EQUATION -BASED ENVIRONMENT

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OFPHILOSOPHY

in

CHEMICAL ENGINEERING

by

VICENTE RICO-RAMIREZ

Pittsburgh, Pennsylvania

August, 1998

TO MOM AND DAD

TO ROSSY

IN MEMORY OF EDITH

i

Abstract

Process modeling is an important task in many process engineering activities. At the

lowest level, process models are represented by a large set of variables and a large system

of linear and nonlinear equations that relate them. The equation-based modeling approach

has been demonstrated as effective in solving simulation, optimization, parameter

estimation and data reconciliation problems. Even though many currently available

equation-based modeling systems have been reported in the literature, most of them give

little or no attention to conditional models.

Conditional models exist when the equations defining a system depend on where the

model solution lies. Examples of conditional models in chemical engineering are systems

involving physicochemical discontinuities such as flow and phase transitions. This work

investigates the setting up and solving of conditional models within an equation-based

modeling environment.

We first describe modeling tools for the efficient representation of conditional models and

give the details of their computer implementation. We present examples to demonstrate

the scope of application of the new tools.

Then, we discuss an extension of a previous approach to the consistency analysis of

conditional models which aids in the proper selection of the degrees of freedom for such

models. We also show how, by taking advantage of the structure of the problem, it is often

possible to reduce the effort required by the proposed consistency analysis.

Finally, we focus on the implementation and testing of some approaches to solving

conditional models. Specifically, we describe an implementation of a boundary crossing

algorithm in an equation-based environment, and an extension of the standard

complementarity formulation for the representation of conditional models. We also

explore numerical techniques for solving the proposed complementarity representation of

a conditional model and solve several examples demonstrating the advantages and

disadvantages of each of the approaches to solving.

ii

Acknowledgments

I have to first thank my research advisor, Professor Arthur Westerberg, for his help and

guidance over the past four years. My appreciation goes to Professor Edmond Ko for

giving me an opportunity to pursue graduate studies at Carnegie Mellon University. Many

thanks also go to “Consejo Nacional de Ciencia y Tecnología (CONACYT)” for funding

most of this research project.

To members of theASCEND group, Ben Allan, Mark Thomas, Ken Tyner, Chad Farschman

and Duncan Coffey for their assistance and collaboration over the years.

To my friends Octavio, Antonio, Héctor, Arturo, Juan, Weimin, Jason and Margaret for

their moral support and encouragement. To members of the “sudsuckers” soccer team for

making my time in Pittsburgh sometimes very enjoyable.

I would specially like to thank Salvador, Misael, José Luis, Agustín, Enrique, Silvestre,

Hugo and Yalí for the roles they have played in my life.

Of course, I must thank my parents, Esther Ramírez and José Inés Rico, and my brothers

and sisters for putting up with me through this difficult period of my life. Finally, I want

to thank Rossy, whom never lost faith nor love despite the years and the distance.

iii

Table of Contents

1 Introduction..1
1.1 Equation-Based Modeling..2
1.2 Conditional Models..3
1.3 Motivation: Conditional Modeling in Existing Modeling

Environments... 6
1.4 Our Goal...8
1.5 Outline..9
1.6 References..11

2 Conditional Modeling Tools..13
2.1 Background..14
2.2 Conditional Modeling Tools..15

2.2.1 Conditional Configuration of a Model Structure.........................15
2.2.1.1 TheWHEN Statement...16
2.2.1.2 Logical Relations...17
2.2.1.3 TheCONDITION Statement.. 18

2.2.2 Conditional Compilation..19
2.2.3 Conditional Execution of Procedural Code................................. 21

2.3 Details of a Computational Implementation..21
2.3.1 Implementation of theWHEN Statement: theWHEN Class.......... 22

2.3.1.1 Feeding a Conditional Model to a Nonlinear
Solver.. 24

2.3.2 Conditional Compilation: theSELECT Statement.........................24
2.4 Examples of Application..26

2.4.1 TheWHEN statement..27
2.4.2 Logical Relations... 31
2.4.3 TheSELECT statement..32
2.4.4 TheSWITCH statement... 32

2.5 Summary..33
2.6 References..35

3 Structural Analysis of Conditional Models... 37
3.1 Introduction/Motivation...38
3.2 Terminology in Structural Analysis...38

3.2.1 Notation..42
3.2.1.1 Set Operators...42

3.3 Structural Consistency... 43
3.3.1 Conditional Models..43

3.3.1.1 Limitations of Zaher’s Consistency Analysis............... 44
3.4 Extension of the Consistency Analysis for Conditional Models............. 45

3.4.1 The Main Result...47

iv

3.4.2 An Implementation.. 47
3.4.3 An Illustrative Example... 47
3.4.4 Is the Combinatorial Consistency Analysis Really

Necessary ?.. 50
3.5 Simplifying the Consistency Analysis of Conditional Models................51

3.5.1 Common Incidence Pattern..51
3.5.1.1 An Implementation... 52

3.5.2 Repeated Structures..53
3.5.2.1 An Approach for Conventional Models........................54
3.5.2.2 Equation-Based Modeling and the Modulo

of Repeated Structures...55
3.5.2.3 Repeated Structures Containing Conditional

Equations...55
3.5.2.4 Illustrative Examples...56

3.6 Summary..61
3.7 References..62

4 A Boundary Crossing Algorithm..63
4.1 Background..64
4.2 The Boundary Crossing Algorithm..65

4.2.1 The Formulation...65
4.2.2 The Solution Algorithm... 67

4.2.2.1 Boundary Crossing..69
4.2.2.2 Assumption of Continuity in the Boundary

Crossing Algorithm...70
4.3 Implementation in an Equation Based Environment............................... 72

4.3.1 The Modeling Tools...75
4.3.2 The Solving Engine..75

4.3.2.1 Logical Analysis... 75
4.3.2.2 Configuration of the System of Equations....................78
4.3.2.3 Conventional Nonlinear Solver: Newton-like

Step..78
4.3.2.4 Setting Up the Optimization Subproblem.....................78
4.3.2.5 Solution of Optimization Subproblems:

Gradient Step.. 79
4.3.2.6 Termination...79
4.3.2.7 About CMSlv..79

4.4 Illustrative Examples..81
4.5 Numerical Results..89
4.6 Conclusions..91
4.7 References..93

5 A Complementarity Formulation...94
5.1 Complementarity Approach...95
5.2 Problem Formulation... 95

5.2.1 Complementarity Representation of a Conditional Model.......... 98

v

5.2.1.1 Representing the Disjunctive Statements in
terms of Positive Residual or Slack Variables..............102

5.2.1.2 2-Term Disjunctive Statements.....................................102
5.2.1.3 Generalization to any number of terms in the

Disjunctive Statement... 105
5.2.1.4 About the Complementarity Formulation.....................106

5.3 Examples..107
5.4 Solving the Complementarity Formulation of a Conditional Model.......108

5.4.1 Solving by Using a Conventional Solver.....................................109
5.4.1.1 Numerical Results...109
5.4.1.2 About the Solution with a Conventional

Nonlinear Solver... 111
5.4.2 Solving by Using Pivotal Techniques..111

5.4.2.1 Complementarity Pivot Theory for Linear
Complementarity Problems...111

5.4.2.2 Solving the Complementarity Representation of
Conditional Models by Using Lemke’s
Pivoting Rules...113

5.4.2.3 Numerical Results...114
5.4.2.4 Discussion...114

5.5 Summary..116
5.6 References..117

6 Interior Point Methods in the Solution of Conditional Models..................... 119
6.1 Motivation..120
6.2 Basics of Primal-Dual Interior Point Methods...121
6.3 High Order Strategies for Interior Point Methods................................... 122

6.3.1 Mehrotra’s Predictor-Corrector Technique..................................123
6.3.2 Gondzio’s Centrality Corrections.. 125

6.4 An Interior Point Potential Reduction Method for Constrained
Equations..126
6.4.1 The Model..127
6.4.2 An Interior Point Approach..128
6.4.3 The Algorithm..129

6.5 The Complementarity Representation of a Conditional Model and
its relation to Wang’s Framework..130

6.6 Implementation of Wang’s Algorithm and High Order Techniques
for Solving a Conditional Model... 131
6.6.1 Practical Implementation of Wang’s Algorithm..........................131
6.6.2 Implementation of Second Order Corrections............................. 133

6.6.2.1 Applying Mehrotra’s corrector step.............................133
6.6.2.2 Applying Gondzio’s centrality corrections...................136

6.6.3 The Solver IPSlv..138
6.7 Numerical Results..139
6.8 Discussion..140
6.9 References..142

vi

7 Contributions and Future Work.. 144
7.1 Summary..145
7.2 Contributions..146

7.2.1 Modeling..146
7.2.2 Structural Analysis...147
7.2.3 Formulation..147
7.2.4 Solution..148

7.3 Future work..148

Appendix A Eligible Set for a Conditional Model Having Alternatives
with Different Incident Variables...151

Appendix B Derivation of the Optimization Subproblem of the Boundary
Crossing Algorithm..160

Appendix C ASCEND Models of the Examples Solved with the
Boundary Crossing Algorithm...163

Appendix D Complementarity Equations of the Examples of Chapter 5.........168

Appendix E Proof of the descent of the potential function in Wang’s
Algorithm...177

vii

List of Figures

Figure 1-1 Fluid flow transition...5

Figure 1-2 A conditional model: flash calculation.. 5

Figure 2-1 WHEN instance implementation... 23

Figure 2-2 Preparing a conditional model to send to a nonlinear solver.............25

Figure 2-3 Instantiation process in conditional compilation.............................. 26

Figure 2-4 Two different applications of theWHEN statement......................... 27

Figure 2-5 Superstructure taken from Turkay and Grossmann (1996)............... 29

Figure 2-6 ASCEND model for the superstructure of Figure 2-5....................... 30

Figure 2-7 Linking of conditional units...31

Figure 2-8 Examples of the syntax for the implementation of logical
relations..32

Figure 2-9 Application of theSELECT statement... 33

Figure 2-10 Application of theSWITCH statement... 33

Figure 3-1 Incidence matrix of Example 3-1...40

Figure 3-2 An output assignment for the system defined in Example 3-1.......... 40

Figure 3-3 A Steward path based on the output assignment of Figure 3-2..........41

Figure 3-4 4 Alternatives in the Example 3-2..48

Figure 3-5 Taking advantage of a common incidence pattern.............................53

Figure 3-6 Expanding the result of a representative matrix................................ 55

Figure 3-7 Alternative configurations of the representative structure.................58

Figure 3-8 Allen’s necessary conditions for alternative 1 of the
representative matrix..58

Figure 3-9 Expanding the result of a representative matrix.................................59

Figure 3-10 Craig countercurrent distribution...60

Figure 4-1 MINLP approach to the solution of conditional models....................65

Figure 4-2 The boundary crossing algorithm in a simple flash

equilibrium calculation.. 68

Figure 4-3 Vectors of gradients are of opposite direction at a boundary............ 71

viii

Figure 4-4 Flowsheet of the boundary crossing algorithm implementation........74

Figure 4-5 Object-oriented architecture of the boundary crossing
implementation...76

Figure 4-6 Implementation of the logical solver LRSlv......................................77

Figure 4-7 Setting up the optimization subproblem.. 80

Figure 4-8 Alternative heat exchanger temperature profiles............................... 83

Figure 4-9 Pipeline network with five check valves..85

Figure 4-10 Processing units for Example 4-6.. 88

Figure 5-1 Description of our terminology..97

Figure 5-2 Numerical singularities in complementarity equations......................101

Figure 5-3 Generation of complementarity equations in a two-term
disjunction..104

ix

List of Tables

Table 1-1 Recent modeling systems...6

Table 3-1 Degrees of freedom left to be assigned in Example 3-2.................... 49

Table 3-2 Incidence and eligible sets in Example 3-2..49

Table 4-1 Pressures and inflow/outflow rates for Example 4-4.........................85

Table 4-2 Starting point and converged flowrates for Example 4-4.................. 86

Table 4-3 Material balance equations for units in Example 4-6.........................89

Table 4-4 Starting point and converged flowrates for Example 4-6.................. 90

Table 4-5 Solving conditional models by using the boundary crossing
algorithm..91

Table 5-1 Solving the complementarity problems by using a conventional
solver..110

Table 5-2 Solving the complementarity problems by using pivotal
techniques...115

Table 6-1 Numerical results by using interior point methods............................140

1

CHAPTER1 INTRODUCTION

Chapter 1 provides an introduction to this research. A brief review of the state of the art in

process modeling is presented. Also, the main concepts involved in the area of conditional

modeling are discussed. Finally, the motivation, the goal and the outline of the thesis are

given.

EQUATION-BASED MODELING

2

1.1 EQUATION -BASED MODELING

Modeling is the process of mapping reality into a representation that is thought to be

useful for understanding that reality (Abbott, 1996). Process modeling is an important

task in many process engineering activities. The state of the art as well as future trends in

process modeling and simulation have been reviewed in a number of publications (Piela,

1989; Bostonet al., 1993; Pantelides and Britt, 1994; Marquardt, 1996).

The modeling tools in current simulators may roughly be classified into two groups:

modular oriented and equation-based approaches (Bostonet al., 1993). A detailed

discussion of the modular approach versus the equation-based approach can be found in

Marquardt (1996).

On the one hand, modular approaches address modeling on the flowsheet level. Every

process is abstracted by a block diagram consisting of standardized blocks which model

the behavior of a process unit or a part of it. All the blocks are linked by connections

representing the flow of information, material and energy employing standardized

interface and stream formats (Marquardt, 1996). This modular approach, though powerful

and easily accessible to many engineers for the solution of standard flowsheet problems,

does not adequately support the solution of more involved problems. This is due to the

lack of precoded models for many unit operations of adequate level of detail (Marquardt,

1996).

On the other hand, equation-based modeling tools are motivated by the fact that, at the

lowest level, process models are represented by a large set of variables and a large system

of linear and nonlinear equations that relate them. Thus, equation-based approaches

support the implementation of unit models by means of declarative modeling languages.

In the equation-based modeling approach, the definition of the system of equations is

independent of any particular application or solution algorithm that may be used for their

solution. For that reason, the solution to equation-based models has been demonstrated as

effective in solving simulation, optimization, parameter estimation and data reconciliation

problems, all using a single set of equations (Allan, 1997). Recognition of the potential

benefits of the equation-based technology has led to the development of equation-based

CONDITIONAL MODELS

3

modeling tools such as SpeedUP (Pantelides, 1988), gPROMS (Barton, 1992; Oh and

Pantelides, 1994), and GAMS (Brookeet al., 1997). Some other researches have

proposed that equation-based modeling can be further facilitated by the use of object-

oriented frameworks. Examples are OMOLA (Mattsson and Andersson, 1993) and

ASCEND (Piela, 1989; Allan, 1997).

Arguably, the state of the art in process modeling software at the time of writing this work

is an object-oriented, equation-based modeling environment (Abbott, 1996; Allan, 1997).

1.2 CONDITIONAL MODELS

Process engineering design and simulation require one to find solutions to a large system

of nonlinear equations. Conventional process models consist of a set of variables and a

unique set ofm equations that related them. On the other hand, conditional models

constitute a means to formulate alternative sets ofm equations depending on the values of

the modeling variables. Thus, in conditional models the system of equations of the model

is different for each of the alternatives. This work is particularly concerned with the issues

involved in the modeling and solution of conditional models.

A conditional model, as defined by Grossmann and Turkay (1996), consists of a system of

equations expressed by two sets: a globally defined invariant set of equations and a variant

(or locally defined) set of conditional equations which are expressed as disjunctions.

Grossmann and Turkay (1996) show that a conditional model can be represented as the

system of disjunctive equations:

(1.1)

h x() 0=

∨
i Dk∈

r i jk
x() 0=

gi lk
x() 0≤

k K∈

x R
n∈

j∀ 1…βk[]∈

l∀ 1…γk[]∈

CONDITIONAL MODELS

4

whereh(x) and represent the vectors of the invariant and the variant sets of

equations respectively,K represents the set of disjunctions and the indexi is used to

indicate thei-th disjunctive term in each disjunctionDk. The vectorh(x) is m-dimensional,

and it is assumed that isβk-dimensional and that isγk-dimensional, for alli in

Dk. The equationsh(x) can be said to be defined over the entire feasible region, while the

inequalities define the domain of validity of each variant set of equations . In

that way, each variant set of equations is confined to some subregion resulting from the

dissection of the feasible region (Zaher, 1991). The solution to the system will be given

by the vector satisfying the invariant seth(x) and exactly one set of equations for each

of the disjunctions, providing that the corresponding set of inequalities is satisfied.

Grossmann and Turkay (1996) also address the existence and uniqueness of the solution

for the linear case.

Examples of conditional models in chemical engineering are systems involving

physicochemical discontinuities such as flow and phase transitions. There are also cases

where conditional cost functions are used in the optimization of process flowsheets.

Figure 1-1, taken from the work of Zaher (1995), illustrates the case of a flow transition.

In that case, we must incorporate alternative equations for the transport properties and

velocity bounds within the model, using the simultaneously calculated value of the flow

type indicator (Reynolds or Mach number) relative to some critical value to determine

which is active. A simple flash equilibrium calculation also represents a conditional

model commonly encountered in chemical engineering. Figure 1-2 illustrates that

example. Depending on the value of the temperature (relative to the dew point

temperature and bubble point temperature at a given pressure), the system may be present

as a subcooled liquid, as a superheated vapor, or as a liquid-vapor mixture in equilibrium.

The system of equations of the model is different for each of the alternatives. The problem

is that the temperature may be unknown, and, therefore, there is no way of knowinga

priori which set of equations one needs to satisfy.

According to the above, the main difficulty while dealing with conditional models is that

their solution involves simultaneously selecting the equations to be solved and solving

them.

r ik
x()

r ik
x() g

ik
x()

g
ik

x() r ik
x()

x̂

CONDITIONAL MODELS

5

Figure 1-1 Fluid flow transition.

Figure 1-2 A conditional model: flash calculation.

Laminar OR Turbulent OR Sonic

T > Tdew

T < Tbubble

Tbubble < T < Tdew

SUBCOOLED
LIQUID

SUPERHEATED
VAPOR

EQUILIBRIUM

VAPOR

LIQUID

F
L
A
S
H

MOTIVATION: CONDITIONAL MODELING IN EXISTING

6

1.3 MOTIVATION : CONDITIONAL MODELING IN

EXISTING MODELING ENVIRONMENTS

Many currently available modeling systems have been reported in the literature. Some of

the most recent approaches to computer-aided modeling tools are shown in Table 1-1.

On the one hand, there is a group of modeling languages mainly suitable for their use in a

specific application domain. InMODEL.LA andVEDA, elements tailored to chemical

engineering applications are included in the language definition;VERILOG is a hardware

description language used to design and test electronic systems;SASE andSPL/SDL are

languages to represent the standards imposed on the design of civil engineering structures

and facilities. In such languages, very efficient modeling constructs exist, but their main

limitation is that they have been developed to match the issues of specific engineering

applications.

Table 1-1 Recent modeling systems

System Reference

ABACUSS Feehery and Barton (1996)

ASCEND Piela (1989)

DYMOLA Elmqvist et al. (1993)

GAMS Brookeet al. (1997)

gPROMS Barton (1992)

MODEL.LA Stephanopouloset al. (1990)

SASE Garrett and Hakim (1992)

SPL/SDL Kiliccote (1996)

SpeedUp Pantelides (1988)

OMOLA Mattson and Anderson (1993)

VEDA Bogusch and Marquardt (1995)

VERILOG Thomas and Moorby (1996)

MOTIVATION: CONDITIONAL MODELING IN EXISTING

7

On the other hand, there is a group of general modeling languages:ABACUSS, ASCEND,

DYMOLA , GAMS, gPROMS, SpeedUp andOMOLA. In such languages, elements are not

restricted to specific engineering applications.

All of the general equation-based modeling languages presented in Table 1-1 provide

constructs which allow the representation of conditional dependence of some of the model

equations. For instance, theIF-THEN-ELSE construct (ABACUSS, ASCEND, gPROMS,

DYMOLA , SpeedUp andOMOLA), theCASE construct (gPROMS) and theWHEN construct

(DYMOLA). Two different applications of these modeling constructs have been developed:

1. First, the conditional language constructs have been used to handle changes

procedurally of the configuration of the problem because of time or state events

occurring during the dynamic simulation of a system, assuming that the initial steady

state of the system is known a priori.

2. Secondly, some of the equation-based approaches, such asgPROMS andSpeedUp, have

acknowledged the difficulty of solving steady state problems where the clause of anIF-

THEN-ELSE construct which is active cannot be specified explicitly, but it has to be

automatically calculated (Barton, 1992). It is not clear, however, how these modeling

environments handle this problem, since an explicit methodology is not provided.

Here we have to make an important distinction about these two applications of the existing

conditional language constructs:

• In conditional models, as defined by Equation (1.1), the conditional dependence of the

model equations does not necessarily exist because of state or time events occurring

during the dynamic simulation of a system. Hence, the problem of discrete event

dynamic simulation described first is not the main focus of attention of this research.

• On the contrary, the problem described as the second application of the existing

conditional language constructs fits perfectly into our definition of a conditional model

given by (1.1).

Accordingly, we can argue that most of the existing equation-based modeling languages

have not presented a formal approach to solving conditional models as formulated by

Equation (1.1). We should note though that theGAMS modeling language provides

OUR GOAL

8

modeling and solving tools (such as the dollar condition for conditional equations and the

if-else statement for flow control) powerful enough to represent and solve conditional

models. The major disadvantage of theGAMS modeling language is that it does not

provide an object-oriented framework to facilitate the modeling process.

This limited attention from the equation-based community to conditional models provides

the main motivation for this research project. Several problems arise when building and

testing models of complex processes in an equation-based environment:i) providing

initial guesses,ii) analyzing degrees of freedom, and iii) efficiently computing solutions.

The nature of a conditional model makes the solution of these problems an even more

difficult task.

1.4 OUR GOAL

The goal of this work is to investigate the setting up and solving of conditional models

within an equation-based modeling environment. It is important to distinguish between

two separated (but complementary) activities of this research project:

1. Efficient representation of a conditional model in an equation-based modeling

environment. Following the equation-based approach, this representation is intended

to be independent of any particular application, or of any solver or algorithm used for

finding a solution to the system of equations. Potential applications of this capability

vary from the simple substitution of one equation for another (as in the case of the

laminar-turbulent flow transition), to the substitution of a section of a chemical plant

for another (as can be required while analyzing and initializing a superstructure).

2. Implementation and testing of alternative approaches to the solution of a conditional

model. It is important to recognize that modeling is a user dependent task.

Frequently, different modelers produce different formulations for the same problem

and, as a consequence, different approaches and techniques may be used to find a

solution to it. One can formulate conditional models as mixed-integer programming

problems. See for example Grossmann and Turkay (1996). Besides the mixed-integer

formulation, some alternative approaches exist. Research in this work will focus on

OUTLINE

9

two of them:

• a boundary crossing algorithm (Zaher, 1995) and

• a complementarity representation of conditional models.

In particular, we will propose an approach for the implementation of the boundary

crossing algorithm in an equation-based environment, and an extension of the standard

complementarity formulation for the representation of conditional models. Then, we

will explore some alternative numerical techniques for solving the proposed

complementarity representation of a conditional model.

1.5 OUTLINE

Given the background and the goal of this work, the rest of this thesis is organized as

follows:

In Chapter 2, we describe modeling tools for an efficient representation of conditional

models and give the details of their computer implementation. Also, we use several

chemical engineering examples to demonstrate the scope of application of these new

modeling capabilities.

In Chapter 3, we present a brief review on the topic of structural analysis of conditional

models. Then, we provide an extension to the consistency analysis of conditional models

developed by Zaher (1993). This extension allows the consistency analysis to be applied to

conditional models in which the number of variables and equations for each of the

alternatives is not the same. Also, we show how, by taking advantage of the structure of

the problem, it is sometimes possible to reduce the combinatorial effort required by such

an analysis.

In Chapter 4, we investigate the solving of conditional models using the boundary

crossing algorithm. We give the details of our practical implementation of this technique

and solve several examples of conditional models in chemical engineering. Finally we

discuss the scope and limitations of the algorithm.

In Chapter 5, we provide a complementarity formulation for representing algebraic

OUTLINE

10

systems of disjunctive equations. We show that this formulation not only represents an

alternative to MINLP formulations avoiding discrete decisions, but also avoids the need

for special procedural nonlinear techniques as required by the boundary crossing

algorithm. We identify the advantages and disadvantages associated with the

complementarity formulation and study its solution by using a conventional nonlinear

solver and pivotal techniques.

In Chapter 6, we investigate the solving of the complementarity formulation described in

Chapter 5 by using interior point methods. Following a brief review of the fundamentals

of interior point methods, we describe the globally convergent framework proposed by

Wang et al (1996) for solving a constrained system of nonlinear equations by an interior

point potential reduction method. Then, we show how we can apply the algorithm

proposed by Wang to solve the complementarity examples used as cases of study

throughout this work. After that, we modify Wang’s algorithm by applying some high

order strategies designed to improve convergence (Mehrotra, 1992; Gondzio, 1996), and

compare the results obtained with each of the methods.

Finally, In Chapter 7 we conclude the thesis by giving a summary of the work and

contributions made in this research. Also directions and recommendations for future work

are highlighted.

REFERENCES

11

1.6 REFERENCES

Abbott, K. A.; Very Large Scale Modeling. Ph. D. Thesis. Department of Chemical
Engineering Carnegie Mellon University, Pittsburgh, PA, 1996.

Allan, B. A.; A More Reusable Modeling System; Ph.D. thesis, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, PA,1997.

Barton, P. I.; The Modeling and Simulation of Combined Discrete/Continuous Processes.
Ph.D. thesis, Department of Chemical Engineering, Imperial College of
Science, Technology and Medicine, 1992.

Bogusch, R. and Marquardt, W.; A Formal Representation of Process Model Equations.
Comput. Chem. Eng., 19:S211-216, 1995.

Boston, J. F., Britt, H. I. and Tayyabkhan, M. T.; Software: Tackling Tougher Tasks.Chem.
Eng. Progr. Nov., 38-49, 1996.

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R.; GAMS - Language Guide. GAMS
Development Corporation, 1997.

Elmqvist, H., Cellier, F.E. and Otter, M.; Object-Oriented Modeling of Hybrid Systems.
ESS’93 European Simulation Symp., Delft, The Netherlands, 25-28, 1993.

Feehery, W. F. and Barton, P. I.; A Differentiation-Based Approach to Dynamic
Simulation and Optimization with High Index Differential-Algebraic
Equations. Computational Differentiation, M. Berz, C. Bischof, G.Corliss,
and A. Griewank Editors, SIAM, 1996.

Garrett, J. H. and Hakim, M. M.; Object-Oriented Model of Engineering Design Standards.
Journal of Computing and Civil Engineering, 6, 323-347, 1992.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

Kiliccote, H.; A Standards Processing Framework. PhD thesis, Department of Civil
Engineering, Carnegie Mellon University, Pittsburgh, PA, 1996.

Marquardt, W.; Trends in Computer-Aided Process Modeling.Comput. Chem. Eng.,
20(6):591-609, 1996.

Mattsson, S, E., Andersson, M.; OMOLA - An Object Oriented Modeling Language.
Recent Advances in Computer Aided Control Engineering. Elsevier, 291-
310, Amsterdam, 1993.

Oh, M. and Pantelides, C. C.; A Modeling and Simulation Language for Combined
Lumped and Distributed Parameter Systems.5th Int. Conf. PSE’94, 1, 37-44,
Kyongju, Korea, 1994.

Pantelides, C. C.; SPEEDUP-Recent Advances in Process Simulation.Comput. Chem.
Eng., 12(7):745–755, 1988.

Pantelides, C. C., Britt, H. I.; Multipurpose Process Modeling Environments.FOCAPD’94,
Snowmass, CO., 1994.

REFERENCES

12

Piela, P.; ASCEND: An Object-Oriented Computer Environment for Modeling and
Analysis. PhD thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA, 1989.

Stephanopoulos, G., Henning, H., and Leone, H.; MODEL.LA. A Language for Process
Engineering, Parts I and II.Comput. Chem. Eng., 14, 813-869, 1990.

Thomas, D. E. and Moorby, P. R.; The Verilog Hardware Description Language, Third
Edition, Kluwer Academic Press, Boston, 1996.

Zaher, J. J.; Conditional Modeling. Ph. D. thesis, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA, 1995.

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The
Annual AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March
1993.

13

CHAPTER2 CONDITIONAL

MODELING TOOLS

In this chapter we identify the modeling capabilities needed for an efficient representation

of conditional models: conditional configuration of a model structure, conditional

compilation and conditional execution of procedural statements. We then describe

modeling tools for the performance of each of the identified tasks. We next describe the

details of the computer implementation of these tools and show how the expressiveness of

an equation-based modeling language increases with their incorporation. Finally we

present several chemical engineering examples to demonstrate the scope of application of

the proposed extensions.

BACKGROUND

14

2.1 BACKGROUND

Previous implementations of conditional statements in an equation-based modeling

environment have been reported. One such mechanism is theIF-THEN-ELSE construct of

SpeedUp described by Pantelides (1988):

IF logical_condition THEN
equation1

ELSE
equation2

ENDIF

where both the logical conditions and the equations are expressed in terms of the model

variables. Such a construct defines two system states corresponding to theIF and theELSE

clauses respectively. Multiple states may be described by nesting severalIF statements.

Other implementations of theIF-THEN-ELSE construct have also been reported by Barton

(1992) with the IF-Equation of gPROMS, and by Feehery and Barton (1996) with theIF

structure ofABACUSS.

Barton (1992) and Barton and Pantelides (1994) also incorporated theCASE equation into

gPROMS. TheCASE equation is used to define both the appropriate modeling equations in

each state and the logical conditions for transitions among states. It covers multiple states

within only one statement and has the advantage of successfully representing irreversible

discontinuities.

There is a major difficulty in the previous approaches as tools for conditional modeling.

They only allow the substitution of a list of primitive equations (or arrays of equations) for

another. In an equation-based modeling environment in which object oriented concepts

like hierarchy (building complex models from small models) and inheritance are

constantly in use, this approach places a significant limitation on one’s modeling

efficiency. For instance, it makes it very difficult to model unit replacement when

searching over a superstructure.

Only for the purpose of model representation, in this chapter we extend the scope of the

CONDITIONAL MODELING TOOLS

15

definition of a conditional model. Here, we consider as a conditional model any problem

including a set of disjunctive statements as part of its formulation. In other words, the

domain of validity of each particular alternative set of equations does not have to be given

by inequality constraints. Any kind of logical, integer or binary variables can be used for

that purpose instead. With that in mind, the expressiveness of our modeling tools can also

be applied to problems on which the selection of alternative configurations is based on

logic, algorithmic and heuristic decisions.

2.2 CONDITIONAL MODELING TOOLS

Equation oriented modeling tools support the implementation of unit models and their

incorporation in a model library by means of a declarative modeling language; declarative

in the sense of explicit and symbolic encapsulation of the knowledge about models

(Marquardt, 1996). Moreover, methods must also be attached to a model definition for the

numerical processing of the model equations.

In this chapter, we identify three modeling capabilities which support the efficient

development of conditional models in both the declarative definition of equation-based

models and the procedural execution of methods:

• Conditional configuration of the model structure.

• Conditional compilation.

• Conditional execution of the procedural code of methods.

In the remainder of this section, we describe the syntax and semantics of modeling tools

which allow the practical implementation of those modeling capabilities.

2.2.1 CONDITIONAL CONFIGURATION OF A MODEL STRUCTURE

Several numerical algorithms and methodologies for the solution of conditional models

have recently become available. See for example Zaher (1995), Grossmann and Turkay

(1996) and Turkay and Grossmann (1996). A common characteristic of any of these

methodologies is that the dynamic switching among alternative model configurations is

required during the solution process. Hence, a declarative modeling language has to

CONDITIONAL MODELING TOOLS

16

provide a means to represent all the alternative structural configurations of the problem as

well as the conditions which trigger the switching among them. Next, we describe

language constructs which fulfill this requirement:

• theWHEN statement, which provides an efficient means to declare alternative

modeling configurations

• logical relations and theCONDITION statement, which can be used to represent the

conditions triggering the reconfiguration of the system.

