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Abstract

Process modeling is an important task in many process engineering activities. At the
lowest level, process models are represented by a large set of variables and a large system
of linear and nonlinear equations that relate them. The equation-based modeling approach
has been demonstrated as effective in solving simulation, optimization, parameter
estimation and data reconciliation problems. Even though many currently available
equation-based modeling systems have been reported in the literature, most of them give

little or no attention to conditional models.

Conditional models exist when the equations defining a system depend on where the
model solution lies. Examples of conditional models in chemical engineering are systems
involving physicochemical discontinuities such as flow and phase transitions. This work
investigates the setting up and solving of conditional models within an equation-based

modeling environment.

We first describe modeling tools for the efficient representation of conditional models and
give the details of their computer implementation. We present examples to demonstrate

the scope of application of the new tools.

Then, we discuss an extension of a previous approach to the consistency analysis of
conditional models which aids in the proper selection of the degrees of freedom for such
models. We also show how, by taking advantage of the structure of the problem, it is often

possible to reduce the effort required by the proposed consistency analysis.

Finally, we focus on the implementation and testing of some approaches to solving
conditional models. Specifically, we describe an implementation of a boundary crossing
algorithm in an equation-based environment, and an extension of the standard
complementarity formulation for the representation of conditional models. We also
explore numerical techniques for solving the proposed complementarity representation of
a conditional model and solve several examples demonstrating the advantages and

disadvantages of each of the approaches to solving.
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cHaptTERl  INTRODUCTION

Chapter 1 provides an introduction to this research. A brief review of the state of the art in
process modeling is presented. Also, the main concepts involved in the area of conditional
modeling are discussed. Finally, the motivation, the goal and the outline of the thesis are

given.




EQUATION-BASED MODELING

1.1 EQUATION -BASED M ODELING

Modeling is the process of mapping reality into a representation that is thought to be
useful for understanding that reality (Abbott, 1996). Process modeling is an important
task in many process engineering activities. The state of the art as well as future trends in
process modeling and simulation have been reviewed in a number of publications (Piela,
1989; Bostoret al, 1993; Pantelides and Britt, 1994; Marquardt, 1996).

The modeling tools in current simulators may roughly be classified into two groups:
modular oriented and equation-based approaches (Bets&dn1993). A detailed

discussion of the modular approach versus the equation-based approach can be found in
Marquardt (1996).

On the one hand, modular approaches address modeling on the flowsheet level. Every
process is abstracted by a block diagram consisting of standardized blocks which model
the behavior of a process unit or a part of it. All the blocks are linked by connections
representing the flow of information, material and energy employing standardized
interface and stream formats (Marquardt, 1996). This modular approach, though powerful
and easily accessible to many engineers for the solution of standard flowsheet problems,
does not adequately support the solution of more involved problems. This is due to the
lack of precoded models for many unit operations of adequate level of detail (Marquardt,
1996).

On the other hand, equation-based modeling tools are motivated by the fact that, at the
lowest level, process models are represented by a large set of variables and a large system
of linear and nonlinear equations that relate them. Thus, equation-based approaches
support the implementation of unit models by means of declarative modeling languages.

In the equation-based modeling approach, the definition of the system of equations is
independent of any particular application or solution algorithm that may be used for their
solution. For that reason, the solution to equation-based models has been demonstrated as
effective in solving simulation, optimization, parameter estimation and data reconciliation
problems, all using a single set of equations (Allan, 1997). Recognition of the potential

benefits of the equation-based technology has led to the development of equation-based
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modeling tools such as SpeedUP (Pantelides, 1988), gPROMS (Barton, 1992; Oh and
Pantelides, 1994), and GAMS (Broo&kal, 1997). Some other researches have
proposed that equation-based modeling can be further facilitated by the use of object-
oriented frameworks. Examples are OMOLA (Mattsson and Andersson, 1993) and
ASCEND (Piela, 1989; Allan, 1997).

Arguably, the state of the art in process modeling software at the time of writing this work

is an object-oriented, equation-based modeling environment (Abbott, 1996; Allan, 1997).

1.2 CONDITIONAL M ODELS

Process engineering design and simulation require one to find solutions to a large system
of nonlinear equations. Conventional process models consist of a set of variables and a
unique set ofm equations that related them. On the other hand, conditional models
constitute a means to formulate alternative seis @fjuations depending on the values of

the modeling variables. Thus, in conditional models the system of equations of the model
is different for each of the alternatives. This work is particularly concerned with the issues

involved in the modeling and solution of conditional models.

A conditional model, as defined by Grossmann and Turkay (1996), consists of a system of
equations expressed by two sets: a globally defined invariant set of equations and a variant
(or locally defined) set of conditional equations which are expressed as disjunctions.
Grossmann and Turkay (1996) show that a conditional model can be represented as the

system of disjunctive equations:

h(x) = 0
RS=O% he mjo ey (1.1)
i D, g, (¥<0 OO[L...v,]
e k
)_(DRn
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whereh(x) andr i (X) represent the vectors of the invariant and the variant sets of
equations respectivell represents the set of disjunctions and the imdexsed to

indicate the-th disjunctive term in each disjuncti@y. The vectoh(x) is m-dimensional,

and it is assumed thqgko_() fg-dimensional and thaglko_() &-dimensional, for aliin

Dy. The equationB(x) can be said to be defined over the entire feasible region, while the
inequalitiesgik(x) define the domain of validity of each variant set of equa_qik(mg)s . In
that way, each variant set of equations is confined to some subregion resulting from the
dissection of the feasible region (Zaher, 1991). The solution to the system will be given
by the vectorx satisfying the invariant §€x) and exactly one set of equations for each
of the disjunctions, providing that the corresponding set of inequalities is satisfied.
Grossmann and Turkay (1996) also address the existence and uniqueness of the solution

for the linear case.

Examples of conditional models in chemical engineering are systems involving
physicochemical discontinuities such as flow and phase transitions. There are also cases
where conditional cost functions are used in the optimization of process flowsheets.
Figure 1-1, taken from the work of Zaher (1995), illustrates the case of a flow transition.

In that case, we must incorporate alternative equations for the transport properties and
velocity bounds within the model, using the simultaneously calculated value of the flow
type indicator (Reynolds or Mach number) relative to some critical value to determine
which is active. A simple flash equilibrium calculation also represents a conditional

model commonly encountered in chemical engineering. Figure 1-2 illustrates that
example. Depending on the value of the temperature (relative to the dew point
temperature and bubble point temperature at a given pressure), the system may be present
as a subcooled liquid, as a superheated vapor, or as a liquid-vapor mixture in equilibrium.
The system of equations of the model is different for each of the alternatives. The problem
is that the temperature may be unknown, and, therefore, there is no way of kaowing

priori which set of equations one needs to satisfy.

According to the above, the main difficulty while dealing with conditional models is that
their solution involves simultaneously selecting the equations to be solved and solving

them.
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Figure 1-1 Fluid flow transition.
Laminar OR Turbulent OR Sonic
Figure 1-2 A conditional model: flash calculation.
SUPERHEATED
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1.3 MOTIVATION : CONDITIONAL M ODELING IN
EXISTING MODELING ENVIRONMENTS

Many currently available modeling systems have been reported in the literature. Some of

the most recent approaches to computer-aided modeling tools are shown in Table 1-1.

Table 1-1 Recent modeling systems

System

Reference

ABACUSS

Feehery and Barton (1996)

ASCEND

Piela (1989)

DYMOLA

Elmqgvist et al (1993)

GAMS

Brookeet al (1997)

gPROMS

Barton (1992)

MODEL.LA

Stephanopoulost al (1990)

SASE

Garrett and Hakim (1992)

SPL/SDL

Kiliccote (1996)

SpeedUp

Pantelides (1988)

OMOLA

Mattson and Anderson (1993)

VEDA

Bogusch and Marquardt (1995)

VERILOG

Thomas and Moorby (1996)

On the one hand, there is a group of modeling languages mainly suitable for their use in a

specific application domain. MODEL.LA andVEDA, elements tailored to chemical

engineering applications are included in the language defimtEmiLOG is a hardware

description language used to design and test electronic sysesEgndsPL/SDLare

languages to represent the standards imposed on the design of civil engineering structures

and facilities. In such languages, very efficient modeling constructs exist, but their main

limitation is that they have been developed to match the issues of specific engineering

applications.
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On the other hand, there is a group of general modeling langu@gesISS, ASCEND,
DYMOLA, GAMS, gPROMS SpeedUpandOMOLA. In such languages, elements are not

restricted to specific engineering applications.

All of the general equation-based modeling languages presented in Table 1-1 provide
constructs which allow the representation of conditional dependence of some of the model
equations. For instance, tleTHEN-ELSE construct ABACUSS, ASCEND, gPROMS

DYMOLA, SpeedUpandOMOLA), theCASE construct gPROM9 and thewHEN construct

(bymoLA). Two different applications of these modeling constructs have been developed:

1. First, the conditional language constructs have been used to handle changes
procedurally of the configuration of the problem because of time or state events
occurring during the dynamic simulation of a system, assuming that the initial steady
state of the system is known a priori.

2. Secondly, some of the equation-based approaches, sgrRaasSandSpeedUp have
acknowledged the difficulty of solving steady state problems where the clausiE-of an
THEN-ELSE construct which is active cannot be specified explicitly, but it has to be
automatically calculated (Barton, 1992). It is not clear, however, how these modeling

environments handle this problem, since an explicit methodology is not provided.

Here we have to make an important distinction about these two applications of the existing

conditional language constructs:

* In conditional models, as defined by Equation (1.1), the conditional dependence of the
model equations does not necessarily exist because of state or time events occurring
during the dynamic simulation of a system. Hence, the problem of discrete event
dynamic simulation described first is not the main focus of attention of this research.

* On the contrary, the problem described as the second application of the existing
conditional language constructs fits perfectly into our definition of a conditional model

given by (1.1).

Accordingly, we can argue that most of the existing equation-based modeling languages
have not presented a formal approach to solving conditional models as formulated by

Equation (1.1). We should note though thatdh&'s modeling language provides
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modeling and solving tools (such as the dollar condition for conditional equations and the
if-else statement for flow control) powerful enough to represent and solve conditional
models. The major disadvantage of &#vs modeling language is that it does not

provide an object-oriented framework to facilitate the modeling process.

This limited attention from the equation-based community to conditional models provides
the main motivation for this research project. Several problems arise when building and
testing models of complex processes in an equation-based environrpeotiding

initial guessesji) analyzing degrees of freedom, amdefficiently computing solutions.

The nature of a conditional model makes the solution of these problems an even more
difficult task.

1.4 OUR GOAL

The goal of this work is to investigate the setting up and solving of conditional models
within an equation-based modeling environment. It is important to distinguish between

two separated (but complementary) activities of this research project:

1. Efficient representation of a conditional model in an equation-based modeling
environment. Following the equation-based approach, this representation is intended
to be independent of any particular application, or of any solver or algorithm used for
finding a solution to the system of equations. Potential applications of this capability
vary from the simple substitution of one equation for another (as in the case of the
laminar-turbulent flow transition), to the substitution of a section of a chemical plant
for another (as can be required while analyzing and initializing a superstructure).

2. Implementation and testing of alternative approaches to the solution of a conditional
model. Itis important to recognize that modeling is a user dependent task.
Frequently, different modelers produce different formulations for the same problem
and, as a consequence, different approaches and techniques may be used to find a
solution to it. One can formulate conditional models as mixed-integer programming
problems. See for example Grossmann and Turkay (1996). Besides the mixed-integer

formulation, some alternative approaches exist. Research in this work will focus on
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two of them:

* aboundary crossing algorithm ( Zaher, 1995) and

* acomplementarity representation of conditional models.

In particular, we will propose an approach for the implementation of the boundary
crossing algorithm in an equation-based environment, and an extension of the standard
complementarity formulation for the representation of conditional models. Then, we
will explore some alternative numerical techniques for solving the proposed

complementarity representation of a conditional model.

1.5 OUTLINE

Given the background and the goal of this work, the rest of this thesis is organized as

follows:

In Chapter 2, we describe modeling tools for an efficient representation of conditional
models and give the details of their computer implementation. Also, we use several
chemical engineering examples to demonstrate the scope of application of these new

modeling capabilities.

In Chapter 3, we present a brief review on the topic of structural analysis of conditional
models. Then, we provide an extension to the consistency analysis of conditional models
developed by Zaher (1993). This extension allows the consistency analysis to be applied to
conditional models in which the number of variables and equations for each of the
alternatives is not the same. Also, we show how, by taking advantage of the structure of
the problem, it is sometimes possible to reduce the combinatorial effort required by such

an analysis.

In Chapter 4, we investigate the solving of conditional models using the boundary
crossing algorithm. We give the details of our practical implementation of this technique
and solve several examples of conditional models in chemical engineering. Finally we

discuss the scope and limitations of the algorithm.

In Chapter 5, we provide a complementarity formulation for representing algebraic




OUTLINE

systems of disjunctive equations. We show that this formulation not only represents an
alternative to MINLP formulations avoiding discrete decisions, but also avoids the need
for special procedural nonlinear techniques as required by the boundary crossing
algorithm. We identify the advantages and disadvantages associated with the
complementarity formulation and study its solution by using a conventional nonlinear

solver and pivotal techniques.

In Chapter 6, we investigate the solving of the complementarity formulation described in
Chapter 5 by using interior point methods. Following a brief review of the fundamentals
of interior point methods, we describe the globally convergent framework proposed by
Wang et al (1996) for solving a constrained system of nonlinear equations by an interior
point potential reduction method. Then, we show how we can apply the algorithm
proposed by Wang to solve the complementarity examples used as cases of study
throughout this work. After that, we modify Wang'’s algorithm by applying some high
order strategies designed to improve convergence (Mehrotra, 1992; Gondzio, 1996), and

compare the results obtained with each of the methods.

Finally, In Chapter 7 we conclude the thesis by giving a summary of the work and
contributions made in this research. Also directions and recommendations for future work

are highlighted.
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cuarter2  CONDITIONAL
MODELING TOOLS

In this chapter we identify the modeling capabilities needed for an efficient representation
of conditional models: conditional configuration of a model structure, conditional
compilation and conditional execution of procedural statements. We then describe
modeling tools for the performance of each of the identified tasks. We next describe the
details of the computer implementation of these tools and show how the expressiveness of
an equation-based modeling language increases with their incorporation. Finally we
present several chemical engineering examples to demonstrate the scope of application of

the proposed extensions.

13



BACKGROUND

2.1 BACKGROUND

Previous implementations of conditional statements in an equation-based modeling
environment have been reported. One such mechanismifsTHHEN-ELSE construct of
SpeedUpdescribed by Pantelides (1988):

IF logical_condition THEN
equationl

ELSE
equation2

ENDIF

where both the logical conditions and the equations are expressed in terms of the model
variables. Such a construct defines two system states correspondinig emthéheELSE
clauses respectively. Multiple states may be described by nesting sewtastments.

Other implementations of the-THEN-ELSE construct have also been reported by Barton
(1992) with thaF-Equationof gPROMS and by Feehery and Barton (1996) with ithe

structure ofABACUSS.

Barton (1992) and Barton and Pantelides (1994) also incorporatedsbB@quation into
gPROMS TheCASE equation is used to define both the appropriate modeling equations in
each state and the logical conditions for transitions among states. It covers multiple states
within only one statement and has the advantage of successfully representing irreversible

discontinuities.

There is a major difficulty in the previous approaches as tools for conditional modeling.
They only allow the substitution of a list of primitive equations (or arrays of equations) for
another. In an equation-based modeling environment in which object oriented concepts
like hierarchy (building complex models from small models) and inheritance are
constantly in use, this approach places a significant limitation on one’s modeling
efficiency. For instance, it makes it very difficult to model unit replacement when

searching over a superstructure.

Only for the purpose of model representation, in this chapter we extend the scope of the
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definition of a conditional model. Here, we consider as a conditional model any problem
including a set of disjunctive statements as part of its formulation. In other words, the
domain of validity of each particular alternative set of equations does not have to be given
by inequality constraints. Any kind of logical, integer or binary variables can be used for
that purpose instead. With that in mind, the expressiveness of our modeling tools can also
be applied to problems on which the selection of alternative configurations is based on

logic, algorithmic and heuristic decisions.

2.2 CONDITIONAL MODELING TOOLS

Equation oriented modeling tools support the implementation of unit models and their
incorporation in a model library by means of a declarative modeling language; declarative
in the sense of explicit and symbolic encapsulation of the knowledge about models
(Marquardt, 1996). Moreover, methods must also be attached to a model definition for the

numerical processing of the model equations.

In this chapter, we identify three modeling capabilities which support the efficient
development of conditional models in both the declarative definition of equation-based

models and the procedural execution of methods:

» Conditional configuration of the model structure.
» Conditional compilation.

» Conditional execution of the procedural code of methods.

In the remainder of this section, we describe the syntax and semantics of modeling tools

which allow the practical implementation of those modeling capabilities.

2.2.1 GONDITIONAL CONFIGURATION OF A MODEL STRUCTURE

Several numerical algorithms and methodologies for the solution of conditional models
have recently become available. See for example Zaher (1995), Grossmann and Turkay
(1996) and Turkay and Grossmann (1996). A common characteristic of any of these
methodologies is that the dynamic switching among alternative model configurations is

required during the solution process. Hence, a declarative modeling language has to
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provide a means to represent all the alternative structural configurations of the problem as
well as the conditions which trigger the switching among them. Next, we describe

language constructs which fulfill this requirement:

» thewHEN statement, which provides an efficient means to declare alternative
modeling configurations
» logical relations and theONDITION statement, which can be used to represent the

conditions triggering the reconfiguration of the system.

2.2.1.1 ThewHEN Statement

Originally, the syntax for incorporating conditional dependence of some equations of a
model in an equation-based environment was suggested by Piela (1989). That syntax is
very similar to thecASE equation ofgpROMSand suffers from the same limitations.

Instead, in this work we represent that conditional dependence by using an object-oriented
formalism. In an object-oriented approach any real or abstract entity is considered an
object and any object can be referenced by a unique identifier (Marquardt, 1996). So, for
instance, in an object-oriented language representing a model superstructure, a simple
equation is considered as an object and so is any submodel within the superstructure.
Based on this object-oriented approach, we defined/He statement in order to

represent alternative configurations of a model. The syntax of such a conditional
statement is:

definition_of equation_1;
definition_of _model_1;

definition_of_model_n;

WHEN (list_of variables)
CASE list_of values 1:
USE identifier_of_equation_1;
CASE list_of values_2:
USE identifier_of _model_1;

OTHERWISE:
USE identifier_of _model_n;
END WHEN;

16
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The following are observations about the previous definition:

1. The declaration of the objects referenced withircth&ss of thewHEN statement is
independent (outside) of such a statement. As mentioned before, the solution
algorithms of conditional models require the system to have available the data
structures of all those objects.

2. Alist of variables is used to define the domain of validity of each of the alternative
configurations. The variables in that list can be of any type among boolean, integer or
symbol or any combination of them. By doing that, we place problems like logic based
modeling and MINLP formulations within our scope of application.

3. Practically speaking, taJSE’ an object means that the variables and equations
contained in that object become an active part of the system of nonlinear equations
representing the current configuration of the problem.

4. Complex reconfigurations of the problem are readily represented because of the object

oriented approach of the statement.

The syntax of the WHEN statement given above can represent the conditional dependence
of alternative sets of equations and variables. However, it does not say anything about (and
is independent of) how to represent the conditions that trigger the dynamic switching

among configurations.

2.2.1.2 Logical Relations

The way in which existing solution algorithms for conditional models select a particular
configuration varies. MINLP algorithms employ the manipulation of binary variables.
Some other approaches use logic for improving the solution of conditional models
(Raman and Grossmann, 1994; Turkay and Grossmann, 1996). Also, the boundary
crossing algorithm given by Zaher (1991) expresses the truth value of inequality

constraints as boolean values of logical conditions.

Here we describe our approach to the incorporation of logical relations as a declarative
modeling tool. This incorporation is intended to provide an equation-based environment
with the ability to deal with the logic based formalisms required by most of the solution

algorithms mentioned above.
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The syntax for the representation of logical relations is rather simple:

logical term <==> |ogical term;
logical term ==> logical term;

The symbols “<==>" and “==>" indicate that we have a logical relation between the two
logical terms. In each of the two terms, logical operators among boolean variables such as

AND, NOT, andoOR are allowed.

The symbol “<==>" implies equality between the logical terms. Equality in a logical
eqguation can also be interpreted asfaand only if implication between two logical terms
expressed in clausal form. On the other hand, the symbol “==>" should be interpreted as
the one sided implicatioih between the two terms of the logical relation. Also, it should

be noted that we can express any logical clause using the proposed syntax by simply
writing the clause in one of the terms and the constant booleanmralgen the other

term of the logical equality.

In this implementation of logical relations, we maintain the equation-based philosophy.
That is, the user states the logical relations that must be true at the solution to the problem
but not how to solve them. Each logical equation has a residual attached to it. This
residual will indicate if the expression is satisfied or not. Thus, this interpretation requires
that we provide a solver that knows how to deal with logical relations. Such a solver
should strive for the residuals of such equations to be true as it looks for a consistent set of

values of the boolean variables in the problem.

Hence, if a consistent set of values of the boolean variables is available after each iteration,
then, by checking the value of the appropriate boolean variables, an automatic change of

the structure of a conditional problem is possible in an iterative solution scheme.

2.2.1.3  TheCONDITION Statement

We have already stated that, in some solution algorithms for conditional models, the truth
value of a boolean variable may depend on constraints expressed in terms of the real
variables of the model. For this reason we propose the definition cONm@TION

statement and tr@ATISFIED logical operator as a complement to the implementation of
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logical relations. The syntax of this modeling tools is as follows:

CONDITION
identifier_1: real_expression;
END CONDITION;

boolean_variable <==> SATISFIED(identifier_1,tolerance);

A real expression is defined and labeled insidectheDITION statement and then the
logical operatosATISFIED gives the truth value of such an expression (the residual of the
real expression is compared against the tolerance definedsartselED operator). The

benefits of th&ONDITION statement are:

1. It contributes to the separation of equations into those given in terms of real variables
and those given in terms of boolean variables, making the declarative code easier to
read and understand.

2. It provides a simple way of saying that the relations defined within the statement are
not going to be solved. Those relations are not a part of our nonlinear system of
equations but are only used as expressions with a truth value associated to them.

3. it avoids relations containing implicit relations. Since the logical expressions are
decoupled from the expressions on which they depend, it makes the life of a compiler

easier.

As a summary of section 2.2.1, tWelEN statement provides an efficient means to declare
alternative modeling configurations, while the conditions triggering the reconfiguration of
the system can be represented by the use of logical relations ar@NibigION

statement. When working together, these modeling capabilities meet the representation
needs of all of the solution algorithms for conditional models we have found reported in

the literature.

2.2.2 GONDITIONAL COMPILATION

Aside from the flexibility that conditional statements such asviheN statement give to

the configuration of a model structure, another application of conditional tools is the
economy of programming. An example commonly occurring in chemical engineering is

the selection of the thermodynamic model to be used for equilibrium calculations. In
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general, it is convenient to code all of the alternative methods so that, depending on the

species appearing in the equilibrium system, we can select the most appropriate method.

In these kinds of problems, the decision as to which configuration should be used has to be
made at the moment in which the model is created and not during the solution process.
Accordingly, what we require is building only the appropriate configuration of the

problem rather than having available all the possible configurations.

Here we propose a modeling tool to incorporate conditional compilation into an equation-
based environment, tlsELECT statement. While this conditional tool is flexible enough to
represent all of the alternatives, its presence will indicate that only those alternatives
consistent with the model data will become available after the process of instantiation of

the model.