2.2.1.1 TheWHEN Statement

Originally, the syntax for incorporating conditional dependence of some equations of a

model in an equation-based environment was suggested by Piela (1989). That syntax is

very similar to theCASE equation ofgPROMS and suffers from the same limitations.

Instead, in this work we represent that conditional dependence by using an object-oriented

formalism. In an object-oriented approach any real or abstract entity is considered an

object and any object can be referenced by a unique identifier (Marquardt, 1996). So, for

instance, in an object-oriented language representing a model superstructure, a simple

equation is considered as an object and so is any submodel within the superstructure.

Based on this object-oriented approach, we defined theWHEN statement in order to

represent alternative configurations of a model. The syntax of such a conditional

statement is:

definition_of_equation_1;
definition_of_model_1;

definition_of_model_n;

WHEN (list_of_variables)
CASE list_of_values_1:

USE identifier_of_equation_1;
CASE list_of_values_2:

USE identifier_of_model_1;

OTHERWISE:
USE identifier_of_model_n;

END WHEN;

…
…

CONDITIONAL MODELING TOOLS

17

The following are observations about the previous definition:

1. The declaration of the objects referenced within theCASEs of theWHEN statement is

independent (outside) of such a statement. As mentioned before, the solution

algorithms of conditional models require the system to have available the data

structures of all those objects.

2. A list of variables is used to define the domain of validity of each of the alternative

configurations. The variables in that list can be of any type among boolean, integer or

symbol or any combination of them. By doing that, we place problems like logic based

modeling and MINLP formulations within our scope of application.

3. Practically speaking, to “USE” an object means that the variables and equations

contained in that object become an active part of the system of nonlinear equations

representing the current configuration of the problem.

4. Complex reconfigurations of the problem are readily represented because of the object

oriented approach of the statement.

The syntax of the WHEN statement given above can represent the conditional dependence

of alternative sets of equations and variables. However, it does not say anything about (and

is independent of) how to represent the conditions that trigger the dynamic switching

among configurations.

2.2.1.2 Logical Relations

The way in which existing solution algorithms for conditional models select a particular

configuration varies. MINLP algorithms employ the manipulation of binary variables.

Some other approaches use logic for improving the solution of conditional models

(Raman and Grossmann, 1994; Turkay and Grossmann, 1996). Also, the boundary

crossing algorithm given by Zaher (1991) expresses the truth value of inequality

constraints as boolean values of logical conditions.

Here we describe our approach to the incorporation of logical relations as a declarative

modeling tool. This incorporation is intended to provide an equation-based environment

with the ability to deal with the logic based formalisms required by most of the solution

algorithms mentioned above.

CONDITIONAL MODELING TOOLS

18

The syntax for the representation of logical relations is rather simple:

logical term <==> logical term;
logical term ==> logical term;

The symbols “<==>” and “==>” indicate that we have a logical relation between the two

logical terms. In each of the two terms, logical operators among boolean variables such as

AND, NOT, andOR are allowed.

The symbol “<==>” implies equality between the logical terms. Equality in a logical

equation can also be interpreted as anif and only if implication between two logical terms

expressed in clausal form. On the other hand, the symbol “==>” should be interpreted as

the one sided implicationif between the two terms of the logical relation. Also, it should

be noted that we can express any logical clause using the proposed syntax by simply

writing the clause in one of the terms and the constant boolean valueTRUE in the other

term of the logical equality.

In this implementation of logical relations, we maintain the equation-based philosophy.

That is, the user states the logical relations that must be true at the solution to the problem

but not how to solve them. Each logical equation has a residual attached to it. This

residual will indicate if the expression is satisfied or not. Thus, this interpretation requires

that we provide a solver that knows how to deal with logical relations. Such a solver

should strive for the residuals of such equations to be true as it looks for a consistent set of

values of the boolean variables in the problem.

Hence, if a consistent set of values of the boolean variables is available after each iteration,

then, by checking the value of the appropriate boolean variables, an automatic change of

the structure of a conditional problem is possible in an iterative solution scheme.

2.2.1.3 TheCONDITION Statement

We have already stated that, in some solution algorithms for conditional models, the truth

value of a boolean variable may depend on constraints expressed in terms of the real

variables of the model. For this reason we propose the definition of theCONDITION

statement and theSATISFIED logical operator as a complement to the implementation of

CONDITIONAL MODELING TOOLS

19

logical relations. The syntax of this modeling tools is as follows:

CONDITION
 identifier_1: real_expression;
END CONDITION;

boolean_variable <==> SATISFIED(identifier_1,tolerance);

A real expression is defined and labeled inside theCONDITION statement and then the

logical operatorSATISFIED gives the truth value of such an expression (the residual of the

real expression is compared against the tolerance defined in theSATISFIED operator). The

benefits of theCONDITION statement are:

1. It contributes to the separation of equations into those given in terms of real variables

and those given in terms of boolean variables, making the declarative code easier to

read and understand.

2. It provides a simple way of saying that the relations defined within the statement are

not going to be solved. Those relations are not a part of our nonlinear system of

equations but are only used as expressions with a truth value associated to them.

3. it avoids relations containing implicit relations. Since the logical expressions are

decoupled from the expressions on which they depend, it makes the life of a compiler

easier.

As a summary of section 2.2.1, theWHEN statement provides an efficient means to declare

alternative modeling configurations, while the conditions triggering the reconfiguration of

the system can be represented by the use of logical relations and theCONDITION

statement. When working together, these modeling capabilities meet the representation

needs of all of the solution algorithms for conditional models we have found reported in

the literature.

2.2.2 CONDITIONAL COMPILATION

Aside from the flexibility that conditional statements such as theWHEN statement give to

the configuration of a model structure, another application of conditional tools is the

economy of programming. An example commonly occurring in chemical engineering is

the selection of the thermodynamic model to be used for equilibrium calculations. In

CONDITIONAL MODELING TOOLS

20

general, it is convenient to code all of the alternative methods so that, depending on the

species appearing in the equilibrium system, we can select the most appropriate method.

In these kinds of problems, the decision as to which configuration should be used has to be

made at the moment in which the model is created and not during the solution process.

Accordingly, what we require is building only the appropriate configuration of the

problem rather than having available all the possible configurations.

Here we propose a modeling tool to incorporate conditional compilation into an equation-

based environment, theSELECT statement. While this conditional tool is flexible enough to

represent all of the alternatives, its presence will indicate that only those alternatives

consistent with the model data will become available after the process of instantiation of

the model.

The following is the syntax proposed for the conditional compilation tool:

defintion_of_constants;
assignment_of_constant_values;

SELECT (list_of_constants)
CASE list_of_values_1:

list1_of_declarative_statements;
CASE list_of_values_2:

list2_of_declarative_statements;

OTHERWISE:
listn_of_declarative_statements;

END SELECT;

Even though the syntax for theSELECT statement is similar to that described for theWHEN

statement, some important differences can be identified:

• In theWHEN statement, the declaration of the object is external to the conditional

statement since of all the alternatives are going to be created anyway. On the contrary,

in theSELECT statement the actual declaration of an object (or any other declarative

statement affecting objects) is done within eachCASE of the statement, explicitly

discriminating among alternative configurations.

…

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

21

• The selection among alternatives in theSELECT statement depends on constant

booleans, integer or symbols. Since these values imply a one time structural decision,

they must not be modified during the solution of the problem.

Summarizing, theSELECT statement provides the capability of conditional compilation. It

allows the representation of all the structural alternatives. However, since only the desired

data structure is created, it does not affect the computational requirements of the model.

2.2.3 CONDITIONAL EXECUTION OF PROCEDURAL CODE

Because of the use of conditional statements in the declarative description of a model, a

similar feature must also exist to give the user the ability to program the conditional

execution of methods. For instance, each alternative configuration of a model may require

different initialization and a different selection of the independent variables for the

solution process. Hence, we propose a procedural conditional statement as follows:

SWITCH (list_of_variables)
CASE list_of_values_1:

list1_of_procedural_statements;
CASE list_of_values_2:

list2_of_procedural_statements;

OTHERWISE:
listn_of_procedural_statements;

END SWITCH;

Basically, thisSWITCH statement has the same application as the conditional statements

that already exist in procedural modeling languages such as C and FORTRAN.

Procedural statements do not involve new object definitions, they are only useful for the

numerical processing of objects already created.

2.3 DETAILS OF A COMPUTATIONAL

IMPLEMENTATION

The language tools introduced in the previous section provide a general framework for the

representation of conditional models. In this section, we present an overview of the details

…

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

22

that we had to address in order to create a prototype for testing the scope and application

of the modeling tools.

Some of the main issues in the computer implementation of the conditional tools are:

• The implementation of theWHEN statement must provide an efficient means to

generate all of the possible alternative configurations of the problem. That is, the

combinatorial nature of the problem must be encapsulated without being memory

intensive.

• The solution to a conditional model will reduce to solving a system of equations in

which the variables and equations of the system may constantly change during the

solution process. The issue here is how we are going to supply a conditional modeling

solver with the correct set of variables and equations.

• The development of an approach to the implementation of conditional compilation in a

declarative modeling language is a hard problem by itself.

2.3.1 IMPLEMENTATION OF THE WHEN STATEMENT : THE WHEN CLASS

We follow the object oriented philosophy in order to implement a computer tool for the

conditional configuration of a model structure. In a typical object-oriented modeling

environment, all objects which share the same set of attributes can be viewed as an

instance of a class (or type). Hence, each model is a structured class built hierarchically

from instances of other models or elementary classes.

An early approach for the implementation of conditional modeling tools was described by

Epperly (1988). He proposed to build a complete instance tree for eachCASE within the

conditional statement. However, he also recognized the combinatorial nature of that

approach that makes it unacceptable; for example, for a type containing two conditional

statements each having threeCASEs, nine complete instance trees would be created.

In this work, we introduce the definition of an elementary class, theWHEN class. Instances

of this class allow us to create a single instance tree in which all the structural alternatives

are embedded. Figure 2-1 shows our approach to the implementation of aWHEN instance.

Essentially, aWHEN instance is constituted by two lists of pointers: a list of pointers to

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

23

instances of the conditional variables on which theWHEN statement depends and a list of

pointers toCASE structures. EachCASE structure contains a list of values and another list

of pointers to instances. The instances in the list of instances associated to aCASE

correspond to the objects (relations, arrays of relations, models, array of models) that will

be “active” when the values of theCASE list of values matches the current values of the

conditional variables.

Figure 2-1 WHEN instance implementation.

With this implementation, the data structures required for all the alternative configurations

are available (i. e., all the objects referenced in eachCASE are compiled). By visiting the

instance tree and analyzing all the WHEN statements in it, we can set as “active” only the

Pointer to Set of Values

Pointer to List of Instances

Values

Pointer to

Pointer to
CASE structure

Instance of a VARIABLE

Pointer to
Instance

Class:WHEN

Class attributes

Pointer to List of
Variables

Pointer to List of
CASE structures

WHEN INSTANCE :

List of Variables

List of Instances

List of CASEs

MODEL or RELATION

or Nested WHEN Instance

Instance

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

24

parts of the problem corresponding to the configuration consistent with the current values

of the conditional variables.

2.3.1.1 Feeding a Conditional Model to a Nonlinear Solver

The implementation of theWHEN statement in an equation-based environment allow us

to have available the data structure for all the variables and equations of the conditional

model. Therefore, the first step in the implementation of a conditional solver is to decide

how the solver is going to be fed with the correct structure and how to change this

structure efficiently in an iterative solution scheme. To perform this task, we use the notion

of active equation and active variable. By active we mean “it is part of the problem

currently being solved.” Computationally speaking, to set a relation as active or inactive

implies a simple bit operation. The following steps provide a mechanism to select the

structure of the problem:

1. Initially, we consider all the equations resulting from the compilation as active.

2. Then, we set as inactive all of the equations referenced within anyWHEN statement.

The equations set as inactive in this step constitute the variant set of equations. All the

equations which remain active constitute the invariant set of equations.

3. We analyze theWHEN statements. According to the current values of the variables on

which eachWHEN statement depends, we determine which of itsCASEs applies. The

equations stated within such aCASE are set as active.

4. All the variables incident in the active set of equations are active. The current problem

to be solved consists of the active set of equations and variables.

Figure 2-2 shows the application of the previous steps to the example of the fluid flow

transition. The mechanism outline above is independent of a particular solver or solution

algorithm. However, we must emphasize that a change in the configuration of the problem

during an iterative solution process may also cause a change in the partitioning of the

variables and equations. Therefore, any solver using a partitioning mechanism must

account for such a possibility.

2.3.2 CONDITIONAL COMPILATION : THE SELECT STATEMENT

During the process of instantiation of a model, it is necessary to differentiate between

DETAILS OF A COMPUTATIONAL IMPLEMENTATION

25

those objects that are not instantiated because they are defined within nonmatchingCASEs

of aSELECT statement from those objects that are not instantiated because of a deficiency

in their declarative definition. In order to do that, we define an elementary “dummy” class.

Figure 2-2 Preparing a conditional model to send to a nonlinear solver.

We find that it is necessary to build only one instance of this class, such that the dummy

instance becomes a place holder for all the objects defined in all the nonmatching

CASEs of theSELECT statements.

Figure 2-3 shows a graphic explanation of the process of instantiation in conditional

compilation. Statements in the nonmatchingCASEs of aSELECT statement that do not

1. Initially all the equations are active:

inveq

vareq1

vareq2

2. Equations stated in the CASEs of a

WHEN statement are set as inactive:

ACTIVE INACTIVE

inveq
vareq1

vareq2

Invariant Set Variant Set

3. Analyze WHENs

ACTIVE INACTIVE

inveq
vareq2

vareq1

4. Incident variables in active equations are active

Re
1

f
------- 2 D

3 ρ ∆P⋅ ⋅ ⋅

µ2
L⋅

 
 
 1 2⁄

⋅=

Re 64 f⁄=

Re 0.206307 f⁄()4
=

inveq:

vareq1:

vareq2:

WHEN laminar

CASE TRUE: USE vareq1;

CASE FALSE: USE vareq2;

END;

Flow transition:

laminar := TRUE;

EXAMPLES OFAPPLICATION

26

involve the creation of a new object are interpreted to determine if they are syntactically

correct, but the resulting compiler actions are simplyNOT executed (i.e. assignments,

refinements, merging, etc.). On the other hand, statements in the matchingCASEs lead to

full compilation as if they were defined outside theSELECT statement.

Figure 2-3 Instantiation process in conditional compilation.

2.4 EXAMPLES OF APPLICATION

One of the goals of our research group has been to improve one’s ability to develop and

solve process models. The main result of this effort has been the development ofASCEND

(Pielaet al., 1991). ASCEND is both an object-oriented mathematical modeling

SELECT (name_of_constant)

CASE value_1:

refinement

assignment;

CASE value_2:

refinement;

assignment;

declaration_of_object_1;

merging;

END SELECT;
Universal Dummy

Instance

M
at

ch
in

g
 C

A
S

E

Execute Refinement

Execute Assignment

Do not Execute

Do not Execute

Do not Execute

declaration_of_object_2;

EXAMPLES OFAPPLICATION

27

environment and a solving and debugging engine. Westerberget al. (1994) discuss the

essential features of the currentASCEND system and present several ways in which we can

improve it to solve larger models and to increase its scope as a modeling environment. We

implemented the conditional modeling tools explained above into theASCEND modeling

environment. In this section, we show some examples to illustrate the expressiveness of

the new modeling capabilities.

2.4.1 THE WHEN STATEMENT

Figure 2-4 shows two partialASCEND models in which theWHEN statement is used, each

in a different manner.

Figure 2-4 Two different applications of theWHEN statement.

(a) (b)
method IS_A symbol; laminar IS_A boolean;
simplified_flash IS_A VLE_flash; Re,f IS_A factor;
rigorous_flash IS_A td_VLE_flash;

eq1: Re = 64/f;
WHEN (method) eq2: Re = (0.206307/f)^4;

CASE ‘rigorous’:
USE rigorous_flash; WHEN (laminar)

CASE ‘simplified’: CASE TRUE:
USE simplified_flash; USE eq1;

END WHEN; CASE FALSE:
USE eq2;

END WHEN;

In case (a) the value of the symbol ‘method’ is used to select between two alternative

configurations of the problem, a flash calculation assuming constant relative volatility

(VLE_flash) or a flash calculation using a more rigorous thermodynamic calculation

(td_VLE_flash). Which option is going to be used and, therefore, the value of the symbol

‘method’, is a user decision. For example, the user may select the simplified model when

looking for good initial values for the variables and then switch to the rigorous model

simply by changing the value of the symbol ‘method.’ Once a configuration has been

EXAMPLES OFAPPLICATION

28

selected, it will be kept unless the user decides to change it. Note that the user does not

have to recompile the model to switch. Since the system has compiled the data structure

for both of the problems, the user can readily switch back and forth between the simplified

model and the more complicated one.

On the contrary, in case (b) we cannot expect the boolean value of the variable laminar to

be a user decision. Its value will depend on the value of the Reynolds number which is an

unknown whose value is being computed in the problem. The value of the variable

laminar will be the truth value of the expression Re<2100. In an iterative solution scheme,

we expect the value of the boolean variable ‘laminar’ to change, and, therefore, so will

the structure of the system of equations that we have to solve.

Another example of the application of theWHEN statement is the synthesis of process

networks using superstructure optimization. We developed a simplified model for the

superstructure given in Figure 2-5, taken from the work of Turkay and Grossmann (1996).

In this example, there are two alternative feedstocks, two possible choices of the reactor

and two choices of the compression systems. Hence, there are 4 structural decisions, and,

therefore, there are 24 = 16 feasible configurations for the problem.

All 16 configurations are encapsulated in oneASCEND model containing 4WHEN

statements which depend on the value of 4 boolean variables. Figure 2-6 shows this

model. The procedural section of the model and the model for each unit operation have

been omitted for simplicity. Note that, for each structural decision, aWHEN statement

allows the selection of either of two alternatives (a cheap reactor or a expensive reactor, for

instance); however, theWHEN statements do not allow the selection of both alternatives

simultaneously. Such a case would require the definition of splitters (for the input streams

of the conditional units) and mixers (for the output streams of the conditional units) which,

in the context of an equation-based approach, are generally considered as separate unit

operations. Also, note the way in which the linking is done for the conditional units in the

flowsheet. Consider, for instance, the case of the selection between an expensive reactor

(r2) and a cheap reactor (r1) illustrated in Figure 2-7(a). The input streams of the two

reactors are merged with the output stream of heater 1 (h1). That is, h1.output, r1.input

EXAMPLES OFAPPLICATION

29

and r2.input are merged (theARE_THE_SAME operator in theASCEND modeling language

represents a merging operation). In practice, such a merging operation ensures that,

regardless of which reactor we select (cheap or expensive), an input stream to the reactor

always exists, and it is the same as the output stream from the heater 1. Similarly, a

merging operation is also defined among the output streams of the reactors and the input

stream to the expansion valve (v1). The combination of this merging of input and output

streams with the procedure described in section 2.3.1.1 allows us to select a particular

configuration of the flowsheet, as illustrated in Figure 2-7(b).

We have tested the mechanism to pass the correct submodel to a solver suggested in

section 2.3.1.1 on several problems. As an example, we applied it to the system presented

in Figure 2-5 and Figure 2-6. The value of the four boolean variables determine the

structure of the problem. The values of the boolean variables can be defined interactively

by the user, but they also can be defined by some logic inference algorithm which would

allow the automatic change of the structure of the problem. In our model of the

superstructure shown in Figure 2-5, the nonlinear system contains 137 invariant equations

and 68 variant equations for a total of 205. The configuration defined by one of the feeds,

Figure 2-5 Superstructure taken from Turkay and Grossmann (1996).

f1

f2

c1

co1 h1

r2

r1

co2 fl1

h2

h3

c2

Feed 1

Feed 2

Pby

<1000
ton/day

>90 %
pure C

high conv, high cost

low conv, low cost

A + B C
s1 v1

sp1
s2

m1

(cheap)

(exp)

EXAMPLES OFAPPLICATION

30

Figure 2-6 ASCEND model for the superstructure of Figure 2-5.

MODEL flowsheet;
(* units *)

f1 IS_A cheap_feed;
f2 IS_A expensive_feed;
c1,c2 IS_A single_compressor;
s1,s2 IS_A staged_compressor;
r1 IS_A cheap_reactor;
r2 IS_A expensive_reactor;
co1,co2 IS_A cooler;
h1,h2,h3 IS_A heater;
fl1 IS_A flash;
sp1 IS_A splitter;
m1 IS_A mixer;
v1 IS_A expansion_valve;

(* boolean variables *)
select_feed1,select_single1 IS_A boolean_var;
select_cheapr1,select_single2 IS_A boolean_var;

(* define sets *)
m1.n_inputs :==2;
sp1.n_outputs :== 2;

(* wire up flowsheet *)
f1.stream, f2.stream, c1.input, s1.input ARE_THE_SAME;
c1.output, s1.output, m1.feed[2] ARE_THE_SAME;
m1.out,co1.input ARE_THE_SAME;
co1.output, h1.input ARE_THE_SAME;
h1.output, r1.input, r2.input ARE_THE_SAME;
r1.output, r2.output,v1.input ARE_THE_SAME;
v1.output,co2.input ARE_THE_SAME;
co2.output, fl1.feed ARE_THE_SAME;
fl1.liq, h2.input ARE_THE_SAME;
fl1.vap, sp1.feed ARE_THE_SAME;
sp1.out[1], h3.input ARE_THE_SAME;
sp1.out[2],c2.input, s2.input ARE_THE_SAME;
c2.output, s2.output,m1.feed[1] ARE_THE_SAME;

(* Conditional statements *)
WHEN (select_feed1)
 CASE TRUE:

USE f1;
 CASE FALSE:

USE f2;
END WHEN;
WHEN (select_single1)
 CASE TRUE:

USE c1;
 CASE FALSE:

USE s1;
END WHEN;
WHEN (select_cheapr1)
 CASE TRUE:

USE r1;
 CASE FALSE:

USE r2;
END WHEN;
WHEN (select_single2)
 CASE TRUE:

USE c2;
 CASE FALSE:

USE s2;
END WHEN;

END flowsheet;

EXAMPLES OFAPPLICATION

31

two single-stage compressors and one of the reactors contains 169 equations, the 137

invariant and 32 of the 68 variant equations. Switching from one structure to another is

done without the need to recompile and, since reconfiguring the system requires only

rebuilding several list of pointers, it is computationally very efficient.

Figure 2-7 Linking of conditional units

2.4.2 LOGICAL RELATIONS

Figure 2-8 illustrates two examples of the syntax we have used for the implementation of

logical relations. Example (a) is simply to show the use of the logical operatorsAND, OR

andNOT. Example (b) is a more complete version of the model presented in Figure 2-4(b).

In this case we note that the value of the boolean variable (‘laminar’) depends on the truth

value of a real expression (cond). In this way, since theWHEN statement depends on the

r1

r2

v1.inputh1.output

r1

r2

r1

r2

r1

r2

➩

INACTIVE

INACTIVE

a) Merging streams of conditional units

b) Selecting an alternative

ACTIVE

ACTIVE

OR

EXAMPLES OFAPPLICATION

32

boolean variable ‘laminar’, a change in the truth value of the real expression triggers a

change in the configuration of the system.

Figure 2-8 Examples of the syntax for the implementation of logical
relations.

(a) (b)
laminar IS_A boolean;
Re,f,k IS_A factor;

valve_open IS_A boolean;
pump_on IS_A boolean; CONDITION
full_tank IS_A boolean; cond: Re <= 2100;

END;
valve_open<==>pump_on AND
 NOT(full_tank); laminar <==> SATISFIED(cond,1e-08);

eq1: Re = 64/f;
eq2: Re = (0.206307/f)^4;
WHEN (laminar)

CASE TRUE:
USE eq1;

CASE FALSE:
USE eq2;

END WHEN;

2.4.3 THE SELECT STATEMENT

Figure 2-9 shows anASCEND model which is similar to that shown previously in Figure 2-

4(a). The difference is that we use theSELECT statement rather than theWHEN statement.

This time, the symbol ‘method’ is a constant, and, once it is defined, its value will not

change. That value will always be a user decision. In the example of Figure 2-9, only the

list of statements in the firstCASE are compiled.

2.4.4 THE SWITCH STATEMENT

The use of the SWITCH statement for the conditional execution of procedural code is

illustrated in Figure 2-10. In that example, if the simplified flash model is used, the

average value of the constant relative volatility is set to 1.5. On the contrary, if the

SUMMARY

33

rigorous model is used, then a procedure defining the initial values and degrees of freedom

for an adiabatic operation is executed.

Figure 2-9 Application of theSELECT statement.

method IS_A symbol_constant;
method :== ‘rigorous’;

SELECT (method)
CASE ‘rigorous’:

rigorous_flash IS_A td_VLE_flash;
CASE ‘simplified’:

simplified_flash IS_A VLE_flash;
END SELECT;

Figure 2-10 Application of the SWITCH statement.

METHODS
METHOD values;

RUN reset;
SWITCH (method)

CASE ‘rigorous’:
RUN adiabatic;

CASE ‘simplified’:
ave_alpha := 1.5;

END SWITCH;
END values;

2.5 SUMMARY

We developed efficient modeling tools for the representation of conditional models in an

equation-based environment and discussed the details of their practical implementation.

SUMMARY

34

The incorporation of these tools into theASCEND environment shows how the

expressiveness of an equation-based modeling language increases with this extension.

Even though the new modeling capabilities are independent of any numerical technique

used for the solution of a conditional model, they were developed in such a way that the

needs of all of the existing solution algorithms we have found in the literature will be met.

REFERENCES

35

2.6 REFERENCES

Allan, B. A.; A More Reusable Modeling System; Ph.D. thesis, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,1997.

Barton, P. I.; The Modeling and Simulation of Combined Discrete/Continuous Processes.
Ph.D. thesis, Department of Chemical Engineering, Imperial College of
Science, Technology and Medicine, 1992.

Barton, P. I. and Pantelides, C. C.; Modeling of Combined Discrete/Continuous Processes.
AIChE Journal, 40(6):966–979, June 1994.

Epperly, T. G.; Implementation of an Ascend Interpreter. Technical Report. Engineering
Design Research Center. Carnegie Mellon University. Pittsburgh, PA, 1988.

Feehery, W. F. and Barton, P. I.; A Differentiation-Based Approach to Dynamic
Simulation and Optimization with High Index Differential-Algebraic
Equations. Computational Differentiation, M. Berz, C. Bischof, G.Corliss,
and A. Griewank Editors, SIAM, 1996.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

Marquardt, W.; Trends in Computer-Aided Process Modeling.Comput. Chem. Eng.,
20(6):591-609, 1996.

Pantelides, C. C.; SPEEDUP-Recent Advances in Process Simulation.Comput. Chem.
Eng., 12(7):745–755, 1988.

Pantelides, C. C. and Barton, P. I.; Equation-Oriented Dynamic Simulation: Current Status
and Future Perspectives.Comput. Chem. Eng., 17S:263–285, 1993.

Piela, P., Epperly, T., Westerberg, K., Westerberg, A. W.; An Object-Oriented Computer
Environment for Modeling and Analysis: The modeling language.Comput.
Chem. Eng., 15(1):53–72, 1991.

Piela, P.; ASCEND: An Object-Oriented Computer Environment for Modeling and
Analysis. Ph.D. thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania, April 1989.

Raman, R. and Grossmann, I. E.; Modeling and Computational Techniques for Logic
Based Integer Programming.Comput. Chem. Eng., 18(7):563–578, 1994.

Turkay, M. and Grossmann, I. E.; Logic-Based MINLP Algorithms for the Optimal
Synthesis of Process Networks. Comput. Chem. Eng., 20(8):959–978, 1996.

Westerberg, A.W., Abbott, K. A., and Allan, B. A.; Plans for ASCEND IV: Our Next
Generation Equational-Based Modeling Environment. Boston,
Massachusetts, November 1994. AspenWorld’94.

Zaher, J. J.; Conditional Modeling. Ph.D. thesis, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1995.

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The

REFERENCES

36

Annual AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March
1993.

37

CHAPTER3 STRUCTURAL

ANALYSIS OF

CONDITIONAL

MODELS

Structural analysis is applied to exploit sparsity in the solving of a system of equations

(Duff et al. 1989). Zaher (1995) studied the issues involved in the structural analysis of

conditional models and presented a methodology to ensure consistency in a conditional

model, the complexity of such an analysis being combinatorial. In that work, Zaher

considered only cases in which the number of variables and equations of all the

alternatives in a conditional model are the same. In this chapter, an extension to Zaher’s

consistency analysis is presented. This extension allows the consistency analysis to be

applied to conditional models in which the number of variables and equations for each of

the alternatives may not be the same. Also, we show how, by taking advantage of the

structure of the problem, it is sometimes possible to reduce the effort required by such an

analysis. In particular, the cases of the existence of repeated structures and common

incidence pattern among alternatives are discussed.

INTRODUCTION/MOTIVATION

38

3.1 INTRODUCTION /MOTIVATION

Before attempting to solve a model, a structural analysis has to be performed to determine

if the model formulation is well posed. Techniques are available which can be used to

detect if any structural inconsistency exists among the equations of the model (Duffet

al.,1989; Zaher, 1995). However, consistency is generally assumed and structural analysis

is rarely discussed in the literature.

Still, in practice it is very difficult to create large models of equations without introducing

structural inconsistencies. We believe that structural analysis is an indispensable tool in an

equation-based modeling environment, and, as we show in section 3.3, conditional models

make the need for this tool an even stronger requirement.

3.2 TERMINOLOGY IN STRUCTURAL ANALYSIS

We provide here a brief and general description of the terminology employed throughout

this chapter. Also, we use the system of equations given in Example 3-1 to illustrate each

of the definitions.

Variables appearing in an equation are said to beincident in that equation and incident in

the problem containing that equation. Assume thatm is the number of equations in a

model andn is the number of variables incident in those equations. For most engineering

models, . In order to solve a problem, the problem has to besquare; that is, the

number of equations and the number of variables to be calculated in the problem has to be

the same. Accordingly, in order to solve a problem containingn variables andm

equations, it is necessary to provide the values ofn-m variables, so that we can calculate

the rest. Thus, the difference between the number of variables and the number of

equations gives us the number ofdegrees of freedom, DOF=n-m, of the problem. Them

variables to be calculated in the problem are calleddependent variables, while then-m

variables whose values are provided by the modeler are calledindependent or decision

variables. Because of structural considerations (as we explain below), not every variable

can be designated an independent variable. The set of variables whose values can be

provided by the modeler (that is, the set of candidates to become an independent variable)

n m>

TERMINOLOGY IN STRUCTURAL ANALYSIS

39

is called theeligible set.

EXAMPLE 3-1 A System of Equations to Illustrate the Terminology in
Structural Analysis.

For the system of equations in Example 3-1:

Set of incident variables in first equation

Set of incident variables in the problem

Number of variables in the problem =n = 4

Number of equations in the problem =m = 3

Number of degrees of freedom = DOF = 4 - 3 = 1

The equations of a model are expected to have different sets of variables incident in them.

Furthermore, they are expected to involve only a few of the variables in the problem. This

observation supports the idea that models are sparse. An effective representation of a

sparsity pattern of a system of equations is given by anincidence matrix. The rows of an

incidence matrix correspond to the equations of the problem. Similarly, the columns of an

incidence matrix correspond the variables incident in the equations. An element in rowi

and columnj of an incidence matrix is nonzero if and only if the variable of columnj is

incident in the equation of rowi. The incidence matrix of the system of equations given

by Example 3-1 is shown in Figure 3-1.

x1 1=

x2 x4+ 5=

x3 x4 x2+– 3=

f 1 x1 1– 0= =

f 2 x2 x4 5–+ 0= =

f 3 x3 x4 x2 3–+– 0= =

➪

x1{ }=

I x1 x2 x3 x4, , ,{ }==

TERMINOLOGY IN STRUCTURAL ANALYSIS

40

Figure 3-1 Incidence matrix of Example 3-1.

Structural inconsistencies are detected by using an incidence matrix to perform anoutput

assignment. An output assignment is the process of assigning each equation to one of its

incident variables. The structuralrank is the largest number of equations which can be

assigned such that no two equations are assigned to the same variable. Ifrank=m, the

system of equations isstructurally consistent. If, on the other hand,rank<m, the

equations are guaranteed to be singular. An output assignment for the system given in

Example 3-1 is shown in Figure 3-2.