The following is the syntax proposed for the conditional compilation tool:

defintion_of constants;
assignment_of_constant_values;

SELECT (list_of _constants)
CASE list_of values 1:
listl_of declarative_statements;
CASE list_of values_2:
list2_of_declarative_statements;

OTHERWISE:
listn_of declarative_statements;
END SELECT;

Even though the syntax for tseLECTstatement is similar to that described forwreN

statement, some important differences can be identified:

* In thewHEN statement, the declaration of the object is external to the conditional
statement since of all the alternatives are going to be created anyway. On the contrary,
in theSELECT statement the actual declaration of an object (or any other declarative
statement affecting objects) is done within e@aBE of the statement, explicitly

discriminating among alternative configurations.
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» The selection among alternatives in #®ECT statement depends on constant
booleans, integer or symbols. Since these values imply a one time structural decision,

they must not be modified during the solution of the problem.

Summarizing, th&ELECT statement provides the capability of conditional compilation. It
allows the representation of all the structural alternatives. However, since only the desired

data structure is created, it does not affect the computational requirements of the model.

2.2.3 GONDITIONAL EXECUTION OF PROCEDURAL CODE

Because of the use of conditional statements in the declarative description of a model, a
similar feature must also exist to give the user the ability to program the conditional
execution of methods. For instance, each alternative configuration of a model may require
different initialization and a different selection of the independent variables for the

solution process. Hence, we propose a procedural conditional statement as follows:

SWITCH (list_of variables)
CASE list_of values 1:
listl_of procedural_statements;
CASE list_of values_2:
list2_of_procedural_statements;

OTHERWISE:
listh_of _procedural_statements;
END SWITCH;

Basically, thisswITCH statement has the same application as the conditional statements
that already exist in procedural modeling languages such as C and FORTRAN.
Procedural statements do not involve new object definitions, they are only useful for the

numerical processing of objects already created.

2.3 DETAILS OF A COMPUTATIONAL
| MPLEMENTATION

The language tools introduced in the previous section provide a general framework for the

representation of conditional models. In this section, we present an overview of the details
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that we had to address in order to create a prototype for testing the scope and application

of the modeling tools.
Some of the main issues in the computer implementation of the conditional tools are:

* The implementation of th&vHEN statement must provide an efficient means to
generate all of the possible alternative configurations of the problem. That is, the
combinatorial nature of the problem must be encapsulated without being memory
intensive.

* The solution to a conditional model will reduce to solving a system of equations in
which the variables and equations of the system may constantly change during the
solution process. The issue here is how we are going to supply a conditional modeling
solver with the correct set of variables and equations.

» The development of an approach to the implementation of conditional compilation in a

declarative modeling language is a hard problem by itself.

2.3.1 IMPLEMENTATION OF THE WHEN STATEMENT : THE WHEN CLASS

We follow the object oriented philosophy in order to implement a computer tool for the
conditional configuration of a model structure. In a typical object-oriented modeling
environment, all objects which share the same set of attributes can be viewed as an
instance of a class (or type). Hence, each model is a structured class built hierarchically

from instances of other models or elementary classes.

An early approach for the implementation of conditional modeling tools was described by
Epperly (1988). He proposed to build a complete instance tree foceathvithin the
conditional statement. However, he also recognized the combinatorial nature of that
approach that makes it unacceptable; for example, for a type containing two conditional

statements each having thi@ssEs, nine complete instance trees would be created.

In this work, we introduce the definition of an elementary classyHe class. Instances
of this class allow us to create a single instance tree in which all the structural alternatives
are embedded. Figure 2-1 shows our approach to the implementatiaiBRanstance.

Essentially, avHEN instance is constituted by two lists of pointers: a list of pointers to
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instances of the conditional variables on whichwEN statement depends and a list of
pointers toCASE structures. EacbASE structure contains a list of values and another list

of pointers to instances. The instances in the list of instances associat®smo a

correspond to the objects (relations, arrays of relations, models, array of models) that will
be “active” when the values of tl@ask list of values matches the current values of the

conditional variables.

Figure 2-1 WHEN instance implementation.

WHEN INSTANCE

Class:.WHEN Instance of a VARIABLE
Class attributes Pointer to

Instance
Pointer to List of —4>| | | | | | |
Variables List of Variables

Pointer to List of

CASEstructures—4>| | | | | | |

List of CASEs

Pointer to
v CASEstructure

Pointer to Set of Values—

Painter to List of Instance5—>| | | | | | |

List of Instances

Pointer to
Instance

v

MODEL or RELATION
or Nested WHEN Instancd

With this implementation, the data structures required for all the alternative configurations
are availablei( e., all the objects referenced in eathse are compiled). By visiting the

instance tree and analyzing all tNelIEN statements in it, we can set as “active” only the
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parts of the problem corresponding to the configuration consistent with the current values

of the conditional variables.

2.3.1.1 Feeding a Conditional Model to a Nonlinear Solver

The implementation of th&HEN statement in an equation-based environment allow us

to have available the data structure for all the variables and equations of the conditional
model. Therefore, the first step in the implementation of a conditional solver is to decide
how the solver is going to be fed with the correct structure and how to change this
structure efficiently in an iterative solution scheme. To perform this task, we use the notion
of active equation and active variable. By active we mean “itis part of the problem
currently being solved.” Computationally speaking, to set a relation as active or inactive
implies a simple bit operation. The following steps provide a mechanism to select the

structure of the problem:

1. Initially, we consider all the equations resulting from the compilation as active.

2. Then, we set as inactive all of the equations referenced withiwiaiy statement.

The equations set as inactive in this step constitute the variant set of equations. All the
eqguations which remain active constitute the invariant set of equations.

3. We analyze thevHEN statements. According to the current values of the variables on
which eaclhwHEN statement depends, we determine which afAsEs applies. The
equations stated within suclCasE are set as active.

4. All the variables incident in the active set of equations are active. The current problem

to be solved consists of the active set of equations and variables.

Figure 2-2 shows the application of the previous steps to the example of the fluid flow
transition. The mechanism outline above is independent of a particular solver or solution
algorithm. However, we must emphasize that a change in the configuration of the problem
during an iterative solution process may also cause a change in the partitioning of the
variables and equations. Therefore, any solver using a partitioning mechanism must

account for such a possibility.

2.3.2 QGONDITIONAL COMPILATION : THE SELECT STATEMENT

During the process of instantiation of a model, it is necessary to differentiate between
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those objects that are not instantiated because they are defined within nonntatshasng
of aSELECT statement from those objects that are not instantiated because of a deficiency

in their declarative definition. In order to do that, we define an elementary “dummy” class.

Figure 2-2 Preparing a conditional model to send to a nonlinear solver.
. . . Flow transition:
1. Initially all the equations are active:
3 /2
inveq inveq: Re= —- E%M’g
f o0 o O
vareql

vareql:Re = 64/ f

vareq?2 vareg2: Re= (0.206307 f)*

2. Equations stated in the CASEs of a

WHEN statement are set as inactive: WHEN laminar
CASE TRUE: USE vareql;
ACTIVE INACTIVE _
iveq vareql CASE FALSE: USE vareqz;
vareq2 END;
Invariant Set Variant Set

3. Analyze WHENSs

ACTIVE INACTIVE laminar := TRUE:
nveq vareq2
vareql

4. Incident variables in active equations are active

We find that it is necessary to build only one instance of this class, such that the dummy

instance becomes a place holder for all the objects defined in all the nonmatching
CASEs of theSELECT statements.

Figure 2-3 shows a graphic explanation of the process of instantiation in conditional

compilation. Statements in the nonmatchiagEes of aSELECT statement that do not

25



EXAMPLES OF APPLICATION

involve the creation of a new object are interpreted to determine if they are syntactically
correct, but the resulting compiler actions are sinjaly executedi(e. assignments,
refinements, merging, etc.). On the other hand, statements in the matesiisgead to

full compilation as if they were defined outside e ECT statement.

Figure 2-3 Instantiation process in conditional compilation.

SELECT (name_of constant)

1 CASE value_1:
)
<
O refinement . ;
» Execute Refinement
(@)
=
S assignment, » Execute Assignmen
]
=
CASE value_2:
refinement, » Do not Execute
assignment; » Do not Execute
merging; » Do not Execute

declaration_of_object_1;

declaration_of object 2; —\
Universal Dummy
END SELECT, Instance

2.4 EXAMPLES OF APPLICATION

One of the goals of our research group has been to improve one’s ability to develop and
solve process models. The main result of this effort has been the developa®CE b

(Pielaet al, 1991). ASCENDIs both an object-oriented mathematical modeling
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environment and a solving and debugging engine. Westegbatg1994) discuss the
essential features of the curr@siCEND system and present several ways in which we can
improve it to solve larger models and to increase its scope as a modeling environment. We
implemented the conditional modeling tools explained above inteashEND modeling
environment. In this section, we show some examples to illustrate the expressiveness of

the new modeling capabilities.

2.4.1 THE WHEN STATEMENT
Figure 2-4 shows two partiaSCEND models in which th&/HEN statement is used, each

in a different manner.

Figure 2-4 Two different applications of tiHEN statement.
(a) (b)
method IS_A symbol; laminar IS_A boolean;
simplified_flash IS_A VLE_flash; Re,f IS_A factor;
rigorous_flash IS_Atd VLE flash;
eql: Re = 64/f;
WHEN (method) eq2: Re = (0.206307/f)"4;
CASE ‘rigorous’:
USE rigorous_flash; WHEN (laminar)
CASE ‘simplified’: CASE TRUE:
USE simplified_flash; USE eq1;
END WHEN; CASE FALSE:
USE eq2;
END WHEN;

In case (a) the value of the symbol ‘method’ is used to select between two alternative
configurations of the problem, a flash calculation assuming constant relative volatility
(VLE_flash) or a flash calculation using a more rigorous thermodynamic calculation
(td_VLE_flash). Which option is going to be used and, therefore, the value of the symbol
‘method’, is a user decision. For example, the user may select the simplified model when
looking for good initial values for the variables and then switch to the rigorous model

simply by changing the value of the symbol ‘method.” Once a configuration has been
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selected, it will be kept unless the user decides to change it. Note that the user does not
have to recompile the model to switch. Since the system has compiled the data structure
for both of the problems, the user can readily switch back and forth between the simplified

model and the more complicated one.

On the contrary, in case (b) we cannot expect the boolean value of the variable laminar to
be a user decision. Its value will depend on the value of the Reynolds number which is an
unknown whose value is being computed in the problem. The value of the variable
laminar will be the truth value of the expressioxREDO. In an iterative solution scheme,

we expect the value of the boolean variable ‘laminar’ to change, and, therefore, so will

the structure of the system of equations that we have to solve.

Another example of the application of tWwelEN statement is the synthesis of process
networks using superstructure optimization. We developed a simplified model for the
superstructure given in Figure 2-5, taken from the work of Turkay and Grossmann (1996).
In this example, there are two alternative feedstocks, two possible choices of the reactor
and two choices of the compression systems. Hence, there are 4 structural decisions, and,

therefore, there aré*2 16 feasible configurations for the problem.

All 16 configurations are encapsulated in a8€END model containing &VHEN

statements which depend on the value of 4 boolean variables. Figure 2-6 shows this
model. The procedural section of the model and the model for each unit operation have
been omitted for simplicity. Note that, for each structural decisiomjEN statement

allows the selection of either of two alternatives (a cheap reactor or a expensive reactor, for
instance); however, theHEN statements do not allow the selection of both alternatives
simultaneously. Such a case would require the definition of splitters (for the input streams
of the conditional units) and mixers (for the output streams of the conditional units) which,
in the context of an equation-based approach, are generally considered as separate unit
operations. Also, note the way in which the linking is done for the conditional units in the
flowsheet. Consider, for instance, the case of the selection between an expensive reactor
(r2) and a cheap reactor (rl) illustrated in Figure 2-7(a). The input streams of the two

reactors are merged with the output stream of heater 1 (h1). That is, hl.output, rl.input
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and r2.input are merged (theE_THE_SAMEoOperator in theSCEND modeling language
represents a merging operation). In practice, such a merging operation ensures that,
regardless of which reactor we select (cheap or expensive), an input stream to the reactor
always exists, and it is the same as the output stream from the heater 1. Similarly, a
merging operation is also defined among the output streams of the reactors and the input
stream to the expansion valve (v1). The combination of this merging of input and output
streams with the procedure described in section 2.3.1.1 allows us to select a particular

configuration of the flowsheet, as illustrated in Figure 2-7(b).

We have tested the mechanism to pass the correct submodel to a solver suggested in
section 2.3.1.1 on several problems. As an example, we applied it to the system presented
in Figure 2-5 and Figure 2-6. The value of the four boolean variables determine the
structure of the problem. The values of the boolean variables can be defined interactively
by the user, but they also can be defined by some logic inference algorithm which would
allow the automatic change of the structure of the problem. In our model of the
superstructure shown in Figure 2-5, the nonlinear system contains 137 invariant equations

and 68 variant equations for a total of 205. The configuration defined by one of the feeds,

Figure 2-5 Superstructure taken from Turkay and Grossmann (1996).

<1000
low conv, low cost ton/day
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Figure 2-6 ASCEND model for the superstructure of Figure 2-5.

MODEL flowsheet;

(* units *)
fl IS_A cheap_feed;
f2 IS_A expensive_feed,;
cl,c2 IS_A single_compressor;
sl,s2 IS_A staged_compressor;
rl IS_A cheap_reactor;
r2 IS_A expensive_reactor;
col,co2 IS_A cooler;
h1,h2,h3 IS_A heater;
fl1 IS_A flash;
spl IS_A splitter;
ml IS_A mixer;
vl IS_A expansion_valve;

(* boolean variables *)
select_feedl,select_singlel IS_A boolean_var;
select_cheaprl,select_single2 1S_A boolean_var;
(* define sets *)
ml.n_inputs :==2;
spl.n_outputs == 2;
(* wire up flowsheet *)

fl1.stream, f2.stream, cl.input, sl.input ARE_THE_SAME;
cl.output, sl.output, ml.feed[2] ARE_THE_SAME;
ml.out,col.input ARE_THE_SAME;
col.output, hl.input ARE_THE_SAME;
hl.output, rl.input, r2.input ARE_THE_SAME;
rl.output, r2.output,v1.input ARE_THE_SAME;
vl1.output,co2.input ARE_THE_SAME;
co2.output, fl1.feed ARE_THE_SAME;
fl1.lig, h2.input ARE_THE_SAME;
fl1.vap, spl.feed ARE_THE_SAME;
spl.out[1], h3.input ARE_THE_SAME;
spl.out[2],c2.input, s2.input ARE_THE_SAME;
c2.output, s2.output,m1.feed[1] ARE_THE_SAME;

(* Conditional statements *)
WHEN (select_feed1)
CASE TRUE:
USE f1;
CASE FALSE:
USE f2;
END WHEN;
WHEN (select_singlel)
CASE TRUE:
USE c1;
CASE FALSE:
USE s1;
END WHEN;
WHEN (select_cheaprl)
CASE TRUE:
USE r1;
CASE FALSE:
USE r2;
END WHEN;
WHEN (select_single2)
CASE TRUE:
USE c2;
CASE FALSE:
USE s2;
END WHEN;
END flowsheet;
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two single-stage compressors and one of the reactors contains 169 equations, the 137
invariant and 32 of the 68 variant equations. Switching from one structure to another is
done without the need to recompile and, since reconfiguring the system requires only

rebuilding several list of pointers, it is computationally very efficient.

Figure 2-7 Linking of conditional units

a) Merging streams of conditional units

— 11 — rl

h1.output vl.input
— — O — —

— 2 — r2

b) Selecting an alternative

ACTIVE INACTIVE
r— — 7
—[]—
L — —
OR
r— — "
2 —[z]—
L — —
INACTIVE ACTIVE

2.4.2 LOGICAL RELATIONS

Figure 2-8 illustrates two examples of the syntax we have used for the implementation of
logical relations. Example (a) is simply to show the use of the logical opesair®R

andNoT. Example (b) is a more complete version of the model presented in Figure 2-4(b).
In this case we note that the value of the boolean variable (‘laminar’) depends on the truth

value of a real expression (cond). In this way, sincevthieN statement depends on the
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boolean variable ‘laminar’, a change in the truth value of the real expression triggers a

change in the configuration of the system.

Figure 2-8 Examples of the syntax for the implementation of logical
relations.
(a) (b)
laminar IS_A boolean;
Re,f,k IS_A factor;
valve_open IS_A boolean;
pump_on IS_A boolean; CONDITION
full_tank IS_A boolean; cond: Re <= 2100;
END;
valve_open<==>pump_on AND
NOT (full_tank); laminar <==> SATISFIED(cond,1e-08);
eql: Re = 64/f;

eg2: Re = (0.206307/H)"4;
WHEN (laminar)
CASE TRUE:
USE eq1l;
CASE FALSE:
USE eq2;
END WHEN;

2.4.3 THE SELECT STATEMENT

Figure 2-9 shows ansSCEND model which is similar to that shown previously in Figure 2-
4(a). The difference is that we use & ECTstatement rather than th@4EN statement.

This time, the symbol ‘method’ is a constant, and, once it is defined, its value will not
change. That value will always be a user decision. In the example of Figure 2-9, only the

list of statements in the firsiASE are compiled.

2.4.4 THE SWITCH STATEMENT
The use of the SWITCH statement for the conditional execution of procedural code is
illustrated in Figure 2-10. In that example, if the simplified flash model is used, the

average value of the constant relative volatility is set to 1.5. On the contrary, if the
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rigorous model is used, then a procedure defining the initial values and degrees of freedom

for an adiabatic operation is executed.

Figure 2-9 Application of th6ELECT statement.
method IS_A symbol_constant;
method :== ‘rigorous’;

SELECT (method)
CASE ‘rigorous’
rigorous_flash IS_Atd_VLE_flash;
CASE ‘simplified:
simplified_flash IS_A VLE_flash;
END SELECT;

Figure 2-10 Application of the SWITCH statement.

METHODS
METHOD values;
RUN reset;
SWITCH (method)
CASE ‘rigorous’:
RUN adiabatic;
CASE ‘simplified’:
ave_alpha :=1.5;
END SWITCH,;
END values;

2.5 SIMMARY

We developed efficient modeling tools for the representation of conditional models in an

equation-based environment and discussed the details of their practical implementation.
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The incorporation of these tools into th&CEND environment shows how the

expressiveness of an equation-based modeling language increases with this extension.
Even though the new modeling capabilities are independent of any numerical technique
used for the solution of a conditional model, they were developed in such a way that the

needs of all of the existing solution algorithms we have found in the literature will be met.
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CHAPTER3 STRUCTURAL
ANALYSIS OF
CONDITIONAL
MODELS

Structural analysis is applied to exploit sparsity in the solving of a system of equations
(Duff et al 1989). Zaher (1995) studied the issues involved in the structural analysis of
conditional models and presented a methodology to ensure consistency in a conditional
model, the complexity of such an analysis being combinatorial. In that work, Zaher
considered only cases in which the number of variables and equations of all the
alternatives in a conditional model are the same. In this chapter, an extension to Zaher’s
consistency analysis is presented. This extension allows the consistency analysis to be
applied to conditional models in which the number of variables and equations for each of
the alternatives may not be the same. Also, we show how, by taking advantage of the
structure of the problem, it is sometimes possible to reduce the effort required by such an
analysis. In particular, the cases of the existence of repeated structures and common

incidence pattern among alternatives are discussed.
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3.1 INTRODUCTION /M OTIVATION

Before attempting to solve a model, a structural analysis has to be performed to determine
if the model formulation is well posed. Techniques are available which can be used to
detect if any structural inconsistency exists among the equations of the modet(Duff
al.,1989; Zaher, 1995). However, consistency is generally assumed and structural analysis

is rarely discussed in the literature.

Still, in practice it is very difficult to create large models of equations without introducing
structural inconsistencies. We believe that structural analysis is an indispensable tool in an
equation-based modeling environment, and, as we show in section 3.3, conditional models

make the need for this tool an even stronger requirement.

3.2 TERMINOLOGY IN STRUCTURAL ANALYSIS

We provide here a brief and general description of the terminology employed throughout
this chapter. Also, we use the system of equations given in Example 3-1 to illustrate each

of the definitions.

Variables appearing in an equation are said todidentin that equation and incident in

the problem containing that equation. Assumethistthe number of equations in a

model andn is the number of variables incident in those equations. For most engineering
models,n>m . In order to solve a problem, the problem has $qumee that is, the

number of equations and the number of variables to be calculated in the problem has to be
the same. Accordingly, in order to solve a problem contaimwvayiables andn

equations, it is necessary to provide the values-ofvariables, so that we can calculate

the rest. Thus, the difference between the number of variables and the number of
equations gives us the numberdefrees of freedor®OF=n-m, of the problem. The
variables to be calculated in the problem are callgmbndent variablesvhile then-m
variables whose values are provided by the modeler are galiegendent or decision
variables Because of structural considerations (as we explain below), not every variable
can be designated an independent variable. The set of variables whose values can be

provided by the modeler (that is, the set of candidates to become an independent variable)

38



TERMINOLOGY IN STRUCTURAL ANALYSIS

is called theeligible set

ExaMPLE 3-1 A System of Equations to lllustrate the Terminology in
Structural Analysis.

For the system of equations in Example 3-1:

Set of incident variables in first equatien{ x; }

Set of incident variables in the probleml = {X;, X,, X3, X4}
Number of variables in the problem =n = 4

Number of equations in the problem =m =3

Number of degrees of freedom=DOF=4-3=1

The equations of a model are expected to have different sets of variables incident in them.
Furthermore, they are expected to involve only a few of the variables in the problem. This
observation supports the idea that models are sparse. An effective representation of a
sparsity pattern of a system of equations is given bgatdence matrix The rows of an
incidence matrix correspond to the equations of the problem. Similarly, the columns of an
incidence matrix correspond the variables incident in the equations. An element in row
and columrj of an incidence matrix is nonzero if and only if the variable of coluisn

incident in the equation of row The incidence matrix of the system of equations given

by Example 3-1 is shown in Figure 3-1.
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Figure 3-1 Incidence matrix of Example 3-1.

Structural inconsistencies are detected by using an incidence matrix to perfoutp@n
assignment An output assignment is the process of assigning each equation to one of its
incident variables. The structuraink is the largest number of equations which can be
assigned such that no two equations are assigned to the same variavik=rif the

system of equations sructurally consistentIf, on the other handrank<m, the

eguations are guaranteed to be singular. An output assignment for the system given in

Example 3-1 is shown in Figure 3-2.

Figure 3-2 An output assignment for the system defined in Example 3-1.

X1 X2 X3 X4
fy | m]
f, [m]
fa n [m]

Besides the detection of structural inconsistencies, the output assignment also provides a
solid basis for finding a consistent partitioning of the variables. After a structurally
consistent output assignment is achieved, the variables which are assigned make up a

consistent set of dependent variables, while the variables left to be assigned make up a set
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of independent or decision variables. However, the partitioning of the variables is not
unique and a generalized criterion to select the best choice does not exist. Hence, itis
important to generate and make available all of the choices to the modeler. All the
candidates to become independent variables can be found from an initial output
assignment by followingteward pathgWesterberget al, 1979). A Steward path starts

from an unassigned independent variable and then moves horizontally to an assigned
variable, then vertically to an unassigned variable, then horizontally to an assigned
variable, etc., until the path terminates, always on an assigned variable. The variables
encountered along each path are marked as being eligible. Thus, all the variables gathered
while transversing all of the Steward paths constitute the eligible set of variables in the
problem being analyzed. A Steward path is illustrated in Figure 3-3. The combined use of
an output assignment and Steward paths to obtain the eligible set is calliggbdity

analysis

Figure 3-3 A Steward path based on the output assignment of Figure 3-2.

Xl X2 X3 X4
fy | (m] ?
fa w0 m
O .
f3 mOm] =

The eligible set of variables for the problem of Example 3-1 is:
Eligible set =Set of variables eligible to be chosen as decisiders { Xy, X3, X4}

For the system of equations given in Example 3-1, selecting one of the variables in the
eligible setE as being a independent variable results in a square structurally consistent

system of equations.

41



TERMINOLOGY IN STRUCTURAL ANALYSIS

3.2.1 NDOTATION
The following notation is used in the remainder of this chapter. For an alternative set of

equations wherei 0 {1...s} , andis the number of alternatives in a conditional model:
= Eligible set  Set of variables eligible to be chosen as independent
variables in the alternative

l; Incidence set Set of variables incidents in the equations

constituting the alternativie

M Maximal set Union of the incidence sets of all of the alternatives.
DOF Number of degrees of freedom left to be assigned.
e Intersection of the eligible sets of all the alternatives.

While assigning degrees of freedom in a structural analysis, every time that a variable is
chosen to be an independent variable, the elements change in the eligible set for the
selection of the remaining degrees of freedom. The number of elements in the new
eligible set is at least one less than the previous set. Moreover, the new eligible set is
always a subset of the eligible set previous to the selection of the independent variable.
For that reason, we use the indebo indicate &-th step in the selection of the

independent variables while performing structural analysis. Note that theasets are

independent of this indék while the setg; and their intersectioachange at each sté&p
k k-thstep in the assignment of the degrees of freedom.

3.2.1.1 Set Operators

O Union A B is all elements either & B, or both.
n Intersection A n B is all elements in bothandB.
\ Minus A\B s all elements frord not inB.
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3.3 STRUCTURAL CONSISTENCY

Duff et al (1989) and Zaher (1995) describe algorithms for the systematic structural

consistency analysis in conventional models. They give a step by step procedure to:

» Generate an incidence matrix.
» Perform an output assignment in order to test structural consistency.

» Collect all the eligible variables by following all the Stewards path in a problem.

The interested reader may refer to those works for a detailed description of the procedures.
Our attention in the rest of this chapter is focused in the structural consistency of

conditional models.

3.3.1 GONDITIONAL M ODELS
In conditional models, the sparsity pattern is expected to change from one alternative set
of equations to another. This implies that a consistent set of independent variables for one

alternative set of equations may not be valid for another one.

Zaher (1993, 1995) also addressed the structural analysis of conditional models. A
necessary condition for structural consistency in conditional models is that each of the
alternative sets of equations must be structurally consistent. Hence, consistency of a
conditional model is assessed by finding at least one consistent partitioning of the
variables (independent-dependent) such that output assignment of all of the equations in
each alternative can be performed. This requirement makes the problem combinatorial,
since we have to perform the analysis for all of the alternative sets of equations which can
be generated from a conditional model expressed disjunctively. The following is an
abbreviated description of an algorithm for finding a set of independent variables
consistent with all the alternative sets of a conditional model. For a detailed description,
see Zaher (1995). It is assumed that there is a nonzero number of degrees of freedom in

the problem:

1. Each of the alternative sets of equations is first arbitrarily output assigned.

2. For each output assignment, the set of variables eligible to become indepEiﬁ)i'Esnt (
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generated. In general, the eligible sets generated for each of the alternatives are
different.

3. Since, itis necessary (but not sufficient) that a variable which is eligible in the context
of the overall problem must be eligible for each alternative, we next find the

intersection of the eligible sets generated in step 2:

C=EnESn..ES= NE (3.1)

wheres the number of alternatives in the conditional model.

4. We tentatively select a variable from the intersection set generated in step 3 to be an
independent variable. After this step, the number of independent variables left is
reduced by one, and the process is repeated from step 1 using the remaining dependent
variables.

5. Consistency is achieved only if a sequence is found which allows an eligible variable
to be selected for each degree of freedom. Therefore, we backtrack anytime we fail to

complete such a sequence.

3.3.1.1 Limitations of Zaher's Consistency Analysis
Consider a conditional model in which ‘s’ alternative sets of equations can be generated.
In his work, Zaher only addressed the case in which the variables incident in each of the

alternatives is the same,

Given that condition, the variables common to all of the eligible sets of each alternative set
of equationseﬁ) can be regarded as eligible to become independent in the context of the

overall conditional model.

In a general situation, however, the number of equations in each alternative of a

conditional model may change and so may the incidence set of variables.
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3.4 EXTENSION OF THE CONSISTENCY ANALYSIS FOR
CONDITIONAL MODELS

For the case developed by Zaher in which the incident variables of all the alternatives are
the same, the result of applying equation (3.1) is the elimination of all those variables
which are eligible to be chosen as independent variables in some alternatives but non
eligible to be chosen as independent variables in some other alternatives. That is readily
accomplished by using the intersection of the individual eligible sets since all the variables

are incident in all the alternatives.
For the general case, however, since we expect
(T PN P IS

we cannot use the intersection of the eligible set of each alternative to generate the eligible
set for the overall conditional model. If we would do that, we would immediately remove
variables which are not incident in some of the alternatives, since they would not be

eligible for an alternative in which they are not incident.

A detailed derivation of an equivalent to (3.1) when the alternatives of a conditional model
have different incident variables is presented in Appendix A. In Appendix A, we show
that, in general, for any alternativél {1...s} , the set of “truly” eligible variables
(ineligible variables are eliminated) for each alternative in the context of the overall
conditional problem is given by:

g = ENFE [ O 0] (3.2)
O O

I #i

and that the union of these individual sets gives the set of eligible variables from which we

can safely select the independent variables of a conditional model:

S
= [JEC (3.3)
i
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Hence, by using (3.3) instead of (3.1), we can apply the structural consistency algorithm
described in 3.3.1 to a general conditional model having alternatives with different

incident variables.

Furthermore, in Appendix A we also show that we do not have to perform the analysis for
the general case as defined in (3.3). A simpler analysis can be used instead. We
demonstrate that, if we augmented the eligible set of each alterﬁétwﬂeh the non

incident variables of that alternative:

EN' = EXD(M\IY) (3.4)
and find the intersection of the augmented Eéts :

S
Kis k
e'" = NE

S
= NE T (M) (3.5)

i [
then the resulting sel s equivalent to theeSet given by (3.3). Recall ikdhe

maximal set of variables,

S
M =1,01,0..1g=01 (3.6)
J

so that(M\Il;) represents the set of non incidences in altermative

Therefore, the use of (3.5) instead of (3.1) also allows us to apply the structural
consistency algorithm described in 3.3.1 to a general conditional model having
alternatives with different incident variables. As a final result in Appendix A, we also
demonstrate that both (3.5) and (3.3) reduce to (3.1) when the alternatives of a conditional

model have the same incident variables.
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34.1 THE MAIN RESULT

The main result of the analysis presented in this section is that the algorithm described in
section 3.3.1, derived for a conditional model having the same incident variables in all its
alternative set of equations, can still be applied for a general case in which different
alternatives of a conditional model have different incident variables. In order to
accomplish that, the step 3 of the algorithm for testing structural consistency given in 3.3.1
has to be modified by using (3.5) instead of (3.1).

3.4.2 AN IMPLEMENTATION

Our extension to the consistency analysis described in 3.3.1 has been incorporated as a
tool within theASCEND modeling environment to help a user to set up structurally
consistent conditional models. Essentially, this implementation uses the information
provided by the conditional statements described in Chapter 2 in order to generate the
alternative configurations of a conditional model. Then, for each of the alternatives, we

apply the eligibility analysis techniques already available for conventional models.

3.4.3 AN | LLUSTRATIVE EXAMPLE

The formulation derived in this section is illustrated with Example 3-2. In this case, a
disjunctive system of equations contains two disjunctions, which results in 4 different
alternative set of equations. The 4 set of equations derives from Example 3-2 are shown in
Figure 3-4.

For the purpose of illustration, assume that the variagleg, andx; have already been
selected as independent variables. Hence, the set of independent variaples: to the

analysis is:

O = {X,, X4, X7}
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ExamMPLE 3-2 A simple disjunctive set of equations.

Xig=1
X, = 0.80X,
X, = 0.9 Kq
X5 = X; + X3
_ 0 Xg = Xgt+ X19* X3
Xg = X5 =X
Xq = Xo + X
g = X7+ Xg _
| X137 X
X1p = 3Ky [X3
X14 = X7+ Xg X17 = X7
Xi6 = XoqF X171 | U X19 = X5
X15 = X6 T Xo3 Xo0 = Xp2
| X3 T X

Figure 3-4

4 Alternatives in the Example 3-2.

Alternative 1 Alternative 2

Xig =1

x, = 0.80X, Xpg = 1
X3 = 10-X, Xy = 0.80K,

X = Xy + Xg X3 = 10-x,

Xg = X5—Xq Xg = X3 X3

Xg = X7+ Xg Xg = Xg—X;
X5 = 30 [Xg SR

X14= X7t Xg X17= %7
X16 = X4 X11 X19 = X290
X15 = X167 Xo3 X20 = X2

Xo3= Xy

Alternative 3

Xig =1
X; = 0.80X,
X3 = 10—-X%,
X7 = 0.9Kg

Xg = Xg + X1+ X3
X109 = 40—Xq
X13= X1
X5 = 31Ky [Xg
X4 = X7+ Xg
X16 = Xo4* X11
X15 = X167 X23

Xo3= Xy

Alternative 4
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Table 3-1 shows an analysis of the degrees of freedom left to be assigned for each of the
alternatives. Note that the number of equations, the number of incident variables, and the

number of degrees of freedom left to be assigned are different for each alternative.

Table 3-1 Degrees of freedom left to be assigned in Example 3-2.

Atermative | oot e | incidences | ofDOF | be assigned
1 11 17 6 S
2 9 13 4 1
3 12 18 6 3
4 10 15 5 2

The eligible set for each of the alternatives, obtained from the eligibility analysis we

described, is shown in Table 3-2.

Table 3-2 Incidence and eligible sets in Example 3-2.

Alternative Incidences|; Eligible set, E;
1 Xy - % X110 X120 X140+ X96 X18 X215 X11 X120 X15 X160 %21, %24
X23 %24
2 X1 oo %0 X470 o0s %000 %22 X19: X000 %22
3 X1 o X X7 o0 R X180 X1 X3 X204 | X113, X120 X13 X15 X160 X021, %04
4 Xl oo X X7 o0 RO X130 X170---%02 X13 X19 %00 X215 X22

If we would try to apply Zaher’s structural analysis in order to obtain a consistent set of
independent variables for the overall problem, we would conclude structural

inconsistency, since the intersection of the individual eligible sets is empty:

S
e":nE'j‘:D
j
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Instead, we can apply either of the equations derived in this section to obtain:

from (3.3),

(¢
|

S

= LTEN = {X;1, X100 X120 Xe s X1 X105 Xy Xo1s Xy X}
=i T UMD M2 M3 M Ae M A0 M1 Mo 124
I

or, from (3.5),

M = {X;...X54}
K ° _k
e = NE" = {X11, X12 X13 X5 X160 X100 X200 X215 Xp0 X4}
|
Note that the result is the sané’, = By applying the consistency algorithm in

3.3.1, we obtain the following set of consistent independent variables:

{ X11 X15 X100 %21}

Hence, if we partition the variables in Example 3-2, so that the set of independent

variables is given by,

O = {Xo X4 X7 X117, Xg5 X390 X1}

then all 4 alternatives generated from Example 3-2 are square and structurally consistent.

3.4.4 IS THE COMBINATORIAL CONSISTENCY ANALYSIS REALLY
NECESSARY ?

Given the combinatorial nature of conditional models, it may happen that, during the
iterative solution of one of such models, only a few of the alternatives of it are considered
before converging to the solution. For that reason, a question comes to mind. Why should
we look for the structural consistency of all of the alternatives in a conditional model if it

is true that many of those alternatives will never be encountered during an iterative

solution technique ?

First, we should recognize that it is also true that, in general, there is no way of knowing
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which alternatives will be visited during an iterative solution of a conditional model.

Hence, we believe that it is a valid methodology to consider the structural analysis of only
those alternatives encountered during the solution of a conditional model if such

procedure reaches a satisfactory result. However, such methodology cannot guarantee that
a consistent set of independent variables selected for an alternative will also be consistent

with respect to any another alternative visited later during the iterative solution technique.

In general, in order to ensure the structural consistency of a conditional model, the

combinatorial consistency analysis must be performed.

3.5 SMPLIFYING THE CONSISTENCY ANALYSIS OF
CONDITIONAL MODELS

The analysis required for partitioning the variables in a conditional model was outlined in
section 3.3.1. We see the most serious disadvantage of this analysis to be the
combinatorial nature of the search consistency algorithm, which requires the analysis of

all of the alternatives every time that a selection of an independent variable is made.

However, we have observed special features of some problems which can contribute to
simplifying the analysis. Even though they represent very particular cases, if found alone
or in any combination, we can take advantage of them in order to reduce the

computational effort needed to perform the analysis.

351 COMMON |NCIDENCE PATTERN

It happens sometimes that the equations of some alternatives in a conditional model are
different only because of the difference in value of some parameters, such as cost factors,
mass balance coefficients, power of a correlation, etc. That is, the incidence pattern of
those alternatives is the same. In such a case, the combinatorial structural analysis can be
greatly simplified. Consider the conditional model defined in Example 3-3. In that

example, there are 6 disjunctions in the problem. Hence, the number of alternative set of

equations is:

Number of alternatives 26 =64
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ExampPLE 3-3  Taking advantage of a common incidence pattern.

X1 = Xg + X192

Xg = XlO+ X11

x5 = 1150, | xg=1.20K|
Xy0= 0.10¢| 0%, = 0.20k,
X,<8 X728
x,= 04705 [x,= 0450k,
X7 = 0.750Kg| U | x; = 0.7 kg
Xg< 10 Xg2 10

Xg = 180, |xg=1.87[X,
Xg =070 Ul xg=x%;
X,<11 X211

X3 = 1.150K;5| X5 =1.100K,4
X15 = 0.250K; 4 O | X1, = 0.30K;5
X13<9 X132 9

X = 0.350;,  [xy,=0.30k]
Xy5= 1250k, O|x,5= 130Ky,

X14<8 X428
X4 = 1.100Kg y X14 = 1.020Kg
X5 <4 X5 2 4

However, it is trivial to observe that, in all but one of the disjunctions, the incidence
pattern is the same. As a consequence, for the purposes of structural analysis, only two
different alternatives have to be considered.

Number of alternatives for structural analysisz1 =2

Hence, for instance, the structural analysis for the problem of Example 3-3, could be

simplified to one of the system of equations shown in Figure 3-5.

3.5.1.1 AnImplementation
In parallel with the implementation of our extension to the consistency analysis of a
conditional model, we have also implemented a computer tool whose goal is identifying

all those conditional structures with the same incidence pattern. This tool has been
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Figure 3-5 Taking advantage of a common incidence pattern.

X1 = Xg + X12

Xg = X10F Xq1

X = 1.150k,
X9 = 0.10K,

X, = 0.47[g
X, = 0.750Kg

Xg = 1.8[K, 0|Xe= 1.87X,
Xg = 0.7 X, Xg = Xq

X3 = 1.150K, 4
X1o = 0.25[K,5

Xqq = 0.350Ky,
X;3 = 1.250Ky,

X4 = 1.100Kg

incorporated within theSCEND environment. It uses the information provided by the
conditional statements described in Chaptew2EN statement) in order to compare the
incidence pattern of alternative configurations. This tool is applied as a step prior to the
consistency analysis described in section 3.4. Hence, the consistency analysis considers
only those alternatives whose incidence patterns are different, and, therefore, the

combinatorial complexity of the analysis is reduced.

3.5.2 REPEATED STRUCTURES

In chemical engineering design and simulation, systems containing repeated structures
occur very often. Typical examples are a distillation column (n trays) and systems of
equations arising in the discretization of an initial value problem. If we think of a
problem in which a disjunction exists in each of the repeated structures, the combinatorial
complexity of the consistency analysis would be unmanageable. However, intuition

suggests that, in these kinds of problems, the degrees of freedom analysis should not be
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affected by the number of repeated structures and, therefore, the analysis could be
simplified. Based on the work of Allen and Westerberg (1976), we show here that
sometimes it is possible to take considerable advantage of the existence of repeated

structures in a conditional model, reducing the effort required by the consistency analysis.

3.5.2.1  An Approach for Conventional Models

In their work, Allen and Westerberg used a representative incidence matrix to perform a
systematic analysis of a conventional model containing repeated structures. They provide
a criterion to decide whether or not, after a consistent output assignment has been found
for the representative matrix, the result obtained for the representative matrix can be
expanded to a system containing any number of the repeated structures. Consider the
simple case illustrated in Figure 3-6. In this example, the output assignment of a system
containing two equations has been performed, resulting in the selection of a structurally
consistent set of 3 independent variables (marked as | in Figure 3-6). The problem
consists in finding if we can expand this partitioning to a system contaibilogks of the

same two equations. First, it is necessary to introduce the definitionrobthdoof the
expansion. Modulo is the number of positions that each new block added to the structure
is going to move from the left-most entry (or right-most entry if the expansion is upward)
of the previous block. In other words, modulo is the number of columns that each new
block is going to be displaced with respect to the previous one. In the case of Figure 3-6,

the modulo of the expansion is equal to 3.

Once the modulo of the expansion is known, Allen and Westerberg propose to enumerate
the columns of the representative block successively @rtmmodulo-1until reaching the

last column of the block. Then, the necessary condition for expanding the result to
blocks is that no two columns representing a dependent variable in the representative
matrix can have the same column number. In Figure 3-6, this criterion is satisfied since
the two columns representing the dependent variables has been enumeratedOas

and, therefore, the expansion can take place. Practically speaking, what this condition
means is that we cannot allow, after an expansiorbtocks, the overlapping of any two
columns chosen as dependent variables. If we allow that, we would have a variable

assigned to more than one equation, a situation that violates the structural consistency
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requirement explained in 3.2 (definition of the output assignment).

Figure 3-6 Expanding the result of a representative matrix.

I) Output assignment in &
representative maxi " " "
n n [m]
Il) Expanding the result
to n blocks
0 1 2 0 1
m] = [ [
n n [m]
m] = [ n
MODULO=3 |, o« ]
m] = [ [
n n [m]

3.5.2.2  Equation-Based Modeling and the Modulo of Repeated Structures

In the context of an equation-based modeling, the set of overlapping variables and,
therefore, the modulo of an array of repeated structures, are given by the connections
among the repeated structures. In most of the existing equation-based environments
currently available, there exist language constructs which allow the representation of
connections defining the flow of information. So, for instancel$h#perator oyPROMS
(Barton, 1992) and therRE_THE_SAMEOperator oASCEND (Piela, 1989) serve this

purpose.

3.5.2.3  Repeated Structures Containing Conditional Equations
As stated earlier, the combinatorial complexity of the consistency analysis of systems

containing repeated structures with conditional equations would be practically
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unmanageable.

What we propose here is to perform the consistency analysis of this type of conditional
model by using a representative structure of the problem. The difference with respect to
the work presented by Allen and Westerberg is that, in our problem, the basic structure to
be considered in the analysis contains conditional equations, and, therefore, a consistency
analysis over all the possible configurations of the representative structure has to be
performed. In other words, we combine the consistency analysis developed for
conditional models with the idea of analyzing only a representative block of an array of
repeated structures. Example 3-4 and Example 3-5 illustrate the application of this

approach.

3.5.24
Example 3-4 is used to illustrate an extreme case, in which there may be sets of nested

lllustrative Examples

repeated structures containing conditional equations. We use indioelsn to indicate

the number of repeated structures in each of the sets.

ExamMPLE 3-4  Taking advantage of repeated structures.
Xy + XZL1 =4
x21‘1—2 Ky = 7
X2i.1_X3i.1 + X4i,1 = 3 X2i,1 + X3\ _X7\,l 5|,1 = 6
Xs,, +x5|'J +X6.,, +x8|‘J = . Xa,, + X5 —Xg +X7.,, =8 oy + Xg —Xe = . X5 —X3 +X6m =4
XGH + X7i,j _X3i,,- —x5‘1j = X6i,j + X4H_ _X3i,j =2 X4i,1 _X5i,; _X7i,j = XSH_ + X4i,1 _X7i,; =0
0jO{1...m} - 0j0{1...m}
X3i,j’ X6i,j,1 ATSD X3i,j’ XGLH ATSD
X %7 ATS@]]D{Z...m} Xq X7 ATS@]]D{Z...m}
| X5i,j’ X8i,j—1 ATS[ | X5i,j’ XSi,,-_l ATS[ |
Oio{1...n}
X2\,1’ X6i—1,m ATSD
X3\,1’ X7i—1,m ATS@]I O { 2... n}
X4‘,1’ XSi—l,m ATS[

X6, = X7, n " %8, =2

n, m

Xe —X =4
6n,m 7n,m
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For simplicity in the representation, the abbreviatios (ARE_THE_SAME following the
ASCEND modeling language representation) is used to express the connectivity among the
variables incident in the repeated structures. The number of alternatives in problems of
this nature grows very quickly with the number of repeated structures. So, for instance, if

m=5 andn=5, the number of alternatives is:
5
number of alternatives #25) = 33554432

In order to structurally analyze this conditional model, we use a representative structure of
the problem. For this case, this representative structure is given for a system in which
n=m=1. The resulting system of equations is given in (3.7), where the subindaxed

have been omitted for simplicity.

X+ X, = 4
Xo—2[K = 7
Xo—Xg+ X, =3 X+ Xg—X7+ X5 = 6
- =g/ O - - 3.7
Xq+ X+ Xg+Xg =9 0 Xq+ Xs—Xg+ X, = 8 X3+ Xg—Xg =7 y Xg—Xg+ Xg = 4 (3.7)
Xg+ X7—Xg—Xg =1 Xg+Xg—Xg=2 Xg=Xs—=X; =0 [Xg+X4—X%;,=0

Xg—X7—Xg = 2

Xg—X7 = 4

The representative structure (3.7) contains 4 alternatives, each of them with one degree of
freedom. By applying the structural consistency algorithm to the simplified problem, we

obtain that the eligible set of the representative conditional model is:
eligible set ={ X3, X, X5, Xg, X7, Xg}

The task is to find a set of independent variables (only one variable in this example)
which, for each alternative, allows us an output assignment satisfying Allen’s necessary
conditions for expanding the result of a representative incidence matrix. For the
representative conditional structure of Example 3-4, assiggiag independent variable

allows the output assignments presented in Figure 3-7 for each of the alternatives.
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Figure 3-7 Alternative configurations of the representative structure.

Alternative 1 Alternative 2

(m] = ] =
Ili‘ .Iil
Emm = m =
m]m = n @] = e
(] LECIE am [m]
E m [m] EEm
I|E| .|E|
Alternative 3 Alternative 4
m] = m] =
I|E| .|E|
Em = ] Em = n
u m] = u n [m]
m] = ] (m] (I
m m [m] " um]
n [m] n [u]

All 4 output assignments of Figure 3-7 satisfy Allen’s necessary conditions. Figure 3-8
illustrates the case of the nested blocks of alternative 1. The modulo of each block was

determined by the connectivity among the repeated structures described in the formulation
of Example 3-4.

Figure 3-8 Allen’s necessary conditions for alternative 1 of the
representative matrix.