Figure 3-2 An output assignment for the system defined in Example 3-1.

Besides the detection of structural inconsistencies, the output assignment also provides a

solid basis for finding a consistent partitioning of the variables. After a structurally

consistent output assignment is achieved, the variables which are assigned make up a

consistent set of dependent variables, while the variables left to be assigned make up a set

x1 x2 x3 x4

f1
f2
f3

■

■■

■ ■■

x1 x2 x3 x4

f1
f2
f3

■

■■

■ ■■

TERMINOLOGY IN STRUCTURAL ANALYSIS

41

of independent or decision variables. However, the partitioning of the variables is not

unique and a generalized criterion to select the best choice does not exist. Hence, it is

important to generate and make available all of the choices to the modeler. All the

candidates to become independent variables can be found from an initial output

assignment by followingSteward paths (Westerberget al., 1979). A Steward path starts

from an unassigned independent variable and then moves horizontally to an assigned

variable, then vertically to an unassigned variable, then horizontally to an assigned

variable, etc., until the path terminates, always on an assigned variable. The variables

encountered along each path are marked as being eligible. Thus, all the variables gathered

while transversing all of the Steward paths constitute the eligible set of variables in the

problem being analyzed. A Steward path is illustrated in Figure 3-3. The combined use of

an output assignment and Steward paths to obtain the eligible set is called aneligibility

analysis.

Figure 3-3 A Steward path based on the output assignment of Figure 3-2.

 The eligible set of variables for the problem of Example 3-1 is:

Eligible set =Set of variables eligible to be chosen as decisions

For the system of equations given in Example 3-1, selecting one of the variables in the

eligible setE as being a independent variable results in a square structurally consistent

system of equations.

x1 x2 x3 x4

f1

f2

f3

■

■■

■ ■■ ➪

➪
➪

➪

E= x2 x3 x4, ,{ }=

TERMINOLOGY IN STRUCTURAL ANALYSIS

42

3.2.1 NOTATION

The following notation is used in the remainder of this chapter. For an alternative set of

equationsi where , ands is the number of alternatives in a conditional model:

Ei Eligible set Set of variables eligible to be chosen as independent

 variables in the alternativei.

Ii Incidence set Set of variables incidents in the equations

 constituting the alternativei.

M Maximal set Union of the incidence sets of all of the alternatives.

DOFi Number of degrees of freedom left to be assigned.

e Intersection of the eligible sets of all the alternatives.

While assigning degrees of freedom in a structural analysis, every time that a variable is

chosen to be an independent variable, the elements change in the eligible set for the

selection of the remaining degrees of freedom. The number of elements in the new

eligible set is at least one less than the previous set. Moreover, the new eligible set is

always a subset of the eligible set previous to the selection of the independent variable.

For that reason, we use the indexk to indicate a k-th step in the selection of the

independent variables while performing structural analysis. Note that the setsIi andM are

independent of this indexk, while the setsEi and their intersectione change at each stepk

k k-th step in the assignment of the degrees of freedom.

3.2.1.1 Set Operators

∪ Union is all elements either inA, B, or both.

∩ Intersection is all elements in bothA andB.

\ Minus A\B is all elements fromA not inB.

i 1…s{ }∈

A B∪

A B∩

STRUCTURAL CONSISTENCY

43

3.3 STRUCTURAL CONSISTENCY

Duff et al. (1989) and Zaher (1995) describe algorithms for the systematic structural

consistency analysis in conventional models. They give a step by step procedure to:

• Generate an incidence matrix.

• Perform an output assignment in order to test structural consistency.

• Collect all the eligible variables by following all the Stewards path in a problem.

The interested reader may refer to those works for a detailed description of the procedures.

Our attention in the rest of this chapter is focused in the structural consistency of

conditional models.

3.3.1 CONDITIONAL MODELS

In conditional models, the sparsity pattern is expected to change from one alternative set

of equations to another. This implies that a consistent set of independent variables for one

alternative set of equations may not be valid for another one.

Zaher (1993, 1995) also addressed the structural analysis of conditional models. A

necessary condition for structural consistency in conditional models is that each of the

alternative sets of equations must be structurally consistent. Hence, consistency of a

conditional model is assessed by finding at least one consistent partitioning of the

variables (independent-dependent) such that output assignment of all of the equations in

each alternative can be performed. This requirement makes the problem combinatorial,

since we have to perform the analysis for all of the alternative sets of equations which can

be generated from a conditional model expressed disjunctively. The following is an

abbreviated description of an algorithm for finding a set of independent variables

consistent with all the alternative sets of a conditional model. For a detailed description,

see Zaher (1995). It is assumed that there is a nonzero number of degrees of freedom in

the problem:

1. Each of the alternative sets of equations is first arbitrarily output assigned.

2. For each output assignment, the set of variables eligible to become independent (Ei
k) is

STRUCTURAL CONSISTENCY

44

generated. In general, the eligible sets generated for each of the alternatives are

different.

3. Since, it is necessary (but not sufficient) that a variable which is eligible in the context

of the overall problem must be eligible for each alternative, we next find the

intersection of the eligible sets generated in step 2:

(3.1)

wheres the number of alternatives in the conditional model.

4. We tentatively select a variable from the intersection set generated in step 3 to be an

independent variable. After this step, the number of independent variables left is

reduced by one, and the process is repeated from step 1 using the remaining dependent

variables.

5. Consistency is achieved only if a sequence is found which allows an eligible variable

to be selected for each degree of freedom. Therefore, we backtrack anytime we fail to

complete such a sequence.

3.3.1.1 Limitations of Zaher’s Consistency Analysis

Consider a conditional model in which ‘s’ alternative sets of equations can be generated.

In his work, Zaher only addressed the case in which the variables incident in each of the

alternatives is the same,

Given that condition, the variables common to all of the eligible sets of each alternative set

of equations (ek) can be regarded as eligible to become independent in the context of the

overall conditional model.

In a general situation, however, the number of equations in each alternative of a

conditional model may change and so may the incidence set of variables.

e
k

E1
k

E2
k …Es

k
Ej

k

j

s

∩=∩ ∩=

I 1 I 2 … I s I= = = =

EXTENSION OF THECONSISTENCYANALYSIS FOR

45

3.4 EXTENSION OF THE CONSISTENCY ANALYSIS FOR

CONDITIONAL MODELS

For the case developed by Zaher in which the incident variables of all the alternatives are

the same, the result of applying equation (3.1) is the elimination of all those variables

which are eligible to be chosen as independent variables in some alternatives but non

eligible to be chosen as independent variables in some other alternatives. That is readily

accomplished by using the intersection of the individual eligible sets since all the variables

are incident in all the alternatives.

For the general case, however, since we expect

we cannot use the intersection of the eligible set of each alternative to generate the eligible

set for the overall conditional model. If we would do that, we would immediately remove

variables which are not incident in some of the alternatives, since they would not be

eligible for an alternative in which they are not incident.

A detailed derivation of an equivalent to (3.1) when the alternatives of a conditional model

have different incident variables is presented in Appendix A. In Appendix A, we show

that, in general, for any alternative , the set of “truly” eligible variables

(ineligible variables are eliminated) for each alternative in the context of the overall

conditional problem is given by:

(3.2)

and that the union of these individual sets gives the set of eligible variables from which we

can safely select the independent variables of a conditional model:

(3.3)

I 1 I 2 I 3… I s≠≠ ≠

i 1…s{ }∈

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j j i≠,

s

∪∩
 
 
 

=

e
k′ Ei

k′
i

s

∪=

EXTENSION OF THECONSISTENCYANALYSIS FOR

46

Hence, by using (3.3) instead of (3.1), we can apply the structural consistency algorithm

described in 3.3.1 to a general conditional model having alternatives with different

incident variables.

Furthermore, in Appendix A we also show that we do not have to perform the analysis for

the general case as defined in (3.3). A simpler analysis can be used instead. We

demonstrate that, if we augmented the eligible set of each alternativeEi
k with the non

incident variables of that alternative:

(3.4)

and find the intersection of the augmented sets ,

(3.5)

then the resulting set is equivalent to the set given by (3.3). Recall thatM is the

maximal set of variables,

(3.6)

so that represents the set of non incidences in alternativei.

Therefore, the use of (3.5) instead of (3.1) also allows us to apply the structural

consistency algorithm described in 3.3.1 to a general conditional model having

alternatives with different incident variables. As a final result in Appendix A, we also

demonstrate that both (3.5) and (3.3) reduce to (3.1) when the alternatives of a conditional

model have the same incident variables.

Ei
k′′ Ei

k
M \I i()∪=

Ei
k′′

e
k′′ Ei

k′′
i

s

∩ Ei
k

M \I i()∪[]
i

s

∩= =

e
k′′ e

k′

M I 1 I 2 …I s I j
j

s

∪=∪ ∪=

M \I i()

EXTENSION OF THECONSISTENCYANALYSIS FOR

47

3.4.1 THE MAIN RESULT

The main result of the analysis presented in this section is that the algorithm described in

section 3.3.1, derived for a conditional model having the same incident variables in all its

alternative set of equations, can still be applied for a general case in which different

alternatives of a conditional model have different incident variables. In order to

accomplish that, the step 3 of the algorithm for testing structural consistency given in 3.3.1

has to be modified by using (3.5) instead of (3.1).

3.4.2 AN IMPLEMENTATION

Our extension to the consistency analysis described in 3.3.1 has been incorporated as a

tool within theASCEND modeling environment to help a user to set up structurally

consistent conditional models. Essentially, this implementation uses the information

provided by the conditional statements described in Chapter 2 in order to generate the

alternative configurations of a conditional model. Then, for each of the alternatives, we

apply the eligibility analysis techniques already available for conventional models.

3.4.3 AN ILLUSTRATIVE EXAMPLE

The formulation derived in this section is illustrated with Example 3-2. In this case, a

disjunctive system of equations contains two disjunctions, which results in 4 different

alternative set of equations. The 4 set of equations derives from Example 3-2 are shown in

Figure 3-4.

For the purpose of illustration, assume that the variablesx2, x4, andx7 have already been

selected as independent variables. Hence, the set of independent variables,℘, prior to the

analysis is:

℘ x2 x4 x7, ,{ }=

EXTENSION OF THECONSISTENCYANALYSIS FOR

48

EXAMPLE 3-2 A simple disjunctive set of equations.

Figure 3-4 4 Alternatives in the Example 3-2.

x18 1=

x1 0.8 x2⋅=

x3 10 x4–=

x5 x1 x3+=

x6 x5 x1–=

x8 x7 x6+=

x7 0.9 x8⋅=

x9 x8 x10 x3+ +=

x10 40 x9–=

x13 x21=

∨

x12 3 x21 x3⋅ ⋅=

x14 x7 x8+=

x16 x24 x11+=

x15 x16 x23+=

x23 x4=

x17 x7=

x19 x20=

x20 x22=

∨

x18 1=

x1 0.8 x2⋅=

x3 10 x4–=

x5 x1 x3+=

x6 x5 x1–=

x8 x7 x6+=

x12 3 x21 x3⋅ ⋅=

x14 x7 x8+=

x16 x24 x11+=

x15 x16 x23+=

x23 x4=

x18 1=

x1 0.8 x2⋅=

x3 10 x4–=

x5 x1 x3+=

x6 x5 x1–=

x8 x7 x6+=

x17 x7=

x19 x20=

x20 x22=

x18 1=

x1 0.8 x2⋅=

x3 10 x4–=

x7 0.9 x8⋅=

x9 x8 x10 x3+ +=

x10 40 x9–=

x13 x21=

x12 3 x21 x3⋅ ⋅=

x14 x7 x8+=

x16 x24 x11+=

x15 x16 x23+=

x23 x4=

x18 1=

x1 0.8 x2⋅=

x3 10 x4–=

x7 0.9 x8⋅=

x9 x8 x10 x3+ +=

x10 40 x9–=

x13 x21=

x17 x7=

x19 x20=

x20 x22=

Alternative 1 Alternative 2 Alternative 3 Alternative 4

EXTENSION OF THECONSISTENCYANALYSIS FOR

49

Table 3-1 shows an analysis of the degrees of freedom left to be assigned for each of the

alternatives. Note that the number of equations, the number of incident variables, and the

number of degrees of freedom left to be assigned are different for each alternative.

The eligible set for each of the alternatives, obtained from the eligibility analysis we

described, is shown in Table 3-2.

If we would try to apply Zaher’s structural analysis in order to obtain a consistent set of

independent variables for the overall problem, we would conclude structural

inconsistency, since the intersection of the individual eligible sets is empty:

Table 3-1 Degrees of freedom left to be assigned in Example 3-2.

Alternative
Number of
equations

Number of
incidences

Number
of DOF

DOF left to
be assigned

1 11 17 6 3

2 9 13 4 1

3 12 18 6 3

4 10 15 5 2

Table 3-2 Incidence and eligible sets in Example 3-2.

Alternative Incidences,Ii Eligible set, Ei

1 x1, ... x8, x11, x12, x14,...x16, x18, x21,
x23, x24

x11, x12, x15, x16, x21, x24

2 x1, ... x8, x17, ..., x20, x22 x19, x20, x22

3 x1, ... x4, x7, ..., x16, x18, x21, x23, x24 x11, x12, x13, x15, x16, x21, x24

4 x1, ... x4, x7, ..., x10, x13, x17,...x22 x13, x19, x20, x21, x22

e
k

Ej
k

j

s

∩ ∅= =

EXTENSION OF THECONSISTENCYANALYSIS FOR

50

Instead, we can apply either of the equations derived in this section to obtain:

from (3.3),

or, from (3.5),

Note that the result is the same, . By applying the consistency algorithm in

3.3.1, we obtain the following set of consistent independent variables:

Hence, if we partition the variables in Example 3-2, so that the set of independent

variables is given by,

then all 4 alternatives generated from Example 3-2 are square and structurally consistent.

3.4.4 IS THE COMBINATORIAL CONSISTENCY ANALYSIS REALLY

NECESSARY ?

Given the combinatorial nature of conditional models, it may happen that, during the

iterative solution of one of such models, only a few of the alternatives of it are considered

before converging to the solution. For that reason, a question comes to mind. Why should

we look for the structural consistency of all of the alternatives in a conditional model if it

is true that many of those alternatives will never be encountered during an iterative

solution technique ?

First, we should recognize that it is also true that, in general, there is no way of knowing

e
k′ Ei

k′
i

s

∪ x11 x12 x13 x, , , 15 x16 x19 x20 x21 x, 22 x24, , , , ,{ }= =

M x1…x24{ }=

e
k′′ Ei

k′′
i

s

∩ x11 x12 x13 x, , , 15 x16 x19 x20 x21 x, 22 x24, , , , ,{ }= =

e
k′ e

k′′=

x11 x15 x19 x21, , ,{ }

℘ x2 x4 x7 x11 x15 x19 x21, , , , , ,{ }=

SIMPLIFYING THE CONSISTENCYANALYSIS OF

51

which alternatives will be visited during an iterative solution of a conditional model.

Hence, we believe that it is a valid methodology to consider the structural analysis of only

those alternatives encountered during the solution of a conditional model if such

procedure reaches a satisfactory result. However, such methodology cannot guarantee that

a consistent set of independent variables selected for an alternative will also be consistent

with respect to any another alternative visited later during the iterative solution technique.

In general, in order to ensure the structural consistency of a conditional model, the

combinatorial consistency analysis must be performed.

3.5 SIMPLIFYING THE CONSISTENCY ANALYSIS OF

CONDITIONAL MODELS

The analysis required for partitioning the variables in a conditional model was outlined in

section 3.3.1. We see the most serious disadvantage of this analysis to be the

combinatorial nature of the search consistency algorithm, which requires the analysis of

all of the alternatives every time that a selection of an independent variable is made.

However, we have observed special features of some problems which can contribute to

simplifying the analysis. Even though they represent very particular cases, if found alone

or in any combination, we can take advantage of them in order to reduce the

computational effort needed to perform the analysis.

3.5.1 COMMON INCIDENCE PATTERN

It happens sometimes that the equations of some alternatives in a conditional model are

different only because of the difference in value of some parameters, such as cost factors,

mass balance coefficients, power of a correlation, etc. That is, the incidence pattern of

those alternatives is the same. In such a case, the combinatorial structural analysis can be

greatly simplified. Consider the conditional model defined in Example 3-3. In that

example, there are 6 disjunctions in the problem. Hence, the number of alternative set of

equations is:

Number of alternatives 2
6

64==

SIMPLIFYING THE CONSISTENCYANALYSIS OF

52

EXAMPLE 3-3 Taking advantage of a common incidence pattern.

However, it is trivial to observe that, in all but one of the disjunctions, the incidence

pattern is the same. As a consequence, for the purposes of structural analysis, only two

different alternatives have to be considered.

Number of alternatives for structural analysis

Hence, for instance, the structural analysis for the problem of Example 3-3, could be

simplified to one of the system of equations shown in Figure 3-5.

3.5.1.1 An Implementation

In parallel with the implementation of our extension to the consistency analysis of a

conditional model, we have also implemented a computer tool whose goal is identifying

all those conditional structures with the same incidence pattern. This tool has been

x1 x6 x12+=

x9 x10 x11+=

x6 1.15 x7⋅=

x10 0.1 x7⋅=

x7 8≤

x6 1.2 x7⋅=

x10 0.2 x7⋅=

x7 8≥

∨

x2 0.47 x8⋅=

x7 0.75 x8⋅=

x8 10≤

x2 0.45 x8⋅=

x7 0.7 x8⋅=

x8 10≥

∨

x8 1.8 x4⋅=

x9 0.7 x2⋅=

x4 11≤

x8 1.87 x4⋅=

x9 x1=

x4 11≥

∨

x3 1.15 x13⋅=

x12 0.25 x13⋅=

x13 9≤

x3 1.10 x13⋅=

x12 0.3 x13⋅=

x13 9≥

∨

x11 0.35 x14⋅=

x13 1.25 x14⋅=

x14 8≤

x11 0.3 x14⋅=

x13 1.3 x14⋅=

x14 8≥

∨

x14 1.10 x5⋅=

x5 4≤

x14 1.02 x5⋅=

x5 4≥
∨

2
1

2==

SIMPLIFYING THE CONSISTENCYANALYSIS OF

53

Figure 3-5 Taking advantage of a common incidence pattern.

incorporated within theASCEND environment. It uses the information provided by the

conditional statements described in Chapter 2 (WHEN statement) in order to compare the

incidence pattern of alternative configurations. This tool is applied as a step prior to the

consistency analysis described in section 3.4. Hence, the consistency analysis considers

only those alternatives whose incidence patterns are different, and, therefore, the

combinatorial complexity of the analysis is reduced.

3.5.2 REPEATED STRUCTURES

In chemical engineering design and simulation, systems containing repeated structures

occur very often. Typical examples are a distillation column (n trays) and systems of

equations arising in the discretization of an initial value problem. If we think of a

problem in which a disjunction exists in each of the repeated structures, the combinatorial

complexity of the consistency analysis would be unmanageable. However, intuition

suggests that, in these kinds of problems, the degrees of freedom analysis should not be

x1 x6 x12+=

x9 x10 x11+=

x6 1.15 x7⋅=

x10 0.1 x7⋅=

x2 0.47 x8⋅=

x7 0.75 x8⋅=

x8 1.8 x4⋅=

x9 0.7 x2⋅=

x8 1.87 x4⋅=

x9 x1=
∨

x3 1.15 x13⋅=

x12 0.25 x13⋅=

x11 0.35 x14⋅=

x13 1.25 x14⋅=

x14 1.10 x5⋅=

SIMPLIFYING THE CONSISTENCYANALYSIS OF

54

affected by the number of repeated structures and, therefore, the analysis could be

simplified. Based on the work of Allen and Westerberg (1976), we show here that

sometimes it is possible to take considerable advantage of the existence of repeated

structures in a conditional model, reducing the effort required by the consistency analysis.

3.5.2.1 An Approach for Conventional Models

In their work, Allen and Westerberg used a representative incidence matrix to perform a

systematic analysis of a conventional model containing repeated structures. They provide

a criterion to decide whether or not, after a consistent output assignment has been found

for the representative matrix, the result obtained for the representative matrix can be

expanded to a system containing any number of the repeated structures. Consider the

simple case illustrated in Figure 3-6. In this example, the output assignment of a system

containing two equations has been performed, resulting in the selection of a structurally

consistent set of 3 independent variables (marked as I in Figure 3-6). The problem

consists in finding if we can expand this partitioning to a system containingn blocks of the

same two equations. First, it is necessary to introduce the definition of themodulo of the

expansion. Modulo is the number of positions that each new block added to the structure

is going to move from the left-most entry (or right-most entry if the expansion is upward)

of the previous block. In other words, modulo is the number of columns that each new

block is going to be displaced with respect to the previous one. In the case of Figure 3-6,

the modulo of the expansion is equal to 3.

Once the modulo of the expansion is known, Allen and Westerberg propose to enumerate

the columns of the representative block successively from0 tomodulo-1 until reaching the

last column of the block. Then, the necessary condition for expanding the result ton

blocks is that no two columns representing a dependent variable in the representative

matrix can have the same column number. In Figure 3-6, this criterion is satisfied since

the two columns representing the dependent variables has been enumerated as1 and0,

and, therefore, the expansion can take place. Practically speaking, what this condition

means is that we cannot allow, after an expansion ton blocks, the overlapping of any two

columns chosen as dependent variables. If we allow that, we would have a variable

assigned to more than one equation, a situation that violates the structural consistency

SIMPLIFYING THE CONSISTENCYANALYSIS OF

55

requirement explained in 3.2 (definition of the output assignment).

Figure 3-6 Expanding the result of a representative matrix.

3.5.2.2 Equation-Based Modeling and the Modulo of Repeated Structures

In the context of an equation-based modeling, the set of overlapping variables and,

therefore, the modulo of an array of repeated structures, are given by the connections

among the repeated structures. In most of the existing equation-based environments

currently available, there exist language constructs which allow the representation of

connections defining the flow of information. So, for instance theIS operator ofgPROMS

(Barton, 1992) and theARE_THE_SAME operator ofASCEND (Piela, 1989) serve this

purpose.

3.5.2.3 Repeated Structures Containing Conditional Equations

As stated earlier, the combinatorial complexity of the consistency analysis of systems

containing repeated structures with conditional equations would be practically

■ ■

■ ■ ■

■ ■

I I I

■ ■

■ ■ ■

■ ■

■ ■

■ ■ ■

■ ■

■ ■

■ ■ ■

■ ■

10 2 0 1

MODULO = 3

.

..

i) Output assignment in

representative matrix

ii) Expanding the result

to n blocks

SIMPLIFYING THE CONSISTENCYANALYSIS OF

56

unmanageable.

What we propose here is to perform the consistency analysis of this type of conditional

model by using a representative structure of the problem. The difference with respect to

the work presented by Allen and Westerberg is that, in our problem, the basic structure to

be considered in the analysis contains conditional equations, and, therefore, a consistency

analysis over all the possible configurations of the representative structure has to be

performed. In other words, we combine the consistency analysis developed for

conditional models with the idea of analyzing only a representative block of an array of

repeated structures. Example 3-4 and Example 3-5 illustrate the application of this

approach.

3.5.2.4 Illustrative Examples

Example 3-4 is used to illustrate an extreme case, in which there may be sets of nested

repeated structures containing conditional equations. We use indicesn andm to indicate

the number of repeated structures in each of the sets.

EXAMPLE 3-4 Taking advantage of repeated structures.

x1 x21 1,
+ 4=

x21 1,
2 x⋅ 1– 7=

x2i 1,
x3i 1,

x4i 1,
+– 3=

x4i j,
x5i j,

x6i j,
x8i j,

+ + + 9=

x6i j,
x7i j,

x3i j,
– x5i j,

–+ 1=

x4i j,
x5i j,

x8i j,
– x7i j,

+ + 8=

x6i j,
x4i j,

x3i j,
–+ 2=

∨

j 1…m{ }∈∀
x3i j,

x6i j 1–,
, ATS

x4i j,
x7i j 1–,

, ATS

x5i j,
x8i j 1–,

, ATS





j 2…m{ }∈∀

x2i 1,
x3i 1,

x7i 1,
x5i 1,

+–+ 6=

x3i j,
x8i j,

x6i j,
–+ 7=

x4i j,
x5i j,

– x7i j,
– 0=

x5i j,
x3i j,

x6i j,
+– 4=

x8i j,
x4i j,

x7i j,
–+ 0=

∨

j 1…m{ }∈∀
x3i j,

x6i j 1–,
, ATS

x4i j,
x7i j 1–,

, ATS

x5i j,
x8i j 1–,

, ATS





j 2…m{ }∈∀

∨

i 1…n{ }∈∀
x2i 1,

x6i 1– m,
, ATS

x3i 1,
x7i 1– m,

, ATS

x4i 1,
x8i 1– m,

, ATS





i 2…n{ }∈∀

x6n m,
x7n m,

– x8n m,
– 2=

x6n m,
x7n m,

– 4=

SIMPLIFYING THE CONSISTENCYANALYSIS OF

57

For simplicity in the representation, the abbreviationATS (ARE_THE_SAME, following the

ASCEND modeling language representation) is used to express the connectivity among the

variables incident in the repeated structures. The number of alternatives in problems of

this nature grows very quickly with the number of repeated structures. So, for instance, if

m=5 andn=5, the number of alternatives is:

number of alternatives =

In order to structurally analyze this conditional model, we use a representative structure of

the problem. For this case, this representative structure is given for a system in which

n=m=1. The resulting system of equations is given in (3.7), where the subindexesn=m=1

have been omitted for simplicity.

(3.7)

The representative structure (3.7) contains 4 alternatives, each of them with one degree of

freedom. By applying the structural consistency algorithm to the simplified problem, we

obtain that the eligible set of the representative conditional model is:

eligible set =

The task is to find a set of independent variables (only one variable in this example)

which, for each alternative, allows us an output assignment satisfying Allen’s necessary

conditions for expanding the result of a representative incidence matrix. For the

representative conditional structure of Example 3-4, assigningx5 as independent variable

allows the output assignments presented in Figure 3-7 for each of the alternatives.

2
5()

5
33554432=

x1 x2+ 4=

x2 2 x⋅ 1– 7=

x2 x3 x4+– 3=

x4 x5 x6 x8+ + + 9=

x6 x7 x3– x5–+ 1=

x4 x5 x8– x7+ + 8=

x6 x4 x3–+ 2=
∨

x2 x3 x7 x5+–+ 6=

x3 x8 x6–+ 7=

x4 x5– x7– 0=

x5 x3 x6+– 4=

x8 x4 x7–+ 0=
∨

∨

x6 x7– x8– 2=

x6 x7– 4=

x3 x4 x5 x6 x7 x8, , , , ,{ }

SIMPLIFYING THE CONSISTENCYANALYSIS OF

58

Figure 3-7 Alternative configurations of the representative structure.

All 4 output assignments of Figure 3-7 satisfy Allen’s necessary conditions. Figure 3-8

illustrates the case of the nested blocks of alternative 1. The modulo of each block was

determined by the connectivity among the repeated structures described in the formulation

of Example 3-4.

Figure 3-8 Allen’s necessary conditions for alternative 1 of the
representative matrix.

■

■

■ ■

■

■■ ■

■

■ ■

■

■■ ■

■

■ ■

■ ■

■

■ ■

■ ■

■

■ ■

■ ■

■

■ ■

■ ■

■■ ■

■■ ■■

■

■

■ ■

■

■■ ■

■■

■

■

■ ■■

■

■■■ ■

■ ■■

■

■ ■

■

■■ ■ ■

■■

■■

Alternative 1 Alternative 2

Alternative 3 Alternative 4

■

■■ ■

■■ ■

■■ ■■

■■■ ■

■■ ■■

0 1 2 0 1 2 0 1 2 3 0 1 2

x3 x4 x5 x6 x7 x8
x2 x3 x4 x5 x6 x7 x8

SIMPLIFYING THE CONSISTENCYANALYSIS OF

59

We could show that, if we expand the result of the representative incidence matrix to any

number of repeated structures and in any combination, the resulting systems of equations

are still structurally consistent. Figure 3-9 shows an example of this expansion. Note that

each variable is selected as independent variable (that is, it is not assigned).

Figure 3-9 Expanding the result of a representative matrix. Expansion of
alternative 1 withn=m=2.

The final example of this chapter, Example 3-5, corresponds to a chromatographic

separation performed in CCD (Craig Countercurrent Distribution) discussed by King

(1980). This example is illustrated in Figure 3-10. At discrete intervals, transfers of the

upper phase take place from one vessel to the next. Among these transfer steps, the upper

phase then present in each vessel is equilibrated with the lower phase in that vessel. A

small amount of feed mixture is initially present in the first vessel and then carried along

from vessel to vessel in the distribution process. For a componentA being separated, the

formulation is presented in Example 3-5.

x5i j,

■

■

■ ■

■

■■ ■

■

■ ■

■ ■

■■ ■

■■ ■■

■■■ ■

■■ ■■

■

■■ ■

■■ ■

■■ ■■

■■■ ■

■■ ■■

SIMPLIFYING THE CONSISTENCYANALYSIS OF

60

Figure 3-10 Craig countercurrent distribution.

EXAMPLE 3-5 A chromatographic separation.

In Example 3-5,VU andVL are the volumes of the upper and lower phase correspondingly,

 is the fraction of A present in the upper phase in the vesselp after the transfer stept,

 is the total amount ofA in the vessel p after the transfer stept, is the

equilibration ratio ofA in the vessel p after the transfer stept. can be a constant, but

it also can be a function of the total amount . is the initial amount ofA in the

separation process. Finally, and are given constants depending on the

componentA. and are always assumed as given. A consistency analysis of a

representative structure shows that, by defining onlyVU andVL as the set of independent

Upper Phase

Lower phase
(stationary)

(transferred)

T transfer steps in N vessels:

0 1 2 p Nvessel
number

MA0 0,
MAF

=

MAp 0,
0= p 1…N∈∀

K Ap t,
K A=

MAp t,

MAF

t!

t! t p–()!⋅
-------------------------- f Ap t,

p
1 f Ap t,

–() t p–()⋅ ⋅=

t p≥

MAp t,

MAF

------------- 0=

t p<

∨

MAp t,
MAC

≤

K Ap t,
K A′

MAp t,

MAF

 
 
 0.05

⋅=

MAp t,
f Ap t,

MAp 1– t 1–,
⋅ 1 f Ap t,

–() MAp t 1–,
⋅+=

MAp t,
MAC

>

∨

f Ap t,

K Ap t,
VU VL⁄()⋅

1 K Ap t,
VU VL⁄()⋅+

--=

p 1…N∈∀ t 1…T∈∀,

f Ap t,

MAp t,
K Ap t,

K Ap t,

MAp t,
MAF

K A K A′

MAF
MAC

SUMMARY

61

variables, the system is structurally consistent for any number of vesselsp and transfer

stepst.

3.6 SUMMARY

In this chapter, we have reviewed the concepts involved in structural analysis. We then

derived an extension to Zaher’s consistency analysis of conditional models. This

extension allows a consistency analysis to be applied to conditional models in which the

number of variables and equations for each of the alternatives may not be the same. In

general, we think that, in order to ensure the structural consistency of a conditional model,

the combinatorial consistency analysis must be performed. However, we have shown that,

by taking advantage of the structure of the problem, it is sometimes possible to reduce the

computational effort required by the consistency analysis. In addition, we used simple

examples to illustrate the relevant definitions in structural analysis, to demonstrate the

scope of application of the extension to Zaher’s consistency analysis, and to show how we

can take advantage of the existence of common incidence patterns and repeated structures

in the structural analysis of conditional models.

REFERENCES

62

3.7 REFERENCES

Allan, B. A.; A More Reusable Modeling System; Ph.D. thesis, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, PA,1997.

Allen, G. L. and Westerberg, A. W.; Solution Procedures for Indexed Equation Sets:
Structural Considerations.AIChE Journal, 22(3):549–558, May 1976.

Barton, P. I.; The Modeling and Simulation of Combined Discrete/Continuous Processes.
Ph.D. thesis, Department of Chemical Engineering, Imperial College of
Science, Technology and Medicine, 1992.