X3 X4 X5 Xg X7 Xg X2 X3 X4 X5 Xg X7 Xg
012012 012 3012
LI |
o] = n ore u
[ LHOE . ..
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We could show that, if we expand the result of the representative incidence matrix to any
number of repeated structures and in any combination, the resulting systems of equations
are still structurally consistent. Figure 3-9 shows an example of this expansion. Note that

each variablex5i j Is selected as independent variable (that is, it is not assigned).

Figure 3-9 Expanding the result of a representative matrix. Expansion of
alternative 1 withn=m=2.

m] =
u [m]
mmm
O] n
[ LHOE
O n
[ O
Emm
O n
n LECIR
O u
[ LCIE
= m [m
" a]

The final example of this chapter, Example 3-5, corresponds to a chromatographic
separation performed in CCD (Craig Countercurrent Distribution) discussed by King
(1980). This example is illustrated in Figure 3-10. At discrete intervals, transfers of the
upper phase take place from one vessel to the next. Among these transfer steps, the upper
phase then present in each vessel is equilibrated with the lower phase in that vessel. A
small amount of feed mixture is initially present in the first vessel and then carried along
from vessel to vessel in the distribution process. For a compArEsihg separated, the

formulation is presented in Example 3-5.
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Figure 3-10 Craig countercurrent distribution.

T transfer steps in N vessels:

Upper Phase«
(transferred) H > H > H_’ gé_’H_’gg_’H
Lower phase

(stationary)

vessel
number 0 1 2 P N

ExamMPLE 3-5 A chromatographic separation.

MAo.o = MAF
My, =0 OpO1...N
_ ok _
Auy A .05
1] DVIA t
M M Ka = Kp 20
Apt t! p (t-p) Aot Pt OMa. O
—Bl= —— R Q1-f, ) —=2t=0|| g F
M ' t—p)! p.t Pt Ol m
Ar Ar M, =f +(1-f, )M
Apt Apt Ap—lt 1 Apl Ap t-1
t=p t<p ’ ’ ' '
Ma, > Ma
] MAMS MAC ] :

A WL \TAT
A =
i TR, TOVG/V))
OpO01.N,0t01..T

In Example 3-5V andV, are the volumes of the upper and lower phase correspondingly,
f A is the fraction of A present in the upper phase in the vpsdtdr the transfer step

MAp,t is the total amount d& in the vessel p after the transfer sll;enﬁApt is the

equilibration ratio ofA in the vessel p after the transfer steiK A, Can be a constant, but

it also can be a function of the total amon,gp’t M, is the initial amouhtimthe
separation process. Finallg,,  aKd’ are given constants depending on the
componenA. MAF and MAC are always assumed as given. A consistency analysis of a

representative structure shows that, by defining ¥plgndV, as the set of independent
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variables, the system is structurally consistent for any number of vpss®lstransfer

stepd.

3.6 SIMMARY

In this chapter, we have reviewed the concepts involved in structural analysis. We then
derived an extension to Zaher’s consistency analysis of conditional models. This
extension allows a consistency analysis to be applied to conditional models in which the
number of variables and equations for each of the alternatives may not be the same. In
general, we think that, in order to ensure the structural consistency of a conditional model,
the combinatorial consistency analysis must be performed. However, we have shown that,
by taking advantage of the structure of the problem, it is sometimes possible to reduce the
computational effort required by the consistency analysis. In addition, we used simple
examples to illustrate the relevant definitions in structural analysis, to demonstrate the
scope of application of the extension to Zaher’s consistency analysis, and to show how we
can take advantage of the existence of common incidence patterns and repeated structures

in the structural analysis of conditional models.
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cuarterd A BOUNDARY
CROSSING
ALGORITHM

In this chapter, we investigate the solving of conditional models using a boundary crossing
algorithm proposed by Zaher (1995). This algorithm involves the execution of several
well differentiated activities including logical analysis, continuous reconfiguration of the
equations constituting the problem, calculation of Newton-like steps, and the calculation
of gradient steps. We describe the practical implementation of this boundary crossing
algorithm as a conditional modeling solution tool. In such an implementation, we have
integrated the entities created and/or used to perform each of the activities in an object-
oriented solving engine: the conditional modeling solver CMSIv. Also, we describe and
solve several examples of conditional models in chemical engineering. Finally we discuss

the scope and limitations of the algorithm.
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4.1 BACKGROUND

While dealing with conventional models, one generally applies iterative nonlinear
techniques in order to solve the equations simultaneously. Newton-like numerical
techniques are the methods most commonly applied to find the solution of conventional
models. Such methods require both continuity and differentiability of the system of

equations over the entire feasible region in order to guarantee convergence.

In conditional models, however, the equations within each alternative set are confined to a
subset of the search space, which results in the dissection of the feasible region into
subregions (Zaher, 1995). Because of the loss of continuous functionality between the
surfaces of neighboring subregions in the search space, Newton-like iterative techniques
cannot be applied if the solution to the system requires a step from one subregion to

another.

The literature reports several approaches to the solution of conditional models. One can
formulate conditional models as mixed integer programming problems. Grossmann and
Turkay (1996) show that, in the case of linear equations, the solution of a conditional
model can be found by solving a MILP problem that is often solvable as a relaxed LP.
Also, based on the works of Raman and Grossmann (1993, 1994), Turkay and Grossmann
(1996) address the solution of disjunctive set of nonlinear programming problems. They
show that the use of logic can improve the efficiency and robustness of MINLP algorithms
in the solution of structural optimization problems. Zaher (1995) makes the following
observations about the MINLP approach (big-M formulation) to the solution of

conditional models:

1. One can expect that, during the solution of a MINLP, the algorithm will jump from one
subregion to another which is remote from it, leading to the poor initialization of some
of the nonlinear subproblems (See Figure 4-1).

2. The nonlinear subproblems insist on converging the equations of what might be an
incorrect subregion.

3. The MINLP remains as a rigorous, general purpose algorithm for problems where

discrete decision making cannot be avoided.
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Besides the mixed-integer formulation, some alternative approaches exist which, in
principle, can avoid the need of discrete decisions. This chapter focuses on the

implementation of one such approach, a boundary crossing algorithm (Zaher, 1991).

Figure 4-1 MINLP approach to the solution of conditional models. Note
the jump from the liquid to the vapor region, leading to poor initial
conditions from which to converge the vapor model equations.

T = Thubble
e
e
e
e
- vapor
- subregion
7
e
- T=T
P — dew
liquid K
subregion

liquid-vapor
QM/K/ subregion

4.2 THE BOUNDARY CROSSING ALGORITHM

Zaher (1991,1995) introduced a boundary crossing algorithm as an alternative approach to

the solution of conditional models.

42.1 THE FORMULATION

In conditional models, the equations within each alternative set are confined to a subset of
the feasible region. In the boundary crossing algorithm, a set of boundary expressions of
the formb(x) = 0 is used to associate each set of conditional equations to each of the
subregions. Each boundary expression partitions the feasible region into two neighboring

subregions, each of the subregions characterized by either the satisfaction or non-
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satisfaction of the expression. Thus, each subregion in the feasible region is identified by
a unique combination of truth values for all of the boundary expressions. In this way, the
partitioning of the feasible region into subregions is combinatorialis fthe number of
boundary expression (i.6;(x) =0 wher&l {1...1} ), the number of subregioHs is 2
For most of the conditional models many of the subregions are meaningless. These
subregions, therefore, should be removed from the feasible region and no conditional
equations need to be associated to them. One must emphasize that the boundary
expressions are not inequality constraints but rather are used to associate values of the
modeling variables with the appropriate set of equations. A way of identifying a specific
subregion is by using a setvheres [0 {1...1} . The sefcontains the indices of the
boundary expressions which must be satisfied in order for the solution to reside in that
specific subregion. Ris the set of all of the subsetbelonging to the feasible region

with whichm conditional equations are to be associated in the fofxh = 0 , then the

conditional model can be formulated in the following disjunctive representation:

b(x)=0,0i0Os
b(x)<0,0i O{1...1} —s (4.2)
r{x) =0

stUR

Note that, when the number of boundary expressions is zero, only one subregion is created
usings = [ and the previous formulation reduces to a conventional nonlinear system of

equations.

Since frequently a large number of equations are common to all of the subregions, it is

convenient to include those invariant equations outside the disjunction:

g =0

. b(x)=0,Ui0s
sOR b(x)<0,0i O0{1...1} —s
r{(x) =0

(4.2)
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where nowg(x) isng dimensional and(x) sy dimensional such thamg +m. = m

Note that the formulations given by (4.1) and (4.2) represent one disjunction over all of
the subregions in the feasible region of a conditional model. Such a global disjunctive
statement can be generated from the combination of all of the individual disjunctions in
the problem. However, it is not necessary to formulate the conditional model strictly in
the form given by (4.1) or (4.2) in order to solve it by using the boundary crossing
algorithm. As we describe in the following section, the boundary crossing algorithm
considers only the subregion in which the current point lies (if the current point lies inside
a subregion) or only the subregions in the neighborhood of a boundary (if the current point
lies at a boundary). In that way, a representation in which each individual disjunction is
explicitly formulated is also suitable. Such a representation is essentially the same as in
Equation (1.1). Note, however, that the domain of validity of the conditional equations
can be expressed in terms of a set of boundary expressions, as we do, instead of a set of

inequality constraints as given by Grossmann and Turkay (1996) in formulation (1.1).

4.2.2 THE SOLUTION ALGORITHM

The goal of a conditional model solver is to find a solution to the disjunctive system of
equations (4.2) (or to the system of equations (1.1)), a solution which consists in a vector
of variables satisfying the invariant set of equations and exactly one set of conditional
equations, providing that the truth values of the boundary expressions are consistent with

the set of variant equations constituting the solution.

The most popular iterative numerical techniques for the solution of a system of nonlinear
equations involve strategies designed to enforce descent of some objective function with
each iteration. This objective function is generally chosen as the square norm of the
residuals of the model equations, assuming the equations are all appropriately scaled.

Hence, for each subregisnthe objective functionp(x) is defined by:

fog = |99
[o(X) (4.3)

@09 = 3 0FL(9) OF (9
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In the boundary crossing algorithm, all of the points where the functionality is
nondifferentiable are characterized by boundary hyper-planes as given by the boundary
expression®(x) =0 . Therefore, the equations within each subregion form a continuous
and differentiable objective function. Hence, a Newton-based numerical technique may
find the solution when the initial point is internal to the correct subregion. On the other
hand, if one places the initial point inside an incorrect subregion, one could expect to

encounter a subregion boundary in a finite number of iterations.

According to the above discussion, the boundary crossing algorithm applies a Newton-like
step for all the points internal to a subregion, taking advantage of the superlinear
convergence feature of such a step. If during the iterative process a boundary is reached,
then a Newton-like step cannot be taken because of the nondifferentiability of the
objective function at that point. A boundary crossing based on gradient methods (using
linear order convergence methods) takes place instead. Once off the boundary, the
superlinear convergence steps resume possibly using a new set of equations. Figure 4-2

illustrates the boundary crossing algorithm.

Figure 4-2 The boundary crossing algorithm in a simple flash equilibrium
calculation.
T = Thubble
vapor
subregion
:
|
T=Tgew
liquid ,
subregion /
. liquid-vapor
O// subregion

—

NEWTON STEP

GRADIENT STEP
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4.2.2.1  Boundary Crossing
In the boundary crossing algorithm, because of the lack of differentiability at a boundary,
an analogue of the steepest descent vector is derived in order to advance the solution

progress into the correct subregion.

While solving continuous and differentiable models, the steepest descent direction at some
point with valuesa for the variables is in the opposite direction of the gradient of the
objective function at that point. Hence, a vectovith a direction of steepest descent

direction is a vector which solves the following problem:

min 0@ s

S.t. (JT <1

When a descent direction existsaat , the solution veldtais the same direction as
—Ow@(@) but it is of unit length. In other words, the steepest descent direction for a
differentiable function is the direction which yields a minimum in the directional

derivative.

For a conditional model, each subregion has a different value for the directional derivative
at a boundary. For that case, Zaher (1991) defines the directional derivative as the
maximum over all of the directional derivatives.BIfs the set of all of the subregions in

the neighborhood of a boundary, then the directional derivative for the problem at such

boundary is given by:

max  O() ™
S.t. OB

(4.5)

Hence, the minimum of this directional derivative constitutes the steepest descent

direction at the boundary:

Cinax 0.p(a)" =l
Ost. 0B O (4.6)

min

st. d <1
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The definition of directional derivative given by (4.5) aims for a descent direction with
respect to all of the subregions neighboring the boundary. By doing that, one will prevent

a cycling situation in which a loop of connected subregions are visited continually.

The problem given by (4.6) is recognized as a mini-max problem. Because of the

convexity of this problem, one can derive the dual problem to obtain:

(4.7)

wheree is a vector with all its elements equal to one ldnsla matrix whose columns are

the vectors of gradients of the subregions in the neighborhood of the current boundary.
That is, column of N is the vectord,@(a), Ui OB . Also, bottanda are vectors with
dimension equal to the number of subregions neighboring the current boundary. The
derivation of equation (4.7) from (4.6) has been described by Zaher (1991,1995) and it is
given in Appendix B. If the gradients of all of the neighboring subregions cannot be
confined to one side of the boundary hyper-plane, the result of (4.7) is a minimum of zero
and we terminate the algorithm. We terminate because no descent direction with respect to
all the neighboring subregions has been found. Otherwise, If the result of (4.7) is nonzero,
the linear combination of the elements of the vegt® used to generate the steepest

descent direction, along of which one should move away from the boundary.

4.2.2.2  Assumption of Continuity in the Boundary Crossing Algorithm

In the boundary crossing algorithm, one has to assume the continuity of the conditional
model. In conditional models, continuity is ensured as follows: if the solution to the
equations of an arbitrary subregion lies on a boundary hyperplane, then that solution must

satisfy the equations of all of the subregions neighboring that boundary.

The reason for this assumption of continuity is best described by analyzing Figure 4-3.
Figure 4-3 presents two cases in which continuity is not preserved in the conditional

model and discovers the potential difficulties of such cases. In case (a) there is no solution
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to the problem, and in case (b) the conditional model has two solutions. Note that, in both
cases in Figure 4-3, the vectors of gradients of the subregions neighboring the boundary
are of opposite direction at the po{rt10,y=7.5) If we solve problem (4.7) for such a

point at the boundary, the solution of (4.7) would be zero in both cases, and the boundary

Figure 4-3 Vectors of gradients are of opposite direction at a boundary.

(@)

NO SOLUTION

N y=0.75 x

2 SOLUTIONS
7.5 -2x

71



IMPLEMENTATION IN AN EQUATION BASED

crossing algorithm would terminate. Hence, for the case (b), the boundary crossing
algorithm would terminate without finding any of the two existing solutions to the
conditional model. A possible cure for this complication would be to search in each
neighboring subregion for a solution interior to any of them. Such an approach has been
considered throughout this research, but it is not yet a part of the implementation that we

describe in this Chapter.

4.3 IMPLEMENTATION IN AN EQUATION BASED
ENVIRONMENT

In this section, we present some of the details of the implementation of the boundary

crossing algorithm in an equation-based environment.

In Figure 4-4, we show a flowsheet of the main activities that a solver applying the
boundary crossing algorithm must perform. Given the initial guess for the model
variables, the algorithm starts by evaluating the logical boundary expressions in order to
determine whether that initial guess resides on a boundary hyper plane or it is internal to

any of the subregions:

» If the point resides on a boundary, a gradient step has to be calculated. In order to do
that, the equations and variables of all of the subregions neighboring the boundary
have to be identified and differentiated. The problem given by (4.7) is then generated
and solved to obtain the steepest descent direction. If the result of (4.7) is a minimum
of zero, then the algorithm terminates concluding that no descent direction could be
found for the current point on the boundary. If the solution of (4.7) is nonzero, then
the gradient step is taken. After this step, it is necessary to verify if one or several
boundaries have been crossed. If so, the gradient step is reduced until the problem lies
exactly on the first boundary crossed, and a gradient step must be calculated for the
new boundary. If no boundary has been crossed, the algorithm proceeds to identify the
variables and equations of the current subregion and a nonlinear conventional
technique is the used to move towards the solution as explained below.

» If the point does not reside on a boundary, it is necessary to identify the current
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An

subregion. That means that we need to identify the equations and variables
constituting the problem. The algorithm assumes that the starting point corresponds to
a subregion for which the system of equations are defined, i.e. the initial subregion is
feasible. An iterative technique is then used in order to generate a Newton-like step
towards the solution. After each step, one needs to verify if some of the boundaries
have been crossed. If no boundary has been crossed, the numerical technique
continues the iterative process in the current subregion until the convergence criteria
is satisfied (termination of the algorithm) or until a boundary is encountered. When a
boundary has been crossed, the length of the Newton-like step has to be reduced until
the system resides exactly on the boundary, and then a boundary crossing has to be

performed by using a gradient step as explained above.

efficient implementation of this algorithm in an equation-based environment is hard

for the following reasons:

The implementation requires the incorporation of modeling tools which enables the
user of an equation-based environment to represent conditional models. Mainly, these
modeling tools have to be capable of representing alternative sets of equations and the
logical conditions given by the boundary expressions.

The boundary crossing algorithm involves the performance of several different tasks,
including logical analysis, periodic reconfiguration of the equations and variables of
the system (switching among alternative subregions), performance of a Newton-like
step (which requires the incorporation of a conventional nonlinear technique) and
performance of a gradient step (which requires the solution of an optimization
problem). Thus, in the implementation of this technique one has to provide the
numerical and algorithmic tools needed to execute each of the previous tasks and to

integrate them in a procedural solving engine.
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Figure 4-4

Flowsheet of the boundary crossing algorithm implementation.
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4.3.1 THE MODELING TOOLS
We use the modeling tools described in Chapter 2, which allow the representation of
conditional models in an equation based environment Those modeling capabilities meet

the representation needs of the boundary crossing algorithm:

1. Boundary expressions can be represented by combinio@pHmETION statement and
logical relations.

2. Alternative sets of model equations can be represented by usingthestatement.

4.3.2 THE SOLVING ENGINE

We implement our conditional modeling solver in a server-client, object-oriented
architecture. Figure 4-5 describes this implementation. This conditional modeling solver
(CMSiIv) is in charge of the reconfiguration of the appropriate sets of equations and
variables at each step of the algorithm, convergence tests, and the generation of the
optimization subproblem when the system resides on a boundary. In addition, the
conditional modeling solver is also in charge of the management of external entities. Such
external entities are in charge of executing some of the specific tasks that the algorithm

requires. Particularly, calls to external entities are done for the execution of:

1. The analysis of logical boundary expressions.
2. The calculation of a step inside a subregion (Newton-like superlinear iterative
technique).

3. The calculation of a gradient step by solving an optimization subproblem.

In the remainder of this section, we will describe in more detail each of these tasks as well
as the external entities we created or used to provide support to the conditional solver
CMSlIv.

4.3.2.1  Logical Analysis

The domain of validity of the alternative sets of equations in the boundary crossing
algorithm is given in terms of the truth value of a set of logical boundary expressions.
Hence, logical expressions have to be constantly evaluated during the iterative solution

scheme. In order to perform this task, we created the logical solver LRSIv.
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Figure 4-5 Object-oriented architecture of the boundary crossing
implementation.
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LRSIv has been incorporated into h&CEND modeling environment. Th&SCEND

modeling language allows a logical boundary expression to be represented in terms of a
combination of:

* Boolean variables.
» Boolean operators.

» The truth value of conditions expressed in term of real variables.
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Hence, the logical solver LRSIv has been implemented in such a way that it is able to
handle this type of flexibility. Figure 4-6 shows the flowsheet of the activities performed
by LRSIv. In this implementation, we assume that we can explicitly evaluate all the
boolean variables in some precedence order. In other words, LRSIv does not perform
logical inference. Therefore, while finding the value of a boolean variable, we require the
truth values of all the boolean variables and conditions on which each boolean variable
depends to have been previously given or previously evaluated. Also, we assume that we
can evaluate at any time the truth value of a condition expressed in terms of real variables.
Both of our assumptions are met when the boundary crossing algorithm is being used to
solve conditional models. LRSIv has also been attached as an external entity providing

support to CMSIv as explained above.

Figure 4-6 Implementation of the logical solver LRSIv.
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4.3.2.2  Configuration of the System of Equations

The conditional solver CMSIv is capable of determining whether the current point resides
on a boundary or is internal to any of the subregions. If the point is internal to any of the
subregions, CMSIv must identify the equations and variables constituting the problem in
that specific subregion. To perform this task, CMSIv uses the notion of an active equation
and an active variable. By active we mean “it is part of the problem currently being
solved.” Computationally speaking, to set a relation as active or inactive implies a simple
bit operation. A consistent mechanism to select the structure of the system inside a
specific subregion was described in Chapter 2. That mechanism is used in this

implementation.

4.3.2.3  Conventional Nonlinear Solver: Newton-like Step

When the values of the variables of the model correspond to a point internal to any of the
subregions, the boundary crossing algorithm requires the calculation of a Newton-like
step. CMSiIv calls an external solver to perform this task. We do not impose any
restrictions for the selection of this external solver. CMSIv can be able to interact with any
solver which is able to calculate a step based on derivative and function evaluations and on
the structural information of the system of equations. In the current implementation of
CMSlv, the Newton-like step is calculated by #scEND nonlinear solver QRSIv
(Westerberg, 1989). In order to enforce the descent of the objective function local to the
subregion, QRSIv uses the modification to the Levenberg-Marquardt algorithm given by
Westerberg and Director (1979).

4.3.2.4  Setting Up the Optimization Subproblem

When CMSIv determines that the current point of the system resides on a boundary, a
gradient step has to be calculated by solving an optimization subproblem. Setting up this
optimization subproblem requires the calculation of the gradients of the objective
functions of all of the subregions neighboring a boundary. It results in a system of
equations which is quite different from the system of equations of any of the subregions of
the original problem. That implies that the data structures required to provide the
information about this optimization subproblem have to be dynamically created and

destroyed. In addition, in order to minimize the number of function and gradient
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evaluations employed for setting up each optimization subproblem, it is necessary to
identify the invariant set of equations (if there is one) and to avoid multiple evaluations for
those equations. Figure 4-7 presents the flowsheet of the activities performed by CMSIv

while setting up an optimization subproblem at a boundary.

4.3.2.5  Solution of Optimization Subproblems: Gradient Step

After CMSIv has created the optimization subproblem at a boundary, this subproblem is
solved with a call to another external entity. This time, the external solver must be an
optimizer. Once again, there are no limitations in the implementation of CMSIv as to
which optimizer should be used. The current implementation interacts with the subroutine
coNoPT(Drud, 1985), which uses a reduced gradient approach to the solution of the
optimization problem. CMSIv provides the values of the derivatives of the linear
constraints (elements of the vectors of gradients of the objective functions), the residual of
these constraints, and the derivatives and values of the objective fugctiapPT (like

QRSIlv in the case of the calculation of the Newton-like step) is considered a black box

which provides the gradient step based on that information.

4.3.2.6  Termination

Termination of the algorithm can occur on a point internal to any subregion or on a point
residing on a boundary. It occurs on a boundary when the result of the optimization
subproblem is zero, or occurs internal to a subregion when the norm of the residuals of the
equations in that subregion is less than a specified tolerance. CMSiIv is in charge of the

convergence test after both the gradient step and the Newton-like step.