Duff, I. S., Erisman, A. M. and Reid, J. K.; Direct Methods for Sparse Matrices.
Monographs on Numerical Analysis, Oxford Science Publications, Oxford
University Press, New York, 1989.

King, C. J.; Separation Processes, Chemical Engineering Series, 2nd. Edition,
McGrawHill, 376-382, 1980.

Piela, P.; ASCEND: An Object-Oriented Computer Environment for Modeling and
Analysis. Ph.D. thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA, 1989.

Westerberg, A. W., Hutchinson, H. P., Motard, R. L. and Winter, P.; Process Flowsheeting.
Cambridge University Press, 1979.

Zaher, J. J.; Conditional Modeling. Ph. D. thesis, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA, 1995.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March
1993.

63

CHAPTER4 A BOUNDARY

CROSSING

ALGORITHM

In this chapter, we investigate the solving of conditional models using a boundary crossing

algorithm proposed by Zaher (1995). This algorithm involves the execution of several

well differentiated activities including logical analysis, continuous reconfiguration of the

equations constituting the problem, calculation of Newton-like steps, and the calculation

of gradient steps. We describe the practical implementation of this boundary crossing

algorithm as a conditional modeling solution tool. In such an implementation, we have

integrated the entities created and/or used to perform each of the activities in an object-

oriented solving engine: the conditional modeling solver CMSlv. Also, we describe and

solve several examples of conditional models in chemical engineering. Finally we discuss

the scope and limitations of the algorithm.

BACKGROUND

64

4.1 BACKGROUND

While dealing with conventional models, one generally applies iterative nonlinear

techniques in order to solve the equations simultaneously. Newton-like numerical

techniques are the methods most commonly applied to find the solution of conventional

models. Such methods require both continuity and differentiability of the system of

equations over the entire feasible region in order to guarantee convergence.

In conditional models, however, the equations within each alternative set are confined to a

subset of the search space, which results in the dissection of the feasible region into

subregions (Zaher, 1995). Because of the loss of continuous functionality between the

surfaces of neighboring subregions in the search space, Newton-like iterative techniques

cannot be applied if the solution to the system requires a step from one subregion to

another.

The literature reports several approaches to the solution of conditional models. One can

formulate conditional models as mixed integer programming problems. Grossmann and

Turkay (1996) show that, in the case of linear equations, the solution of a conditional

model can be found by solving a MILP problem that is often solvable as a relaxed LP.

Also, based on the works of Raman and Grossmann (1993, 1994), Turkay and Grossmann

(1996) address the solution of disjunctive set of nonlinear programming problems. They

show that the use of logic can improve the efficiency and robustness of MINLP algorithms

in the solution of structural optimization problems. Zaher (1995) makes the following

observations about the MINLP approach (big-M formulation) to the solution of

conditional models:

1. One can expect that, during the solution of a MINLP, the algorithm will jump from one

subregion to another which is remote from it, leading to the poor initialization of some

of the nonlinear subproblems (See Figure 4-1).

2. The nonlinear subproblems insist on converging the equations of what might be an

incorrect subregion.

3. The MINLP remains as a rigorous, general purpose algorithm for problems where

discrete decision making cannot be avoided.

THE BOUNDARY CROSSINGALGORITHM

65

Besides the mixed-integer formulation, some alternative approaches exist which, in

principle, can avoid the need of discrete decisions. This chapter focuses on the

implementation of one such approach, a boundary crossing algorithm (Zaher, 1991).

Figure 4-1 MINLP approach to the solution of conditional models. Note
the jump from the liquid to the vapor region, leading to poor initial
conditions from which to converge the vapor model equations.

4.2 THE BOUNDARY CROSSING ALGORITHM

Zaher (1991,1995) introduced a boundary crossing algorithm as an alternative approach to

the solution of conditional models.

4.2.1 THE FORMULATION

In conditional models, the equations within each alternative set are confined to a subset of

the feasible region. In the boundary crossing algorithm, a set of boundary expressions of

the form is used to associate each set of conditional equations to each of the

subregions. Each boundary expression partitions the feasible region into two neighboring

subregions, each of the subregions characterized by either the satisfaction or non-

T = Tbubble

T=Tdew

liquid
subregion

vapor
subregion

x x
x x liquid-vapor

subregion
x
x
x

x
x

x
x x

x

b x() 0≥

THE BOUNDARY CROSSINGALGORITHM

66

satisfaction of the expression. Thus, each subregion in the feasible region is identified by

a unique combination of truth values for all of the boundary expressions. In this way, the

partitioning of the feasible region into subregions is combinatorial. Ifl is the number of

boundary expression (i.e. where), the number of subregions is 2l.

For most of the conditional models many of the subregions are meaningless. These

subregions, therefore, should be removed from the feasible region and no conditional

equations need to be associated to them. One must emphasize that the boundary

expressions are not inequality constraints but rather are used to associate values of the

modeling variables with the appropriate set of equations. A way of identifying a specific

subregion is by using a sets where . The sets contains the indices of the

boundary expressions which must be satisfied in order for the solution to reside in that

specific subregion. IfR is the set of all of the subsetss belonging to the feasible region

with whichm conditional equations are to be associated in the form , then the

conditional model can be formulated in the following disjunctive representation:

(4.1)

Note that, when the number of boundary expressions is zero, only one subregion is created

using and the previous formulation reduces to a conventional nonlinear system of

equations.

Since frequently a large number of equations are common to all of the subregions, it is

convenient to include those invariant equations outside the disjunction:

(4.2)

bi x() 0≥ i 1…l{ }∈

s 1…l{ }∈

r s x() 0=

∨
s R∈

bi x() 0 i s∈∀,≥

bi x() 0 i 1…l{ } s–∈∀,<

r s x() 0=

s ∅=

g x() 0=

∨
s R∈

bi x() 0 i s∈∀,≥

bi x() 0 i 1…l{ } s–∈∀,<

r s x() 0=

THE BOUNDARY CROSSINGALGORITHM

67

where now ismg dimensional and ismr dimensional such that .

 Note that the formulations given by (4.1) and (4.2) represent one disjunction over all of

the subregions in the feasible region of a conditional model. Such a global disjunctive

statement can be generated from the combination of all of the individual disjunctions in

the problem. However, it is not necessary to formulate the conditional model strictly in

the form given by (4.1) or (4.2) in order to solve it by using the boundary crossing

algorithm. As we describe in the following section, the boundary crossing algorithm

considers only the subregion in which the current point lies (if the current point lies inside

a subregion) or only the subregions in the neighborhood of a boundary (if the current point

lies at a boundary). In that way, a representation in which each individual disjunction is

explicitly formulated is also suitable. Such a representation is essentially the same as in

Equation (1.1). Note, however, that the domain of validity of the conditional equations

can be expressed in terms of a set of boundary expressions, as we do, instead of a set of

inequality constraints as given by Grossmann and Turkay (1996) in formulation (1.1).

4.2.2 THE SOLUTION ALGORITHM

The goal of a conditional model solver is to find a solution to the disjunctive system of

equations (4.2) (or to the system of equations (1.1)), a solution which consists in a vector

of variables satisfying the invariant set of equations and exactly one set of conditional

equations, providing that the truth values of the boundary expressions are consistent with

the set of variant equations constituting the solution.

The most popular iterative numerical techniques for the solution of a system of nonlinear

equations involve strategies designed to enforce descent of some objective function with

each iteration. This objective function is generally chosen as the square norm of the

residuals of the model equations, assuming the equations are all appropriately scaled.

Hence, for each subregions, the objective function is defined by:

(4.3)

g x() r s x() mg mr+ m=

φs x()

f
s

x()
g x()

r s x()
=

φs x()
1
2
--- f

s
T

x() f
s

x()⋅ ⋅=

THE BOUNDARY CROSSINGALGORITHM

68

In the boundary crossing algorithm, all of the points where the functionality is

nondifferentiable are characterized by boundary hyper-planes as given by the boundary

expressions . Therefore, the equations within each subregion form a continuous

and differentiable objective function. Hence, a Newton-based numerical technique may

find the solution when the initial point is internal to the correct subregion. On the other

hand, if one places the initial point inside an incorrect subregion, one could expect to

encounter a subregion boundary in a finite number of iterations.

According to the above discussion, the boundary crossing algorithm applies a Newton-like

step for all the points internal to a subregion, taking advantage of the superlinear

convergence feature of such a step. If during the iterative process a boundary is reached,

then a Newton-like step cannot be taken because of the nondifferentiability of the

objective function at that point. A boundary crossing based on gradient methods (using

linear order convergence methods) takes place instead. Once off the boundary, the

superlinear convergence steps resume possibly using a new set of equations. Figure 4-2

illustrates the boundary crossing algorithm.

Figure 4-2 The boundary crossing algorithm in a simple flash equilibrium
calculation.

b x() 0≥

T = Tbubble

T=Tdew

liquid
subregion

vapor
subregion

x x
x x x x

x
x
x

x

x
x

x

liquid-vapor
subregion

GRADIENT STEP
NEWTONSTEP

THE BOUNDARY CROSSINGALGORITHM

69

4.2.2.1 Boundary Crossing

In the boundary crossing algorithm, because of the lack of differentiability at a boundary,

an analogue of the steepest descent vector is derived in order to advance the solution

progress into the correct subregion.

While solving continuous and differentiable models, the steepest descent direction at some

point with valuesa for the variables is in the opposite direction of the gradient of the

objective function at that point. Hence, a vectord with a direction of steepest descent

direction is a vector which solves the following problem:

(4.4)

When a descent direction exists at , the solution vectord has the same direction as

 but it is of unit length. In other words, the steepest descent direction for a

differentiable function is the direction which yields a minimum in the directional

derivative.

For a conditional model, each subregion has a different value for the directional derivative

at a boundary. For that case, Zaher (1991) defines the directional derivative as the

maximum over all of the directional derivatives. IfB is the set of all of the subregions in

the neighborhood of a boundary, then the directional derivative for the problem at such

boundary is given by:

(4.5)

Hence, the minimum of this directional derivative constitutes the steepest descent

direction at the boundary:

(4.6)

min φx∇ a()
T

d⋅

d
T

d⋅ 1≤s.t.

a

φx∇– a()

max φix∇ a()
T

d⋅

i B∈s.t.

min
max φix∇ a()

T
d⋅

i B∈ 
 
 

d
T

d⋅ 1≤

s.t.

s.t.

THE BOUNDARY CROSSINGALGORITHM

70

The definition of directional derivative given by (4.5) aims for a descent direction with

respect to all of the subregions neighboring the boundary. By doing that, one will prevent

a cycling situation in which a loop of connected subregions are visited continually.

The problem given by (4.6) is recognized as a mini-max problem. Because of the

convexity of this problem, one can derive the dual problem to obtain:

(4.7)

wheree is a vector with all its elements equal to one andN is a matrix whose columns are

the vectors of gradients of the subregions in the neighborhood of the current boundary.

That is, columni of N is the vector . Also, bothe andα are vectors with

dimension equal to the number of subregions neighboring the current boundary. The

derivation of equation (4.7) from (4.6) has been described by Zaher (1991,1995) and it is

given in Appendix B. If the gradients of all of the neighboring subregions cannot be

confined to one side of the boundary hyper-plane, the result of (4.7) is a minimum of zero

and we terminate the algorithm. We terminate because no descent direction with respect to

all the neighboring subregions has been found. Otherwise, If the result of (4.7) is nonzero,

the linear combination of the elements of the vectorα is used to generate the steepest

descent direction, along of which one should move away from the boundary.

4.2.2.2 Assumption of Continuity in the Boundary Crossing Algorithm

In the boundary crossing algorithm, one has to assume the continuity of the conditional

model. In conditional models, continuity is ensured as follows: if the solution to the

equations of an arbitrary subregion lies on a boundary hyperplane, then that solution must

satisfy the equations of all of the subregions neighboring that boundary.

The reason for this assumption of continuity is best described by analyzing Figure 4-3.

Figure 4-3 presents two cases in which continuity is not preserved in the conditional

model and discovers the potential difficulties of such cases. In case (a) there is no solution

min d
T

d⋅
d N– α⋅=

e
T α⋅ 1=

αi 0≥ i B∈∀,

s.t.

φix∇ a() i B∈∀,

THE BOUNDARY CROSSINGALGORITHM

71

to the problem, and in case (b) the conditional model has two solutions. Note that, in both

cases in Figure 4-3, the vectors of gradients of the subregions neighboring the boundary

are of opposite direction at the point(x=10,y=7.5). If we solve problem (4.7) for such a

point at the boundary, the solution of (4.7) would be zero in both cases, and the boundary

Figure 4-3 Vectors of gradients are of opposite direction at a boundary.

y= 20 -x

y = 15 -x

y

x
10

y = 0.75 x

NO SOLUTION

(a)

y= 20 -x

y = 15 -x

y

x
10

y = 27.5 -2x

2 SOLUTIONS

(b)

(10,7.5)

(10,7.5)

IMPLEMENTATION IN AN EQUATION BASED

72

crossing algorithm would terminate. Hence, for the case (b), the boundary crossing

algorithm would terminate without finding any of the two existing solutions to the

conditional model. A possible cure for this complication would be to search in each

neighboring subregion for a solution interior to any of them. Such an approach has been

considered throughout this research, but it is not yet a part of the implementation that we

describe in this Chapter.

4.3 IMPLEMENTATION IN AN EQUATION BASED

ENVIRONMENT

In this section, we present some of the details of the implementation of the boundary

crossing algorithm in an equation-based environment.

In Figure 4-4, we show a flowsheet of the main activities that a solver applying the

boundary crossing algorithm must perform. Given the initial guess for the model

variables, the algorithm starts by evaluating the logical boundary expressions in order to

determine whether that initial guess resides on a boundary hyper plane or it is internal to

any of the subregions:

• If the point resides on a boundary, a gradient step has to be calculated. In order to do

that, the equations and variables of all of the subregions neighboring the boundary

have to be identified and differentiated. The problem given by (4.7) is then generated

and solved to obtain the steepest descent direction. If the result of (4.7) is a minimum

of zero, then the algorithm terminates concluding that no descent direction could be

found for the current point on the boundary. If the solution of (4.7) is nonzero, then

the gradient step is taken. After this step, it is necessary to verify if one or several

boundaries have been crossed. If so, the gradient step is reduced until the problem lies

exactly on the first boundary crossed, and a gradient step must be calculated for the

new boundary. If no boundary has been crossed, the algorithm proceeds to identify the

variables and equations of the current subregion and a nonlinear conventional

technique is the used to move towards the solution as explained below.

• If the point does not reside on a boundary, it is necessary to identify the current

IMPLEMENTATION IN AN EQUATION BASED

73

subregion. That means that we need to identify the equations and variables

constituting the problem. The algorithm assumes that the starting point corresponds to

a subregion for which the system of equations are defined, i.e. the initial subregion is

feasible. An iterative technique is then used in order to generate a Newton-like step

towards the solution. After each step, one needs to verify if some of the boundaries

have been crossed. If no boundary has been crossed, the numerical technique

continues the iterative process in the current subregion until the convergence criteria

is satisfied (termination of the algorithm) or until a boundary is encountered. When a

boundary has been crossed, the length of the Newton-like step has to be reduced until

the system resides exactly on the boundary, and then a boundary crossing has to be

performed by using a gradient step as explained above.

An efficient implementation of this algorithm in an equation-based environment is hard

for the following reasons:

1. The implementation requires the incorporation of modeling tools which enables the

user of an equation-based environment to represent conditional models. Mainly, these

modeling tools have to be capable of representing alternative sets of equations and the

logical conditions given by the boundary expressions.

2. The boundary crossing algorithm involves the performance of several different tasks,

including logical analysis, periodic reconfiguration of the equations and variables of

the system (switching among alternative subregions), performance of a Newton-like

step (which requires the incorporation of a conventional nonlinear technique) and

performance of a gradient step (which requires the solution of an optimization

problem). Thus, in the implementation of this technique one has to provide the

numerical and algorithmic tools needed to execute each of the previous tasks and to

integrate them in a procedural solving engine.

IMPLEMENTATION IN AN EQUATION BASED

74

Figure 4-4 Flowsheet of the boundary crossing algorithm implementation.

Start

Does the current
point lie at a
boundary ?

Solve Logical
Boundary Expressions

Identify subregions
neighboring the boundary

Calculate gradients of
objective functions of the
neighboring subregions

Set up Optimization Problem (4.7)

Solve Optimization Problem

Nonzero
Solution ?

Exit

Solution at
Boundary

Apply Gradient Step

Solve Logical
Boundary Expressions

Was a boundary
crossed ?

YES

NOYES

Identify current subregion

Calculate Newton step
inside the current subregion

Apply Newton Step

Solve Logical
Boundary Expressions

Was a boundary
crossed ?

Solution ?

YES

NO

Exit

Solution inside
a Subregion

NO

YES

YES

NO

Return to first
boundary
crossed

No Solution
or

Termination:

No. of iterations
> maximum ?

YES
Exit

No Solution
could be foundNO

IMPLEMENTATION IN AN EQUATION BASED

75

4.3.1 THE MODELING TOOLS

We use the modeling tools described in Chapter 2, which allow the representation of

conditional models in an equation based environment Those modeling capabilities meet

the representation needs of the boundary crossing algorithm:

1. Boundary expressions can be represented by combining theCONDITION statement and

logical relations.

2. Alternative sets of model equations can be represented by using theWHEN statement.

4.3.2 THE SOLVING ENGINE

We implement our conditional modeling solver in a server-client, object-oriented

architecture. Figure 4-5 describes this implementation. This conditional modeling solver

(CMSlv) is in charge of the reconfiguration of the appropriate sets of equations and

variables at each step of the algorithm, convergence tests, and the generation of the

optimization subproblem when the system resides on a boundary. In addition, the

conditional modeling solver is also in charge of the management of external entities. Such

external entities are in charge of executing some of the specific tasks that the algorithm

requires. Particularly, calls to external entities are done for the execution of:

1. The analysis of logical boundary expressions.

2. The calculation of a step inside a subregion (Newton-like superlinear iterative

technique).

3. The calculation of a gradient step by solving an optimization subproblem.

In the remainder of this section, we will describe in more detail each of these tasks as well

as the external entities we created or used to provide support to the conditional solver

CMSlv.

4.3.2.1 Logical Analysis

The domain of validity of the alternative sets of equations in the boundary crossing

algorithm is given in terms of the truth value of a set of logical boundary expressions.

Hence, logical expressions have to be constantly evaluated during the iterative solution

scheme. In order to perform this task, we created the logical solver LRSlv.

IMPLEMENTATION IN AN EQUATION BASED

76

Figure 4-5 Object-oriented architecture of the boundary crossing
implementation.

LRSlv has been incorporated into theASCEND modeling environment. TheASCEND

modeling language allows a logical boundary expression to be represented in terms of a

combination of:

• Boolean variables.

• Boolean operators.

• The truth value of conditions expressed in term of real variables.

NONLINEAR SOLVER O P T I M I Z E R

(QRSlv) (CONOPT)

CONDITIONAL MODEL

Newton
Step

Gradient
Step

SOLVER (CMSlv)

☞ Set up of optimization problem

Configuration of the system

☞ Solver manager

☞ Convergence test

LOGICAL SOLVER

(LRSlv)

Solution of Logical
Expressions

☞ Identification of subregions and

IMPLEMENTATION IN AN EQUATION BASED

77

Hence, the logical solver LRSlv has been implemented in such a way that it is able to

handle this type of flexibility. Figure 4-6 shows the flowsheet of the activities performed

by LRSlv. In this implementation, we assume that we can explicitly evaluate all the

boolean variables in some precedence order. In other words, LRSlv does not perform

logical inference. Therefore, while finding the value of a boolean variable, we require the

truth values of all the boolean variables and conditions on which each boolean variable

depends to have been previously given or previously evaluated. Also, we assume that we

can evaluate at any time the truth value of a condition expressed in terms of real variables.

Both of our assumptions are met when the boundary crossing algorithm is being used to

solve conditional models. LRSlv has also been attached as an external entity providing

support to CMSlv as explained above.

Figure 4-6 Implementation of the logical solver LRSlv.

Start

YESNO

Collect boolean variables
and logical relations

Create incidence matrix

Perform output assignment

Is there a
block containing
several relations ?

Exit

Evaluate boolean
variables in the

precedence order
determined

Solution

Exit

LRSlv does not perform
logical inference

IMPLEMENTATION IN AN EQUATION BASED

78

4.3.2.2 Configuration of the System of Equations

The conditional solver CMSlv is capable of determining whether the current point resides

on a boundary or is internal to any of the subregions. If the point is internal to any of the

subregions, CMSlv must identify the equations and variables constituting the problem in

that specific subregion. To perform this task, CMSlv uses the notion of an active equation

and an active variable. By active we mean “it is part of the problem currently being

solved.” Computationally speaking, to set a relation as active or inactive implies a simple

bit operation. A consistent mechanism to select the structure of the system inside a

specific subregion was described in Chapter 2. That mechanism is used in this

implementation.

4.3.2.3 Conventional Nonlinear Solver: Newton-like Step

When the values of the variables of the model correspond to a point internal to any of the

subregions, the boundary crossing algorithm requires the calculation of a Newton-like

step. CMSlv calls an external solver to perform this task. We do not impose any

restrictions for the selection of this external solver. CMSlv can be able to interact with any

solver which is able to calculate a step based on derivative and function evaluations and on

the structural information of the system of equations. In the current implementation of

CMSlv, the Newton-like step is calculated by theASCEND nonlinear solver QRSlv

(Westerberg, 1989). In order to enforce the descent of the objective function local to the

subregion, QRSlv uses the modification to the Levenberg-Marquardt algorithm given by

Westerberg and Director (1979).

4.3.2.4 Setting Up the Optimization Subproblem

When CMSlv determines that the current point of the system resides on a boundary, a

gradient step has to be calculated by solving an optimization subproblem. Setting up this

optimization subproblem requires the calculation of the gradients of the objective

functions of all of the subregions neighboring a boundary. It results in a system of

equations which is quite different from the system of equations of any of the subregions of

the original problem. That implies that the data structures required to provide the

information about this optimization subproblem have to be dynamically created and

destroyed. In addition, in order to minimize the number of function and gradient

IMPLEMENTATION IN AN EQUATION BASED

79

evaluations employed for setting up each optimization subproblem, it is necessary to

identify the invariant set of equations (if there is one) and to avoid multiple evaluations for

those equations. Figure 4-7 presents the flowsheet of the activities performed by CMSlv

while setting up an optimization subproblem at a boundary.

4.3.2.5 Solution of Optimization Subproblems: Gradient Step

After CMSlv has created the optimization subproblem at a boundary, this subproblem is

solved with a call to another external entity. This time, the external solver must be an

optimizer. Once again, there are no limitations in the implementation of CMSlv as to

which optimizer should be used. The current implementation interacts with the subroutine

CONOPT (Drud, 1985), which uses a reduced gradient approach to the solution of the

optimization problem. CMSlv provides the values of the derivatives of the linear

constraints (elements of the vectors of gradients of the objective functions), the residual of

these constraints, and the derivatives and values of the objective function.CONOPT (like

QRSlv in the case of the calculation of the Newton-like step) is considered a black box

which provides the gradient step based on that information.

4.3.2.6 Termination

Termination of the algorithm can occur on a point internal to any subregion or on a point

residing on a boundary. It occurs on a boundary when the result of the optimization

subproblem is zero, or occurs internal to a subregion when the norm of the residuals of the

equations in that subregion is less than a specified tolerance. CMSlv is in charge of the

convergence test after both the gradient step and the Newton-like step.

4.3.2.7 About CMSlv

Besides tasks like the reconfiguration of the system, termination tests, setting up of the

optimization problem, etc., CMSlv implements the logic of the algorithm and interacts

with the external solvers. It provides the information required by the external solvers

(LRSLv, QRSlv and CONOPT) and processes the results obtained from the calls to them.

The conditional modeling solver (CMSlv) and the logical analyzer (LRSlv) have been

attached to theASCEND environment.

IMPLEMENTATION IN AN EQUATION BASED

80

Figure 4-7 Setting up the optimization subproblem.

Start

Determine number of
subregions S neighboring the

boundary(ies)

Identify invariant equations

Calculate the terms of the

corresponding to the invariant
equations

gradient of the objective functions

Loop
J=1, S

Identify variant equations
for subregion J

Calculate the terms of the

J corresponding to the variant
equations

gradient of the objective function

Add the invariant and variant
terms to obtain the vector of

gradients of the objective
function for subregion J

J = J + 1

Loop

Based on the number of subregions

by the optimization subproblem
model, create the data structure required

and in the number of variables in the

The vectors of gradients provide
the linear coefficients for the

constraints in the optimization
subproblem

Exit

ILLUSTRATIVE EXAMPLES

81

4.4 ILLUSTRATIVE EXAMPLES

We have modeled and solved several examples of conditional models found in the

literature by using theASCEND modeling language and our implementation of the

boundary crossing algorithm. Here we give a detailed description of each of these

examples. Also, in Appendix C we show a representative section of theASCEND model

for each of the examples.

EXAMPLE 4-1 Fluid transition (Zaher, 1995).

This example describes the flow of a compressible gas in an adiabatic frictional circular

pipe of constant diameter. Nonsmooth functionality occurs due to the possible transition

between sonic-subsonic flow at the outlet of the pipe. The alternatives for the solution of

the problem are represented by:

in which one of the terms corresponds to sonic flow (Match numberMf=1) and the other

to subsonic flow (Pd=Pf). The equations describing the thermodynamics are omitted for

simplicity and can be found in Zaher (1995). This example corresponds to a simplest case

of a conditional model, which involves only one boundary expression (and, therefore, only

21=2 subregions) and contains only one conditional equation in each alternative set of

variant equations.

EXAMPLE 4-2 Phase equilibria (Zaher, 1995).

An isothermal flash is applied to a ternary system involving benzene, ethanol and water.

According to the phase diagram of this mixture and, depending on the values of pressure

and temperature, three phases can be expected to exist simultaneously, an aqueous liquid

phase, an organic liquid phase, and a vapor phase. The existence or nonexistence of each

phase can be represented as a conditional statement. For instance, to represent the

existence of the aqueous phase, the following statement applies:

Pd Pf– M f 1–<

M f 1– 0=

Pd Pf– M f 1–≥

Pd Pf– 0=
∨

ILLUSTRATIVE EXAMPLES

82

as obtained by Michelsen (1982) and Zaher(1995). For a phase A,φA represents the

fraction of the phase andyA is a vector representing the compositions. Since there are

three possible phases, we require three disjunctions to represent the behavior, which

means that our search space contains23=8 subregions.

EXAMPLE 4-3 Heat exchanger (Zaher, 1995).

A very detailed explanation of this example can be found in Zaher (1995). It represents a

case in which a conditional model contains differential equations that have to be

integrated. The approach suggested is to discretize the differential equations and treat the

problem as a conditional model with only algebraic equations. To accomplish this, Zaher

(1995) introduced a “relay” method: the point in the domain of integration where

transition occurs is continuously passed along, as a baton in a relay race, from one element

to another by successive contractions and expansions of the individual elements.

Switching stations at which the analogous baton transfer occurs must first be positioned.

This example is introduced in Figure 4-8. Three finite elements are chosen with one

switching station. To outline the three elements, four positions referenced by the indices

{0...3} are used. The domain of integration is transformed to the dimensionless variableη

which varies from zero to one. The difficulty with this model is that, in addition to solving

for the temperature profile, the dimension of the finite elements are to be solved for as

well.

Zaher (1995) shows that the three cases shown in Figure 4-8 can be represented as a

conditional model including the following disjunctive statement:

yi A
i C∈
∑ φA+ 1<

φA 0=

yi A
i C∈
∑ φA+ 1≥

yi A
i C∈
∑ 1=

∨

ILLUSTRATIVE EXAMPLES

83

whereφ represents the fraction of the hot stream which is condensed andx is a vector

representing the composition of the condensation droplets. As described above, the four

Figure 4-8 Alternative heat exchanger temperature profiles.

xi0
i C∈
∑ φ0+ 1<

xi2
i C∈
∑ φ1+ 1<

φ0 0=

η1 0=

η2 0.5=

φ1 0=

xi0
i C∈
∑ φ0+ 1≥

xi2
i C∈
∑ φ1+ 1<

xi0
i C∈
∑ 1=

xi1
i C∈
∑ 1=

η2 0.5=

φ1 0=

xi0
i C∈
∑ φ0+ 1≥

xi2
i C∈
∑ φ1+ 1≥

xi0
i C∈
∑ 1=

xi1
i C∈
∑ 1=

η1 0.5=

xi2
i C∈
∑ 1=

∨ ∨

a) Condensation does not occur b) Condensation between the outlet of

c) Condensation between the inlet of

0.0 0.5 1.0 0.0 0.5 1.0

0.0 0.5 1.0

cold

hot

cold

hot

cold

hot

η η

η

Temperature

Temperature

 the shell and the switching station

 the shell and the switching station

Temperature

ILLUSTRATIVE EXAMPLES

84

positions are referenced by the indices {0...3}. There are 2 boundary expressions in the

model which would involve 4 subregions. However, one of the subregions is infeasible

and can be eliminated from the search space.

EXAMPLE 4-4 Pipeline network (Bullard and Biegler, 1992).

Consider the pipe network shown in Figure 4-9 solved previously by Bullard and Biegler

(1992). This problem can be described by the system of equations:

The first equation is a flow balance around each node, the second is the Hazen-Williams

relation for pipes with no valve, and the third is the relation between pressure drop and

flowrate. Notice that an equivalent disjunctive representation for the Hazen-Williams

relations can be given by:

All pipes are 100 ft long, 6 inches in diameter and with a roughnessε = 0.01 in, and the

fluid is water:ρ = 62.4 lbm/ft3,µ = 1 cP. Pressures and inflow/outflow rates

specifications are given in Table 4-1. Rates not specified are equal to zero (except the one

in node 17 which is an unknown). Pressures not specified are unknowns in the problem.

The starting point and converged flowrates are given in Table 4-2.

Qij
j

∑ Qji
j

∑+ wi=

Hij K sign Qij() Qij
2⋅ ⋅=

K Qij
2⋅ 0=

Hij 0≤

K Qij
2⋅ Hij=

Hij 0≥
∨

Qij 0≥

node∀ i

arc∀ ij without valve

arc∀ ij with valve

arc∀ ij with valve

Hij Pi Pj–= arc∀ ij

Hij K– Qij
2⋅=

Qij 0≤

Hij K Qij
2⋅=

Qij 0≥
∨ arc∀ ij without valve

ILLUSTRATIVE EXAMPLES

85

Figure 4-9 Pipeline network with five check valves.

Since the problem contains 38 pipes, and, therefore, 38 boundaries are defined, the search

space is constituted by 238=2.748779x1011 potential subregions. Hence, this example

represents a case in which the combinatorial nature of the problem could have a severe

effect in the performance of the boundary crossing algorithm.

Table 4-1 Pressures and inflow/outflow rates for Example 4-4.

Node No. Pressure P (psig) Inflow rate w (gpm)

1 897.6

7 1570.9

11 -897.6

17 0

20 -448.8

22 673.2

1 172 3 11 12 16

6

7

5

8

9

4

10

22

14

13
15

19

21

20
18

2

1 18

38

11
37

35

34

13 12

19

36

33
16

20

3 4

21
22

5

15

24

6

25

26 27

30 31

9

17

10
32

28

14

29

23 7 8

ILLUSTRATIVE EXAMPLES

86

Table 4-2 Starting point and converged flowrates for Example 4-4.

Pipe No.
Estimated flow

Q(0) (gpm)
Converged flow

Q* (gpm)

1 -48.5 -223.345

2 -640.7 -894.840

3 393.2 520.818

4 538.9 883.254

5 -32.3 -435.573

6 490.2 180.240

7 649.2 533.254

8 904.7 877.652

9 112.2 315.876

10 232.5 602.421

11 402.3 541.160

12 -420.4 -229.091

13 687.3 585.972

14 621.7 701.302

15 -719.2 0.0

16 52.7 -273.643

17 1199.0 -1303.723

18 305.4 226.105

19 582.8 943.137

20 -247.5 -374.022

21 -145.7 -362.435

22 -684.6 -954.723

23 293.6 504.804

24 -261.3 -255.153

25 -229.0 180.420

26 -395.1 407.123

27 -254.8 -344.398

28 -268.9 -216.346

29 -890.6 -917.648

30 120.3 286.546

31 -8.1 132.925

32 -344.7 0.0

33 473.1 356.88

34 -206.2 0.0

35 -275.0 -443.768

36 351.5 44.552

37 -481.2 -443.768

38 353.9 317.815

ILLUSTRATIVE EXAMPLES

87

EXAMPLE 4-5 Simple L-V flash calculation (King, 1980).