4.3.2.7  About CMSIv

Besides tasks like the reconfiguration of the system, termination tests, setting up of the
optimization problem, etc., CMSIv implements the logic of the algorithm and interacts
with the external solvers. It provides the information required by the external solvers
(LRSLv, QRSIv and CONOPT) and processes the results obtained from the calls to them.
The conditional modeling solver (CMSIv) and the logical analyzer (LRSIv) have been

attached to theSCEND environment.
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Figure 4-7

Setting up the optimization subproblem.

Determine number of
subregions S neighboring the
boundary(ies)

!

Based on the number of subregion
and in the number of variables in th
model, create the data structure reqy

by the optimization subproblem

S
e
ired

A 4
[Identify invariant equatior}s

Calculate the terms of the

corresponding to the invarian
equations

A 4
Loop
J=1,S

A
Identify variant equatiory
for subregion J

7]

Calculate the terms of the
gradient of the objective functio
J corresponding to the variant
equations

=]

Add the invariant and variant

terms to obtain the vector pf
gradients of the objective
function for subregion J

A 4

5=1+}

A 4
Loop

gradient of the objective functions

The vectors of gradients provide
@ the linear coefficients for the
constraints in the optimization

subproblem

80



ILLUSTRATIVE EXAMPLES

4.4 ILLUSTRATIVE EXAMPLES

We have modeled and solved several examples of conditional models found in the
literature by using thesSCEND modeling language and our implementation of the
boundary crossing algorithm. Here we give a detailed description of each of these
examples. Also, in Appendix C we show a representative section addisaiD model

for each of the examples.

ExXAMPLE 4-1  Fluid transition (Zaher, 1995).

This example describes the flow of a compressible gas in an adiabatic frictional circular
pipe of constant diameter. Nonsmooth functionality occurs due to the possible transition
between sonic-subsonic flow at the outlet of the pipe. The alternatives for the solution of

the problem are represented by:
Py—P;<M;-1 0 Py—P;i=2M -1
M-1=0 Py—P;=0

in which one of the terms corresponds to sonic flow (Match nuMpelr) and the other

to subsonic flowRy=Py). The equations describing the thermodynamics are omitted for
simplicity and can be found in Zaher (1995). This example corresponds to a simplest case
of a conditional model, which involves only one boundary expression (and, therefore, only
21=2 subregions) and contains only one conditional equation in each alternative set of

variant equations.

EXAMPLE 4-2  Phase equilibria (Zaher, 1995).

An isothermal flash is applied to a ternary system involving benzene, ethanol and water.
According to the phase diagram of this mixture and, depending on the values of pressure
and temperature, three phases can be expected to exist simultaneously, an aqueous liquid
phase, an organic liquid phase, and a vapor phase. The existence or nonexistence of each
phase can be represented as a conditional statement. For instance, to represent the

existence of the aqueous phase, the following statement applies:
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as obtained by Michelsen (1982) and Zaher(1995). For a phggerépresents the
fraction of the phase anyl is a vector representing the compositions. Since there are
three possible phases, we require three disjunctions to represent the behavior, which

means that our search space contafr$ subregions.

ExaAmMPLE 4-3 Heat exchanger (Zaher, 1995).

A very detailed explanation of this example can be found in Zaher (1995). It represents a
case in which a conditional model contains differential equations that have to be
integrated. The approach suggested is to discretize the differential equations and treat the
problem as a conditional model with only algebraic equations. To accomplish this, Zaher
(1995) introduced a “relay” method: the point in the domain of integration where

transition occurs is continuously passed along, as a baton in a relay race, from one element
to another by successive contractions and expansions of the individual elements.
Switching stations at which the analogous baton transfer occurs must first be positioned.
This example is introduced in Figure 4-8. Three finite elements are chosen with one
switching station. To outline the three elements, four positions referenced by the indices
{0...3} are used. The domain of integration is transformed to the dimensionless variable
which varies from zero to one. The difficulty with this model is that, in addition to solving

for the temperature profile, the dimension of the finite elements are to be solved for as

well.

Zaher (1995) shows that the three cases shown in Figure 4-8 can be represented as a

conditional model including the following disjunctive statement:
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where@ represents the fraction of the hot stream which is condensedsadsector

representing the composition of the condensation droplets. As described above, the four

Figure 4-8 Alternative heat exchanger temperature profiles.
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positions are referenced by the indices {0...3}. There are 2 boundary expressions in the
model which would involve 4 subregions. However, one of the subregions is infeasible

and can be eliminated from the search space.

ExAMPLE 4-4  Pipeline network (Bullard and Biegler, 1992).

Consider the pipe network shown in Figure 4-9 solved previously by Bullard and Biegler

(1992). This problem can be described by the system of equations:
ZQU + ZjS = w, Onodeli
] ]

Hy = K Gsign(Q)) EQijZ Darc ij without valve

2 2
KRy =0 oK Ry = Hj

Hy <0 H; 20

Oarc ij with valve

H. =P, -P. Harc ij

Qij >0 Oarc ij with valve

The first equation is a flow balance around each node, the second is the Hazen-Williams
relation for pipes with no valve, and the third is the relation between pressure drop and
flowrate. Notice that an equivalent disjunctive representation for the Hazen-Williams

relations can be given by:

2 2
Hjj = K Q| g|Hj = KRy
Q<0 Q20

Oarc ij without valve

All pipes are 100 ft long, 6 inches in diameter and with a rougtave$s01 in, and the

fluid is water:p = 62.4 lbom/ft3,u = 1 cP. Pressures and inflow/outflow rates

specifications are given in Table 4-1. Rates not specified are equal to zero (except the one
in node 17 which is an unknown). Pressures not specified are unknowns in the problem.

The starting point and converged flowrates are given in Table 4-2.
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Figure 4-9 Pipeline network with five check valves.

Table 4-1 Pressures and inflow/outflow rates for Example 4-4.

Node No. Pressure P (psig Inflow rate w (gpm)
1 897.6
7 1570.9
11 -897.6
17 0
20 -448.8
22 673.2

Since the problem contains 38 pipes, and, therefore, 38 boundaries are defined, the search
space is constituted by®2.748779x18! potential subregions. Hence, this example
represents a case in which the combinatorial nature of the problem could have a severe

effect in the performance of the boundary crossing algorithm.
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Table 4-2 Starting point and converged flowrates for Example 4-4.

Estimated flow

Converged flow

Pipe No. Q(O) (gpm) Q* (gpm)
1 -48.5 -223.345
2 -640.7 -894.840
3 393.2 520.818
4 538.9 883.254
5 -32.3 -435.573
6 490.2 180.240
7 649.2 533.254
8 904.7 877.652
9 112.2 315.876
10 2325 602.421
11 402.3 541.160
12 -420.4 -229.091
13 687.3 585.972
14 621.7 701.302
15 -719.2 0.0
16 52.7 -273.643
17 1199.0 -1303.723
18 305.4 226.105
19 582.8 943.137
20 -247.5 -374.022
21 -145.7 -362.435
22 -684.6 -954.723
23 293.6 504.804
24 -261.3 -255.153
25 -229.0 180.420
26 -395.1 407.123
27 -254.8 -344.398
28 -268.9 -216.346
29 -890.6 -917.648
30 120.3 286.546
31 -8.1 132.925
32 -344.7 0.0
33 473.1 356.88
34 -206.2 0.0
35 -275.0 -443.768
36 351.5 44,552
37 -481.2 -443.768
38 353.9 317.815
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ExamMPLE 4-5 Simple L-V flash calculation (King, 1980).

This situation corresponds to a simple equilibrium calculation as given by King (1980).

Basically, the problem consists of finding a solution to the well known Rachford-Rice

equation:
_ Z _ K; [
X T K -Dav/P+1 Y= K -nav/p+1
z UK;-1)

2I72X 0 = R = 2K D/ +1

In the presence of two phases in equilibrium, the iterative calculation involves applying a

convergence procedure until a value/dF is found such that(V/F) = 0. However, it

may well happen that the specifications of the problem do not correspond to a system with
two phases present. For the case of a Liquid-Vapor equilibrium, King proposes the
following criteria to differentiate among the different cag$@&/F) will be positive at

V/F=0 and negative &V/F)=1. Therefore, if(V/F) is negative aV¥/F=0, the system is
subcooled liquid. If(V/F) is positive avV/F=1, the system is superheated vapor. This

behavior can be represented in term of the following disjunctive statement:

z (K;-1)
IZ(Ki—l) OQV/F)+1

V/F=0g|V/F=R 4|V/F=1
R<O0 O0<R<1 R=>1

For testing the proposed formulation, we took a mixture 20% of butane, 50% of pentane

= R-V/F

and 20 % of hexane, at 10 atm, and performed simulations for a broad range of
temperatures (150 K to 890 K).
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EXAMPLE 4-6  Linear mass balance (Grossmann and Turkay, 1996).

This example, illustrated in Figure 4-10, represents a problem in which each of the six
processing units interconnected in a flowsheet contains three operating regions, each
region with a different mass balance coefficient in terms of the main product flowrate. The

mass balance coefficients and the bounds for each of the flowrates are shown in Table 4-3.

Because of the three operating regions, the disjunctive linear mass balance for each of the
units is represented by a disjunction containing 3 disjunctive terms. For instance, for the

case of unit operation 1, we have:

Fe=110F, | |Fg=115F, |Fg=1.2[F,
Fy = 0.05(F,| O|F;,=0.1(F,| O|F,,=0.2[F,
0<F,<50 50<F,<80| |80<F,<150

The search space is constituted by 729 subregions. Also, the set of invariant equations as
well as all of the sets of conditional equations contain only linear equations. Therefore,
the equations in each subregion are all linear. The starting point used in this work and the

converged values of the flowrates are shown in Table 4-4.

Figure 4-10 Processing units for Example 4-6.
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Table 4-3 Material balance equations for units in Example 4-6.

Unit Main Interval Lower Upper Mass Balance
Product Bound Bound Coefficient
1 F 1 0 50 Fe: 1.10 kg 0.05
2 S0 80 1.15 0.10
3 80 150 1.20 0.20
2 Fs 1 0 50 Fy 050 F: 0.80
2 50 100 0.47 0.75
3 100 150 0.45 0.70
3 Fy 1 0 50 Fg: 1.70 k& 0.67
2 S0 110 1.80 0.70
3 110 180 1.87 0.75
4 Fi3 1 0 50 Fs: 1.18 Ry 0.23
2 50 90 1.15 0.25
3 90 140 1.10 0.30
5 Fia 1 0 40 Fiy 0.37 kg 1.20
2 40 80 0.35 1.25
3 80 130 0.30 1.30
6 Fs 1 0 20 Fis 1.15
2 20 45 1.10
3 45 75 1.02

4.5 NUMERICAL RESULTS

In all of the examples, the initial values of the variables correspond to an incorrect
subregion. We do that in order to test the ability of the algorithm for crossing boundaries
until finding the correct subregion and iterating until obtaining the solution to the problem.
Examples 1 through 3 were introduced by Zaher(1995). In that work, Zaher solves
example 1 and 3 as optimization problems in order to test the performance of his approach

to sequential quadratic programming. In this work we solve those problems as simulation
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problems by eliminating the objective function and defining fixed values for the degrees of

freedom.

Table 4-4 Starting point and converged flowrates for Example 4-6.

Stream Starting Point Converged Value
(Ibmole/hr) (Iomole/hr)
Fy 47.50 47.50
F2 21.25 19.85
F3 69.00 57.75
Fa 25.00 23.35
Fs 50.00 36.52
Fe 37.50 34.94
F7 34.00 31.76
Fg 52.50 39.70
Fo 16.75 15.65
Fio 1.700 1.58
Fi1 16.80 14.06
Fi2 15.00 12.55
Fi3 60.00 50.22
Fi4 48.00 40.17

The number of iterations that we used to obtained the solution of each of these examples is

shown in Table 4-5. Some observations are:

» The fixed parameters and constants for examples 1 through 3 are the same as those
given by Zaher (1995).

* For the fluid transition problem, the number of iterations reported corresponds to a
diameter of 5 cm.

» For the example of the heat exchanger, the number of iterations reported is for an area
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equal to 379.12 #tand flowrate of cooling water equal to 1104.31 Ibmole/hr.
» For the simple flash calculation, the number of iterations reported is for a temperature

of 200 K (liquid phase region).

As expected, the combinatorial complexity of the example of the pipeline network
(2.748779x18! possible subregions) affects the effectiveness of the boundary crossing
algorithm. The solution path performed 44 boundary analyses. Thus with 106 iterations,
the average number of Newton steps per region entered is only of the order of two. For the
rest of the examples, the algorithm performance is very encouraging. For the linear mass
balance example, the number of possible subregions is 729, but the fact that the equations
are linear facilitates the convergence of the algorithm. An advantage of the boundary
crossing implementation is the problem size. Note the number of equations inside each
subregion is always the minimum, and it is not affected by the combinatorial nature of the

problem.

Table 4-5 Solving conditional models by using the boundary crossing algorithm.

Number of Number
Number of Number of
Example Reference ; .y . boundary of
Equations | Disjunctions .
analyses Iterations
Flow Transition Zaher (1995) 5 1 1 10
(sonic-subsonic)
Phase Equilibria Zaher (1995) 12 3 5 17
Heat exchanger Zaher (1995) 48 2 1 8
Pipeline network Bullard and 98 38 44 106
Biegler (1992)
Simple L-V flash King (1980) 15 1 1 12
Linear mass balance Grossmannand 13 6 2 8
Turkay (1996)

4.6

CONCLUSIONS

Following a brief description of the boundary crossing algorithm, we have described the
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details of its practical implementation. The conditional modeling solver CMSlv is based
on an server-client, object-oriented architecture. CMSIv executes a number of activities

including:

» Configuration of the systems of variables and equations consistent with the restrictions
imposed by the boundary expression.

» Creation of optimization subproblems at boundaries.

* Managing the logic of the algorithm

* Performing termination tests.

* Managing the interaction with external solvers; LRSIv for logical analysis, QRSIv for
iterating within a subregion ar@bNOPTfor the solution of the optimization

subproblems at boundaries.

The CMSIv and LRSIv solvers have been attached tagbhbe&ND environment, whose
modeling language provides the tools required for the representation of conditional
models in an equation oriented manner. Finally, the modeling and solution of a number of
examples show the scope of application of the algorithm and reveal its encouraging

performance.
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CHAPTERS A COMPLEMENTARITY
FORMULATION

In this chapter, we investigate the solving of conditional models using a complementarity
formulation for representing algebraic systems of disjunctive equations. This formulation
not only establishes the complementarity condition among equations belonging to
different disjunctive terms but also enforces simultaneous satisfaction of all of the
equations appearing within the same disjunctive term. This approach represents an
alternative to MINLP formulations, avoiding discrete decisions; it also avoids the need for
special procedural nonlinear techniques as required by the boundary crossing algorithm.
We identify the advantages and disadvantages associated with the proposed formulation.
The proposed complementarity representation performed reliably on several example

problems where the number of equations in each disjunctive term is small.
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51 COMPLEMENTARITY APPROACH

Over the last thirty years, the class of problems known as complementarity problems has
become increasingly popular as a tool for addressing practical problems arising in
mathematical programming, economics, engineering, and the sciences (Billups, 1995;
Ferris and Pang, 1995). Several works have documented the basic theory, algorithms and
applications of complementarity problems. Dirske and Ferris (1995b) give examples of
how to formulate many popular problems as mixed complementarity problems (MCP).
Billups (1995) describes the standard forms for the different classes of complementarity
problems and proposes strategies which enhance the robustness of Newton-based
methods for solving these problems. More (1994) formulates the complementarity
problem as a nonlinear least square problem and gives convergence properties for his
approach. In this chapter, we describe an extension to the standard complementarity

formulation (Billups, 1995) for the representation of conditional models.

5.2 PROBLEM FORMULATION

In general, the nonlinear complementarity problem is expressed as the following set of

equations and inequality constraints:

XJBK@::O
X;20 rj(>_<) >0 (5.1)
Ojod{1l...n}

wheren is the dimensionality of the vectarsandr(x). There is certain lack of symmetry
in formulation (5.1). One of the functions is quite arbitrary while the other is the vector of

variables. Many commonly occurring problems have a more general form:

r () () =0
rlj(>_<) >0 rzj(>_<) >0 (5.2)
OjoO{1...n}

which is called the vertical nonlinear complementarity problem (Ferris and Pang, 1995).

It is possible, of course, to have more than two vectors of functions in the above equations:
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r1j(>_<) D’zj()_()...rkj()_() =0

) : (5.3)
rij()_()ZO Oi0O[1...k],0jO{1...n}

For the case of single conditional equatiom a disjunctive statement, there exists an

equivalent representation by using a standard complementarity formulation as follows:

(5.4)

ri+gi(x)<0 - r+g(¥20 rgx =0
=0 g(x) =0 =0 9.(x) <0

A typical example of this equivalence can be found while representing the
complementarity equations arising from the Karush-Kuhn-Tucker conditions of an
optimization problem. There are also cases in which physicochemical transitions are
complementary in nature and can be represented by such a formulation. For instance, the
adiabatic compressible flow described by Zaher (1995) can be represented by an
equivalent complementarity representation:

[Pd—Pf < Mf—1] . [Pd—Pf >M, —1] _ (M=) HPy=Py) = 0

(5.5)
M;-1=0 Py—P;=0 M;<1 P;2Py

On the other hand, if the disjunctive statementrhase than one equation in each
disjunctive termas the example of the heat exchanger given also by Zaher (1995), the

standard complementarity formulation is not equivalent to the disjunctive representation:

ichi2+(pl<1 igcxizﬂplzl_ cplEHigcxiz_lgzo

o=0 |" .Ecxifl 4 (n,-0.5)(n;-0.5) = 0 (5.6)

n,=0.5 a @20 g‘:x-zsl
2 | Np=05 i !

Notice that in the disjunctive representation all the equations belonging to the same
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disjunctive term have to be satisfied simultaneously, a restriction which is not represented
by the standard complementarity formulation. In the following section, we propose the
representation of disjunctive sets of algebraic equations as a complementarity problem.
The formulation described in this chapter not only establishes the complementarity
condition among alternative sets of equations, but also enforces simultaneous satisfaction
of all the equations in the solution set. It is important to mention that we are aware of
many disadvantages associated with this representation, which we consider at the end of
this section. Our motivation is that a complementarity formulation only requires the
solution of one square system of nonlinear equations, avoiding all of the complications
encountered in procedural techniques such as the boundary crossing algorithm and the
discrete decision making of a MINLP solution. Before going further in the description of

our approach, in Figure 5-1 we explain the terminology employed in this chapter.

Figure 5-1 Description of our terminology.

Disjunction or

Residual or Slack
Variable

Disjunctive Statement

Disjunctive Disjunctive Element or
Term Conditional Equation

Complementarity Term or
Complementarity Product

> Complementarity
Equation
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52.1 GOMPLEMENTARITY REPRESENTATION OF A CONDITIONAL
M ODEL

As in most of the complementarity approaches reported in the literature, in this work we
assume the nondegeneracy of the solution to the complementarity problem. With this
assumption we leave out all those cases in which the equations belonging to different
terms of the same disjunctive statement are simultaneously satisfied. In addition, we will
assume that the range of the conditional equations is positive; that is, we assume that we
can rearrange the system of equations so that the residuals of the conditional equations

belonging to a non-solution disjunctive term will always be positive.

The formulation presented here is an extension of that presented by More(1994), who

reformulates the nonlinear complementarity problem (5.1) as:

rx) = p
Plx=0 (5.7)
x=0 p=0

wherep is a vector of residual variables aaas the diagonal matrix diag.

For the purpose of illustration, consider the example of the heat exchanger given by (5.6).

Defining positive residual{sij for each of the conditional equations:

¢ = Py, 1_'§cXi2 = Py,

i (5.8)
n,—0.5= py, 0.5-n, = Py,
we then represent the disjunctive statement in terms of these residuals:
Py, =0 P, =0
P, =0 [ U] Py, =0 (5.9)

Py, Pp,20 Py, P, 20

98



PROBLEM FORMULATION

Notice that we have arranged the conditional equations in (5.8) in such a way that all the
variablespij are always positive. In order to do that, we used the physical insight given by
the nature of the problem. In terms of the residual variqb}lles , the standard

complementarity formulation is given by:

pll Ep21 =0
plz |:p22 =0 (510)
p,20  i0[1.2]  jO[L.2]

The disjunctive statement in (5.9) requires either tpqtlh pqu orpiyl)th pgnd
simultaneously to be zero. That is not a restriction included in the standard
complementarity formulation (5.10). We propose the following formulation to represent

the disjunctive statement instead:

P, Epzl"' Py, Ep22 =0
Py, P, + Py, (P, = 0 (5.11)
p,20  i0[1..2] jo[1...2]

Since the variablepij are all positive, the set of equations in (5.11) not only contains the
complementarity condition given by the standard representation (5.10) but also enforces
the simultaneous satisfaction of all the equations defined in the same terms of the
disjunction. Also, it is important to realize that the inequality constraints in (5.11) are
only bounds in the residual variables, and we can use them to guide our search for a

solution to the resulting square system of equations:

» The original disjunctive statement in (5.6) provides 2 equations in either of its cases.
* The complementarity formulation in (5.8) and (5.11) provides 6 equations but

introduces 4 new variables, also a net of 2 equations.

For cases in which the domain of validity is given by inequality constraints, we
reformulate the problem by adding two slacks to each inequality and express the

complementarity condition between these slack variables. Consider for example the
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laminar-turbulent flow transition given by:

Re=64/f| ;|Re= (0.206307 f)* (5.12)
Re< 2100 Re> 2100

If we define residuals for the equalities and slack variables for the inequalities:
Re-64/f = p,  Re-(0.206307 f)* = p,.
Re = 2100+ p; - p,,

(5.13)

then the disjunctive statement in terms of residuals and slacks and, therefore, the
complementarity equations, are exactly the same as those given by (5.11) for the previous
example. Notice that the inequalities become an active part of the system of equations.
Also, one of the complementarity equations contains a complementarity product between

the two slacks in the inequality, a requirement to avoid multiple solutions.

The result of applying our formulation is a square system of nonlinear equations

(including complementarity equations) subject to the positiveness of the vavrhﬂ_bles
The proposed complementarity representation has the following properties:

1. The number of complementarity equations is equal to the number of equations in each
term of the disjunction to maintain the same number of degrees of freedom as in the
original problem.

2. Each residual variable is multiplied by every other residual variable in all of the other
terms of the disjunction. Thus, we will ensure the simultaneous satisfaction of all the
equations in at least one of the disjunctive terms and avoid spurious solutions to the
problem.

3. Inthe example, there are several ways in which we could have accommodated the four
complementarity terms in the two complementarity equations. The way in which we

have distributed the bilinear terms over the complementarity equations is intended to

decrease the possibility of having numerical singularities in the Jacobian of the system

while using an iterative solver based on Newton and quasi-Newton methods. We must
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avoid having two residual variables from the same disjunctive term being multiplied in
two complementarity equations by the same set of residual variables from another
disjunctive term. Examine Figure 5-2. We show a set of poorly formulated
complementarity equations and the rows of the Jacobian corresponding to those
equations. Note that the equations in Figure 5-2 contain the same four

complementarity terms as the formulation given by (5.11), but they are grouped

differently. In the case presented, if the solution to the problq:ngl1 is Py, =0 ,

rows 1 and 2 of the Jacobian become numerically dependent as the Newton method

approaches the solution. It)21 +p, 00, row2 is a multiple of row 1 by the factor

P17 Py, - This situation does not occur for the complementarity equations we propose

in (5.11).

Figure 5-2 Numerical singularities in complementarity equations.

Py, Py + Py Ly, = 0 - P1, E(pzl + p22) =0
Py, 0Py + P, [P, =0 py Lpy +Py) =0

| by, Py, Py, P,
1 pZ1 + pZ2 pll 0 pll
2 0 Py, P2, + P2, P1,

Next, we formally describe how to obtain a complementarity formulation including all of
the properties outlined above. We first consider the case in which the disjunctive statement

contains two terms and then we extend the analysis to any number of disjunctive terms.
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5.2.1.1 Representing the Disjunctive Statements in terms of Positive Residual or
Slack Variables

Before generating the set of complementarity equations, it is necessary to define positive
residual variables (or slack variables for inequalities) for the conditional equations and to
represent the disjunctive statements in terms of these positive variables. This task has to be
accomplished disregarding the number of terms in each disjunctive statement. As a matter
of fact, one of our assumptions here is that the system of equations can be rearranged to
obtain this representation. For instance, for the simplest case of one disjunction with two
terms (the index k is omitted for simplicity), given the disjunctive set of algebraic

equations:

h(x) = 0
rlj(>_<) =0 . rzj(>_<) =0 djO[1...8] (5.14)
g(®<0| |g(x®=0 Oioft...y]
we reformulate the problem as:
h(x) = 0
I’lj()_()—plj =0
r2(X)—=py = 0 OjO[1...8L, 1 O[B+1...3+V]

9 _p(X¥) =Pyt Py, =0 (5.15)

=0 =0
P17 % | P2 OqO[1...8 +V]
pzqzo plqzo

5.2.1.2  2-Term Disjunctive Statements
The set of complementarity equations in terms of the positive varip;:q)les equivalent to

the disjunctive statement given in (5.15) is:
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B+ty-s B+y
Py Loy + p 0P, =0 OsO[0...B+y—1]
t; t:[3+%—s+1 " (5.16)

p,20  Oi0[1.2],q0[1...8+Y]

Hence, the resulting nonlinear system of equations is:

h(x) =0
O rlj(l()_plj 0
O 0
E r2,(X) =Py, E: 0 OjO[1...8, 1 O[B+1...8+YV]
[0, _p(X) = Py, + P00 (5.17)
B+y-s B+y
> Py + > pfpy =0 OsO[0...p+y—1]
t=1 t=B+y-s+1

P20  Oi0[1..2],q0[1..B+Y]

Note that the resulting nonlinear system of equations is square, and is subject to the

bounds in the residual and slack variables.

The generation of the complementarity equations given by (5.16) is illustrated in Figure 5-
3. Basically, in a complementarity equation each residual variable of one disjunctive term
is multiplied by one residual variable of the other disjunctive term, and, for successive
complementarity equations, the order of the residual variables in the second term is

successively shifted by one.

Every possible complementarity term resulting from the multiplication of positive residual
variables belonging to different disjunctive terms is included in complementarity
equations (5.16). This feature ensures that, in order to satisfy the complementarity
equations, all the residual variables of at least one disjunctive term have to be
simultaneously zero. The proof that (5.16) satisfies at least one disjunctive term is as

follows. Assume that, in each of the disjunctive terms, there is only one nonzero residual

103



PROBLEM FORMULATION

variable. Since all of the possible complementarity terms exist in the complementarity
equations, a complementarity term containing those residual variables must exist. Find
the complementarity term that contains just these nonzero residual variables. Since the
product of those variables will be nonnegative, that term will force the complementarity
equation in which it exists to be greater than zieeg,it will not be satisfied. To be

satisfied, at least one of the residual variables in the complementarity term must be zero,
contradicting our original assumption. Thus, in order to satisfy the complementarity
equations, at least one disjunctive term must have all its residual variables equal to zero.
In other words, a complete set of conditional equations in at least one of the disjunctive

terms will be satisfied.

Figure 5-3 Generation of complementarity equations in a two-term
disjunction.
r 10T X 1) s=
Py, = P2, =
Py, = P2, = PP
. Y p
p13 = p23 = 1, —» M2,
p,20 p, 20 P, P2,
B+y =3 r\\_J Py, B0z, + Py, [P, + Py, [y, = 0
2) s=1 3) s=2 pll p21
pll\ P2, Py, P2,
plz\ P2, p13\ P2,
Py, P2, P1, \ P2,
pll\ P2, Py, P2,
Py, By, + Py, Ly + Py [y = Py, 0P, + Py, Ly + Py [Py, = 0

p, 20

J

0io[1,2],j0[1...3]
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As a consequence of the previous analysis, if the complete set of nonlinear equations
(including the complementarity equations) is satisfied, then the solution ¥ector  will
correspond to a consistent solution to the conditional model. Moreover, if we assume
uniqueness of the solution to the conditional model, then the viector  will be such a

unique solution.

Another property of the complementarity set of equations given by (5.16) is that, in every
complementarity equation, all the residual variables appear, and each of them appears only
once. This is intended to decrease the possibility of having numerical singularities in the
Jacobian of the system, as explained before. In fact, by analyzing the Jacobian of the
formulation (5.16) under the assumption of nondegeneracy of the solution, it can be shown
that the possibility of having numerical singularities is eliminated. Hence, if the solution

is not on a boundary, the residuals in the equations of the disjunctive set not corresponding
to the solution are expected to be different from zero, and, therefore, they will provide a
pivot in the Jacobian matrix for all the complementarity equations (note that the number

of positive residuals is equal to the number of complementarity equations).

5.2.1.3  Generalization to any number of terms in the disjunctive statement

When the disjunctions contain more than two terms, we generate the complementarity
equations by applying recursively the same equation given in (5.16). We assume again
that we can obtain a disjunctive statement in terms of positive residual variables. Consider

the following simple example of a disjunction with three terms:

Py, = Py = P3 =

1 1 1

p12:0 0 p22=0 O p32:0 (5.18)
Py P320| [Py P320] Py P,20

We apply equation (5.16) to the first two disjunctive terms:
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pll:ODDzl:OD p31=O® p11D:)21+p12[p22:0D pglzo
p;, =0 Py, =0 ps, =0 p1, 0Py, + Py, Oy =0 ps, =0 (5.19)
p,20  Oi0[1..3],0[1...2]

and do it again for the resulting two-term disjunction:

|
o

(p11 Epzl * Py, Epzz) Ep3l + (pll [pzz * Py, Epzl) Ep32 =
(p11 [Py, + Py, Epzz) Cpg, + (pl1 [Py, + Py, Epzl) [P,
pijZO 0i0[1...3],j0O[1...2]

(5.20)

A complementarity set of equations obtained in this form still will include the properties

outlined before for a two-term disjunction:

1. It will result in a square system of equations.

2. In order to satisfy the complementarity equations, all the equations of at least one set
of conditional equations have to be simultaneously satisfied.

3. Under the assumption of nondegeneracy, the Jacobian of the system of equations can

be shown to be nonsingular.

The reasoning employed to prove the previous statements is the same as that in the case of

a two-term disjunction discussed above.

5.2.1.4  About the Complementarity Formulation
The complementarity formulation is not without problems:

1. First of all, the problem grows quickly. [B<y) is the number of equations in each
term of the disjunction and D is the number of terms in the disjunction, the number of
equations representing the disjunctive statement in the complementarity formulation is
(B+y)(D+1). That number includes both the complementarity equations and the
equations defining the positive residual variables.

2. Numerical singularities still arise for cases in which the solution resides on a
boundary. That is the main reason for the assumption of nondegeneracy.

3. The reformulation of a conditional model as a complementarity problem is restricted
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to cases in which the range of the conditional equations is positive. We consider that

as the major restriction of this approach. In principle, a cure for this limitation is to

define complementarity variablepr;;q which can take negative and positive values, and

then to use the square of these complementarity variables in the complementarity
equations. However, it is known that the use of square terms in complementarity
equations is not convenient since the possibility of introducing numerical singularities
is even greater. Recall that the derivative of the square of a variable with value zero is
also zero.

4. The number of bilinear terms (or terms including products among variables)
incorporated in each equation also grows with the number of equations in each term of
the disjunction. The combinatorial nature of the problem is encapsulated here.

5. The performance of optimization techniques is badly affected by the introduction of

nonconvexities (multiplication among variables) to the system of equations.

In general, we are presenting this approach as a favorable alternative when the number of

eqguations in each disjunctive term is small.

53 EXAMPLES

We used the examples of algebraic systems of disjunctive equations described in Chapter
4 for testing the proposed complementarity formulation. Appendix D presents the

complementarity equations (or a representative part of them) for each of those examples.

In examples 4.1 through 4.4 the disjunctive statements contain only two terms, and we
generated the complementarity equations by strictly using the formulation proposed in
(5.16). The degree of complexity increases in examples 4.5 and 4.6 since the disjunctive
statements contain three terms. In those cases, we added two residual variables to the
conditional equations in one of the disjunctive terms. Moreover, in examples 4.5 and 4.6
we do not apply the formulation proposed for three-term disjunctions. Instead, we use
those examples to show how sometimes the specific structure of the disjunctive statement

can be used to simplify the resulting system of complementarity equations.

In all the examples the number of equations in each disjunctive term is very small, and, as
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a consequence, the complexity of the equations involving products among variables is not

as bad as can be expected with problems of larger size.

As in Chapter 4, in this chapter we also solved examples 1 and 3 as simulation problems.
The initial values for the variables are the same as those given, if reported, by the

reference.

54 SOLVING THE COMPLEMENTARITY FORMULATION
OF A CONDITIONAL M ODEL

There exists a whole body of literature for the solution of nonlinear complementarity
problems. In one of the most recent approaches, Dirske and Ferris (1995a) developed a
non-monotone stabilization scheme for mixed complementarity probleam énd
implemented such an approach in #agH solver. Some other approaches to the solution

of MCPs involve the use of quadratic programming based techniques (Billups and Ferris,
1996) and homotopy based algorithms (Billups, 1998). As stated, a common feature of
the previous approaches is that they require the complementarity problem to be
reformulated as ®CP. However, a systematic reformulation of our complementarity
problem (5.17) into &CP is yet to be discovered. Such a systematic reformulation is
desired because it would make suitable the application of a large number of existing codes
and numerical techniques such as the ones described above. Future work should be

conducted in this direction.

In this section, we investigate two approaches to the solution of our complementarity
formulation representing a conditional model. Since the result of applying the
complementarity formulation is one square nonlinear system of equations, the first
approach is just to use a conventional nonlinear solver. The second approach consists in
solving the complementarity problem based on pivotal techniques similar to those

proposed by Lemke (1965).

Later, in Chapter 6, we investigate the solution of the complementarity formulation by

using interior point methods.
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5.4.1 DLVING BY USING A CONVENTIONAL SOLVER

To solve the examples described in section 5.3, we usedd®ND solver QRSIv which
applies the modified Levenberg-Marquardt algorithm given by Westerberg and Director
(1979).

54.1.1 Numerical Results
The number of iterations that we used to obtain the solution of each of these examples is

shown in Table 5-1. Some observations are:

* The fixed parameters and constants for Examples 1 through 3 are the same as those
giving by Zaher (1995).

» For the fluid transition problem, we ran simulations for values of the diameter of the
pipe between 2 cm and 9 cm, such that we could make sure that both of the alternative
cases are reached by using the complementarity representation. The number of
iterations reported corresponds to the diameter of 5 cm.

* For the example of the heat exchanger, we ran simulations for values of area between

250 f£ and 1104 ft and values of flowrates between 250 Ibmole/hr and 380 Ibmole/

hr, ranges analyzed by Zaher while finding an optimal solution. The number of

iterations reported is for an area equal to 3792t flowrate of cooling water equal
to 1104.31 Ibmole/hr. There is no special reason for the selection of those values.

» For the simple flash calculation, the number of iterations reported is for the value of
temperature of 200 K (liquid phase region). The number of iterations was roughly of
the same order for other values of temperature spread over the subcooled through the

superheated range.

Since the hardware and the technique that we are using to get the solution is different, we
are comparing neither time nor number of iterations with other works. Still we consider it
important to make remarks about some differences of the alternative approaches for

solving conditional models.
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Table 5-1 Solving the complementarity problems by using a conventional solver.

Number of
Number of |  Number of .
Example Reference ; Iy . Complementarity .
Equations | Disjunctions . Iterations
Equations
Flow Transition Zaher (1995) 7 1 1 8
(sonic-subsonic)
Phase Equilibria Zaher (1995) 18 3 3 10
Heat exchanger Zaher (1995 56 2 4 11
Pipeline network Bullard and 250 38 76 24
Biegler (1992)
Simple L-V flash King (1980) 23 1 4 25
Linear mass Grossmann and 81 6 34 25
balance Turkay (1996)

In the example of the pipeline network, the result of the complementarity representation is
one nonlinear system containing 250 equations, 76 of them containing 2 bilinear terms.
In the same example, the number of boundaries in the boundary crossing algorithm is 38
(that means $=2.7 x 131 possible subregions) and the nonlinear system to be solved in
every subregion would contain 98 equations. The combinatorial complications present in
examples like this clearly represent a disadvantage for the boundary crossing algorithm.
On the other hand, the reverse situation is also possible, and the boundary crossing may be
clearly a better option than the complementarity formulation. For example, in a problem
with only one disjunction, but 20 equations in each of the terms of the disjunction, we may
not be able to solve a nonlinear system in which 20 of the equations contain 20 bilinear
terms each. However, the number of subregions in the boundary crossing algorithm would

be only 2, and the possibility of applying that algorithm efficiently would be much greater.

In the example of the linear mass balance, Turkay and Grossmann (1996) solve the
problem by using a mixed-integer approach. The resulting MILP contains 18 binary
variables, 66 continuous variables and 89 linear equations. In the complementarity

formulation, the nonlinear system contains 81 equations, 47 are linear, but the remaining
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34 contain complementarity products. The size of the problem is very similar, the
difference will be in either using a branch and bound search in the MILP or dealing with
the complementarity equations in the solution of one square nonlinear system of

equations.

5.4.1.2  About the Solution with a Conventional Nonlinear Solver

The Levenberg-Marquardt technique performed well in the set of examples used in this
work. This technique is preferred because it is a least squares method which may help to
overcome numerical singularities arising from the complementarity formulation. In
general, however, it is known that problems involving complementarity equations affect
the performance of conventional nonlinear techniques. In particular, Newton steps cannot
be calculated if the Jacobian matrix of the system of equations is singular. Also,
numerical difficulties associated with bad scaling are commonly encountered while
solving complementarity problems. This lack of robustness of the use of a conventional
nonlinear solver in the solution of our complementarity formulation motivated the use of

interior point methods. We describe such work in Chapter 6.

5.4.2 DLVING BY USING PIVOTAL TECHNIQUES

In the late 1960’s, Lemke (1965) and Cottle and Dantzig (1968) developed the
complementarity pivot theory for finding the solution of linear complementarity problems.
Given a reak-vectorg and ak x k real matri¥, the solution to the linear

complementarity problem is given by tkeectorsw andz which satisfy:

w=q+ Mz
wlkz=0 (5.21)
w=0 z=20

54.2.1 Complementarity Pivot Theory for Linear Complementarity Problems
Consider the system of linear equations:

w=q+M[z

(5.22)
w=0 z=0
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Fori=1..k the corresponding variablgsandw; are called complementary, and each is the
complement of the other. A complementary solution of (5.22) is a pair of vectors
satisfying (5.22) and

w, [z =0 i=1.k (5.23)
Following the linear programming methodology, the independent variables of (5.22) are

callednonbasic while the dependent variables are cabladic The basic variables are

said to constitute bhasis Also, all the nonbasic variables are set to zero.

A complementary basic feasible solution of (5.22) is one in which the complement of each

basic variable is nonbasic. The goal is to obtain a basic feasible solution with this property.

In Lemke’s method (1965), an extra column (called covering vector) is added to the matrix
M along with an artificial variabl®. Typically, the covering vector is taken to be the

vector of all onesg. Thus, (5.22) is replaced by:
w=q+elA+MI[xk

(5.24)
w=0 z=>0 A=0
In the start of the algorithm, the variabfesre nonbasic whilg is set to
min{A|A =0, e[\ +q=0} (5.25)

Note that\ and the covering vector are introduced to achieve feasibility for the augmented
system (5.24) while also maintaining complementarity in the original variables. Hence,
the selection ok in (5.25) leads to an initial complementary basic feasible solution of
(5.24). However, also note that the varialZlesdw are a solution of (5.21) only A=0.

In general\ will be basic in the initial basic feasible solution with the valge0

obtained from (5.25). Thus, Lemke’s method specifies pivoting rules which determine a
sequence of variables entering and leaving the basis and a sequence of basic feasible
solutions which maintain the complementarityz@ndw. Essentially, Lemke’s pivoting

rule states that a variable reaching its lower bound will leave the basis, and that the
complement of the variable leaving the basis will be the next variable entering the basis.

The algorithm terminates successfully when a pivot resukdeaving the basis at value
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Zero.

5.4.2.2 Solving the Complementarity Representation of Conditional Models by
Using Lemke’s Pivoting Rules

Some researchers have investigated the solution of nonlinear complementarity problems
by using techniques based on Lemke’s pivoting rules. Dirske and Ferris (1995a)
reformulate the mixed complementarity problem in such a way that a first order
approximation of it results in a linear complementarity problem. Hence, they use a
Newton-based technique in which a linear complementarity problem is solved at each

iteration. They also provide a proof of convergence for their approach.

For the case of our complementarity representation, a theoretically sound extension of
Lemke’s pivotal technique has not yet been discovered. None the less, we studied the
solution of the complementarity representation of conditional models with a heuristic
approach based on Lemke’s pivoting rules. Such an approach is as follows. Consider the
representation of the disjunctive set of equations given in terms of the residual and slack

variables given by (5.15):

h(x) = 0
I‘lj()_() =Py, = 0
ra(X)—=py =0 0jO[1...p, I O[B+1...8+V]
9 _p(X)—py, t Py =0
=0 =0
P17 | P2 0gO[1...8 +V]
Pz, 20 Py, 20
1. Here, the complementary variables are the variaques . Also, the vapgbles in

(5.15) are the complement of the varialngqs

2. We start by defining the complementary variables in one of the disjunctive terms of
(5.15) as basic and the complementary variables in the other disjunctive terms as
nonbasic. Since the nonbasic variables are set to zero, the complementarity conditions

given by the complementarity equations in (5.16) are thus satisfied.
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3. We then look for a solution to the nonlinear problem by using a conventional nonlinear
solver. If during the iterative process a basic complementary variable reaches its lower
bound, then a complementarity pivot analogous to a Lemke’s is taken. In our case, all
the complementary variables in the same disjunctive term as the variable reaching its
bounds are simultaneously removed from the basis. The complement of such
variables (the variables in the other disjunctive term of the disjunction) become basic
and the iterative process continues. Such a complementarity pivot is taken only if a
step in the new basis results in the decrease of the norm of the residuals of the overall
system of equations with respect to the point prior to the complementarity pivot.
Otherwise, we only project the basic variable reaching its bound to such a bound and
continue the iterative process without the change of basis.

4. When the number of disjunctive terms in the disjunction is greater than two, we need
to decide which alternative set of variables are going to constitute the new basis after a
complementarity pivot. This is consistently accomplished by defining boundary
expressions (similar to those in the boundary crossing algorithm) in terms of the
complementary variables. The boundary expressions are not a part of the system of
equations to be solved, but only a means to find the next set of basic variables without

ambiguity.

5423 Numerical Results

The approach described in the previous section was also applied to solve the
complementarity formulation of the examples described in Chapter 4. The number of
iterations that we used to obtain the solution of each of these examples is shown in
Table 5-2:

5.4.2.4  Discussion
It should be noticed that we give no theoretical guarantee of convergence for the solution
of the complementarity problems by using Lemke’s pivoting rules. Even so, the results

obtained from the numerical experiments show a surprising effectiveness.
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Table 5-2 Solving the complementarity problems by using pivotal techniques.

Number of
Example Reference | Complementarity .
. Iterations
Pivots Taken
Flow Transition Zaher (1995) 1 7
(sonic-subsonic)
Phase Equilibria Zaher (1995) 1 7
Heat exchanger Zaher (1995 1 8
Pipeline network Bullard and 12 27
Biegler (1992)
Simple L-V flash King (1980) 1 11
Linear mass Grossmann and 2 9
balance Turkay (1996)

Next, we show a comparison between the boundary crossing algorithm and the pivotal

technique described here:

1. Inthe boundary crossing algorithm, only the equations corresponding to the current
alternative of each disjunction are considered at each iteration. In the extended Lemke
technique we simultaneously consider all of the alternatives, but we relax the
equations of all but one alternative of each disjunction. Thus, in the extended Lemke
technique we are also enforcing the satisfaction of only one alternative of each
disjunction at each iteration.

2. The crossing of a boundary in the boundary crossing algorithm involves a change in
the system of equations constituting the problem. In the extended Lemke technique, a
complementarity pivot causes an equivalent effect.

3. In boundary crossing, the solution of the optimization subproblem at the boundary
provides a solid basis to decide whether a boundary should be crossed or not and
ensures that cycling is avoided during the iteration process. In the extended Lemke
technique, a proof against cycling in our complementarity formulation is not yet

available.
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Accordingly, we assert that the boundary crossing provides a generalization of Lemke’s
pivotal technique for the solution of our complementarity problem; generalization in
which a mathematical criterion is given to decide whether a complementarity pivot should

be taken or not.

The results obtained by using our heuristic extended Lemke technique, Table 5-2, make us
believe that it may be not necessary to find an optimal descent direction in a boundary
analysis of the boundary crossing algorithm described in Chapter 4. In other words,
perhaps any step which reduces the residuals of the systems of equations in the
neighborhood of the boundary (any descent as opposed to optimal descent) can give a

reasonable movement at the boundary.

55 SIMMARY

We have proposed and tested a new representation of conditional models as
complementarity problems. In order to obtain the complementarity formulation, we rely
on the assumption that the sets of conditional equations can be rearranged so that the
disjunctive statements can be represented in terms of positive residual and slack variables.
We show that the formulation described in this paper does not introduce spurious solutions
to the problem, and that under the assumption of nondegeneracy, it will not introduce
numerical singularities to the Jacobian matrix. We also mentioned some of the
weaknesses and advantages of this approach. We solved the complementarity problems
described in Chapter 4 and Appendix D by using a conventional nonlinear solver and
Lemke’s pivoting rules. The number of iterations employed for all of the examples solved
here makes the complementarity formulation appear as an interesting tool. Finally, we
described how the boundary crossing algorithm can be considered as a generalization of

the extended Lemke technique used here.
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cHaPTER6  INTERIOR POINT
METHODS IN THE
SOLUTION OF
CONDITIONAL
MODELS

Interior point methods have recently become an interesting alternative in a number of
numerical applications. In particular, their performance in the solution of problems
involving complementarity equations has been the subject of extensive research and their
efficacy is well documented. In this chapter, following a description of the fundamentals
of interior point methods, we describe the globally convergent framework proposed by
Wanget al (1996) for solving a constrained system of nonlinear equations by an interior
point potential reduction method. Also, we show how we can apply the potential reduction
algorithm and its convergence result to the complementarity formulation described in
Chapter 5. Based on that observation, we then apply the algorithm proposed by Wang to
solve the complementarity examples used as case studies throughout this work. Moreover,
we also apply some high order strategies designed to improve convergence (Mehrotra,
1992; Gondzio, 1996), and compare the results obtained with each of the methods. All
those techniques have been incorporated tasla&ND modeling environment with the

implementation of the solver IPSlv.
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6.1 MOTIVATION

As early as in the late 1940’s, almost at the same time as when Dantzig presented the
simplex method for linear programming, several researches including Von Neumann
(1947) and Frisch (1955) proposed interior point algorithms which transverse across the
interior of the feasible region to avoid the complexity of vertex-following algorithms
(Anderseret. al 1996). Since then, there is a huge body of literature on the interior point
methods which includes surveys and numerous articles. See for example Wright (1997),
Lustinget al. (1994), and Gondzio and Terlaky (1994). Even though the initial effort on
interior point methods was focused on linear programming problems, most recent works
have concentrated on the common theoretical foundations of linear and nonlinear
programming. It is now widely accepted that interior point methods constitute a powerful
tool for solving both very large linear and nonlinear programming problems (Gondzio,
1996).