This situation corresponds to a simple equilibrium calculation as given by King (1980).

Basically, the problem consists of finding a solution to the well known Rachford-Rice

equation:

In the presence of two phases in equilibrium, the iterative calculation involves applying a

convergence procedure until a value ofV/F is found such thatf(V/F) = 0. However, it

may well happen that the specifications of the problem do not correspond to a system with

two phases present. For the case of a Liquid-Vapor equilibrium, King proposes the

following criteria to differentiate among the different cases: f(V/F) will be positive at

V/F=0 and negative at(V/F)=1. Therefore, iff(V/F) is negative atV/F=0, the system is

subcooled liquid. Iff(V/F) is positive atV/F=1, the system is superheated vapor. This

behavior can be represented in term of the following disjunctive statement:

For testing the proposed formulation, we took a mixture 20% of butane, 50% of pentane

and 20 % of hexane, at 10 atm, and performed simulations for a broad range of

temperatures (150 K to 890 K).

xi

zi

Ki 1–() V F⁄()⋅ 1+
--= yi

Ki zi⋅
Ki 1–() V F⁄()⋅ 1+

--=

yi
i

∑ xi
i

∑– 0= f V F⁄()
zi Ki 1–()⋅

Ki 1–() V F⁄()⋅ 1+
--

i
∑ 0= =

V F⁄ 0=

R 0≤
V F⁄ R=

0 R 1≤ ≤
V F⁄ 1=

R 1≥
∨ ∨

zi Ki 1–()⋅
Ki 1–() V F⁄()⋅ 1+

--
i

∑ R V F⁄–=

ILLUSTRATIVE EXAMPLES

88

EXAMPLE 4-6 Linear mass balance (Grossmann and Turkay, 1996).

This example, illustrated in Figure 4-10, represents a problem in which each of the six

processing units interconnected in a flowsheet contains three operating regions, each

region with a different mass balance coefficient in terms of the main product flowrate. The

mass balance coefficients and the bounds for each of the flowrates are shown in Table 4-3.

Because of the three operating regions, the disjunctive linear mass balance for each of the

units is represented by a disjunction containing 3 disjunctive terms. For instance, for the

case of unit operation 1, we have:

The search space is constituted by 729 subregions. Also, the set of invariant equations as

well as all of the sets of conditional equations contain only linear equations. Therefore,

the equations in each subregion are all linear. The starting point used in this work and the

converged values of the flowrates are shown in Table 4-4.

Figure 4-10 Processing units for Example 4-6.

F6 1.1 F7⋅=

F10 0.05 F7⋅=

0 F7 50≤ ≤

F6 1.15 F7⋅=

F10 0.1 F7⋅=

50 F7 80≤ ≤

F6 1.2 F7⋅=

F10 0.2 F7⋅=

80 F7 150≤ ≤

∨ ∨

1

4

2

5

3

6

F1 F6 F7 F8

F2

F4

F5F14F13F12

F3

F10
F11

F9

NUMERICAL RESULTS

89

4.5 NUMERICAL RESULTS

In all of the examples, the initial values of the variables correspond to an incorrect

subregion. We do that in order to test the ability of the algorithm for crossing boundaries

until finding the correct subregion and iterating until obtaining the solution to the problem.

Examples 1 through 3 were introduced by Zaher(1995). In that work, Zaher solves

example 1 and 3 as optimization problems in order to test the performance of his approach

to sequential quadratic programming. In this work we solve those problems as simulation

Table 4-3 Material balance equations for units in Example 4-6.

Unit
Main

Product
Interval

Lower
Bound

Upper
Bound

Mass Balance
Coefficient

1 F7 1

2

3

0

50

80

50

80

150

F6: 1.10 F10: 0.05

 1.15 0.10

 1.20 0.20

2 F8 1

2

3

0

50

100

50

100

150

F2: 0.50 F7: 0.80

 0.47 0.75

 0.45 0.70

3 F4 1

2

3

0

50

110

50

110

180

F8: 1.70 F9: 0.67

 1.80 0.70

 1.87 0.75

4 F13 1

2

3

0

50

90

50

90

140

F3: 1.18 F12: 0.23

 1.15 0.25

 1.10 0.30

5 F14 1

2

3

0

40

80

40

80

130

F11: 0.37 F13: 1.20

 0.35 1.25

 0.30 1.30

6 F5 1

2

3

0

20

45

20

45

75

F14: 1.15

 1.10

 1.02

NUMERICAL RESULTS

90

problems by eliminating the objective function and defining fixed values for the degrees of

freedom.

The number of iterations that we used to obtained the solution of each of these examples is

shown in Table 4-5. Some observations are:

• The fixed parameters and constants for examples 1 through 3 are the same as those

given by Zaher (1995).

• For the fluid transition problem, the number of iterations reported corresponds to a

diameter of 5 cm.

• For the example of the heat exchanger, the number of iterations reported is for an area

Table 4-4 Starting point and converged flowrates for Example 4-6.

Stream
Starting Point
(lbmole/hr)

Converged Value
(lbmole/hr)

F1 47.50 47.50

F2 21.25 19.85

F3 69.00 57.75

F4 25.00 23.35

F5 50.00 36.52

F6 37.50 34.94

F7 34.00 31.76

F8 52.50 39.70

F9 16.75 15.65

F10 1.700 1.58

F11 16.80 14.06

F12 15.00 12.55

F13 60.00 50.22

F14 48.00 40.17

CONCLUSIONS

91

equal to 379.12 ft2 and flowrate of cooling water equal to 1104.31 lbmole/hr.

• For the simple flash calculation, the number of iterations reported is for a temperature

of 200 K (liquid phase region).

As expected, the combinatorial complexity of the example of the pipeline network

(2.748779x1011 possible subregions) affects the effectiveness of the boundary crossing

algorithm. The solution path performed 44 boundary analyses. Thus with 106 iterations,

the average number of Newton steps per region entered is only of the order of two. For the

rest of the examples, the algorithm performance is very encouraging. For the linear mass

balance example, the number of possible subregions is 729, but the fact that the equations

are linear facilitates the convergence of the algorithm. An advantage of the boundary

crossing implementation is the problem size. Note the number of equations inside each

subregion is always the minimum, and it is not affected by the combinatorial nature of the

problem.

4.6 CONCLUSIONS

Following a brief description of the boundary crossing algorithm, we have described the

Table 4-5 Solving conditional models by using the boundary crossing algorithm.

Example Reference
Number of
Equations

Number of
Disjunctions

Number of
boundary
analyses

 Number
of

Iterations

Flow Transition
(sonic-subsonic)

Zaher (1995) 5 1 1 10

Phase Equilibria Zaher (1995) 12 3 5 17

Heat exchanger Zaher (1995) 48 2 1 8

Pipeline network Bullard and
Biegler (1992)

98 38 44 106

Simple L-V flash King (1980) 15 1 1 12

Linear mass balance Grossmann and
Turkay (1996)

13 6 2 8

CONCLUSIONS

92

details of its practical implementation. The conditional modeling solver CMSlv is based

on an server-client, object-oriented architecture. CMSlv executes a number of activities

including:

• Configuration of the systems of variables and equations consistent with the restrictions

imposed by the boundary expression.

• Creation of optimization subproblems at boundaries.

• Managing the logic of the algorithm

• Performing termination tests.

• Managing the interaction with external solvers; LRSlv for logical analysis, QRSlv for

iterating within a subregion andCONOPT for the solution of the optimization

subproblems at boundaries.

The CMSlv and LRSlv solvers have been attached to theASCEND environment, whose

modeling language provides the tools required for the representation of conditional

models in an equation oriented manner. Finally, the modeling and solution of a number of

examples show the scope of application of the algorithm and reveal its encouraging

performance.

REFERENCES

93

4.7 REFERENCES

Allan, B. A.; A More Reusable Modeling System; Ph.D. thesis, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,1997.

Bullard, L. G. and Biegler, L. T.; Iterative Linear Programming Strategies for Constrained
Simulation.Comput. Chem. Eng., 15(4):239–254, 1991.

Bullard, L. G. and Biegler, L. T.; Iterated Linear Programming Strategies for Nonsmooth
Simulation: Continuous and Mixed-Integer Approach.Comput. Chem. Eng.,
16(10), 1992

Drud, A.; CONOPT: A GRG Code for Large Sparse Dynamic Nonlinear Optimization
Problems.Mathematical Programming, 31, 153-191, 1985.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

King, C. J.; Separation Processes, Chemical Engineering Series, 2nd. Edition,
McGrawHill, 77-79, 1980.

Raman, R. and Grossmann, I. E.; Symbolic Integration of Logic in Mixed-Integer Linear
Programming Techniques for Process Synthesis.Comput. Chem. Eng.,
17(9):909–927, 1993.

Raman, R. and Grossmann, I. E.; Modeling and Computational Techniques for Logic
Based Integer Programming.Comput. Chem. Eng., 18(7):563–578, 1994.

Turkay, M. and Grossmann, I. E.; Logic-Based MINLP Algorithms for the Optimal
Synthesis of Process Networks. Comput. Chem. Eng., 20(8):959–978, 1996.

Westerberg, A.W., Abbott, K. A., and Allan, B. A.; Plans for ASCEND IV: Our Next
Generation Equational-Based Modeling Environment. Boston,
Massachusetts, November 1994. AspenWorld’94.

Westerberg, A. W. and Director, S. W.; A Modified Least Square Algorithm for Solving
Sparse n x n Sets of Nonlinear Equations. Technical report, Carnegie Mellon
University, Engineering Design Research Center, EDRC-06-5-79, January
1979.

Westerberg, K.M.; Development of Software for Solving Systems of Nonlinear Equations.
Technical Report. Carnegie Mellon University, Engineering Design
Research Center, EDRC 05-36-89, 1989.

Zaher, J. J.; Conditional Modeling. Ph.D. thesis, Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1995.

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The
Annual AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Programming. The Annual AIChE National Meeting, March
1993.

94

CHAPTER5 A COMPLEMENTARITY

FORMULATION

In this chapter, we investigate the solving of conditional models using a complementarity

formulation for representing algebraic systems of disjunctive equations. This formulation

not only establishes the complementarity condition among equations belonging to

different disjunctive terms but also enforces simultaneous satisfaction of all of the

equations appearing within the same disjunctive term. This approach represents an

alternative to MINLP formulations, avoiding discrete decisions; it also avoids the need for

special procedural nonlinear techniques as required by the boundary crossing algorithm.

We identify the advantages and disadvantages associated with the proposed formulation.

The proposed complementarity representation performed reliably on several example

problems where the number of equations in each disjunctive term is small.

COMPLEMENTARITY APPROACH

95

5.1 COMPLEMENTARITY APPROACH

Over the last thirty years, the class of problems known as complementarity problems has

become increasingly popular as a tool for addressing practical problems arising in

mathematical programming, economics, engineering, and the sciences (Billups, 1995;

Ferris and Pang, 1995). Several works have documented the basic theory, algorithms and

applications of complementarity problems. Dirske and Ferris (1995b) give examples of

how to formulate many popular problems as mixed complementarity problems (MCP).

Billups (1995) describes the standard forms for the different classes of complementarity

problems and proposes strategies which enhance the robustness of Newton-based

methods for solving these problems. More (1994) formulates the complementarity

problem as a nonlinear least square problem and gives convergence properties for his

approach. In this chapter, we describe an extension to the standard complementarity

formulation (Billups, 1995) for the representation of conditional models.

5.2 PROBLEM FORMULATION

In general, the nonlinear complementarity problem is expressed as the following set of

equations and inequality constraints:

(5.1)

where n is the dimensionality of the vectorsx andr(x). There is certain lack of symmetry

in formulation (5.1). One of the functions is quite arbitrary while the other is the vector of

variables. Many commonly occurring problems have a more general form:

(5.2)

which is called the vertical nonlinear complementarity problem (Ferris and Pang, 1995).

It is possible, of course, to have more than two vectors of functions in the above equations:

xj r j x()⋅ 0=

xj 0≥ r j x() 0≥

j 1…n{ }∈∀

r1 j
x() r2 j

x()⋅ 0=

r1 j
x() 0≥ r2 j

x() 0≥

j 1…n{ }∈∀

PROBLEM FORMULATION

96

(5.3)

For the case of asingle conditional equation in a disjunctive statement, there exists an

equivalent representation by using a standard complementarity formulation as follows:

(5.4)

A typical example of this equivalence can be found while representing the

complementarity equations arising from the Karush-Kuhn-Tucker conditions of an

optimization problem. There are also cases in which physicochemical transitions are

complementary in nature and can be represented by such a formulation. For instance, the

adiabatic compressible flow described by Zaher (1995) can be represented by an

equivalent complementarity representation:

(5.5)

On the other hand, if the disjunctive statement hasmore than one equation in each

disjunctive term, as the example of the heat exchanger given also by Zaher (1995), the

standard complementarity formulation is not equivalent to the disjunctive representation:

(5.6)

Notice that in the disjunctive representation all the equations belonging to the same

r1 j
x() r2 j

x()…r kj
x() 0=⋅

r i j
x() 0≥ i 1…k[]∈∀ j 1…n{ }∈∀,

r i gi x()+ 0<

r i 0=

r i gi x()+ 0≥

gi x() 0=
∨

r i gi x()⋅ 0=

r i 0≥ gi x() 0≤
⇔

Pd Pf– M f 1–<

M f 1– 0=

Pd Pf– M f 1–≥

Pd Pf– 0=
∨

M f 1–() Pd Pf–()⋅ 0=

M f 1≤ Pf Pd≥
⇔

xi2
i C∈
∑ φ1+ 1<

φ1 0=

η2 0.5=

xi2
i C∈
∑ φ1+ 1≥

xi2
i C∈
∑ 1=

η1 0.5=

∨

φ1 xi2
i C∈
∑ 1– 

 ⋅ 0=

η2 0.5–() η1 0.5–()⋅ 0=

φ1 0≥ xi2
i C∈
∑ 1≤

⇔

PROBLEM FORMULATION

97

disjunctive term have to be satisfied simultaneously, a restriction which is not represented

by the standard complementarity formulation. In the following section, we propose the

representation of disjunctive sets of algebraic equations as a complementarity problem.

The formulation described in this chapter not only establishes the complementarity

condition among alternative sets of equations, but also enforces simultaneous satisfaction

of all the equations in the solution set. It is important to mention that we are aware of

many disadvantages associated with this representation, which we consider at the end of

this section. Our motivation is that a complementarity formulation only requires the

solution of one square system of nonlinear equations, avoiding all of the complications

encountered in procedural techniques such as the boundary crossing algorithm and the

discrete decision making of a MINLP solution. Before going further in the description of

our approach, in Figure 5-1 we explain the terminology employed in this chapter.

Figure 5-1 Description of our terminology.

p11
0=

p12
0=

p21
p22

, 0≥

p21
0=

p22
0=

p11
p12

, 0≥

∨

p11
p21

⋅ p12
p22

⋅+ 0=

Disjunction or

Disjunctive Statement

Complementarity
Equation

Complementarity Term or

Disjunctive
Term

Disjunctive Element or

Residual or Slack
Variable

Conditional Equation

Complementarity Product

PROBLEM FORMULATION

98

5.2.1 COMPLEMENTARITY REPRESENTATION OF A CONDITIONAL

MODEL

As in most of the complementarity approaches reported in the literature, in this work we

assume the nondegeneracy of the solution to the complementarity problem. With this

assumption we leave out all those cases in which the equations belonging to different

terms of the same disjunctive statement are simultaneously satisfied. In addition, we will

assume that the range of the conditional equations is positive; that is, we assume that we

can rearrange the system of equations so that the residuals of the conditional equations

belonging to a non-solution disjunctive term will always be positive.

The formulation presented here is an extension of that presented by More(1994), who

reformulates the nonlinear complementarity problem (5.1) as:

(5.7)

wherep is a vector of residual variables andP is the diagonal matrix diag(pi).

For the purpose of illustration, consider the example of the heat exchanger given by (5.6).

Defining positive residuals for each of the conditional equations:

(5.8)

we then represent the disjunctive statement in terms of these residuals:

(5.9)

r x() p=

P x⋅ 0=

x 0≥ p 0≥

pi j

φ1 p11
= 1 xi2

i C∈
∑– p21

=

η2 0.5– p12
= 0.5 η1– p= 22

p11
0=

p12
0=

p21
p22

, 0≥

p21
0=

p22
0=

p11
p12

, 0≥

∨

PROBLEM FORMULATION

99

Notice that we have arranged the conditional equations in (5.8) in such a way that all the

variables are always positive. In order to do that, we used the physical insight given by

the nature of the problem. In terms of the residual variables , the standard

complementarity formulation is given by:

(5.10)

The disjunctive statement in (5.9) requires either both and or both and

simultaneously to be zero. That is not a restriction included in the standard

complementarity formulation (5.10). We propose the following formulation to represent

the disjunctive statement instead:

(5.11)

Since the variables are all positive, the set of equations in (5.11) not only contains the

complementarity condition given by the standard representation (5.10) but also enforces

the simultaneous satisfaction of all the equations defined in the same terms of the

disjunction. Also, it is important to realize that the inequality constraints in (5.11) are

only bounds in the residual variables, and we can use them to guide our search for a

solution to the resulting square system of equations:

• The original disjunctive statement in (5.6) provides 2 equations in either of its cases.

• The complementarity formulation in (5.8) and (5.11) provides 6 equations but

introduces 4 new variables, also a net of 2 equations.

For cases in which the domain of validity is given by inequality constraints, we

reformulate the problem by adding two slacks to each inequality and express the

complementarity condition between these slack variables. Consider for example the

pi j

pi j

p11
p21

⋅ 0=

p12
p22

⋅ 0=

pi j
0≥ i 1…2[]∈ j 1…2[]∈

p11
p12

p21
p22

p11
p21

⋅ p12
p22

⋅+ 0=

p11
p22

⋅ p12
p21

⋅+ 0=

pi j
0≥ i 1…2[]∈ j 1…2[]∈

pi j

PROBLEM FORMULATION

100

laminar-turbulent flow transition given by:

(5.12)

If we define residuals for the equalities and slack variables for the inequalities:

(5.13)

then the disjunctive statement in terms of residuals and slacks and, therefore, the

complementarity equations, are exactly the same as those given by (5.11) for the previous

example. Notice that the inequalities become an active part of the system of equations.

Also, one of the complementarity equations contains a complementarity product between

the two slacks in the inequality, a requirement to avoid multiple solutions.

The result of applying our formulation is a square system of nonlinear equations

(including complementarity equations) subject to the positiveness of the variables .

The proposed complementarity representation has the following properties:

1. The number of complementarity equations is equal to the number of equations in each

term of the disjunction to maintain the same number of degrees of freedom as in the

original problem.

2. Each residual variable is multiplied by every other residual variable in all of the other

terms of the disjunction. Thus, we will ensure the simultaneous satisfaction of all the

equations in at least one of the disjunctive terms and avoid spurious solutions to the

problem.

3. In the example, there are several ways in which we could have accommodated the four

complementarity terms in the two complementarity equations. The way in which we

have distributed the bilinear terms over the complementarity equations is intended to

decrease the possibility of having numerical singularities in the Jacobian of the system

while using an iterative solver based on Newton and quasi-Newton methods. We must

Re 64 f⁄=

Re 2100≤
Re 0.206307 f⁄()4

=

Re 2100>
∨

Re 64 f⁄– p11
= Re 0.206307 f⁄()4

– p21
=

Re 2100 p12
p22

–+=

pi j

PROBLEM FORMULATION

101

avoid having two residual variables from the same disjunctive term being multiplied in

two complementarity equations by the same set of residual variables from another

disjunctive term. Examine Figure 5-2. We show a set of poorly formulated

complementarity equations and the rows of the Jacobian corresponding to those

equations. Note that the equations in Figure 5-2 contain the same four

complementarity terms as the formulation given by (5.11), but they are grouped

differently. In the case presented, if the solution to the problem is ,

rows 1 and 2 of the Jacobian become numerically dependent as the Newton method

approaches the solution. If , row 2 is a multiple of row 1 by the factor

. This situation does not occur for the complementarity equations we propose

in (5.11).

Figure 5-2 Numerical singularities in complementarity equations.

Next, we formally describe how to obtain a complementarity formulation including all of

the properties outlined above. We first consider the case in which the disjunctive statement

contains two terms and then we extend the analysis to any number of disjunctive terms.

p21
p22

0= =

p21
p22

+ 0∼

p12
p11

⁄

p11
p21

p12
p22

1

2

p21
p22

+

0

p11

p12

0

p21
p22

+

p11

p12

p11
p21

⋅ p11
p22

⋅ 0=+

p12
p21

⋅ p12
p22

⋅ 0=+

p11
p21

p22
+() 0=⋅

p12
p21

p22
+() 0=⋅

⇒

PROBLEM FORMULATION

102

5.2.1.1 Representing the Disjunctive Statements in terms of Positive Residual or
Slack Variables

Before generating the set of complementarity equations, it is necessary to define positive

residual variables (or slack variables for inequalities) for the conditional equations and to

represent the disjunctive statements in terms of these positive variables. This task has to be

accomplished disregarding the number of terms in each disjunctive statement. As a matter

of fact, one of our assumptions here is that the system of equations can be rearranged to

obtain this representation. For instance, for the simplest case of one disjunction with two

terms (the index k is omitted for simplicity), given the disjunctive set of algebraic

equations:

(5.14)

we reformulate the problem as:

(5.15)

5.2.1.2 2-Term Disjunctive Statements

The set of complementarity equations in terms of the positive variables equivalent to

the disjunctive statement given in (5.15) is:

h x() 0=

r1 j
x() 0=

gl x() 0≤

r2 j
x() 0=

gl x() 0≥
∨

j∀ 1…β[]∈
l∀ 1…γ[]∈

h x() 0=

r1 j
x() p1 j

– 0=

r2 j
x() p2 j

– 0=

gl β– x() p1l
p2l

+– 0=

j∀ 1…β[]∈ l β 1…β γ+ +[]∈,

p1q
0=

p2q
0≥

p2q
0=

p1q
0≥

∨ q∀ 1…β γ+[]∈

piq

PROBLEM FORMULATION

103

(5.16)

Hence, the resulting nonlinear system of equations is:

(5.17)

Note that the resulting nonlinear system of equations is square, and is subject to the

bounds in the residual and slack variables.

The generation of the complementarity equations given by (5.16) is illustrated in Figure 5-

3. Basically, in a complementarity equation each residual variable of one disjunctive term

is multiplied by one residual variable of the other disjunctive term, and, for successive

complementarity equations, the order of the residual variables in the second term is

successively shifted by one.

Every possible complementarity term resulting from the multiplication of positive residual

variables belonging to different disjunctive terms is included in complementarity

equations (5.16). This feature ensures that, in order to satisfy the complementarity

equations, all the residual variables of at least one disjunctive term have to be

simultaneously zero. The proof that (5.16) satisfies at least one disjunctive term is as

follows. Assume that, in each of the disjunctive terms, there is only one nonzero residual

p1t
p2t s+

⋅
t 1=

β γ s–+

∑ p1t
p2t s β– γ–+

⋅
t β γ s– 1+ +=

β γ+

∑+ 0= s∀ 0…β γ 1–+[]∈

piq
0≥ i∀ 1…2[]∈ q 1…β γ+[]∈,

h x() 0=

r1 j
x() p1 j

–

r2 j
x() p2 j

–

gl β– x() p1l
p2l

+– 
 
 
 
 

0= j∀ 1…β[]∈ l β 1…β γ+ +[]∈,

p1t
p2t s+

⋅
t 1=

β γ s–+

∑ p1t
p2t s β– γ–+

⋅
t β γ s– 1+ +=

β γ+

∑+ 0= s∀ 0…β γ 1–+[]∈

piq
0≥ i∀ 1…2[]∈ q 1…β γ+[]∈,

PROBLEM FORMULATION

104

variable. Since all of the possible complementarity terms exist in the complementarity

equations, a complementarity term containing those residual variables must exist. Find

the complementarity term that contains just these nonzero residual variables. Since the

product of those variables will be nonnegative, that term will force the complementarity

equation in which it exists to be greater than zero, i.e., it will not be satisfied. To be

satisfied, at least one of the residual variables in the complementarity term must be zero,

contradicting our original assumption. Thus, in order to satisfy the complementarity

equations, at least one disjunctive term must have all its residual variables equal to zero.

In other words, a complete set of conditional equations in at least one of the disjunctive

terms will be satisfied.

Figure 5-3 Generation of complementarity equations in a two-term
disjunction.

p11

p12

p13

p11

p21

p22

p23

p21

p11

p12

p13

p21

p22

p23

p11

p12

p13

p11

p12

p21

p22

p23

p21

p22

p11
0=

p12
0=

p13
0=

p2 0≥

p21
0=

p22
0=

p23
0=

p1 0≥

∨

p11
p21

⋅ p12
p22

⋅ p13
p23

⋅+ + 0=

p11
p22

⋅ p12
p23

⋅ p13
p21

⋅+ + 0= p11
p23

⋅ p12
p21

⋅ p13
p22

⋅+ + 0=

pi j
0≥

i 1 2,[]∈ j 1…3[]∈,∀

1)

β γ+ 3=

s 0=

2) s 1= 3) s 2=

PROBLEM FORMULATION

105

As a consequence of the previous analysis, if the complete set of nonlinear equations

(including the complementarity equations) is satisfied, then the solution vector will

correspond to a consistent solution to the conditional model. Moreover, if we assume

uniqueness of the solution to the conditional model, then the vector will be such a

unique solution.

Another property of the complementarity set of equations given by (5.16) is that, in every

complementarity equation, all the residual variables appear, and each of them appears only

once. This is intended to decrease the possibility of having numerical singularities in the

Jacobian of the system, as explained before. In fact, by analyzing the Jacobian of the

formulation (5.16) under the assumption of nondegeneracy of the solution, it can be shown

that the possibility of having numerical singularities is eliminated. Hence, if the solution

is not on a boundary, the residuals in the equations of the disjunctive set not corresponding

to the solution are expected to be different from zero, and, therefore, they will provide a

pivot in the Jacobian matrix for all the complementarity equations (note that the number

of positive residuals is equal to the number of complementarity equations).

5.2.1.3 Generalization to any number of terms in the disjunctive statement

When the disjunctions contain more than two terms, we generate the complementarity

equations by applying recursively the same equation given in (5.16). We assume again

that we can obtain a disjunctive statement in terms of positive residual variables. Consider

the following simple example of a disjunction with three terms:

(5.18)

We apply equation (5.16) to the first two disjunctive terms:

x̂

x̂

p11
0=

p12
0=

p2 p3, 0≥

p21
0=

p22
0=

p1 p3, 0≥

p31
0=

p32
0=

p1 p2, 0≥

∨ ∨

PROBLEM FORMULATION

106

(5.19)

and do it again for the resulting two-term disjunction:

(5.20)

A complementarity set of equations obtained in this form still will include the properties

outlined before for a two-term disjunction:

1. It will result in a square system of equations.

2. In order to satisfy the complementarity equations, all the equations of at least one set

of conditional equations have to be simultaneously satisfied.

3. Under the assumption of nondegeneracy, the Jacobian of the system of equations can

be shown to be nonsingular.

The reasoning employed to prove the previous statements is the same as that in the case of

a two-term disjunction discussed above.

5.2.1.4 About the Complementarity Formulation

The complementarity formulation is not without problems:

1. First of all, the problem grows quickly. If (β+γ) is the number of equations in each

term of the disjunction and D is the number of terms in the disjunction, the number of

equations representing the disjunctive statement in the complementarity formulation is

(β+γ)(D+1). That number includes both the complementarity equations and the

equations defining the positive residual variables.

2. Numerical singularities still arise for cases in which the solution resides on a

boundary. That is the main reason for the assumption of nondegeneracy.

3. The reformulation of a conditional model as a complementarity problem is restricted

p11
0=

p12
0=

p21
0=

p22
0=

∨
p31

0=

p32
0=

∨
p11

p21
⋅ p12

p22
⋅+ 0=

p11
p22

⋅ p12
p21

⋅+ 0=

p31
0=

p32
0=

∨⇔

pi j
0≥ i 1…3[]∈ j 1…2[]∈,∀

p11
p21

⋅ p12
p22

⋅+() p31
⋅ p11

p22
⋅ p12

p21
⋅+() p32

⋅+ 0=

p11
p21

⋅ p12
p22

⋅+() p32
⋅ p11

p22
⋅ p12

p21
⋅+() p31

⋅+ 0=

pi j
0≥ i 1…3[]∈ j 1…2[]∈,∀

EXAMPLES

107

to cases in which the range of the conditional equations is positive. We consider that

as the major restriction of this approach. In principle, a cure for this limitation is to

define complementarity variables which can take negative and positive values, and

then to use the square of these complementarity variables in the complementarity

equations. However, it is known that the use of square terms in complementarity

equations is not convenient since the possibility of introducing numerical singularities

is even greater. Recall that the derivative of the square of a variable with value zero is

also zero.

4. The number of bilinear terms (or terms including products among variables)

incorporated in each equation also grows with the number of equations in each term of

the disjunction. The combinatorial nature of the problem is encapsulated here.

5. The performance of optimization techniques is badly affected by the introduction of

nonconvexities (multiplication among variables) to the system of equations.

In general, we are presenting this approach as a favorable alternative when the number of

equations in each disjunctive term is small.

5.3 EXAMPLES

We used the examples of algebraic systems of disjunctive equations described in Chapter

4 for testing the proposed complementarity formulation. Appendix D presents the

complementarity equations (or a representative part of them) for each of those examples.

In examples 4.1 through 4.4 the disjunctive statements contain only two terms, and we

generated the complementarity equations by strictly using the formulation proposed in

(5.16). The degree of complexity increases in examples 4.5 and 4.6 since the disjunctive

statements contain three terms. In those cases, we added two residual variables to the

conditional equations in one of the disjunctive terms. Moreover, in examples 4.5 and 4.6

we do not apply the formulation proposed for three-term disjunctions. Instead, we use

those examples to show how sometimes the specific structure of the disjunctive statement

can be used to simplify the resulting system of complementarity equations.

In all the examples the number of equations in each disjunctive term is very small, and, as

piq

SOLVING THE COMPLEMENTARITY FORMULATION OF

108

a consequence, the complexity of the equations involving products among variables is not

as bad as can be expected with problems of larger size.

As in Chapter 4, in this chapter we also solved examples 1 and 3 as simulation problems.

The initial values for the variables are the same as those given, if reported, by the

reference.

5.4 SOLVING THE COMPLEMENTARITY FORMULATION

OF A CONDITIONAL MODEL

There exists a whole body of literature for the solution of nonlinear complementarity

problems. In one of the most recent approaches, Dirske and Ferris (1995a) developed a

non-monotone stabilization scheme for mixed complementarity problems (MCP) and

implemented such an approach in thePATH solver. Some other approaches to the solution

of MCPs involve the use of quadratic programming based techniques (Billups and Ferris,

1996) and homotopy based algorithms (Billups, 1998). As stated, a common feature of

the previous approaches is that they require the complementarity problem to be

reformulated as aMCP. However, a systematic reformulation of our complementarity

problem (5.17) into aMCP is yet to be discovered. Such a systematic reformulation is

desired because it would make suitable the application of a large number of existing codes

and numerical techniques such as the ones described above. Future work should be

conducted in this direction.

In this section, we investigate two approaches to the solution of our complementarity

formulation representing a conditional model. Since the result of applying the

complementarity formulation is one square nonlinear system of equations, the first

approach is just to use a conventional nonlinear solver. The second approach consists in

solving the complementarity problem based on pivotal techniques similar to those

proposed by Lemke (1965).

Later, in Chapter 6, we investigate the solution of the complementarity formulation by

using interior point methods.

SOLVING THE COMPLEMENTARITY FORMULATION OF

109

5.4.1 SOLVING BY USING A CONVENTIONAL SOLVER

To solve the examples described in section 5.3, we used theASCEND solver QRSlv which

applies the modified Levenberg-Marquardt algorithm given by Westerberg and Director

(1979).

5.4.1.1 Numerical Results

The number of iterations that we used to obtain the solution of each of these examples is

shown in Table 5-1. Some observations are:

• The fixed parameters and constants for Examples 1 through 3 are the same as those

giving by Zaher (1995).

• For the fluid transition problem, we ran simulations for values of the diameter of the

pipe between 2 cm and 9 cm, such that we could make sure that both of the alternative

cases are reached by using the complementarity representation. The number of

iterations reported corresponds to the diameter of 5 cm.

• For the example of the heat exchanger, we ran simulations for values of area between

250 ft2 and 1104 ft2 and values of flowrates between 250 lbmole/hr and 380 lbmole/

hr, ranges analyzed by Zaher while finding an optimal solution. The number of

iterations reported is for an area equal to 379.12 ft2 and flowrate of cooling water equal

to 1104.31 lbmole/hr. There is no special reason for the selection of those values.

• For the simple flash calculation, the number of iterations reported is for the value of

temperature of 200 K (liquid phase region). The number of iterations was roughly of

the same order for other values of temperature spread over the subcooled through the

superheated range.

Since the hardware and the technique that we are using to get the solution is different, we

are comparing neither time nor number of iterations with other works. Still we consider it

important to make remarks about some differences of the alternative approaches for

solving conditional models.

SOLVING THE COMPLEMENTARITY FORMULATION OF

110

In the example of the pipeline network, the result of the complementarity representation is

one nonlinear system containing 250 equations, 76 of them containing 2 bilinear terms.

In the same example, the number of boundaries in the boundary crossing algorithm is 38

(that means 238=2.7 x 1011 possible subregions) and the nonlinear system to be solved in

every subregion would contain 98 equations. The combinatorial complications present in

examples like this clearly represent a disadvantage for the boundary crossing algorithm.

On the other hand, the reverse situation is also possible, and the boundary crossing may be

clearly a better option than the complementarity formulation. For example, in a problem

with only one disjunction, but 20 equations in each of the terms of the disjunction, we may

not be able to solve a nonlinear system in which 20 of the equations contain 20 bilinear

terms each. However, the number of subregions in the boundary crossing algorithm would

be only 2, and the possibility of applying that algorithm efficiently would be much greater.

In the example of the linear mass balance, Turkay and Grossmann (1996) solve the

problem by using a mixed-integer approach. The resulting MILP contains 18 binary

variables, 66 continuous variables and 89 linear equations. In the complementarity

formulation, the nonlinear system contains 81 equations, 47 are linear, but the remaining

Table 5-1 Solving the complementarity problems by using a conventional solver.

Example Reference
Number of
Equations

Number of
Disjunctions

Number of
Complementarity

 Equations
Iterations

Flow Transition
(sonic-subsonic)

Zaher (1995) 7 1 1 8

Phase Equilibria Zaher (1995) 18 3 3 10

Heat exchanger Zaher (1995) 56 2 4 11

Pipeline network Bullard and
Biegler (1992)

250 38 76 24

Simple L-V flash King (1980) 23 1 4 25

Linear mass
balance

Grossmann and
Turkay (1996)

81 6 34 25

SOLVING THE COMPLEMENTARITY FORMULATION OF

111

34 contain complementarity products. The size of the problem is very similar, the

difference will be in either using a branch and bound search in the MILP or dealing with

the complementarity equations in the solution of one square nonlinear system of

equations.

5.4.1.2 About the Solution with a Conventional Nonlinear Solver

The Levenberg-Marquardt technique performed well in the set of examples used in this

work. This technique is preferred because it is a least squares method which may help to

overcome numerical singularities arising from the complementarity formulation. In

general, however, it is known that problems involving complementarity equations affect

the performance of conventional nonlinear techniques. In particular, Newton steps cannot

be calculated if the Jacobian matrix of the system of equations is singular. Also,

numerical difficulties associated with bad scaling are commonly encountered while

solving complementarity problems. This lack of robustness of the use of a conventional

nonlinear solver in the solution of our complementarity formulation motivated the use of

interior point methods. We describe such work in Chapter 6.

5.4.2 SOLVING BY USING PIVOTAL TECHNIQUES

In the late 1960’s, Lemke (1965) and Cottle and Dantzig (1968) developed the

complementarity pivot theory for finding the solution of linear complementarity problems.

Given a realk-vectorq and a real matrixM, the solution to the linear

complementarity problem is given by thek-vectorsw andz which satisfy:

(5.21)

5.4.2.1 Complementarity Pivot Theory for Linear Complementarity Problems

Consider the system of linear equations:

(5.22)

k k×

w q M z⋅+=

w z⋅ 0=

w 0≥ z 0≥

w q M z⋅+=

w 0≥ z 0≥

SOLVING THE COMPLEMENTARITY FORMULATION OF

112

For i=1..k the corresponding variableszi andwi are called complementary, and each is the

complement of the other. A complementary solution of (5.22) is a pair of vectors

satisfying (5.22) and

(5.23)

Following the linear programming methodology, the independent variables of (5.22) are

callednonbasic, while the dependent variables are calledbasic. The basic variables are

said to constitute abasis. Also, all the nonbasic variables are set to zero.

A complementary basic feasible solution of (5.22) is one in which the complement of each

basic variable is nonbasic. The goal is to obtain a basic feasible solution with this property.

In Lemke’s method (1965), an extra column (called covering vector) is added to the matrix

M along with an artificial variableλ. Typically, the covering vector is taken to be the

vector of all ones,e. Thus, (5.22) is replaced by:

(5.24)

In the start of the algorithm, the variablesz are nonbasic whileλ is set to

(5.25)

Note that λ and the covering vector are introduced to achieve feasibility for the augmented

system (5.24) while also maintaining complementarity in the original variables. Hence,

the selection ofλ in (5.25) leads to an initial complementary basic feasible solution of

(5.24). However, also note that the variablesz andw are a solution of (5.21) only ifλ=0.

In general,λ will be basic in the initial basic feasible solution with the valueλ0>0

obtained from (5.25). Thus, Lemke’s method specifies pivoting rules which determine a

sequence of variables entering and leaving the basis and a sequence of basic feasible

solutions which maintain the complementarity ofz andw. Essentially, Lemke’s pivoting

rule states that a variable reaching its lower bound will leave the basis, and that the

complement of the variable leaving the basis will be the next variable entering the basis.

The algorithm terminates successfully when a pivot results inλ leaving the basis at value

wi zi⋅ 0= i 1…k=

w q e λ⋅ M z⋅+ +=

w 0≥ z 0≥ λ 0≥

min λ λ 0≥ e λ⋅ q+ 0≥,{ }

SOLVING THE COMPLEMENTARITY FORMULATION OF

113

zero.

5.4.2.2 Solving the Complementarity Representation of Conditional Models by
Using Lemke’s Pivoting Rules

Some researchers have investigated the solution of nonlinear complementarity problems

by using techniques based on Lemke’s pivoting rules. Dirske and Ferris (1995a)

reformulate the mixed complementarity problem in such a way that a first order

approximation of it results in a linear complementarity problem. Hence, they use a

Newton-based technique in which a linear complementarity problem is solved at each

iteration. They also provide a proof of convergence for their approach.

For the case of our complementarity representation, a theoretically sound extension of

Lemke’s pivotal technique has not yet been discovered. None the less, we studied the

solution of the complementarity representation of conditional models with a heuristic

approach based on Lemke’s pivoting rules. Such an approach is as follows. Consider the

representation of the disjunctive set of equations given in terms of the residual and slack

variables given by (5.15):

1. Here, the complementary variables are the variables . Also, the variables in

(5.15) are the complement of the variables .

2. We start by defining the complementary variables in one of the disjunctive terms of

(5.15) as basic and the complementary variables in the other disjunctive terms as

nonbasic. Since the nonbasic variables are set to zero, the complementarity conditions

given by the complementarity equations in (5.16) are thus satisfied.

h x() 0=

r1 j
x() p1 j

– 0=

r2 j
x() p2 j

– 0=

gl β– x() p1l
p2l

+– 0=

j∀ 1…β[]∈ l β 1…β γ+ +[]∈,

p1q
0=

p2q
0≥

p2q
0=

p1q
0≥

∨ q∀ 1…β γ+[]∈

piq
p1q

p2q

SOLVING THE COMPLEMENTARITY FORMULATION OF

114

3. We then look for a solution to the nonlinear problem by using a conventional nonlinear

solver. If during the iterative process a basic complementary variable reaches its lower

bound, then a complementarity pivot analogous to a Lemke’s is taken. In our case, all

the complementary variables in the same disjunctive term as the variable reaching its

bounds are simultaneously removed from the basis. The complement of such

variables (the variables in the other disjunctive term of the disjunction) become basic

and the iterative process continues. Such a complementarity pivot is taken only if a

step in the new basis results in the decrease of the norm of the residuals of the overall

system of equations with respect to the point prior to the complementarity pivot.

Otherwise, we only project the basic variable reaching its bound to such a bound and

continue the iterative process without the change of basis.

4. When the number of disjunctive terms in the disjunction is greater than two, we need

to decide which alternative set of variables are going to constitute the new basis after a

complementarity pivot. This is consistently accomplished by defining boundary

expressions (similar to those in the boundary crossing algorithm) in terms of the

complementary variables. The boundary expressions are not a part of the system of

equations to be solved, but only a means to find the next set of basic variables without

ambiguity.

5.4.2.3 Numerical Results

The approach described in the previous section was also applied to solve the

complementarity formulation of the examples described in Chapter 4. The number of

iterations that we used to obtain the solution of each of these examples is shown in

Table 5-2:

5.4.2.4 Discussion

It should be noticed that we give no theoretical guarantee of convergence for the solution

of the complementarity problems by using Lemke’s pivoting rules. Even so, the results

obtained from the numerical experiments show a surprising effectiveness.

SOLVING THE COMPLEMENTARITY FORMULATION OF

115

Next, we show a comparison between the boundary crossing algorithm and the pivotal

technique described here:

1. In the boundary crossing algorithm, only the equations corresponding to the current

alternative of each disjunction are considered at each iteration. In the extended Lemke

technique we simultaneously consider all of the alternatives, but we relax the

equations of all but one alternative of each disjunction. Thus, in the extended Lemke

technique we are also enforcing the satisfaction of only one alternative of each

disjunction at each iteration.

2. The crossing of a boundary in the boundary crossing algorithm involves a change in

the system of equations constituting the problem. In the extended Lemke technique, a

complementarity pivot causes an equivalent effect.

3. In boundary crossing, the solution of the optimization subproblem at the boundary

provides a solid basis to decide whether a boundary should be crossed or not and

ensures that cycling is avoided during the iteration process. In the extended Lemke

technique, a proof against cycling in our complementarity formulation is not yet

available.

Table 5-2 Solving the complementarity problems by using pivotal techniques.

Example Reference
Number of

Complementarity
 Pivots Taken

Iterations

Flow Transition
(sonic-subsonic)

Zaher (1995) 1 7

Phase Equilibria Zaher (1995) 1 7

Heat exchanger Zaher (1995) 1 8

Pipeline network Bullard and
Biegler (1992)

12 27

Simple L-V flash King (1980) 1 11

Linear mass
balance

Grossmann and
Turkay (1996)

2 9

SUMMARY

116

Accordingly, we assert that the boundary crossing provides a generalization of Lemke’s

pivotal technique for the solution of our complementarity problem; generalization in

which a mathematical criterion is given to decide whether a complementarity pivot should

be taken or not.

The results obtained by using our heuristic extended Lemke technique, Table 5-2, make us

believe that it may be not necessary to find an optimal descent direction in a boundary

analysis of the boundary crossing algorithm described in Chapter 4. In other words,

perhaps any step which reduces the residuals of the systems of equations in the

neighborhood of the boundary (any descent as opposed to optimal descent) can give a

reasonable movement at the boundary.

5.5 SUMMARY

We have proposed and tested a new representation of conditional models as

complementarity problems. In order to obtain the complementarity formulation, we rely

on the assumption that the sets of conditional equations can be rearranged so that the

disjunctive statements can be represented in terms of positive residual and slack variables.

We show that the formulation described in this paper does not introduce spurious solutions

to the problem, and that under the assumption of nondegeneracy, it will not introduce

numerical singularities to the Jacobian matrix. We also mentioned some of the

weaknesses and advantages of this approach. We solved the complementarity problems

described in Chapter 4 and Appendix D by using a conventional nonlinear solver and

Lemke’s pivoting rules. The number of iterations employed for all of the examples solved

here makes the complementarity formulation appear as an interesting tool. Finally, we

described how the boundary crossing algorithm can be considered as a generalization of

the extended Lemke technique used here.

REFERENCES

117

5.6 REFERENCES

Billups, S. C.; Algorithms for Complementarity Problems and Generalized Equations.
Ph.D. thesis, University of Wisconsin-Madison, August 1995.

Billups, S. C.; A Homotopy Based Algorithm for Mixed Complementarity Problems.
Technical Report, Department of Mathematics, University of Colorado,
1998.

Billups, S. C. and Ferris, M. C.; QPCOMP: A Quadratic Programming Based Solver for
Mixed Complementarity Problems. Technical Report, Department of
Mathematics, University of Colorado, 1996.

Bullard, L. G. and Biegler, L. T.; Iterative Linear Programming Strategies for Constrained
Simulation.Comput. Chem. Eng., 15(4):239–254, 1991.

Bullard, L. G. and Biegler, L. T.; Iterated Linear Programming Strategies for Nonsmooth
Simulation: Continuous and Mixed-Integer Approach.Comput. Chem. Eng.,
16(10), 1992.

Cottle, R. W. and Dantzig, G. B.; Complementarity Pivot Theory of Mathematical
Programming.Linear Algebra and its Applications. 1, 103-125, 1968.

Chen, C. and Mangasarian, O. L.; A Class of Smoothing Functions for Nonlinear and
Mixed Complementarity Problems.Computational Optimization and
Applications, 5, 97-138, 1996.

Dirske, S. P. and Ferris, M. C.; The PATH Solver: A Non-Monotone Stabilization Scheme
for Mixed Complementarity Problems.Optimization Methods and Software,
5, 123-156, 1995a.

Dirske, S. P. and Ferris, M. C.; MCPLIB: A Collection of Nonlinear Mixed
Complementarity Problems.Optimization Methods and Software, 5, 319-
345,1995b.

Ferris, M. C. and Pang, J. S.; Engineering and Economic Applications of Complementarity
Problems. Technical Report 95-4, University of Colorado, 1995.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20:S339–44, 1996. Suppl. Part A.

King, C. J.; Separation Processes, Chemical Engineering Series, 2nd. Edition,
McGrawHill, 77-79, 1980.

Lemke, C. E.; Bimatrix Equilibrium Points and Mathematical Programming.Management
Sci., 11, 681-689, 1965.

More, J. J.; Global Methods for Nonlinear Complementarity Problems. Technical report,
Argonne National Laboratory, Mathematics and Computer Science Division,
April 1994.

Westerberg, A. W. and Director, S. W.; A Modified Least Square Algorithm for Solving
Sparse n x n Sets of Nonlinear Equations. Technical report, Carnegie Mellon
University, Engineering Design Research Center, EDRC-06-5-79, January

REFERENCES

118

1979.

Zaher, J. J.; Conditional Modeling in an Equation-Based Modeling Environment. The
Annual AIChE National Meeting, 1991. paper 138c.

Zaher, J. J.; Conditional Modeling. Ph.D. thesis, Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1995.

119

CHAPTER6 INTERIORPOINT

METHODS IN THE

SOLUTION OF

CONDITIONAL

MODELS

Interior point methods have recently become an interesting alternative in a number of

numerical applications. In particular, their performance in the solution of problems

involving complementarity equations has been the subject of extensive research and their

efficacy is well documented. In this chapter, following a description of the fundamentals

of interior point methods, we describe the globally convergent framework proposed by

Wanget al (1996) for solving a constrained system of nonlinear equations by an interior

point potential reduction method. Also, we show how we can apply the potential reduction

algorithm and its convergence result to the complementarity formulation described in

Chapter 5. Based on that observation, we then apply the algorithm proposed by Wang to

solve the complementarity examples used as case studies throughout this work. Moreover,

we also apply some high order strategies designed to improve convergence (Mehrotra,

1992; Gondzio, 1996), and compare the results obtained with each of the methods. All

those techniques have been incorporated to theASCEND modeling environment with the

implementation of the solver IPSlv.

MOTIVATION

120

6.1 MOTIVATION

As early as in the late 1940’s, almost at the same time as when Dantzig presented the

simplex method for linear programming, several researches including Von Neumann

(1947) and Frisch (1955) proposed interior point algorithms which transverse across the

interior of the feasible region to avoid the complexity of vertex-following algorithms

(Andersenet. al, 1996). Since then, there is a huge body of literature on the interior point

methods which includes surveys and numerous articles. See for example Wright (1997),

Lustinget al. (1994), and Gondzio and Terlaky (1994). Even though the initial effort on

interior point methods was focused on linear programming problems, most recent works

have concentrated on the common theoretical foundations of linear and nonlinear

programming. It is now widely accepted that interior point methods constitute a powerful

tool for solving both very large linear and nonlinear programming problems (Gondzio,

1996).

In the field of chemical engineering, interior point methods have been applied to solve

data reconciliation, optimal control, multiperiod design and process optimization

problems (Ternet, 1998). Alburquerqueet al. (1997) and Ternet (1998) employ primal

dual interior algorithms and high-order corrections to solve the quadratic programming

subproblem within a sequential quadratic programming technique.

In this chapter, we propose the application of interior point techniques for the solution of

the complementarity formulation representing a conditional model. This approach is based

on the work of Wanget al. (1996) and was specially motivated by the works of

Simantiraki and Shanno (1995) and Wright and Ralph (1996) which apply infeasible

interior point algorithms for mixed complementarity problems. Also, recent results

reported in the field of chemical engineering by Ternet (1998) encourage the use of

Mehrotra’s second order method (Mehrotra,1992) and Gondzio’s centrality corrections

(Gondzio, 1996) to improve the convergence results obtained by Wang’s algorithm.

BASICS OFPRIMAL -DUAL INTERIORPOINT METHODS

121

6.2 BASICS OF PRIMAL -DUAL INTERIOR POINT

METHODS

The so called primal-dual interior point methods have been shown to outperform the

simplex method on many larger problems and to perform better than other interior point

methods (Wright, 1997). In this section, we describe the fundamentals of a primal-dual

interior point method. Consider the linear programming problem in standard form:

(6.1)

The optimally conditions of (6.1) are given by:

(6.2)

If we modify (6.1) by applying a logarithmic barrier to the variables x then we get:

(6.3)

similarly, the optimally conditions of (6.3) are given by:

(6.4)

whereX andS are the diagonal matrices whose elements are the components of the vectors

x ands correspondingly, ande is the vector of all ones.

The system of equations (6.2) can be solved by applying the Newton method and carrying

out a linear search to enforce the nonnegativity constraints ofx ands. Unfortunately, we

can often take only a small step before the nonnegativity constraints are violated, and,

therefore, the iterates make little progress towards the solution. Rather than solving the

min c
T

x Ax b= x 0≥,{ }

A
Tλ s+ c=

Ax b=

xisi 0=

x s, 0≥

min c
T

x τ xi()ln
i

∑– Ax b=
 
 
 

A
Tλ s+ c=

Ax b=

XSe τe=

HIGH ORDERSTRATEGIES FORINTERIORPOINT

122

system of equations (6.2), primal-dual interior point methods focus on the solution of the

system (6.4) and introduce the concept of thecentral path. The central path is the set of

points which are a solution of (6.4) forτ >0. The role of the parameterτ is to enforce that

all the complementarity products have the same values for all indicesi. Hence, the central

path keeps the iterates biased towards the interior of the nonnegative orthant(x,s)>0. Note

also that asτ goes to zero, the complementarity products decrease to zero at the same rate.

For implementation purposes,τ is defined as the product of the parametersσ andµ,

resulting in

(6.5)

µ is generally defined as the complementarity gap (average value of then complementarity

products):

(6.6)

andσ is the centering parameter with value between zero and one,0<σ<1, such thatσ=0

corresponds to a Newton step andσ=1 corresponds to a centering direction in which all

the productsxisi are equal toµ. Various methods differ in the way thatµ andσ are chosen

(Wright, 1997).

6.3 HIGH ORDER STRATEGIES FOR INTERIOR POINT

METHODS

The solution of a system of equations defined by (6.5) involves the solution of the

linearized system

(6.7)

A
Tλ s+ c=

Ax b=

XSe σµe=

µ x
T
s

n
--------=

0 A
T

I

A 0 0

S
k

0 X
k

x∆ k

λ∆ k

s∆ k

c A
Tλk

s
k

––

b Ax
k

–

X–
k
S

k
e σkµk

e+

=

HIGH ORDERSTRATEGIES FORINTERIORPOINT

123

at each iteration. It is estimated that the required factorization of the matrices

takes 60 to 90% of the total CPU time needed to solve a problem (Gondzio, 1994). The

use of high order information has been motivated by the idea of using the same

factorization for several different solves in order to reduce the number of interior point

iterations required. As a matter of fact, second-order methods have been shown to give

evident savings over the basic first order methods, and, therefore, they have became the

computational state of the art (Lustiget al., 1992). In this section, we will review two of

the most extensively applied high order methods found in the interior point literature:

Mehrotra’s second order method (Mehrotra,1992) and Gondzio’s centrality correction

(Gondzio, 1994). The algorithmic steps of both of those approaches can be found in

Wright (1997) and Ternet (1998).

6.3.1 MEHROTRA ’S PREDICTOR -CORRECTOR TECHNIQUE

 Mehrotra’s predictor-corrector technique (Mehrotra, 1990; Mehrotra, 1992; Lustiget

al.,1992) has three main components (Wright, 1997; Ternet, 1998):

• A predictor step: a pure Newton (also known as affine-scaling) direction. For

problem (6.5), this step is calculated by solving (6.7) withσ=0:

(6.8)

• An adaptive approach to compute the centering parameter. This parameter is

calculated in terms of the complementarity gap at the current point and the

complementarity gap after a hypothetical step in the affine scaling direction is taken.

In general, the centering parameter is small when good progress can be made in the

affine direction and large when the affine direction produces little improvement. The

0 A
T

I

A 0 0

S
k

0 X
k

0 A
T

I

A 0 0

S
k

0 X
k

xp∆ k

λp∆ k

sp∆ k

c A
Tλk

s
k

––

b Ax
k

–

X–
k
S

k
e

=

HIGH ORDERSTRATEGIES FORINTERIORPOINT

124

actual calculation of the centering parameter is given by:

(6.9)

where the factorα defines the maximum stepsize in the affine-scaling direction that can be

taken while preserving the nonnegativity of the variables (x,s).

• A corrector step: essentially a step based on Taylor series expansion of the

complementarity equations. For problem (6.5), this step is calculated by:

(6.10)

where∆pX
k and∆pS

k are the diagonal matrices whose elements are the components of the

vectors∆px
k and∆ps

k calculated in the predictor step.

The corrector step is best understood by the following analysis. If a full step (α=1) were

achieved in the affine scaling direction, the new complementarity conditions would be

given by:

(6.11)

However, the last equation of the system of equations (6.8) is:

(6.12)

and (6.11) reduces to:

(6.13)

Hence, the second order correction∆pX
k∆pS

ke corresponds to the violation of the

µk
x

k()
T
s

k
n⁄=

µaff x
k α xp∆ k

+()
T

s
k α xp∆ k

+()[] n⁄=

σk µk µaff⁄()
3

=

0 A
T

I

A 0 0

S
k

0 X
k

xc∆ k

λc∆ k

sc∆ k

0

0

σkµk
e X

k
p∆ S

k
p∆ e–

=

S
k

Sp
k∆+()e X

k
Xp

k∆+()e⋅ X
k
S

k
e S

k
S∆ p

k
e X

k
X∆ p

k
e X∆ p

k
S∆ p

k
e+ + +=

S
k

S∆ p
k
e X

k
X∆ p

k
e+ X–

k
S

k
e=

S
k

Sp
k∆+()e X

k
Xp

k∆+()e⋅ X∆ p
k

S∆ p
k
e=

HIGH ORDERSTRATEGIES FORINTERIORPOINT

125

complementarity conditions if a full step in the affine-scaling direction were taken.

Moreover, the corrector direction is supposed to drive from a hypothetical point

(, ,) to a point in the central trajectory (note also the presence

of the centering correction in the corrector step).

Because the corrector step is a second order correction, the stepsize determination in

Mehrotra’s technique consists of finding anα>0 such that for all (Wright,

1997):

(6.14)

where∆p
k and∆c

k are the predictor and the corrector steps in the variables

correspondingly.

6.3.2 GONDZIO ’S CENTRALITY CORRECTIONS

Gondzio (Gondzio,1994; Gondzio and Terlaky, 1994; Andersenet al., 1996) argues that

what reduces most the efficiency of an interior point method is a large discrepancy among

the complementarity products. Complementarity products that are too small or too large

(compared with the average) are undesirable, with the former being the more disastrous.

Gondzio assumes that a predictor step (a step calculated with Mehrotra’s approach, for

instance) has been calculated and evaluates the complementarity products for the current

point (trial point) :

(6.15)

Then, the trial point is projected componentwise onto a hypercube:

(6.16)

to define the target

(6.17)

Gondzio believes that the effort should be concentrated on correcting only outlier

x
k ∆xp

k
+ s

k ∆sp
k

+ λk ∆λp
k

+

σkµk
e

α 0 α(,)∈

x s λ, ,()k 1+
x s λ, ,()k α ∆p

k⋅ α2∆c
k

+ +=

x s,()k 1+
0≥

x̃ s̃,()

ϑ̃ X̃S̃e() R
n∈=

Hyp βminµk βmaxµ
k,[]

n
=

ϑt π ϑ̃ Hyp() R
n∈=

AN INTERIORPOINT POTENTIAL REDUCTIONMETHOD

126

complementarity products (the ones that do not belong to the interval).

The parametersβmin andβmax in (6.16) are the relative threshold values for outlier

complementarity products and are assumed as given (in Gondzio’s implementation

βmin=0.1 andβmax=10).

Hence, a corrector term of the current iterate solves the system:

(6.18)

where is given by (Wright, 1997;Ternet, 1998):

(6.19)

Note that system (6.18) is full of zeros since is nonzero only for components that

refer to the complementarity products that do not belong to . Also note

that for large complementarity products, , a more conservative value for the

target is used in order to prevent the undesirable effect of bad scaling (Wright, 1997).

6.4 AN INTERIOR POINT POTENTIAL REDUCTION

METHOD FOR CONSTRAINED EQUATIONS

In this section we describe the globally convergent framework developed by Wanget al.

(1996). They combined the classical damped Newton Method with interior point potential

reduction methods for solving a constrained system of nonlinear equations. They show

how their formulation provides a unified framework for many mathematical problems,

βminµk βmaxµ
k,[]

0 A
T

I

A 0 0

S
k

0 X
k

xm∆ k

λm∆ k

sm∆ k

0

0

ϑt ϑ̃–

=

ϑt ϑ̃–

ϑt ϑ̃–()i

βminµk ϑ̃i–()

βmaxµ
k ϑ̃i–()

β– maxµ
k

0









=

if ϑ̃i βminµk<

if ϑ̃i βmaxµ
k>

if ϑ̃i 2βmaxµ
k>

otherwise

i 1…n∈∀

ϑt ϑ̃–

βminµk βmaxµ
k,[]

ϑ̃i 2βmaxµ
k>

AN INTERIORPOINT POTENTIAL REDUCTIONMETHOD

127

including complementarity problems and nonlinear programs.

6.4.1 THE MODEL

Let Ω be a closed subset of the Euclidean spaceRn , wheren is a positive integer.Ω is

assumed to have a nonempty interior, denoted byint Ω. LetH: be a continuous

mapping defined onΩ. Consider the problem of finding a vectorω satisfying:

(6.20)

The basic structure that Wanget al. impose is that there is a partition of the range space of

the mappingH :

(6.21)

for some functionsF: andG: with n1+ n2=n. Now let

(6.22)

where the inequalityG(ω)>0 is to be understood component wise. The assumptions made

by Wang and coworkers are the following:

1. and .

2. H is continuously differentiable on the setΩΣ.

3. The Jacobian matrixH’(ω) is nonsingular for all .

A real-valued functionψ(ω): is also defined:

(6.23)

whereζ is a fixed but arbitrary scalar satisfyingζ > n2 ande is the vector of all ones.

Whenn2=0, (6.23) reduces (without the logarithm) to the standard merit function used in

the Newton method for solving the system of equationsF(ω)=0. If we decreaseψ(ω), the

Ω R
n→

H ω() 0=

H ω() F ω()

G ω()
= ω Ω∈,

Ω R
n1→ Ω R

n2→

ΩΣ ω intΩ∈ G ω() 0>{ }=

ΩΣ ∅≠ ΩΣ ω Ω∈ G ω() 0>{ }=

ω ΩΣ∈

ΩΣ R→

ψ ω() ζ F ω()
T
F ω() e

T
G ω()+()log⋅ Gilog ω()

i

n2

∑–=

AN INTERIORPOINT POTENTIAL REDUCTIONMETHOD

128

first term in (6.23) contributes to reduce some norm of the functionH(ω). The second term

is the logarithmic barrier function whose role is to prevent a pointω from reaching the

boundary ofΩΣ.

Hence, the goal of Wang’s approach is to develop an iterative algorithm for solving (6.21)

while (6.23) plays the role of a merit function which guides the generation of the iterates

ωk.

6.4.2 AN INTERIOR POINT APPROACH

Wang’s approach originates from the extension of path-following interior point methods

for their application to the nonlinear case. The algorithm proposes to calculate a perturbed

Newton direction in order to keep the iterates close to the central path ofΩΣ. For a given

vector , the perturbed Newton direction atω is obtained by solving the following

system of linear equations:

(6.24)

where , andσ is the centering parameter. Based on the work of

Kojima et al. (1994), Wang shows that a solutiond of (6.24) is a descent direction for the

functionψ(ω) defined by (6.23) such that:

(6.25)

where andλ is a scalar such that for all ,λ>0 , we get

(i.e.λ is the factor in the linear search of the damped Newton method). Note that the right

hand side of (6.25) is always negative.

Furthermore, in order to prove convergence, Wang and coworkers define a functionν(ω)

as a measure of the error of a given iterateωk:

(6.26)

ω ΩΣ∈

H′ ω()d F′ ω()d

G′ ω()d

F– ω()

G– ω() σµ ω()e+
= =

µ ω() e
T
G ω() n2⁄=

ψ ω λd+() ψ ω()– α– λ 1 σ–() ζ n2–()≤

α 0 1(,)∈ λ 0 λ(,)∈ ω λd+ ΩΣ∈

ν ω() F ω()
T
F ω() e

T
G ω()+=

AN INTERIORPOINT POTENTIAL REDUCTIONMETHOD

129

and show that a sequence of iterates generated by their approach satisfies the following

properties:

1. The sequence{ν(ωk)} is bounded.

2. If the sequence of iterates{ωk} is bounded, then

(6.27)

The derivation of equation (6.25) is shown in Appendix E. For the derivation of equation

(6.27) and the demonstration of the above properties, the reader is referred to the paper of

Wanget al. (1996).

6.4.3 THE ALGORITHM

The steps of the potential reduction algorithm for solving (6.21) are:

Step 1. Initialization. Let , , , and be given.

Choose a and an initial point .

Step 2. Direction Generation. Solve the system of linear equations (6.24) atω=ωk:

where , to obtain the search directiondk.

Step 3. Stepsize determination. Let mk be the smallest nonnegative integerm such that the

following conditions hold:

(6.28)

(6.29)

and set .

ν ωk
()

k ∞→
lim 0=

ς n2> α 0 1(,)∈ σ 0 1),[∈ ξ 0> ρ 0 1(,)∈

σ0
0 σ[,]∈ ω0 ΩΣ∈

H′ ωk
()d F′ ωk

()d

G′ ωk
()d

F– ωk
()

G– ωk
() σkµ ωk

()e+
= =

µ ωk
() e

T
G ωk

() n2⁄=

ωk ξρm
d

k
+ ΩΣ∈

ψ ωk ξρm
d

k
+() ψ ωk

()– α– ξρm
1 σk

–() ζ n2–()≤

ωk 1+ ωk ξρ
mkd

k
+=

THE COMPLEMENTARITY REPRESENTATION OF A

130

Step 4. Termination check. Terminate ifωk+1 satisfies a prescribed stopping rule.