In the field of chemical engineering, interior point methods have been applied to solve
data reconciliation, optimal control, multiperiod design and process optimization
problems (Ternet, 1998). Alburquergeteal. (1997) and Ternet (1998) employ primal
dual interior algorithms and high-order corrections to solve the quadratic programming

subproblem within a sequential quadratic programming technique.

In this chapter, we propose the application of interior point techniques for the solution of
the complementarity formulation representing a conditional model. This approach is based
on the work of Wangt al (1996) and was specially motivated by the works of

Simantiraki and Shanno (1995) and Wright and Ralph (1996) which apply infeasible
interior point algorithms for mixed complementarity problems. Also, recent results
reported in the field of chemical engineering by Ternet (1998) encourage the use of
Mehrotra’s second order method (Mehrotra,1992) and Gondzio’s centrality corrections

(Gondzio, 1996) to improve the convergence results obtained by Wang’s algorithm.
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6.2 BAasICS OF PRIMAL -DUAL INTERIOR POINT
M ETHODS

The so called primal-dual interior point methods have been shown to outperform the
simplex method on many larger problems and to perform better than other interior point
methods (Wright, 1997). In this section, we describe the fundamentals of a primal-dual

interior point method. Consider the linear programming problem in standard form:

min{ ch|Ax= b x= 0} (6.1)
The optimally conditions of (6.1) are given by:
AN+s=c

AX =D

‘s = 0 (6.2)

X,s=0

If we modify (6.1) by applying a logarithmic barrier to the variables x then we get:

.U O
mInDCTX—TZM(Xi) AXx = b[] (6.3)
U i il

similarly, the optimally conditions of (6.3) are given by:

AT}\ +s=2¢
Ax=b (6.4)
XSe= te

whereX andSare the diagonal matrices whose elements are the components of the vectors

x ands correspondingly, andis the vector of all ones.

The system of equations (6.2) can be solved by applying the Newton method and carrying
out a linear search to enforce the nonnegativity constraimtarmds. Unfortunately, we
can often take only a small step before the nonnegativity constraints are violated, and,

therefore, the iterates make little progress towards the solution. Rather than solving the
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system of equations (6.2), primal-dual interior point methods focus on the solution of the
system (6.4) and introduce the concept ofctlyatral path The central path is the set of

points which are a solution of (6.4) for0. The role of the parameteis to enforce that

all the complementarity products have the same values for all indieksce, the central

path keeps the iterates biased towards the interior of the nonnegative (;gdyadt Note

also that as goes to zero, the complementarity products decrease to zero at the same rate.

For implementation purposesis defined as the product of the parameteasdy,

resulting in
AN+s=c
Ax = b (6.5)
XSe= oue

H is generally defined as the complementarity gap (average valuenafdheplementarity
products):

T
XS

W= (6.6)

ando is the centering parameter with value between zero andeoeg]l, such that=0
corresponds to a Newton step ardl corresponds to a centering direction in which all
the products;s; are equal tql. Various methods differ in the way thatndo are chosen
(Wright, 1997).

6.3 HIGH ORDER STRATEGIES FOR INTERIOR POINT
M ETHODS

The solution of a system of equations defined by (6.5) involves the solution of the

linearized system

0 AT | |axk c— AN

A0 Om =] b-AX 6.7)
k

s 0 X ASK —XkSke+ckuke
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at each iteration. It is estimated that the required factorization of the matrices

0 A" |

A 0O

o0 x

takes 60 to 90% of the total CPU time needed to solve a problem (Gondzio, 1994). The
use of high order information has been motivated by the idea of using the same
factorization for several different solves in order to reduce the number of interior point
iterations required. As a matter of fact, second-order methods have been shown to give
evident savings over the basic first order methods, and, therefore, they have became the
computational state of the art (Luségal, 1992). In this section, we will review two of

the most extensively applied high order methods found in the interior point literature:
Mehrotra’s second order method (Mehrotra,1992) and Gondzio’s centrality correction
(Gondzio, 1994). The algorithmic steps of both of those approaches can be found in
Wright (1997) and Ternet (1998).

6.3.1 MEHROTRA’S PREDICTOR-CORRECTOR TECHNIQUE
Mehrotra’s predictor-corrector technique (Mehrotra, 1990; Mehrotra, 1992; latistig
al.,1992) has three main components (Wright, 1997; Ternet, 1998):

* A predictor step: a pure Newton (also known as affine-scaling) direction. For
problem (6.5), this step is calculated by solving (6.7) with:
T _A Xk_ Tyk k
0A | p C—A AN -5
A0 Of[ap" b— AX (6.8)
k
Sk 0 X Apsk —XkSke

* An adaptive approach to compute the centering parameter. This parameter is
calculated in terms of the complementarity gap at the current point and the
complementarity gap after a hypothetical step in the affine scaling direction is taken.
In general, the centering parameter is small when good progress can be made in the

affine direction and large when the affine direction produces little improvement. The
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actual calculation of the centering parameter is given by:

pk = (xk)Tsk/n
T
Harr = [(X+aB X (8" asxX]/n (6.9)
k k 3
o = (IJ /uaff)

where the facton defines the maximum stepsize in the affine-scaling direction that can be

taken while preserving the nonnegativity of the variabtes

» A corrector step: essentially a step based on Taylor series expansion of the

complementarity equations. For problem (6.5), this step is calculated by:

[
0 AT | ||BX 0
A0 0o = 0 (6.10)
S0 x| okpke—ApxkAFS(e

— C -

WhereApXk andApSk are the diagonal matrices whose elements are the components of the

vectorshxk andAs calculated in the predictor step.

The corrector step is best understood by the following analysis. If a fullostép ere
achieved in the affine scaling direction, the new complementarity conditions would be

given by:

(S'+ASpe X+ AXS)e = X‘S'e+ SASe+ XDX[e+AXASEe  (6.11)

However, the last equation of the system of equations (6.8) is:

S'aste+ Xaxse = —X e (6.12)

and (6.11) reduces to:

(S'+AS)e O X +AXH)e = AXSASe (6.13)

Hence, the second order correcthp(kApSke corresponds to the violation of the
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complementarity conditions if a full step in the affine-scaling direction were taken.
Moreover, the corrector direction is supposed to drive from a hypothetical point
(xk + Ax';, $“+ As'; ,)\k + A)\';) to a point in the central trajectory (note also the presence

of the centering correctioukuke in the corrector step).

Because the corrector step is a second order correction, the stepsize determination in
Mehrotra’s technique consists of finding@®0 such that for altt 0 (0,0) (Wright,
1997):

(% s N = (x, s 0+ a g +a’A

(X, s)k+120

(6.14)

WhereApk andACk are the predictor and the corrector steps in the variables

correspondingly.

6.3.2 GONDzIO’S CENTRALITY CORRECTIONS

Gondzio (Gondzio,1994; Gondzio and Terlaky, 1994; Andessah, 1996) argues that

what reduces most the efficiency of an interior point method is a large discrepancy among
the complementarity products. Complementarity products that are too small or too large

(compared with the average) are undesirable, with the former being the more disastrous.

Gondzio assumes that a predictor step (a step calculated with Mehrotra’s approach, for
instance) has been calculated and evaluates the complementarity products for the current
point (trial point)(X, S) :
9 = (XSe) OR" (6.15)
Then, the trial point is projected componentwise onto a hypercube:
_ k kiN
Hyp_ [Bminu 1Bmax|“l ] (616)
to define the target
8, = M8 |Hyp OR" (6.17)

Gondzio believes that the effort should be concentrated on correcting only outlier
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complementarity products (the ones that do not belong to the inteqmuk, Bmaxuk] ).
The parameter,,i, andPyaxin (6.16) are the relative threshold values for outlier

complementarity products and are assumed as given (in Gondzio’s implementation
Bmin=0.1 andBma=10 ).

Hence, a corrector term of the current iterate solves the system:

K
0 AT | ||Bm 0
A0 Ooflap|=] 0 (6.18)
k —
s 0 x|y & [Fe?
whered, ~9 s given by (Wright, 1997;Ternet, 1998):
[ k & e a K
D(Bminu _'Si) |f'8i < Bminu
0 k & e k
({)t_é). = %Bmax“ —9i) i 9> B4
|
k s k (6.19)
% Bmax“ if 9> 2[3max‘*l
E 0 otherwise
Oid1l...n
Note that system (6.18) is full of zeros sirﬁ:[e—é is nonzero only for components that
refer to the complementarity products that do not beloh@”p,uk, Bmaxuk] . Also note

that for large complementarity producﬁs,> ZBmaka , @ more conservative value for the

target is used in order to prevent the undesirable effect of bad scaling (Wright, 1997).

6.4 AN INTERIOR POINT POTENTIAL REDUCTION
METHOD FOR CONSTRAINED EQUATIONS

In this section we describe the globally convergent framework developed byeivaing
(1996). They combined the classical damped Newton Method with interior point potential
reduction methods for solving a constrained system of nonlinear equations. They show

how their formulation provides a unified framework for many mathematical problems,
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including complementarity problems and nonlinear programs.

6.4.1 THE M ODEL
Let Q be a closed subset of the Euclidean spicevheren is a positive integerQ is
assumed to have a nonempty interior, denotedtfy. LetH:Q - R" be a continuous

mapping defined of2. Consider the problem of finding a vectosatisfying:

H(w) = 0 (6.20)
The basic structure that Waagal impose is that there is a partition of the range space of

the mappindH :

H(w) = {F(‘*’)}, w0 Q (6.21)
G(w)

for some function§:Q — R™ andG:Q - R with ns+ n,=n. Now let

Q; = {w0intQ|G(w) >0} (6.22)

where the inequalits(w)>0 is to be understood component wise. The assumptions made

by Wang and coworkers are the following:

1. Os#0 andQ; = {w 0 Q|G(w) >0} .
2. His continuously differentiable on the <.

3. The Jacobian matrid’'(w) is nonsingular for alto 0 Qs

A real-valued functiomp(w): Qs — R is also defined:

n,

W(w) = ¢ Oog(F(w)' F(6) +e' G(w) - T logG(w) (6.23)

where( is a fixed but arbitrary scalar satisfyi@g n, ande is the vector of all ones.
Whenn,=0, (6.23) reduces (without the logarithm) to the standard merit function used in

the Newton method for solving the system of equati{ny=0. If we decreas&(w), the
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first term in (6.23) contributes to reduce some norm of the funidif@h The second term
is the logarithmic barrier function whose role is to prevent a pefndbm reaching the

boundary ofQs.

Hence, the goal of Wang’s approach is to develop an iterative algorithm for solving (6.21)
while (6.23) plays the role of a merit function which guides the generation of the iterates

A

6.4.2 AN INTERIOR POINT APPROACH

Wang's approach originates from the extension of path-following interior point methods
for their application to the nonlinear case. The algorithm proposes to calculate a perturbed
Newton direction in order to keep the iterates close to the central p@gh dfor a given
vectorw [ Q5 , the perturbed Newton directioruais obtained by solving the following
system of linear equations:

H'(w)d = [F’(oo)d} = [ —F(w) } (6.24)
G'(w)d —-G(w) + op(w)e

wherep(w) = eTG(oo)/ n, , ana is the centering parameter. Based on the work of
Kojima et al. (1994), Wang shows that a solutidof (6.24) is a descent direction for the
function(w) defined by (6.23) such that:

P(w+ Ad) — P(w) < —aA(1-0)(Z —n,) (6.25)

wherea 0 (0,1) and\ is a scalar such that for allJ (OA\) A>0, we getw + Ad O Qs
(i.e. A is the factor in the linear search of the damped Newton method). Note that the right

hand side of (6.25) is always negative.

Furthermore, in order to prove convergence, Wang and coworkers define a futwjion

as a measure of the error of a given itecate

V(o) = F(w)' F(w) + &' G(w) (6.26)
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and show that a sequence of iterates generated by their approach satisfies the following

properties:

1. The sequenc@(w“)} is bounded.

2. If the sequence of iterat{as"} is bounded, then
lim v(@9) = 0 (6.27)

k - o

The derivation of equation (6.25) is shown in Appendix E. For the derivation of equation
(6.27) and the demonstration of the above properties, the reader is referred to the paper of
Wanget al (1996).

6.4.3 THE ALGORITHM

The steps of the potential reduction algorithm for solving (6.21) are:

Step 1 Initialization. Let¢>n, ,a 0(0,1) ,6 [0, 1) ,§>0 ang O(0,1) be given.

Choose a° [ [0,6] and aninitial poimO 0Qs

Step 2 Direction Generation. Solve the system of linear equations (6.2ﬁ=)<d‘t
K F'(0d —F(w)
H'(w)d = =
G'(w9d] |-G + o*pu(we

whereu(wk) = eTG(wk)/ n, , to obtain the search directitn

Step 3 Stepsize determination. Legj, be the smallest nonnegative integesuch that the

following conditions hold:

w+Ep"d“ 0 Qy (6.28)

P+ EpMd") — (') < —a&p™(1-0")(Z -ny,) (6.29)

and set* "t = o+ gp™d" |
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Step 4 Termination check. Terminatedf*! satisfies a prescribed stopping rule.

Otherwise, pick a0 [0,6] and return &tep 2

The values suggested by Wang for each of the parameters defiteg ibare:
¢=n,0/n,, a0 =05,0=05&=2andp =05.

6.5 THE COMPLEMENTARITY REPRESENTATION OF A
CONDITIONAL M ODEL AND ITS RELATION TO
WANG’S FRAMEWORK

Consider the complementarity formulation described by (5.17) for a system of equations

containing a disjunction with two disjunctive terms:

h(¥) = 0
0 W-pPy [
O O _
E r2,(3) =Py, E: 0 OjO0[1...8], 1 O[B+1...8+V]
@|_B(X)—p1,+ P,
B+y-s B+y
> Py v > ppy, =0 OsO[0...p +y—1]
t=1 t=B+y-s+1

P20  Oi0[1.2],q0[1...8+Y]

and letn, be the dimensionality of the vector of variables of the original conditional
model,i.e. x [ R™. The resulting complementarity problem (5.17) is one, 6f2(3+Y).
variables and equations. Recall also that the positiveness in the vap'ebles is imposed,
thatisp; O R.E*Y. If we define:

. Q=R 26V x R™

¢ wOQ thatisw= ( piq,x)DR+2(B+V) xR

* the partitionH(w) given by:
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E h(x) %
0 M-pPy O :
F(w)= 0 0=0 OjO[1...81,1 O[B+1...8+V]
E rzj(x)—pzj E
6.30
[g|_B(X)_ Py, * PO ( )
Bry-s B+y m
G(w)= O Z Py, oy, + Z Py, [Py, , O=0 OsO[0...8+y—1]
thl t=B+y-s+1 :
and assume:

» the continuous differentiability of the functicFr(w):R+2(B+V) xR ™ at every point

w=(py, 0 Ry 2679 x R,

* and the nonsingularity of Jacobian matiXw) (this also implies that we assume the
nondegeneracy of the complementarity equati®fs) in order to avoid numerical

singularities caused by such equations)

then we can apply the potential reduction algorithm and its convergence result to the

complementarity formulation described earlier in this work.

6.6 IMPLEMENTATION OF WANG’S ALGORITHM AND
HIGH ORDER TECHNIQUES FOR SOLVING A
CONDITIONAL MODEL

The algorithm proposed by Wang and the second order corrections developed by Mehrotra
and Gondzio have been implemented in a computer program called IPSlv for their
application to the solution of conditional models formulated as a complementarity

problem of the type represented by (6.30). The solver IPSIv has been incorporated into the
ASCEND environment. Some details of the implementation of Wang’s algorithm and both

of the second order techniques are given in this section.

6.6.1 FRACTICAL IMPLEMENTATION OF WANG’'S ALGORITHM

For purposes of implementation, we made some minor modifications to the algorithm
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described in 6.4.3;

1.

First, the value for the centering parametar Wang'’s algorithm is rather arbitrary.
Wang'’s proposes using a value of 0.5 and dividing that value by 10 every time that a
full Newton step in the variables can be taken. In our implementation we provide the
option of defining an initial value of the centering parameter and modifying it under
Wang's heuristic. However, we also support an evaluation of the centering parmmeter
la Mehrotra. For the later case, we need to substiigp 2(direction generation) in

algorithm 6.4.3 by the following steps:

» Calculate the affine directiodllg by solving (6.24) wotk0.

ky 4K
F —F(o
H'(@9dt = (@)dp| _ | -F() (6.31)
G'(WYdy  |-G(w")
» Calculate the centering parameter (similarly to (6.9)):
uk(wk) = eTG(wk)/ n,
Harr(@) = € G +AdJ)/n, (6.32)

* = [N/ (@]

where is\ is a scalar such that for Al (O)) A30, we geto* + )\dlg OR, 2B*)xR™

(i.e. A is the factor in the linear search of the damped Newton method).

» Solve equation (6.24) with the centering parameter calculated in the previous step.

F’(wk)dﬁ _ “F(0) (6.33)

H'(w'dk =
G'(@Yd| |-G+ o* e

Here, the directiormlt Is then useddtep 3(stepsize determination) of the algorithm
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6.4.3. Note that, even though two solves are required, the factorization of the Jacobian
matrix H’(w) is being done only once (as in second order methods). In other words,

this option requires an extra backsolve to compute the affine direction but leaves us

with a more reliable value for the centering paramelfer

2. The second modification arises from the fact that, while solving a conditional model as
a complementarity problem, the equations of the parti@o) may contain the
summation of complementarity products rather than individual complementarity
products. For that reason, we modified the second term in the right hand side (the
logarithmic barrier term) of the merit functigiw) , Equation (6.23), to include the
summation of the logarithm of each individual complementarity product instead of the

logarithm of each functio®;(w) . That modification is motivated solely by the

observation that we need to prevent each individual complementarity product from

going prematurely to zero (&(w) could be greater than zero but still an individual

complementarity product in it could reach zero), but there is presently no theoretical
basis to support it. As a matter of fact, Wang’s proof of convergence does not strictly

apply anymore after this modification is made.

6.6.2 IMPLEMENTATION OF SECOND ORDER CORRECTIONS

The linearization of the functiofqw) in (6.24) may lead to infeasibilities in the solution

to the problem (6.21). Hence, in order to strictly apply second order corrections to the
problem (6.24), we should also consider a correction for the linearization of the equations
F(w). Still, here we are mainly concerned with the numerical problems associated with
the complementarity equatio@w), and, for those equations, an analogy to Mehrotra’s
second order correction and Gondzio’s centrality correction can be derived. In our
implementation of second order techniques, the main difference with respect to the
original approaches is that, in the problem we are solving, the equations of the partition

G(w) may contain the summation of complementarity products.

6.6.2.1  Applying Mehrotra’s corrector step
As in our implementation of Wang’s algorithm, the implementation of Mehrotra’s

predictor corrector technique implies a modification of the direction generatiorsstep (
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2) of algorithm 6.4.3. The three elements of Mehrotra’s technique applied to the

framework used in this work are:

* Predictor step. Calculation of the affine direction as in (6.31).

« Computation of the centering parames&ms in (6.32).
» Corrector step. A second order corrector step for the system defined by (6.24) is given

by the solution to the linear system:

Hr(@ld = F'(0)dX _ 0 (6.3
G@d|  |on@Ie-c(d)

where the vectoC(d';) Is a function of the affine direction and represents the second
order correction for the partitid®(w) (similar to the second order correcti@NpkASpke
used in (6.10)). Specifically for the complementarity formulation used in this work

(Equation (6.30)), the elements of the vefﬂIle;) are given by:

. PBry-s B+y
Cs+ 1(dp): Z Aplt mpzns * Z Apl{ mpz“s’ﬁ’y (6.35)
t=1 t=B+y-s+1 '

OsO[0...B+y—1]

For simplicity in the representation, note that we have omitted the kn@exation) for
the complementary variable;s;;q . Also, note that the corrector term for the pd&(mpn
in (6.34) is zero. As stated before, a value of zero is strictly correct only in a case in which

the equations d¥(w) are linear.

As an analogy to the discussion about the meaning of Mehrotra’s second order correction
given before for the linear programming case, the following simple example illustrates the

meaning of the second order correction defined by (6.35):

Consider the complementarity equation (including two complementarity products) given

by:
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Gi(w) =0 — Py, BPp, + Py, Opp =0

The linearization of that complementarity equation in a Newton scheme is given by:

G,'(w)d = -G(w) —

Py, (AP, +Ap; [y +py AP, +Ap; [Py = —(py, [Py + Py, [P,) (6.36)

If a full step were achieved in the affine-scaling (Newton) direction, the new

complementarity conditions would be given by:

(P1, +Apy ) [Py, +Apy ) +(Py, + APy ) AP, +AP,) = py by +py Ly, +
P1, mpzl + Apll Epzl * Py, mpzz + Ap12 Djzz +

Ap, [Ap, +Ap, [Ap,

which, after substituting (6.36), reduces to

(P1+Ap;) (p; +App) + (p3 + Ap3) L(p; + Ap3) = Apy, [(Ap, +Ap, (Ap, (6.37)

The right hand side of (6.37) is the second order corrector term defined by (6.35). Similar
to the linear case, the second order correction (6.35) corresponds to the violation of the
complementarity conditionG(w) if a full step in the affine-scaling direction were taken.
Hence, the corrector direction is supposed to drive from a hypothetical pﬁimtc(l; ) to

a point in the central trajectory.

When applying a second order correction, we also have to neiipy3of algorithm
6.4.3 (stepsize determination). Since the corrector step is a second order term, equation
(6.28) has to be substituted by

o+ &p"d + (€™ dk D 0, (6.38)
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whered'; is the affine direction (predictor step) ai'éd is the second order corrector
direction. Recall that, specifically for our probl@ERJ,z(B*V)x R™ and
QZ:R++ 2(B+y)x Rnx .

6.6.2.2  Applying Gondzio’s centrality corrections

As in Gondzio’s original method, in this implementation we assume that a predictor
direction (a Mehrotra’s step or a step generated by Step 2 in Wang’s algorithm, for
instance) has been calculated, and, therefore, the complementarity equations for the

resulting point can be evaluated:

Y = G(&) OR™ (6.39)

If we would strictly follow Gondzio’s method, the next step would be to define a

hypercube

HYP= [Brink, Bt ] - (6.40)

and project the complementarity equations componentwise to define the target:

Y, = m(Y|Hyp) OR™ (6.41)

In Gondzio’s original approach, each complementarity equation contains only one
complementarity product. In that way, a correction term can be evaluated for each
complementarity product. On the contrary, here we recall once again the fact that, for the
complementarity representation of a conditional models, the complementarity equations
G(w) may consist of the summation of complementarity products rather than individual
complementarity products. Hence, the value of a corrector term for each complementarity

product cannot be explicitly estimated.

In this implementation of Gondzio’s centrality correction, equations(6.40) and (6.41) are
not used directly. In order to best describe our implementation of Gondzio’s centrality
correction, leng be the number of complementarity products in each complementarity
equation, and for purposes of illustration, considerrgé the same for each

complementarity equation.