Otherwise, pick a and return toStep 2.

The values suggested by Wang for each of the parameters defined inStep 1 are:

, , , and .

6.5 THE COMPLEMENTARITY REPRESENTATION OF A

CONDITIONAL MODEL AND ITS RELATION TO

WANG’S FRAMEWORK

Consider the complementarity formulation described by (5.17) for a system of equations

containing a disjunction with two disjunctive terms:

and letnx be the dimensionality of the vector of variables of the original conditional

model,i.e. . The resulting complementarity problem (5.17) is one ofnx +2(β+γ).

variables and equations. Recall also that the positiveness in the variables is imposed,

that is ∈ R+
2(β+γ). If we define:

• Ω = R+
2(β+γ) ×

• ω ∈ Ω, that isω = (,x)∈R+
2(β+γ) ×

• the partitionH(ω) given by:

σk 1+
0 σ[,]∈

ς n2 n2⋅= α 0.5= σ 0.5= ξ 2= ρ 0.5=

h x() 0=

r1 j
x() p1 j

–

r2 j
x() p2 j

–

gl β– x() p1l
p2l

+– 
 
 
 
 

0= j∀ 1…β[]∈ l β 1…β γ+ +[]∈,

p1t
p2t s+

⋅
t 1=

β γ s–+

∑ p1t
p2t s β– γ–+

⋅
t β γ s– 1+ +=

β γ+

∑+ 0= s∀ 0…β γ 1–+[]∈

piq
0≥ i∀ 1…2[]∈ q 1…β γ+[]∈,

x R
nx∈

piq

piq

R
nx

piq
R

nx

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

131

(6.30)

and assume:

• the continuous differentiability of the functionF(ω):R+
2(β+γ) × at every point

ω=(,x)∈ R++
2(β+γ) × .

• and the nonsingularity of Jacobian matrixH’(ω) (this also implies that we assume the

nondegeneracy of the complementarity equationsG(ω) in order to avoid numerical

singularities caused by such equations)

then we can apply the potential reduction algorithm and its convergence result to the

complementarity formulation described earlier in this work.

6.6 IMPLEMENTATION OF WANG’S ALGORITHM AND

HIGH ORDER TECHNIQUES FOR SOLVING A

CONDITIONAL MODEL

The algorithm proposed by Wang and the second order corrections developed by Mehrotra

and Gondzio have been implemented in a computer program called IPSlv for their

application to the solution of conditional models formulated as a complementarity

problem of the type represented by (6.30). The solver IPSlv has been incorporated into the

ASCEND environment. Some details of the implementation of Wang’s algorithm and both

of the second order techniques are given in this section.

6.6.1 PRACTICAL IMPLEMENTATION OF WANG’S ALGORITHM

For purposes of implementation, we made some minor modifications to the algorithm

F ω()

h x()

r1 j
x() p1 j

–

r2 j
x() p2 j

–

gl β– x() p1l
p2l

+– 
 
 
 
 
 
 

0== j∀ 1…β[]∈ l β 1…β γ+ +[]∈,

G ω() p1t
p2t s+

⋅
t 1=

β γ s–+

∑ p1t
p2t s β– γ–+

⋅
t β γ s– 1+ +=

β γ+

∑+
 
 
 

0== s∀ 0…β γ 1–+[]∈

R
nx

piq
R

nx

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

132

described in 6.4.3:

1. First, the value for the centering parameterσ in Wang’s algorithm is rather arbitrary.

Wang’s proposes using a value of 0.5 and dividing that value by 10 every time that a

full Newton step in the variables can be taken. In our implementation we provide the

option of defining an initial value of the centering parameter and modifying it under

Wang’s heuristic. However, we also support an evaluation of the centering parametera

la Mehrotra. For the later case, we need to substituteStep 2 (direction generation) in

algorithm 6.4.3 by the following steps:

• Calculate the affine direction by solving (6.24) withσ=0.

(6.31)

• Calculate the centering parameter (similarly to (6.9)):

(6.32)

where is λ is a scalar such that for all ,λ>0, we get ∈R+
2(β+γ)×

(i.e. λ is the factor in the linear search of the damped Newton method).

• Solve equation (6.24) with the centering parameter calculated in the previous step.

(6.33)

Here, the direction is then used inStep 3 (stepsize determination) of the algorithm

dp
k

H′ ωk
()dp

k F′ ωk
()dp

k

G′ ωk
()dp

k

F– ωk
()

G– ωk
()

= =

µk ωk
() e

T
G ωk

() n2⁄=

µaff ωk
() e

T
G ωk λdp

k
+() n2⁄=

σk µk ωk
() µaff ωk

()⁄[]
3

=

λ 0 λ(,)∈ ωk λdp
k

+ R
nx

H′ ωk
()dc

k F′ ωk
()dc

k

G′ ωk
()dc

k

F– ωk
()

G– ωk
() σkµ ωk

()e+
= =

dc
k

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

133

6.4.3. Note that, even though two solves are required, the factorization of the Jacobian

matrixH’(ω) is being done only once (as in second order methods). In other words,

this option requires an extra backsolve to compute the affine direction but leaves us

with a more reliable value for the centering parameterσk.

2. The second modification arises from the fact that, while solving a conditional model as

a complementarity problem, the equations of the partitionG(ω) may contain the

summation of complementarity products rather than individual complementarity

products. For that reason, we modified the second term in the right hand side (the

logarithmic barrier term) of the merit function , Equation (6.23), to include the

summation of the logarithm of each individual complementarity product instead of the

logarithm of each functionGi(ω) . That modification is motivated solely by the

observation that we need to prevent each individual complementarity product from

going prematurely to zero (aGi(ω) could be greater than zero but still an individual

complementarity product in it could reach zero), but there is presently no theoretical

basis to support it. As a matter of fact, Wang’s proof of convergence does not strictly

apply anymore after this modification is made.

6.6.2 IMPLEMENTATION OF SECOND ORDER CORRECTIONS

The linearization of the functionsF(ω) in (6.24) may lead to infeasibilities in the solution

to the problem (6.21). Hence, in order to strictly apply second order corrections to the

problem (6.24), we should also consider a correction for the linearization of the equations

F(ω). Still, here we are mainly concerned with the numerical problems associated with

the complementarity equationsG(ω), and, for those equations, an analogy to Mehrotra’s

second order correction and Gondzio’s centrality correction can be derived. In our

implementation of second order techniques, the main difference with respect to the

original approaches is that, in the problem we are solving, the equations of the partition

G(ω) may contain the summation of complementarity products.

6.6.2.1 Applying Mehrotra’s corrector step

As in our implementation of Wang’s algorithm, the implementation of Mehrotra’s

predictor corrector technique implies a modification of the direction generation step (Step

ψ ω()

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

134

2) of algorithm 6.4.3. The three elements of Mehrotra’s technique applied to the

framework used in this work are:

• Predictor step. Calculation of the affine direction as in (6.31).

• Computation of the centering parameterσk as in (6.32).

• Corrector step. A second order corrector step for the system defined by (6.24) is given

by the solution to the linear system:

(6.34)

where the vector is a function of the affine direction and represents the second

order correction for the partitionG(ω) (similar to the second order correction∆Xp
k∆Sp

ke

used in (6.10)). Specifically for the complementarity formulation used in this work

(Equation (6.30)), the elements of the vector are given by:

(6.35)

For simplicity in the representation, note that we have omitted the indexk (iteration) for

the complementary variables . Also, note that the corrector term for the partitionF(ω)

in (6.34) is zero. As stated before, a value of zero is strictly correct only in a case in which

the equations ofF(ω) are linear.

As an analogy to the discussion about the meaning of Mehrotra’s second order correction

given before for the linear programming case, the following simple example illustrates the

meaning of the second order correction defined by (6.35):

Consider the complementarity equation (including two complementarity products) given

by:

H′ ωk
()dc

k F′ ωk
()dc

k

G′ ωk
()dc

k

0

σµ ωk
()e C dp

k()–
= =

C dp
k()

C dp
k()

Cs 1+ dp
k

() ∆p1t
∆p2t s+

⋅
t 1=

β γ s–+

∑ ∆p1t
∆p2t s β– γ–+

⋅
t β γ s– 1+ +=

β γ+

∑+=

s∀ 0…β γ 1–+[]∈

piq

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

135

The linearization of that complementarity equation in a Newton scheme is given by:

(6.36)

If a full step were achieved in the affine-scaling (Newton) direction, the new

complementarity conditions would be given by:

which, after substituting (6.36), reduces to

(6.37)

The right hand side of (6.37) is the second order corrector term defined by (6.35). Similar

to the linear case, the second order correction (6.35) corresponds to the violation of the

complementarity conditionsG(ω) if a full step in the affine-scaling direction were taken.

Hence, the corrector direction is supposed to drive from a hypothetical point () to

a point in the central trajectory.

When applying a second order correction, we also have to modifyStep 3 of algorithm

6.4.3 (stepsize determination). Since the corrector step is a second order term, equation

(6.28) has to be substituted by

(6.38)

G1 ω() 0= p11
p21

⋅ p12
p22

⋅+ 0=

G1′ ω()d G– ω()=

p11
∆p21

⋅ ∆p11
p21

⋅ p12
∆p22

⋅ ∆p12
p22

⋅+ + + p11
p21

⋅ p12
p22

⋅+()–=

p11
∆p11

+() p21
∆p21

+()⋅ p12
∆p12

+() p22
∆p22

+()⋅+ p11
p21

⋅ p12
p22

⋅+=

p11
∆p21

⋅ ∆p11
p21

⋅ p12
∆p22

⋅ ∆p12
p22

⋅+ + +

∆p11
∆p21

⋅ ∆p12
∆p22

⋅+

+

+

p1
1 ∆p1

1
+() p1

2 ∆p1
2

+()⋅ p2
1 ∆p2

1
+() p2

2 ∆p2
2

+()⋅+ ∆= p11
∆p21

⋅ ∆p12
∆p22

⋅+

ωk
dp

k
+

ωk ξρm
dp

k ξρm()
2
dc

k
+ + ΩΣ∈

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

136

where is the affine direction (predictor step) and is the second order corrector

direction. Recall that, specifically for our problem,Ω=R+
2(β+γ)× and

ΩΣ=R++
2(β+γ)× .

6.6.2.2 Applying Gondzio’s centrality corrections

As in Gondzio’s original method, in this implementation we assume that a predictor

direction (a Mehrotra’s step or a step generated by Step 2 in Wang’s algorithm, for

instance) has been calculated, and, therefore, the complementarity equations for the

resulting point can be evaluated:

(6.39)

If we would strictly follow Gondzio’s method, the next step would be to define a

hypercube

(6.40)

and project the complementarity equations componentwise to define the target:

(6.41)

In Gondzio’s original approach, each complementarity equation contains only one

complementarity product. In that way, a correction term can be evaluated for each

complementarity product. On the contrary, here we recall once again the fact that, for the

complementarity representation of a conditional models, the complementarity equations

G(ω) may consist of the summation of complementarity products rather than individual

complementarity products. Hence, the value of a corrector term for each complementarity

product cannot be explicitly estimated.

In this implementation of Gondzio’s centrality correction, equations(6.40) and (6.41) are

not used directly. In order to best describe our implementation of Gondzio’s centrality

correction, letng be the number of complementarity products in each complementarity

equation, and for purposes of illustration, consider thatng is the same for each

complementarity equation.

 Hence, the complementarity equations evaluated at the trial point can be represented in

dp
k

dc
k

R
nx

R
nx

ϒ̃ G ω̃() R
n2∈=

Hyp βminµk βmaxµ
k,[]

n2
=

ϒt π ϒ̃ Hyp() R
n2∈=

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

137

terms of the individual complementarity products as:

(6.42)

where is thej-th complementarity product in thei-th complementarity equation.

Furthermore, the components of a vector including all the individual

complementarity products are given by:

(6.43)

Once the vector of individual complementarity products for the trial point has been

evaluated, we can use a procedure analogous to the one suggested by Gondzio. The vector

 is projected on a hypercube

(6.44)

to define the target

(6.45)

which results in the difference vector being:

(6.46)

Thus, we define the corrector term for each complementarity equation as the summation

of the corrector terms for each of the complementarity products:

Gi ω̃() gij ω̃()
j 1=

j n= g

∑= i 1…n2∈∀

gij ω̃()

γ̃ R
n2 ng×

∈

γ̃ i 1–() ng⋅ j+ gij ω̃()= i 1…n2∈∀ j 1…ng∈∀,

γ̃

γ̃

Hypg βmin µk
ng⁄() βmax µk

ng⁄(),[]
n2 ng×

=

γ π γ̃ Hypg() R
n2 ng×

∈=

γ γ̃–

γ γ̃–()k

βmin µk
ng⁄() γ̃k–()

βmax µk
ng⁄() γ̃k–()

β– max µk
ng⁄()

0









=

if γ̃k βmin µk
ng⁄()<

if γ̃k βmax µk
ng⁄()>

if γ̃k 2βmax µk
ng⁄()>

otherwise

k 1…n2 ng×∈∀

IMPLEMENTATION OFWANG’SALGORITHM AND HIGH

138

(6.47)

Finally, an analogy to Gondzio’s centrality correction for the complementarity

representation of a conditional model will be given by:

(6.48)

To summarize, in our implementation of Gondzio’s method,

• the complementarity equations are decomposed in terms of their individual

complementarity products,

• a correction term for each outlier complementarity product is evaluated,

• the corrector term for a complementarity equation is obtained as the summation of the

corrections of each of its individual complementarity products and, finally,

• Gondzio’s corrector step is evaluated by solving the linear system defined by (6.48).

This implementation was motivated by Gondzio’s original goal of correcting (if

necessary) each complementarity product of each complementarity equation. However,

we recognize here a fundamental incorrectness of the approach presented in this section:

there is no guarantee that the corrector term indeed provides a correction for each

complementarity product. Hence, this implementation is not theoretically sound, and it

should only be considered as an initial study to discover the difficulties and the benefits of

the implementation on the solution of our complementarity formulation. Future work

should be aimed for obtaining a theoretically sound implementation.

6.6.3 THE SOLVER IPSLV

The numerical techniques described in this section have been implemented in a computer

code called IPSlv and incorporated to theASCEND modeling environment. As such, the

Ci ω̃() γ γ̃–()k
k i 1–() ng⋅ 1+=

k i ng⋅=

∑=

i 1…n2∈∀

H′ ωk
()dg

k F′ ωk
()dg

k

G′ ωk
()dg

k

0

C ω̃()
= =

Ci ω̃()

NUMERICAL RESULTS

139

selection of the specific technique as well as the values of the various parameters can be

specified interactively through theASCEND solver interface. This implementation can be

applied not only to the complementarity representation of a conditional model but also to

any kind of complementarity problems described by (6.21). Also, it can be used for any

system like (6.5), generated by the optimality conditions of a linear programming

problem. The main options offered by this solver are:

1. Numerical technique:

• Wang’s potential reduction method.

• Mehrotra’s second order method.

Gondzio’s centrality corrections can be applied to the point generated by any of those

techniques at each iteration.

2. Calculation of the centering parameterσ:

• Given initial value modified heuristically as proposed by Wang.

• Calculateda la Mehrotra by using the affine scaling direction.

If Mehrotra’s technique is being used, only the second alternative is available.

Calculationa la Mehrotra is the default option.

3. Calculation of the potential functionψ(ω):

• Include the summation of residuals of the complementarity equations in the

logarithmic barrier term.

• Include the summation of the values of the individual complementarity products

in the logarithmic barrier term. This is the default option as described earlier.

6.7 NUMERICAL RESULTS

The numerical methods described in this chapter were used to solve the complementarity

problems described in Chapter 5. The number of iterations that we used to obtain the

solution of each of these problems is shown in Table 6-1.

DISCUSSION

140

6.8 DISCUSSION

Regarding the numerical results obtained for this set of examples, we can make the

following observations:

• A sequence of steps generated by Wang’s algorithm successively converged to a

the solution in all of the complementarity problems.

• Also, in all the cases, the use of Mehrotra’s second order correction resulted in a

reduction in the number of iterations required for convergence by Wang’s

algorithm.

• Finally, the application of Gondzio’s corrector step did not provide a significant

improvement with respect to a step calculated solely by Wang’s algorithm or a step

including Mehrotra’s correction.

However, we are aware that this reduced set of examples may not be enough to draw a

meaningful conclusion regarding the numerical performance of each of the techniques.

So, for instance, we still consider that a corrector step a la Gondzio might reduce the

problems associated with scaling in some other complementarity problems.

Rather than a formal comparison among the performance of these methods, we consider

Table 6-1 Numerical results by using interior point methods.

Example Reference Wang
Wang +

Mehrotra
Wang +
Gondzio

 Wang +
Mehrotra+
Gondzio

Flow Transition
(sonic-subsonic)

Zaher (1995) 7 7 7 7

Phase Equilibria Zaher (1995) 11 8 11 8

Heat exchanger Zaher (1995) 9 8 9 8

Pipeline network Bullard and
Biegler (1992)

34 33 36 33

Simple L-V flash King (1980) 26 23 32 23

Linear mass balance Grossmann and
Turkay (1996)

15 14 15 14

DISCUSSION

141

that a major result obtained from the experiments shown in the previous section is that we

could establish the viability of the use of interior point methods in the solution of

conditional models represented as complementarity problems. That is what we believe is

one the contributions of this work.

The use of interior point methods in the solution of conditional models represented as

complementarity problems provides some theoretical and numerical advantages with

respect to both of the approaches discussed in section 5.4 of Chapter 5:

1. First, a theoretical proof of convergence exists for the interior point algorithm used in

this work (Wanget al., 1996).

2. The use of interior point methods will prevent the complementarity products of the

complementarity equations from prematurely reaching zero. In practice, this feature

benefits the numerical performance byi) avoiding numerical singularities during the

iterative solution process and ii) allowing to take larger steps in a Newton-based

technique before the nonnegativity constraints of the complementarity variables are

violated.

3. The use of second order corrections in interior point methods, specially Gondzio’s

centrality correction, can help prevent numerical problems associated to bad scaling.

Finally, the implementation of second order techniques for the complementarity

formulation developed in this work must only be considered as an initial study which

discovers the complications and potential benefits of such an implementation. Hence, we

want to emphasize that a conceptual gap still exists between the application of second

order methods for the linear programming problem case and their application for our

complementarity formulation; future research should be aimed at bridging this gap as far

as possible.

REFERENCES

142

6.9 REFERENCES

Albuquerque, J. S., Gopal, V., Staus, G., Biegler, L. T. and Ydstie, B. E.; Interior Point
SQP Strategies for Structured Process Optimization Problems. to appear in
Comput. Chem. Eng, 1997.

Andersen, E. D., Gondzio, J., Meszaros, C. and Xu, X.; Implementation of Interior Point
Methods for Large Scale Linear Programming. Technical Report 1996.3,
Logilab, University of Geneva, Switzerland, 1996.

Bullard, L.G. and Biegler, L.T.; Iterated Linear Programming Strategies for Nonsmooth
Simulation: Continuous and Mixed-Integer Approach.Comput. Chem. Eng.,
16(10), 1992.

Frisch, K. R.; The Logarithmic Potential Method of Convex Programming. Technical
Report, University Institute of Economics, Oslo, Norway, 1955.

Gondzio, J.; Multiple Centrality Corrections in a Primal-Dual Method for Linear
Programming. Computational Optimization and Applications, 6, 137-156,
1996.

Gondzio, J. and Terlaky, T.; A Computational View of Interior-Point Methods for Linear
Programming. Technical Report 1994.22, Logilab, University of Geneva,
Switzerland, 1994.

Grossmann, I. E. and Turkay, M.; Solution of Algebraic Systems of Disjunctive Equations.
Comput. Chem. Eng., 20, S339–44, 1996. Suppl. Part A.

Jansen, B., Roos, C., Terlaky, T. and Vial, J.; Primal Dual Target Following Algorithms for
Linear Programming. Technical Report 93-107, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, The
Netherlands, 1993.

King, C. J.; Separation Processes, Chemical Engineering Series, 2nd. Edition,
McGrawHill, 77-79, 1980.

Kojima, M., Noma, T. and Yoshise, A.; Global Convergence in Infeasible-Interior-Point
Algorithms.Mathematical Programming, 65, 43-72, 1994.

Lustig, I. J., Marsten, R. E. and Shanno, F.; On Implementing Mehrotra’s Predictor-
Corrector Interior-Point Method for Linear Programming.SIAM Journal of
Optimization. 2(3). 435-449, 1992.

Lustig, I. J., Marsten, R. E. and Shanno, F.; Interior Point Methods for Linear
Programming: Computational State of the Art.ORSA Journal for Computing.
6, 1-14, 1994.

Mehrotra, S.; Higher Order Methods and their Performance. Technical Report 90-16R1,
Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL, 1991.

Mehrotra, S.; On the Implementation of a Primal-dual Interior Point Method.SIAM Journal
of Optimization. 2(4), 575-601, 1992.

REFERENCES

143

Simantiraki, E. M., Shanno, D. F.; An Infeasible-Interior-Point Algorithm for Solving
Mixed Complementarity Problems. Rutcor Research Report 37-95., Rutgers
Center for Operations Research, Rutgers University, 1995.

Ternet, D. J.; New Approaches to a Reduced Hessian Successive Quadratic Programming
Method for Large-Scale Process Optimization. Ph.D. thesis, Department of
Chemical Engineering Carnegie Mellon University, Pittsburgh,
Pennsylvania, April, 1998.

Von Newman, J.; On a Maximization Problem. Technical Report, Institute for Advanced
Study, Princeton, NJ, 1947.

Wang, T., Monteiro, R. D. C., and Pang, J.; An Interior Point Potential Reduction Method
for Constrained Equations.Mathematical Programming, 74, 159-195, 1996.

Wright, S.; An Interior Point Algorithm for Linearly Constrained Optimization.SIAM
Journal of Optimization. 1(4), 1992.

Wright, S.; Primal Dual Interior Point Methods. First Edition. SIAM press, Philadelphia,
PA, 1997.

Wright, S. and Ralph, D.; A Superlinear Infeasible-Interior-Point Algorithm for Monotone
Complementarity Problems.Mathematics of Operation Research, 21, 815-
838, 1996.

Zaher, J. J.; Conditional Modeling. Ph.D. thesis, Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1995.

144

CHAPTER7 CONTRIBUTIONS

AND FUTURE

WORK

This chapter concludes the thesis by giving a summary of the work and contributions

made in this research. Also directions and recommendations for future work are

highlighted.

SUMMARY

145

7.1 SUMMARY

One of the goals of our research group has been to improve one’s ability to develop and

solve process models. This work was specially focused on the issues involved in the

modeling, formulation, structural analysis, and solution of conditional models in an

equation-based environment.

In Chapter 2 we identified the modeling capabilities needed for an efficient representation

of conditional models. We then described modeling tools for the performance of each of

the identified tasks and gave the details of the computer implementation of these tools.

Several chemical engineering examples were used to demonstrate the scope of application

of the proposed extensions and to show how the expressiveness of an equation-based

modeling language increases with their incorporation.

In Chapter 3 we introduced an extension to Zaher’s methodology (Zaher, 1993; Zaher,

1995) for the structural analysis of conditional models. This extension allows the

consistency analysis to be applied to conditional models in which the number of variables

and equations for each of the alternatives may not be the same. Also, we show how, by

taking advantage of the structure of the problem, it is sometimes possible to reduce the

effort required by such an analysis. In particular, the cases of the existence of repeated

structures and common incidence pattern among alternatives were discussed.

In Chapter 4 we investigated the solving of conditional models using a boundary crossing

algorithm proposed by Zaher. This algorithm involves the execution of several well

differentiated activities including logical analysis, continuous reconfiguration of the

equations constituting the problem, calculation of Newton-like steps, and the calculation

of subgradient steps. We described the practical implementation of the boundary crossing

algorithm as a conditional modeling solution tool and solved several examples of

conditional models in chemical engineering.

In Chapter 5 we described a complementarity formulation for representing algebraic

systems of disjunctive equations. We show that this formulation not only establishes the

complementarity condition among equations belonging to different disjunctive terms but

CONTRIBUTIONS

146

also enforces simultaneous satisfaction of all of the equations appearing within the same

disjunctive term. The result of applying our formulation to a disjunctive set of equations

is a square system of nonlinear equations (including the complementarity equations)

subject to the positiveness of the complementary variables. Hence, the main advantage of

this approach is that it avoids the need for discrete decisions and the need for special

procedural nonlinear techniques as required by the boundary crossing algorithm. Finally

in Chapter 5, we investigated the solving of the resulting complementarity problem using

a conventional nonlinear solver and pivotal techniques similar to those proposed by

Lemke (1965).

In Chapter 6 we described the globally convergent framework proposed by Wanget al.

(1996) for solving a constrained system of nonlinear equations by an interior point

potential reduction method. Also, we show how the convergence result of this general

framework can be applied to the complementarity formulation described in Chapter 5.

Based on that, we then applied a modification of the algorithm proposed by Wang and

incorporated second order corrections to it in order to solve the complementarity examples

used as case studies throughout this research.

7.2 CONTRIBUTIONS

In this section we present a brief summary of what we believe are the main contributions

of this work in the various aspects of conditional modeling.

7.2.1 MODELING

• We identify modeling capabilities which support the efficient development of

conditional models in both the declarative definition of equation-based models and the

procedural execution of methods:i) conditional configuration of the model structure,

ii) conditional compilation, andiii) conditional execution of the procedural code of

methods.

• We developed consistent syntax and semantics for each of the above modeling

capabilities and completed their practical implementation into theASCEND modeling

environment.

CONTRIBUTIONS

147

In practice, the implementation of conditional modeling tools has proven to be a

powerful tool for the purposes of reusability and economy of programming. The

application of these tools in many of the currentASCEND modeling libraries provides

support for this assessment.

7.2.2 STRUCTURAL ANALYSIS

• We extended Zaher’s consistency analysis so that it can be applied to a conditional

model without placing restrictions on the number of variables and equations presented

in the problem. This algorithm has been implemented within theASCEND

environment.

• We described instances of problems in which the combinatorial complexity of the

consistency analysis can be reduced. In particular, the cases of the existence of

repeated structures and common incidence pattern among alternatives were discussed:

1. In our implementation of the consistency analysis, a “pre-analysis” is performed

first in order to eliminate those conditional statements whose alternative sets of

equations have the same incidence pattern.

2. The use of a representative incidence matrix significantly reduces the effort to

analyze conditional models containing repeated structures. The conditions on

which this analysis can be performed have been discussed. However, the

implementation of a tool which is able to identify repeated structures and analyze

the problem using only a subset of these repeated structures is yet to be completed.

7.2.3 FORMULATION

• We developed a complementarity formulation to represent a conditional model as a

complementarity problem. The result of applying our formulation to a disjunctive set

of equations is a square system of nonlinear equations. We show that, if the complete

set of nonlinear equations (including the complementarity equations) is satisfied, then

the solution of the complementarity problem corresponds to a consistent solution to

the conditional model.

The complementarity formulation has shown to be useful in some practical

applications. For instance, the thermodynamic library in theASCEND modeling

FUTURE WORK

148

environment uses a complementarity equation in order to represent the existence or

non existence of a phase at some given conditions. This has allowed us to

simultaneously find the number of phases and the equilibrium compositions while

solving flash calculations with a conventional solver.

7.2.4 SOLUTION

• We provided an efficient implementation of the boundary crossing algorithm as a

conditional modeling solution tool. In such an implementation, we have integrated the

entities created or used to perform each of the activities required by the algorithm in an

object-oriented solving engine: the conditional solverCMSlv. This solver has been

incorporated to theASCEND environment.

• We investigated solving the complementarity problem representing a conditional

model using:

1. A conventional nonlinear solver. We used theASCEND solverQRSlv which applies a

modified Levenberg-Marquardt method.

2. Pivotal techniques. We studied the use of the Lemke’s pivoting rules developed for

linear complementarity problems.

3. Interior point methods. We used the framework developed by Wang and extended

his algorithm as well as second order corrections developed by Mehrotra and

Gondzio to our complementarity formulation.

• We solved several typical examples in the area of chemical engineering in order to

assess the value of the boundary crossing algorithm as well as each of the techniques

employed in the solution of the complementarity problems.

• We implemented the interior point methods mentioned above in a computer program

calledIPSlv. This implementation is also available through theASCEND solver

interface.

7.3 FUTURE WORK

The area of conditional modeling still imposes many challenges to equation-based

modeling researchers. The following are a few recommendations for future work on this

FUTURE WORK

149

area:

• In the boundary crossing algorithm implemented in this work, the analysis on a

boundary involves the solution to an optimization subproblem. The solution to this

subproblem is intended to provide a step which optimally reduces the residuals of all

the systems of conditional equations in the neighborhood of the boundary. However,

our experience with the solution of conditional models by using pivotal techniques

indicates that it may be not necessary to find such an optimal descent direction. In

other words, perhaps any step which reduces the residuals of the neighboring systems

of equations (any descent as opposed to optimal descent) can give a reasonable

movement away from the boundary. Hence, the issue here is to investigate if it is

possible to modify the boundary analysis in the boundary crossing algorithm so that

we solve a feasibility problem rather than an optimization problem.

• The complementarity problems solved in Chapter 5 and Chapter 6 were formulated by

hand using the disjunctive representation of the system of conditional equations. We

created conditional modeling tools rich enough to represent the disjunctive equations;

what remains to be done is the implementation of a systematic derivation of

complementarity problems out of conditional statements representing those

disjunctive equations. In that way, we envision a solver which, having available the

information provided by conditional statements, could either use the boundary

crossing algorithm or generate the complementarity problem and solve this problem

by using the various techniques studied in this work.

• A reformulation of our complementarity representation of a conditional model as a

mixed complementarity problem (MCP) is desired because it would make suitable the

application of a large number of codes and numerical techniques already developed for

the solution ofMCPs. Future work should be conducted in this direction.

• A conceptual gap still exists between the application of second order interior point

methods for the linear programming problem case and their application for the

complementarity formulation developed in this work. Future research should be

aimed at bridging this gap as far as possible.

FUTURE WORK

150

• One of the more recent approaches to the discrete event simulation problem was

described in the development of the simulation packagegPROMS. In that work, Barton

(1992) concluded that the analysis of the time dependent behavior of a chemical

process requires the system to be decomposed into the continuous-discrete physical

behavior of the plant (models) and the external actions imposed on it by its

environment (tasks). Because of this decomposition, the physical behavior is specified

in a purely declarative language whereas the operation becomes part of the procedural

knowledge required to solve the equations. In contrast, we believe that the discrete

event simulation problem can be represented by using a purely declarative modeling

language.

The implementation of conditional modeling tools has been the first step towards that

goal. However, in order to deal with discrete event simulation problems, it is also

necessary to incorporate domain variables, such as time, into the modeling language.

The inclusion of domain variables provides a very convenient representation of the

time dependent behavior of chemical processes, including any discrete change. The

compiling implications of the use of these variables are very interesting. Domain

variables can be thought to be defined over an infinite set.ASCEND already supports

allowing one to define anything over a finite set. For a finite set, we require the sets to

be explicitly defined before compiling commences. Thus, the compiled data structure

contains storage space for every variable and equation defined over such a set. On the

other hand, for an infinite set the compiler cannot set aside the storage space as the

solver will control how many points in time it needs as it solves. What can be

compiled, however, is one instance in time of the models. The solver can use the

compiled instance to determine the time derivatives and the algebraic variables, given

values for the states. Thus, the solver can use this same model repeatedly for different

values of the states to integrate forward in time.

151

APPENDIXA Eligible Set for a
Conditional Model
Having Alternatives
with Different Incident
Variables

This appendix presents the formal derivation of the eligible set of variables to be used in

the consistency analysis of a conditional model when such a conditional model contains

alternatives with different incidence sets and different number of equations among them.

By using set theory, we show that the set of variables eligible to become independent

variables in the context of the overall conditional problem is given by:

wheres is the number of the alternative sets of equations, is the set of eligible

variables to be chosen as independent variables for the conditional problem, is the

eligible set of variables to be chosen as independent variables for the alternativei, M is the

maximal set of variables, andIi is the set of incident variables for the alternativei.

e
k′′ Ei

k
M \I i()∪[]

i

s

∩=

e
k′′

Ei
k

152

A.1 Notation

Besides the notation already established in Chapter 3, the following definitions are used

throughout this demonstration.

A.1.1 Set Operators

comp(A) Complement All the elements not inA.

⊂ Subset means that every element inA is also

 contained inB.

∅ Empty set

Disjoint Sets

Equal Sets and .

During the derivations, we frequently make use of the Morgan’s Theorem:

A.2 Eligible Set in Zaher’s Consistency Analysis

In his work, Zaher (1995) considered the necessary conditions for the structural

consistency of a conditional model. He show that, for a conditional model in which all the

alternatives have the same incident variables, the eligible set of variables for a conditional

model is given by:

(A.1)

A B⊂

A B∩ ∅=

A B⊂ B A⊂

comp Aj()[]
j

∪ comp Aj
j

∩[]=

e
k

E1
k

E2
k …Es

k
Ej

k

j

s

∩=∩ ∩=

153

A.3 Extension of Zaher’s Consistency Analysis to a
General Conditional Model

In a general case, the number of equations in each alternative of a conditional model may

change and so may the incidence set of variables. This section presents a derivation of the

eligible set of a conditional model for that general case.

A.3.1 Deriving the Eligible Set in a General Conditional Model

In order to derive the eligible set of variables for a general conditional model, we start by

finding the eligible set for each alternative in the context of the overall problem through

the following analysis.

Assume that an output assignment performed to each individual alternative results in the

eligible sets for an . Consider the case of alternative number 1. In order to

find the “truly” eligible set of variables for alternative 1 in the context of the overall

conditional model (all the alternatives) we have to eliminate the elements of which are

ineligible in any of the alternatives. We will denote the resulting corrected set of eligible

variables for alternative 1 as . We obtain:

(A.2)

Here is an explanation of the meaning of (A.2). is the set of variables incident but

ineligible to be chosen as independent variables in alternative 2. Hence, is

the set of eligible variables in alternative 1 which are ineligible in alternative 2. Therefore,

 represents the set of variables

which are eligible in alternative 1 but ineligible in some alternative. With that in mind, the

corrected set is the set of eligible variables for alternative 1 which can be also

considered as eligible in the context of the overall conditional model (note the minus

operation in (A.2)).

In general, for any alternative the set of eligible variables for each alternative

in the context of the overall conditional problem is given by:

Ei
k

i 1…s{ }∈

E1
k

E1
k′

E1
k′ E1

k
\ E1

k
I 2\E2

k()∩[] E1
k

I 3\E3
k()∩[] … E1

k
I S\Es

k()∩[]∪ ∪{ }=

I 2\E2
k()

E1
k

I 2\E2
k()∩

E1
k

I 2\E2
k()∩[] E1

k
I 3\E3

k()∩[] … E1
k

I S\Es
k()∩[]∪ ∪

E1
k′

i 1…s{ }∈

154

(A.3)

Finally, the union of these individual sets gives the set of eligible variables for the overall

conditional problem:

(A.4)

For a general conditional model, equation (A.4) is the equivalent to equation (A.1) for

conditional models in which all the alternatives have the same incident variables.

A.3.2 A simplified Approach

We next show that the previous analysis does not have to be performed as described. We

demonstrate that, if we augmented the eligible set of each alternative with the nonincident

variables of that alternative,

(A.5)

and find the intersection of the augmented sets ,

(A.6)

then the resulting set is completely equivalent to the set given by (A.4). Recall

thatM is the maximal set of variables,

(A.7)

so that represents the set of nonincidences in alternativei.

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j j i≠,

s

∪∩
 
 
 

=

e
k′ Ei

k′
i

s

∪=

Ei
k′′ Ei

k
M \I i()∪=

Ei
k′′

e
k′′ Ei

k′′
i

s

∩ Ei
k

M \I i()∪[]
i

s

∩= =

e
k′′ e

k′

M I 1 I 2 …I s I j
j

s

∪=∪ ∪=

M \I i()

155

In oder to demonstrate our assertion, we first carry out the following derivation. From

(A.3), we get,

(A.8)

(A.9)

Then we use (A.9) to obtain,

(A.10)

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j j i≠,

s

∪∩
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()∩[]
j j i≠,

s

∪
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()∩
j j i≠,

s

∪ ∅∪
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()∩
j j i≠,

s

∪ Ei
k

I i \Ei
k()∩[]∪

 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()∩[]
j

s

∪
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j

s

∪∩
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j

s

∪∩
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
I j M \I j()∪[]\ Ej

k
M \I j()∪[]

j

s

∪∩
 
 
 

=

Ei
k′ Ei

k
\ Ei

k
M \ Ej

k
M \I j()∪[]

j

s

∪∩
 
 
 

=

156

(A.11)

Thus, by substituting (A.6) in (A.11):

(A.12)

and from (A.4):

(A.13)

which is equivalent to:

(A.14)

Finally, since is always a subset of , we obtain,

(A.15)

Q.E.D

Ei
k′ Ei

k
\ Ei

k
M \ Ej

k
M \I j()∪

j

s

∩ 
 ∩

 
 
 

=

Ei
k′ Ei

k
\ Ei

k
M \ Ej

k
M \I j()∪

j

s

∩ 
 ∩

 
 
 

=

Ei
k′ Ei

k
\ Ei

k
M∩[]\ Ei

k
Ej

k
M \I j()∪

j

s

∩ 
 ∩

 
 
 

=

Ei
k′ Ei

k
Ej

k
M \I j()∪

j

s

∩∩=

Ei
k′ Ei

k
e

k′′∩=

e
k′ Ei

k
e

k′′∩[]
i

s

∪=

e
k′ Ei

k

i

s

∪ 
  e

k′′∩=

e
k′′ Ei

k

i

s

∪ 
 

e
k′ e

k′′=

157

(A.15) means that the derivation of the set of eligible variables for a conditional problem

presented in A.3.1 can be substituted by the combined use of (A.5) and (A.6).

A.4 Proof of the Reduction to the Particular Case

We finish our demonstration by showing that both (A.4) and (A.6), reduces to (A.1) when

the incidences are the same for all the alternatives.

A.4.1 Reduction from (A.4)

Start with equation (A.3)

since

(A.16)

then

(A.17)

By using Morgan’s Theorem:

(A.18)

we get the following equivalence:

(A.19)

Substituting (A.19) in (A.3):

(A.20)

and further simplifying:

Ei
k′ Ei

k
\ Ei

k
I j \Ej

k()
j j i≠,

s

∪∩
 
 
 

=

I 1 I 2 … I s I M= = = = =

I j \Ej
k() I \Ej

k() M \Ej
k() comp Ej

k()= = =

comp Ej
k()[]

j
∪ comp Ej

k

j
∩=

I j \Ej
k()

j j i≠,

s

∪ I \ Ej
k()

j j i≠,

s

∩=

Ei
k′ Ei

k
\ Ei

k
I \ Ej

k()
j j i≠,

s

∩∩
 
 
 

=

158

(A.21)

(A.22)

(A.23)

From (A.1):

(A.24)

Finally, from (A.4):

(A.25)

Q.E.D.

A.4.2 Reduction from (A.6)

Starting with (A.5)

(A.26)

and since

(A.27)

then the set of nonincidences is null for all the alternatives:

(A.28)

Hence,

(A.29)

and, finally,

Ei
k′ Ei

k
\ Ei

k
I∩[]\ Ei

k
Ej

k()
j j i≠,

s

∩ 
 ∩

 
 
 

=

Ei
k′ Ei

k
\ Ei

k
\ Ej

k()
i

s

∩
 
 
 

=

Ei
k′ Ej

k()
i

s

∩=

Ei
k′ e

k
=

e
k′ Ei

k′
i

s

∪ e
k

i

s

∪ e
k

= = =

Ei
k′′ Ei

k
M \I i()∪=

I 1 I 2 … I s I M= = = = =

M \I i ∅=

Ei
k′′ Ei

k
=

159

(A.30)

Q.E.D.

e
k

Ei
k

i

s

∩ Ei
k′′

i

s

∩ e
k′′= = =

160

APPENDIXB Derivation of the
Optimization
Subproblem of the
Boundary Crossing
Algorithm

In this appendix, we present the derivation of Equation (4.7) from Equation (4.6).

Equation (4.7) represents the optimization subproblem that we need to solve when the

boundary crossing algorithm encounters a boundary in the solution path.

161

B.1 The Derivation

Zaher (1991,1995) describes the derivation of Equation (4.7) as follows. Let us start from

Equation (4.6):

whereB is the set of all of the subregions in the neighborhood of a boundary, is

the gradient vector of the objective function for the neighboring subregioni, andd is the

descent direction which constitutes the solution to the problem (4.6). Let us now define

the matrix N whose columns are the vectors of gradients of the subregions in the

neighborhood of the current boundary. That is, columni of N is the vector

. Hence, the inner maximization problem of (4.6) can be reformulated as

finding the value of a scalarβ such that:

(B.1)

wheree is a vector with all its elements equal to one. Then, Equation (4.6) can be

rewritten as:

(B.2)

The real-valued Lagrange function,L, of problem (B.2) is given by:

(B.3)

whereα is the vector of multipliers corresponding to first of the inequality constraints in

(B.2) andπ is the multiplier (scalar) corresponding to the second inequality of (B.2).

Hence, the dual of the problem (B.2) is given by:

min
max φix∇ a()

T
d⋅

i B∈ 
 
 

d
T

d⋅ 1≤s.t.

s.t.

φix∇ a()

φix∇ a() i B∈∀,

βe N
T
d≥

min β

βe N
T
d≥

d
T

d⋅ 1≤

s.t.

L β d α π, , ,() β αT βe N
T
d–()– π 1 d

T
d–()–=

162

(B.4)

The equality constraints of (B.4) were obtained from the first order conditions of the

Lagrangian function with respect to the variablesβ andd. After further simplification,

(B.4) reduces to:

(B.5)

which is equivalent to:

(B.6)

Finally, it should be recognized that, as long as the problem (B.6) is bounded and the

solution is non trivial (π>0), the multiplierπ will have no effect in the solution vectord of

the optimization problem (B.6). Therefore, (B.6) reduces to equation (4.7):

max β αT βe N
T
d–()– π 1 d

T
d–()–

e
T α⋅ 1=

2πd Nα–=

π 0≥ αi 0≥ i B∈∀, ,

s.t.

max π d
T

d⋅ 1+()–

2πd N– α⋅=

e
T α⋅ 1=

π 0≥ α, i 0≥ i B∈∀,

min π d
T

d⋅ 1+()
2πd N– α⋅=

e
T α⋅ 1=

π 0≥ α, i 0≥ i B∈∀,

min d
T

d⋅
d N– α⋅=

e
T α⋅ 1=

αi 0≥ i B∈∀,

s.t.

163

APPENDIXC ASCEND Models of
the Examples Solved
with the Boundary
Crossing Algorithm

In this appendix, we show a representative section of theASCEND models for the examples

described in Chapter 4.

164

C.1 The Models

Example 1 Fluid Transition (Zaher,1995).

CONDITION
bound: (Pd - Pf) * 1.0 {atm^-1} < Mf - 1.0;

END CONDITION;

sonic_flow <==> SATISFIED(bound,1e-08);

subsonic: Pf = Pd;
sonic: Mf = 1.0;

WHEN (sonic_flow)
CASE TRUE:

USE sonic;
CASE FALSE:

USE subsonic;
END WHEN;

Example 2 Phase Equilibria (Zaher,1995).

components :== [‘B’,’E’,’W’];
phases :== [‘A’,’O’,’V’];

CONDITION
FOR i IN phases CREATE

bound[i]: SUM[y[i][j] | j IN components]+
phi[i] >= 1.0;

END FOR;
END CONDITION;

FOR i IN phases CREATE
sum[i]: SUM[y[i][j] | j IN components] = 1.0;
frac[i]: phi[i] = 0.0;
exist[i] <==> SATISFIED(bound[i],1e-08);

WHEN (exist[i])
CASE TRUE:

USE sum[i];
CASE FALSE:

USE frac[i];
END WHEN;

END FOR;

165

Example 3 Heat Exchanger (Zaher,1995)

components :== [‘B’,’P5’,’H’];

CONDITION
bound1: SUM[x[0][i] | i IN components] + phi[0] >= 1.0;
bound2: SUM[x[2][i] | i IN components] + phi[1] >= 1.0;

END CONDITION;

liq_exist[1] <==> SATISFIED(bound1,1e-08);
liq_exist[2] <==> SATISFIED(bound2,1e-08);

sum0: SUM[x[0][i] | i IN components] = 1.0;
frac0: phi[0] = 0.0;

sum2: SUM[x[2][i] | i IN components] = 1.0;
frac1: phi[1] = 0.0;

p1: eta[1] = 0.5;
p2: eta[2] = 0.5;

sum1: SUM[x[1][i] | i IN components] = 1.0;
p12: eta[1] = 0.0;

WHEN (liq_exist[1])
CASE TRUE:

USE sum0;
USE sum1;

CASE FALSE:
USE frac0;
USE p12;

END WHEN;

WHEN (liq_exist[2])
CASE TRUE:

USE sum2;
USE p1;

CASE FALSE:
USE frac1;
USE p2;

END WHEN;

166

Example 4 Pipeline Network (Bullard and Biegler, 1992). Model of a pipe with no

valve.

positive_flow IS_A boolean_var;

CONDITION
bound: Q >= 0.0 {gpm};

END CONDITION;

positive_flow <==> SATISFIED(bound,1e-08 {gpm});

positive_head: H = k * sqr(Q);
negative_head: H = -k * sqr(Q);

WHEN (positive_flow)
CASE TRUE:

USE positive_head;
CASE FALSE:

USE negative_head;
END WHEN;

Example 5 Simple L-V Flash Calculation (King, 1980).

(* Rachford-Rice *)

SUM[(z[i] * (K[i] - 1)) / (((K[i]-1)* V_F) + 1)
| i IN components] = R - V_F;

(* Conditional Equations *)
CONDITION

bound1: R <= 0.0;
bound2: R <= 1.0;

END CONDITION;

(* Logical Relations *)
bol1 <==> SATISFIED(bound1,1e-08);
bol2 <==> SATISFIED(bound2,1e-08);

(* Variant Equations*)
liq_eq: V_F = 0.0;
two_eq: V_F = R;
vap_eq: V_F = 1.0;

167

(* Disjunctions *)
WHEN (bol1,bol2)

CASE TRUE,TRUE:
USE liq_eq;

CASE FALSE,TRUE:
USE two_eq;

CASE FALSE,FALSE:
USE vap_eq;

OTHERWISE:
END WHEN;

Example 6 Linear Mass Balance (Grossmann and Turkay, 1996).

CONDITION
bound1: Fmain <= B[1];
bound2: Fmain >= B[2];

END CONDITION;

bol1 <==> SATISFIED(bound1,1e-08{lb_mole/hour});
bol2 <==> SATISFIED(bound2,1e-08{lb_mole/hour});

(* Variant Equations *)

eq1a: Fsub1 = a[1] * Fmain;
eq1b: Fsub2 = b[1] * Fmain;

eq2a: Fsub1 = a[2] * Fmain;
eq2b: Fsub2 = b[2] * Fmain;

eq3a: Fsub1 = a[3] * Fmain;
eq3b: Fsub2 = b[3] * Fmain;

(* Disjunction *)

WHEN (bol1,bol2)
CASE TRUE,FALSE:

USE eq1a;
USE eq1b;

CASE FALSE,FALSE:
USE eq2a;
USE eq2b;

CASE FALSE,TRUE:
USE eq3a;
USE eq3b;

END WHEN;

168

APPENDIXD Complementarity
Equations of the
Examples of Chapter 5

This appendix presents the complementarity equations (or a representative part of them)

for each of the examples solved in Chapter 5.

169

D.1 Complementarity Equations for the Examples
Solved in Chapter 5

Example 1 Fluid Transition (Zaher,1995).

A single complementarity equation is required. The definition of the positive residuals and

the complementarity equation are given by:

(D.1)

Since the problem contains only one condition in each disjunctive term, our

complementarity representation reduces to the standard complementarity formulation.

Example 2 Phase Equilibria (Zaher,1995).

The representation of the existence-non existence of each phase is given by the following

set of equations:

(D.2)

There are three possible phases, but there is only one equation in each disjunction, and,

therefore, only one complementarity equation for each of phases is required. Each of the

complementarity equations is similar to the complementarity equation of Example 1.

1 M f– p11
=

pf pd– p21
=

p11
0=

p21
0≥

p21
0=

p11
0≥

∨
p11

p21
⋅ 0=

p11
p21

, 0≥
⇒

φA p11
=

1 yi A
i C∈
∑– p21

=

p11
0=

p21
0≥

p21
0=

p11
0≥

∨
p11

p21
⋅ 0=

p11
p21

, 0≥
⇒

170

Example 3 Heat Exchanger (Zaher,1995)

In order to obtain the complementarity formulation of this example, we start by

recognizing that we can decouple the disjunctive statement of Example 4.3 in two

independent disjunctions:

(D.3)

and

(D.4)

Hence, the complementarity equations for these disjunctions are:

(D.5)

and

φ0 0=

η1 0=

xi0
i C∈
∑ φ0+ 1<

xi0
i C∈
∑ 1=

xi1
i C∈
∑ 1=

xi0
i C∈
∑ φ0+ 1≥

∨

φ1 0=

η2 0.5=

xi2
i C∈
∑ φ1+ 1<

xi2
i C∈
∑ 1=

η1 0.5=

xi2
i C∈
∑ φ1+ 1≥

∨

φ0 p111
= 1 xi0

i C∈
∑– p211

=

η1 p121
= 1 xi1

i C∈
∑– p221

=

p111
0=

p121
0=

p211
0=

p221
0=

∨
p111

p211
⋅ p121

p221
⋅ 0=+

p111
p221

⋅ p121
p211

⋅ 0=+
⇒

pi j1
0≥ i 1…2[]∈∀ j 1…2[]∈,

171

(D.6)

Example 4 Pipeline Network (Bullard and Biegler, 1992).

1) Arcs with no valve

(D.7)

2)Arcs with check valve

(D.8)

φ1 p112
= 1 xi2

i C∈
∑– p212

=

η2 0.5– p122
= 0.5 η1– p222

=

p112
0=

p122
0=

p212
0=

p222
0=

∨
p112

p212
⋅ p122

p222
⋅ 0=+

p112
p222

⋅ p122
p212

⋅ 0=+
⇒

pi j2
0≥ i 1…2[]∈∀ j 1…2[]∈,

Hij K Qij
2⋅+ p11

=

K Qij
2⋅ H– ij p21

=

Qij p12
p22

–=

p11
0=

p12
0=

p21
0=

p22
0=

∨
p11

p21
⋅ p12

p22
⋅ 0=+

p11
p22

⋅ p12
p21

⋅ 0=+
⇒

pkq
0≥ k 1…2[]∈∀ q 1…2[]∈,

K Q
2⋅ ij p11

=

K Q
2⋅ ij Hij– p21

=

Hij p12
p22

–=

p11
0=

p12
0=

p21
0=

p22
0=

∨
p11

p21
⋅ p12

p22
⋅ 0=+

p11
p22

⋅ p12
p21

⋅ 0=+
⇒

pkq
0≥ k 1…2[]∈∀ q 1…2[]∈,

172

Example 5 Simple L-V Flash Calculation (King, 1980).

The behavior described in Example 4.5 can be represented in terms of the following

disjunctive statement:

(D.9)

This example includes a disjunction with three disjunctive terms in it, but a

complementarity formulation can still be obtained. Also, in this case, some of the residual

variablesp will appear in more than one disjunctive term and a representation including an

indexi for each disjunctive term could be confusing. For that reason, we use the variables

p indexed in successive order as follows:

(D.10)

The disjunctive representation in terms of the residuals is:

(D.11)

Note that several conditions appear in two different disjunctive terms. We could generate

the complementarity equations as we described in section 5.2.1.3. The formulation

obtained would still be consistent. However, we took advantage of the structure of the

zi Ki 1–()⋅
Ki 1–() V F⁄()⋅ 1+

--
i

∑ R V F⁄–=

V F⁄ 0=

R 0≤
V F⁄ R=

0 R 1≤ ≤
V F⁄ 1=

R 1≥
∨ ∨

V F⁄ p1= V F⁄ R p2 p3–+= V F⁄ 1 p4–=

R p5 p6–= R 1 p7 p8–+=

p1 0=

p5 0=

p3 0=

p7 0=

p2 0=

p6 0=

p3 0=

p7 0=

p2 0=

p6 0=

p4 0=

p8 0=

∨ ∨

pj 0≥ j 1…8[]∈∀

173

disjunctive representation given above in order to simplify the formulation. The following

structure can be identified:

(D.12)

and converting from Disjunctive Normal Form to Conjunctive Normal Form:

(D.13)

This derivation tells us that, in order to represent the three-term disjunctive term, we can

use the union of three two-term disjunctions:

(D.14)

which is equivalent to

(D.15)

If we apply that simplification for this example, the number of terms in our

complementarity representation decreases significantly: strictly, a disjunction with three

terms and four conditions in each term requires 43= 64 trilinear terms for its

representation. On the other hand, the previous derivation tells us that 12 bilinear terms are

enough for the representation of this particular problem.

A

B

C

B

C

D
∨ ∨ A B∧() C B∧() C D∧()∨ ∨⇒

A B∧() C B∧() C D∧()∨ ∨ A C∨() B C∨() B D∨()∧ ∧⇒

p1 0=

p5 0=

p2 0=

p6 0=
∨

 
 
 
 
 

p3 0=

p7 0=

p2 0=

p6 0=
∨

 
 
 
 
 

p3 0=

p7 0=

p4 0=

p8 0=
∨

 
 
 
 
 

∧ ∧

pj 0≥ j 1…8[]∈∀

p1 p2⋅ p5 p6⋅+ 0=

p1 p6⋅ p5 p2⋅+ 0=
 
 
 
 
 

p3 p2⋅ p7 p6⋅+ 0=

p3 p6⋅ p7 p2⋅+ 0=
 
 
 
 
 

p3 p4⋅ p7 p8⋅+ 0=

p3 p8⋅ p7 p4⋅+ 0=
 
 
 
 
 

∧ ∧

pj 0≥ j 1…8[]∈∀

174

We still need to find out how to distribute the 12 bilinear terms through the 4

complementarity equations required to obtain a square system of equations. Such a

distribution is not unique, and we can use any set of complementarity equations which

does not introduce numerical singularities (any set in which it can be proved that there is a

possible pivot for each complementarity equation in the Jacobian matrix) to the system.

The distribution can be as simple as the following:

(D.16)

in which the terms of two disjunctions are joined to generate two of the equations, or a

more thoughtful one like:

(D.17)

in which the complementarity pairs are arranged to avoid repeated indices in the

complementarity equations. When incorporated with the rest of the system, both sets of

complementarity equations provide the correct solution to the problem. The number of

iterations that we reported in Chapter 5 corresponds to the straightforward formulation

given first.

Example 6 Linear Mass Balance (Grossmann and Turkay, 1996).

Even though the original disjunctive problem is linear, the introduction of the

p1 p2⋅ p5 p6⋅+ 0=

p1 p6⋅ p5 p2⋅+ 0=

p3 p2⋅ p7 p6⋅ p3 p4⋅ p7 p8⋅+ + + 0=

p3 p6⋅ p7 p2⋅ p3 p8⋅ p7 p4⋅+ + + 0=

pj 0≥ j 1…8[]∈∀

p1 p2⋅ p3 p6⋅ p7 p8⋅ 0=+ +

p1 p6⋅ p3 p2⋅ p7 p4⋅ 0=+ +

p5 p2⋅ p7 p6⋅ p3 p4⋅ 0=+ +

p5 p6⋅ p7 p2⋅ p3 p8⋅ 0=+ +

pj 0≥ j 1…8[]∈∀

175

complementarity equations leaves us with a nonlinear system of equations. Also, as in

Example 4.5, this example contains disjunctions with 3 disjunctive terms. As a

consequence, the formulation once again becomes complicated. Units 1 through 5 (those

containing two equations in each term) can be represented by similar sets of disjunctive

equations. Here we only show the complementarity equations for unit operation 1. The

equations for unit operation 2 to 5 are very similar to the equations generated for this one.

For the case of unit 6 (which has only one equation in each disjunctive term), the

disjunctive statement and the complementarity equations are similar from those obtained

for the example of the simple flash calculation.

The simplification process for this example is also the same as that given in Example 5.

 Definition of the residual and slack variables:

(D.18)

Disjunctive statement in terms of the residual and slack variables:

(D.19)

After converting to Conjunctive Normal Form:

F6 1.1 F7⋅ p1+= F6 1.5 F7 p2 p3–+⋅= F6 1.2 F7 p4–⋅=

F10 0.05 F7⋅ p5+= F10 0.1 F7 p6 p7–+⋅= F10 0.2 F7 p8–⋅=

F7 50 p9 p10–+= F7 80 p11 p12–+=

p1 0=

p5 0=

p9 0=

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

p4 0=

p8 0=

p12 0=

∨ ∨

pj 0≥ j 1…12[]∈∀

176

(D.20)

One possible set of complementarity equations:

(D.21)

The number of iterations reported in Chapter 5 corresponds to the solution of the system

of equations including the set of complementarity equations (C.21), but some other

alternative sets were also successfully used to obtain the solution to the problem

p1 0=

p5 0=

p9 0=

p3 0=

p7 0=

p10 0=

∨

 
 
 
 
 
 
 

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

∨

 
 
 
 
 
 
 

p2 0=

p6 0=

p11 0=

p4 0=

p8 0=

p12 0=

∨

 
 
 
 
 
 
 

∧ ∧

pj 0≥ j 1…12[]∈∀

p1 p3⋅ p2 p4⋅ p9 p7⋅ p6 p10 p11 p12⋅+⋅+ + + 0=

p1 p7⋅ p2 p8⋅ p9 p10⋅ p6 p3 p11 p4⋅+⋅+ + + 0=

p1 p10⋅ p2 p12⋅ p9 p3⋅ p6 p7 p11 p8⋅+⋅+ + + 0=

p5 p3⋅ p6 p4⋅ p11 p10⋅ p2 p7⋅+ + + 0=

p5 p7⋅ p6 p8⋅ p11 p3⋅ p2 p10⋅+ + + 0=

p5 p10⋅ p6 p12⋅ p11 p7⋅ p2 p3⋅+ + + 0=

pj 0≥ j 1…12[]∈∀

177

APPENDIXE Proof of the descent of
the potential function in
Wang’s Algorithm

This appendix presents the demonstration developed by Wanget al. (1996). Based on the

work of Kojimaet al. (1994), Wang shows that perturbed Newton directiond is a descent

direction of the function potential functionψ(ω) such that:

where ,λ is a scalar and there exists aλ>0 such that, for all , we get

.

ψ ω λd+() ψ ω()– α– λ 1 σ–() ζ n2–()≤

α 0 1(,)∈ λ 0 λ(,)∈

ω λd+ ΩΣ∈

178

E.1 Demonstration

Wanget al. (1996) establish some important properties about the perturbed Newton

direction calculated within the potential reduction algorithm. These properties are

established in Lemma 1 below.

Lemma 1. Let be given. Under the assumptions

• and and

• H is continuously differentiable on the setΩΣ,

the following properties are valid for an arbitrary vector and any scalar

:

(i)

(ii) ψ is continuously differentiable atω and has a gradient:

(iii) If d is a solution of

then

;

hence there exists a scalarλ>0 such that for all

,

Proof. The inequality(i) is frequently used in the study of interior point methods. This

proof is taken from Kojimaet al. (1994):

Starting with the definitions of the potential function :

ζ n2>

ΩΣ 0≠ ΩΣ ω Ω∈ G ω() 0>{ }=

ω ΩΣ∈

α 0 1,()∈

Ψ ω() ζ n2–() ν ω()()log⋅ n2 n2()log+≥

ψ∇ ω()
ζ

ν ω()
----------- 2 F ω()∇ F ω() G ω()∇ e+()⋅ G ω()∇ G ω()

1–
–=

H′ ω()d F′ ω()d

G′ ω()d

F– ω()

G– ω() σµ ω()e+
= =

ψ∇ ω()
T
d 1 σ–()– ζ n2–()+≤

λ 0 λ(,)∈

ω λd+ ΩΣ∈

ψ ω λd+() ψ ω()– α– λ 1 σ–() ζ n2–() 0<≤

ψ ω()

179

and the measure of the error :

Then, we get

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

Here the last inequality follows from

(E.6)

The identity in (ii) follows from the following computation. Consider the definition of

ψ ω() ζ F ω()
T
F ω() e

T
G ω()+()log⋅ Gilog ω()

i

n2

∑–=

ν ω()

ν ω() F ω()
T
F ω() e

T
G ω()+=

ψ ω() ζ ν ω()()log⋅ Gilog ω()
i

n2

∑–=

ψ ω() ζ n2–() ν ω()()log⋅ n2 ν ω()()log⋅ Gilog ω()
i

n2

∑–+=

ψ ω() ζ n2–() ν ω()()log⋅ n2 e
T
G ω()()log⋅ Gilog ω()

i

n2

∑–+≥

ψ ω() ζ n2–() ν ω()()log⋅ n2

e
T
G ω()() n2⁄

Gi ω()
i 1=

n2

∏
 
 
 1 n⁄ 2

 
 
 
 
 
 
 

log⋅ n2 n2()log+ +≥

Ψ ω() ζ n2–() ν ω()()log⋅ n2 n2()log+≥

n2

e
T
G ω()() n2⁄

Gi ω()
i 1=

n2

∏
 
 
 1 n⁄ 2

 
 
 
 
 
 
 

log⋅ 0≥

180

 given in (E.1). For eachj = 1,2,...n1+n2,

(E.7)

and, therefore,

(E.8)

To prove the first inequality in(iii) , we use(ii) and the definition of

to get

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

ψ ω()

ψ ω()∂
ω j∂

ζ

ν ω()
----------- 2Fi ω()

Fi ω()∂
ω j∂

----------------⋅
i 1=

n1

∑
Gi ω()∂

ω j∂

i 1=

n2

∑+
 
 
 

⋅ Gi ω()
1– Gi ω()∂

ω j∂
----------------⋅

i 1=

n2

∑–=

ψ∇ ω()
ζ

ν ω()
----------- 2 F ω()∇ F ω() G ω()∇ e+()⋅ G ω()∇ G ω()

1–
–=

µ ω() e
T
G ω() n2⁄=

ψ∇ ω()
T
d

ζ
ν ω()
----------- 2F ω()

T
F′ ω()d e

T
G′ ω()d+()⋅ G ω()

1–()
T
G′ ω()d–=

ψ∇ ω()
T
d

ζ
ν ω()
----------- 2F ω()

T
F ω()–() e

T
G– ω()() σµ ω()n2+ +()⋅ n2 σµ ω()e

T
G ω()

1–
–+=

ψ∇ ω()
T
d

ζ
ν ω()
-----------– 2F ω()

T
F ω() 1 σ–()eT

G ω()+()⋅ n2 σn2
e

T
G ω()
n2

------------------ e
T
G ω()

1–

n2
-----------------------⋅–+=

ψ∇ ω()
T
d ζ–≤ 1 σ–() n2 σn2 Gi ω()

i 1=

n2

∏
1 n2⁄

Gi ω()
1–

i 1=

n2

∏
1 n2⁄

–+

ψ∇ ω()
T
d ζ– 1 σ–() n2 1 σ–()+≤

181

(E.14)

where the inequality in (E.12) follows from the arithmetic-geometric mean inequality

applied to the terms and and the fact that .

Finally, Wang establishes the last assertion in(iii) . Using the second assumption and the

fact thatΩΣ is an open set, it is concluded that there exists a scalarλ>0 such that, for all

, and

(E.15)

(E.16)

Q.E.D.

ψ∇ ω()
T
d 1 σ–()– ζ n2–()+≤

e
T
G ω() n2⁄ e

T
G ω()

1–
n2⁄ 2 1 σ–()>

λ 0 λ(,)∈ ω λd+ ΩΣ∈

ψ ω λd+() ψ ω()– λ ψ∇ ω()
T
d 1 α–() 1 ρ–() ζ n2–()+()≤

ψ ω λd+() ψ ω()– α– λ 1 σ–() ζ n2–()≤