Hence, the complementarity equations evaluated at the trial point can be represented in
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terms of the individual complementarity products as:
j=ng
G(w) = Z g;j (w) Oi01..n, (6.42)
ji=1

Wheregij (w) is thg-th complementarity product in thi¢h complementarity equation.
Furthermore, the components of a vegtar R™* M including all the individual

complementarity products are given by:

Q(i_l)mm = g;(®) Oi01..n, 0j O 1...ng (6.43)

Once the vector of individual complementarity products for the trial goint  has been
evaluated, we can use a procedure analogous to the one suggested by Gondzio. The vector

y is projected on a hypercube

HY D= [Brin(H/ ), B /01 - (6.44)

to define the target

y = Ty|Hyp) OR™™™ (6.45)
which results in the difference vectpr-y  being:
il k ~ e~ Kk
O(Bmin(K/Ng) = Y1) if Vi < Broin(H /1)
O k ~ L~ Kk
(=), = HBmax ™/ ng) — Vi) i Vie > B/ Ng)
k if v k 6.46
E BmadH /Ng) if Yy > 2Bma(H 7/ Ng) ( )
E 0 otherwise
OkDO1...n,xng

Thus, we define the corrector term for each complementarity equation as the summation

of the corrector terms for each of the complementarity products:
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k=il

Ci(w) = > (Y=Y
k=(i-1)hy+1
Oi01...n,

(6.47)

Finally, an analogy to Gondzio’s centrality correction for the complementarity

representation of a conditional model will be given by:

@k = |F@%) [ 0 (6.48)
*lewyd|  LC@)

To summarize, in our implementation of Gondzio’s method,

» the complementarity equations are decomposed in terms of their individual
complementarity products,

» acorrection term for each outlier complementarity product is evaluated,

» the corrector term for a complementarity equation is obtained as the summation of the
corrections of each of its individual complementarity products and, finally,

» Gondzio’s corrector step is evaluated by solving the linear system defined by (6.48).

This implementation was motivated by Gondzio’s original goal of correcting (if

necessary) each complementarity product of each complementarity equation. However,
we recognize here a fundamental incorrectness of the approach presented in this section:
there is no guarantee that the corrector t@ri(mb) indeed provides a correction for each
complementarity product. Hence, this implementation is not theoretically sound, and it
should only be considered as an initial study to discover the difficulties and the benefits of
the implementation on the solution of our complementarity formulation. Future work

should be aimed for obtaining a theoretically sound implementation.

6.6.3 THE SOLVER IPSLV
The numerical techniques described in this section have been implemented in a computer

code called IPSIv and incorporated to AsEND modeling environment. As such, the
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selection of the specific technique as well as the values of the various parameters can be
specified interactively through tReCEND solver interface. This implementation can be
applied not only to the complementarity representation of a conditional model but also to
any kind of complementarity problems described by (6.21). Also, it can be used for any
system like (6.5), generated by the optimality conditions of a linear programming

problem. The main options offered by this solver are:

1. Numerical technique:
* Wang's potential reduction method.
» Mehrotra’s second order method.
Gondzio’s centrality corrections can be applied to the point generated by any of those

techniques at each iteration.

2. Calculation of the centering parameter
* Given initial value modified heuristically as proposed by Wang.
» Calculateda la Mehrotra by using the affine scaling direction.
If Mehrotra’s technique is being used, only the second alternative is available.

Calculationa la Mehrotra is the default option.

3. Calculation of the potential functiap(w):
* Include the summation of residuals of the complementarity equations in the
logarithmic barrier term.
* Include the summation of the values of the individual complementarity products

in the logarithmic barrier term. This is the default option as described earlier.

6.7 NUMERICAL RESULTS

The numerical methods described in this chapter were used to solve the complementarity
problems described in Chapter 5. The number of iterations that we used to obtain the

solution of each of these problems is shown in Table 6-1.
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Table 6-1 Numerical results by using interior point methods.

Wang +
Example Reference Wang Wang + Wang - Mehrotra+
Mehrotra Gondzio .
Gondzio
Flow Transition Zaher (1995) 7 7 7 7
(sonic-subsonic)
Phase Equilibria Zaher (1995) 11 8 11 8
Heat exchanger Zaher (1995) 9 8 9 8
Pipeline network Bullard and 34 33 36 33
Biegler (1992)
Simple L-V flash King (1980) 26 23 32 23
Linear mass balance Grossmann and 15 14 15 14
Turkay (1996)
6.8 DISCUSSION

Regarding the numerical results obtained for this set of examples, we can make the

following observations:

* A sequence of steps generated by Wang’s algorithm successively converged to a
the solution in all of the complementarity problems.

* Also, in all the cases, the use of Mehrotra’s second order correction resulted in a

reduction in the number of iterations required for convergence by Wang's

algorithm.

* Finally, the application of Gondzio’s corrector step did not provide a significant
improvement with respect to a step calculated solely by Wang’s algorithm or a step

including Mehrotra’s correction.

However, we are aware that this reduced set of examples may not be enough to draw a

meaningful conclusion regarding the numerical performance of each of the techniques.

So, for instance, we still consider that a corrector step a la Gondzio might reduce the

problems associated with scaling in some other complementarity problems.

Rather than a formal comparison among the performance of these methods, we consider
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that a major result obtained from the experiments shown in the previous section is that we
could establish the viability of the use of interior point methods in the solution of
conditional models represented as complementarity problems. That is what we believe is

one the contributions of this work.

The use of interior point methods in the solution of conditional models represented as
complementarity problems provides some theoretical and numerical advantages with

respect to both of the approaches discussed in section 5.4 of Chapter 5:

1. First, a theoretical proof of convergence exists for the interior point algorithm used in
this work (Wanget al, 1996).

2. The use of interior point methods will prevent the complementarity products of the
complementarity equations from prematurely reaching zero. In practice, this feature
benefits the numerical performanceipgvoiding numerical singularities during the
iterative solution process aijl allowing to take larger steps in a Newton-based
technique before the nonnegativity constraints of the complementarity variables are
violated.

3. The use of second order corrections in interior point methods, specially Gondzio’s

centrality correction, can help prevent numerical problems associated to bad scaling.

Finally, the implementation of second order techniques for the complementarity
formulation developed in this work must only be considered as an initial study which
discovers the complications and potential benefits of such an implementation. Hence, we
want to emphasize that a conceptual gap still exists between the application of second
order methods for the linear programming problem case and their application for our
complementarity formulation; future research should be aimed at bridging this gap as far

as possible.
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cuarter7  CONTRIBUTIONS
AND FUTURE
WORK

This chapter concludes the thesis by giving a summary of the work and contributions
made in this research. Also directions and recommendations for future work are
highlighted.
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SUMMARY

7.1 SIMMARY

One of the goals of our research group has been to improve one’s ability to develop and
solve process models. This work was specially focused on the issues involved in the
modeling, formulation, structural analysis, and solution of conditional models in an

equation-based environment.

In Chapter 2 we identified the modeling capabilities needed for an efficient representation
of conditional models. We then described modeling tools for the performance of each of
the identified tasks and gave the details of the computer implementation of these tools.
Several chemical engineering examples were used to demonstrate the scope of application
of the proposed extensions and to show how the expressiveness of an equation-based

modeling language increases with their incorporation.

In Chapter 3 we introduced an extension to Zaher's methodology ( Zaher, 1993; Zaher,
1995) for the structural analysis of conditional models. This extension allows the
consistency analysis to be applied to conditional models in which the number of variables
and equations for each of the alternatives may not be the same. Also, we show how, by
taking advantage of the structure of the problem, it is sometimes possible to reduce the
effort required by such an analysis. In particular, the cases of the existence of repeated

structures and common incidence pattern among alternatives were discussed.

In Chapter 4 we investigated the solving of conditional models using a boundary crossing
algorithm proposed by Zaher. This algorithm involves the execution of several well
differentiated activities including logical analysis, continuous reconfiguration of the
equations constituting the problem, calculation of Newton-like steps, and the calculation
of subgradient steps. We described the practical implementation of the boundary crossing
algorithm as a conditional modeling solution tool and solved several examples of

conditional models in chemical engineering.

In Chapter 5 we described a complementarity formulation for representing algebraic
systems of disjunctive equations. We show that this formulation not only establishes the

complementarity condition among equations belonging to different disjunctive terms but
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also enforces simultaneous satisfaction of all of the equations appearing within the same
disjunctive term. The result of applying our formulation to a disjunctive set of equations

is a square system of nonlinear equations (including the complementarity equations)
subject to the positiveness of the complementary variables. Hence, the main advantage of
this approach is that it avoids the need for discrete decisions and the need for special
procedural nonlinear techniques as required by the boundary crossing algorithm. Finally
in Chapter 5, we investigated the solving of the resulting complementarity problem using
a conventional nonlinear solver and pivotal techniques similar to those proposed by
Lemke (1965).

In Chapter 6 we described the globally convergent framework proposed byeWang

(1996) for solving a constrained system of nonlinear equations by an interior point
potential reduction method. Also, we show how the convergence result of this general
framework can be applied to the complementarity formulation described in Chapter 5.
Based on that, we then applied a modification of the algorithm proposed by Wang and
incorporated second order corrections to it in order to solve the complementarity examples

used as case studies throughout this research.

7.2 CONTRIBUTIONS

In this section we present a brief summary of what we believe are the main contributions

of this work in the various aspects of conditional modeling.

7.2.1 MODELING

» We identify modeling capabilities which support the efficient development of
conditional models in both the declarative definition of equation-based models and the
procedural execution of methodsconditional configuration of the model structure,
i) conditional compilation, aniil) conditional execution of the procedural code of
methods.

* We developed consistent syntax and semantics for each of the above modeling
capabilities and completed their practical implementation intasleEND modeling

environment.
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In practice, the implementation of conditional modeling tools has proven to be a
powerful tool for the purposes of reusability and economy of programming. The
application of these tools in many of the curretEND modeling libraries provides

support for this assessment.

7.2.2 SRUCTURAL ANALYSIS

We extended Zaher’s consistency analysis so that it can be applied to a conditional

model without placing restrictions on the number of variables and equations presented

in the problem. This algorithm has been implemented withinsieEND

environment.

We described instances of problems in which the combinatorial complexity of the

consistency analysis can be reduced. In particular, the cases of the existence of

repeated structures and common incidence pattern among alternatives were discussed:

1. In our implementation of the consistency analysis, a “pre-analysis” is performed
first in order to eliminate those conditional statements whose alternative sets of

equations have the same incidence pattern.

2. The use of a representative incidence matrix significantly reduces the effort to
analyze conditional models containing repeated structures. The conditions on
which this analysis can be performed have been discussed. However, the
implementation of a tool which is able to identify repeated structures and analyze

the problem using only a subset of these repeated structures is yet to be completed.

7.2.3 FORMULATION

We developed a complementarity formulation to represent a conditional model as a
complementarity problem. The result of applying our formulation to a disjunctive set
of equations is a square system of nonlinear equations. We show that, if the complete
set of nonlinear equations (including the complementarity equations) is satisfied, then
the solution of the complementarity problem corresponds to a consistent solution to
the conditional model.

The complementarity formulation has shown to be useful in some practical

applications. For instance, the thermodynamic library im8@END modeling
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environment uses a complementarity equation in order to represent the existence or
non existence of a phase at some given conditions. This has allowed us to
simultaneously find the number of phases and the equilibrium compositions while

solving flash calculations with a conventional solver.

7.2.4 SDLUTION

* We provided an efficient implementation of the boundary crossing algorithm as a
conditional modeling solution tool. In such an implementation, we have integrated the
entities created or used to perform each of the activities required by the algorithm in an
object-oriented solving engine: the conditional sotvesliv. This solver has been
incorporated to theSCEND environment.

* We investigated solving the complementarity problem representing a conditional
model using:
1. A conventional nonlinear solver. We usedABeEND solverQrsivwhich applies a

modified Levenberg-Marquardt method.

2. Pivotal techniques. We studied the use of the Lemke’s pivoting rules developed for

linear complementarity problems.

3. Interior point methods. We used the framework developed by Wang and extended
his algorithm as well as second order corrections developed by Mehrotra and

Gondzio to our complementarity formulation.

» We solved several typical examples in the area of chemical engineering in order to
assess the value of the boundary crossing algorithm as well as each of the techniques
employed in the solution of the complementarity problems.

* We implemented the interior point methods mentioned above in a computer program
calledipsiv. This implementation is also available throughABEEND solver

interface.

7.3 FUTURE WORK

The area of conditional modeling still imposes many challenges to equation-based

modeling researchers. The following are a few recommendations for future work on this
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area:

In the boundary crossing algorithm implemented in this work, the analysis on a
boundary involves the solution to an optimization subproblem. The solution to this
subproblem is intended to provide a step which optimally reduces the residuals of all
the systems of conditional equations in the neighborhood of the boundary. However,
our experience with the solution of conditional models by using pivotal techniques
indicates that it may be not necessary to find such an optimal descent direction. In
other words, perhaps any step which reduces the residuals of the neighboring systems
of equations (any descent as opposed to optimal descent) can give a reasonable
movement away from the boundary. Hence, the issue here is to investigate if it is
possible to modify the boundary analysis in the boundary crossing algorithm so that

we solve a feasibility problem rather than an optimization problem.

The complementarity problems solved in Chapter 5 and Chapter 6 were formulated by
hand using the disjunctive representation of the system of conditional equations. We
created conditional modeling tools rich enough to represent the disjunctive equations;
what remains to be done is the implementation of a systematic derivation of
complementarity problems out of conditional statements representing those
disjunctive equations. In that way, we envision a solver which, having available the
information provided by conditional statements, could either use the boundary
crossing algorithm or generate the complementarity problem and solve this problem

by using the various techniques studied in this work.

A reformulation of our complementarity representation of a conditional model as a
mixed complementarity problem (MCP) is desired because it would make suitable the
application of a large number of codes and numerical techniques already developed for

the solution ofvicps. Future work should be conducted in this direction.

A conceptual gap still exists between the application of second order interior point
methods for the linear programming problem case and their application for the
complementarity formulation developed in this work. Future research should be

aimed at bridging this gap as far as possible.
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One of the more recent approaches to the discrete event simulation problem was
described in the development of the simulation packpgemMs In that work, Barton

(1992) concluded that the analysis of the time dependent behavior of a chemical
process requires the system to be decomposed into the continuous-discrete physical
behavior of the plant (models) and the external actions imposed on it by its
environment (tasks). Because of this decomposition, the physical behavior is specified
in a purely declarative language whereas the operation becomes part of the procedural
knowledge required to solve the equations. In contrast, we believe that the discrete
event simulation problem can be represented by using a purely declarative modeling
language.

The implementation of conditional modeling tools has been the first step towards that
goal. However, in order to deal with discrete event simulation problems, it is also
necessary to incorporate domain variables, such as time, into the modeling language.
The inclusion of domain variables provides a very convenient representation of the
time dependent behavior of chemical processes, including any discrete change. The
compiling implications of the use of these variables are very interesting. Domain
variables can be thought to be defined over an infiniteASetEND already supports
allowing one to define anything over a finite set. For a finite set, we require the sets to
be explicitly defined before compiling commences. Thus, the compiled data structure
contains storage space for every variable and equation defined over such a set. On the
other hand, for an infinite set the compiler cannot set aside the storage space as the
solver will control how many points in time it needs as it solves. What can be
compiled, however, is one instance in time of the models. The solver can use the
compiled instance to determine the time derivatives and the algebraic variables, given
values for the states. Thus, the solver can use this same model repeatedly for different

values of the states to integrate forward in time.
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ArPeNDIXA Eligible Set for a
Conditional Model
Having Alternatives
with Different Incident
Variables

This appendix presents the formal derivation of the eligible set of variables to be used in
the consistency analysis of a conditional model when such a conditional model contains
alternatives with different incidence sets and different number of equations among them.
By using set theory, we show that the set of variables eligible to become independent

variables in the context of the overall conditional problem is given by:

e = r_S)[E:(D (M\I))]

wheresis the number of the alternative sets of equatie'ﬁs, is the set of eligible
variables to be chosen as independent variables for the conditional prEJgiﬁlem, is the
eligible set of variables to be chosen as independent variables for the alteyiiséne

maximal set of variables, amds the set of incident variables for the alternaiive
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A.1 Notation

Besides the notation already established in Chapter 3, the following definitions are used

throughout this demonstration.

A.1.1  Set Operators

comp(A) Complement All the elements notAn

[ Subset Al B means that every elemeriis also
contained irB.

l Empty set
Disjoint Sets An B = [J
Equal Sets AOB an8 [ A

During the derivations, we frequently make use of the Morgan’s Theorem:

Lcomi A)] = comidry A]

A.2  Eligible Set in Zaher's Consistency Analysis

In his work, Zaher (1995) considered the necessary conditions for the structural
consistency of a conditional model. He show that, for a conditional model in which all the
alternatives have the same incident variables, the eligible set of variables for a conditional

model is given by:

€ =EnEsn..ES= 0 E (A1)

152



A.3 Extension of Zaher’'s Consistency Analysis to a
General Conditional Model

In a general case, the number of equations in each alternative of a conditional model may
change and so may the incidence set of variables. This section presents a derivation of the

eligible set of a conditional model for that general case.

A.3.1  Deriving the Eligible Set in a General Conditional Model
In order to derive the eligible set of variables for a general conditional model, we start by
finding the eligible set for each alternative in the context of the overall problem through

the following analysis.

Assume that an output assignment performed to each individual alternative results in the
eligible setsE:‘ foramn{1...s} . Considerthe case of alternative number 1. In order to
find the “truly” eligible set of variables for alternative 1 in the context of the overall
conditional model (all the alternatives) we have to eliminate the eIemeIEEs of  which are

ineligible in any of the alternatives. We will denote the resulting corrected set of eligible

variables for alternative 1 eE‘,'i . We obtain:
k, _ k k k k k k k
Ei' = EXM[E; n (IL\Ex))] O[E; n (I15\E3)] O ...[E] n (IQ\EQ]} (A.2)
Here is an explanation of the meaning of (A.G)Z\E';) is the set of variables incident but
ineligible to be chosen as independent variables in alternative 2. HI:‘e‘Ime(,l 2\E;) is

the set of eligible variables in alternative 1 which are ineligible in alternative 2. Therefore,
[EX n (IL\ES)] D [EX n (1I,\ED] O ...[EX n (1AEY)] represents the set of variables
which are eligible in alternative 1 but ineligible in some alternative. With that in mind, the
corrected seE'i’ is the set of eligible variables for alternative 1 which can be also
considered as eligible in the context of the overall conditional model (note the minus

operation in (A.2)).

In general, for any alternative ] {1...s}  the set of eligible variables for each alternative

in the context of the overall conditional problem is given by:
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EX = ENFEX [ (] (Ij\ET)}E (A.3)
O i, #i 0

Finally, the union of these individual sets gives the set of eligible variables for the overall

conditional problem:

e = [JEX (A.4)

For a general conditional model, equation (A.4) is the equivalent to equation (A.1) for

conditional models in which all the alternatives have the same incident variables.

A.3.2 A simplified Approach
We next show that the previous analysis does not have to be performed as described. We
demonstrate that, if we augmented the eligible set of each alternative with the nonincident

variables of that alternative,

EX

"= EFO (ML) (A.5)

and find the intersection of the augmented Eéts :

Ko _ S ok, _ Sk
e = NE" = NIE D (M) (A.6)
|

then the resulting sel s completely equivalent to the'set given by (A.4). Recall
thatM is the maximal set of variables,

S
M =1,01,0..0¢=[1 (A7)
J

so that(M\I;) represents the set of nonincidences in altermative
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In oder to demonstrate our assertion, we first carry out the following derivation. From
(A.3), we get,

EX = ENFEX [ 0] (Ij\ET)}E (A.8)
O O

i

E E\DD [E n(I\E)]D

0jj, j #i
INE
g = eNH [ En a1 \E)}D[E m(I\E)]D
i
k S

kU 0
= ENDL(ES n (1)\ED] D
0 0

S
= Eik\%% [D(Ij\ET)}E (A.9)
0 i 0
Then we use (A.9) to obtain,
S
EN = E:(\EE:(O [D(lj\E'j‘)E (A.10)
j

£k = Eik\ék!(ﬂ [j“j O (M\I)\[E] O (M\Ij)]}
J

oo™

EX = ENFEE [ﬁ M\EY O (M\uj)]}E
O j O
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S
EX = ENFEX [M\Ep END (M\Ij)a
U j

[

S
EX = ENFEX [M\Ep END (M\Ij)a
U j

[

S
£ = E:(\E[E:( A M]\[E:‘m A Ef D (M\Ij)ag
0 j .

EY = En [r; E“D (M\Ij)} (A.11)
j

Thus, by substituting (A.6) in (A.11):

EY = EXn & (A.12)
and from (A.4):
k Sk K
e’ = [][E ne"] (A.13)
i
which is equivalent to:
S
e = HIEHn v (A.14)
i
S
Finally, sincee“’ is always a subset E,kg , We obtain,
i
e = (A.15)
Q.ED

156



(A.15) means that the derivation of the set of eligible variables for a conditional problem

presented in A.3.1 can be substituted by the combined use of (A.5) and (A.6).

A.4  Proof of the Reduction to the Particular Case

We finish our demonstration by showing that both (A.4) and (A.6), reduces to (A.1) when

the incidences are the same for all the alternatives.

A.4.1  Reduction from (A.4)
Start with equation (A.3)

S
el = Ef\ék!‘n [ [] (|j\Ef)}§

I #i

since
I, =1, = =lg=1 =M (A.16)
then
(I\E) = (INE) = (M\E}) = comp( E) (A.17)
By using Morgan’s Theorem:
[][comy é;)] = com;{r) Iﬂ (A.18)
j j
we get the following equivalence:
S k Sk
[ (,\E)) = v N (E)) (A.19)
INES INES
Substituting (A.19) in (A.3):
S
EX = ENFEX [n N (ET)}E (A.20)
O i,j#i 0

and further simplifying:

157



K, k k k S k.0
] INEL O

s O
e = ENEEN n (E)]
U i 0
From (A.1):

Finally, from (A.4):

A.4.2  Reduction from (A.6)
Starting with (A.5)

EN' = EXO (ML)

and since

Hence,

and, finally,

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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(A.30)
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AppenDIXB  Derivation of the
Optimization
Subproblem of the
Boundary Crossing
Algorithm

In this appendix, we present the derivation of Equation (4.7) from Equation (4.6).
Equation (4.7) represents the optimization subproblem that we need to solve when the

boundary crossing algorithm encounters a boundary in the solution path.
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B.1 The Derivation

Zaher (1991,1995) describes the derivation of Equation (4.7) as follows. Let us start from
Equation (4.6):

.
0
min %nax (@) EdD

Os.t. iOB O
st. d <1
whereB is the set of all of the subregions in the neighborhood of a bouridgpxya) is

the gradient vector of the objective function for the neighboring subregamald is the
descent direction which constitutes the solution to the problem (4.6). Let us now define
the matrix N whose columns are the vectors of gradients of the subregions in the
neighborhood of the current boundary. That is, coluofrN is the vector

Oyxei(a), Oi OB. Hence, the inner maximization problem of (4.6) can be reformulated as

finding the value of a scal@rsuch that:

Be= N'd (B.1)

wheree is a vector with all its elements equal to one. Then, Equation (4.6) can be

rewritten as: )
min B
st.pexN'd (B.2)

o
1D
[\

Tms<1
The real-valued Lagrange functidn,of problem (B.2) is given by:

L(B.d,a, 1) = B—a'(Be- N'd)-m(1-d"d) (B.3)

wherea is the vector of multipliers corresponding to first of the inequality constraints in
(B.2) andrmtis the multiplier (scalar) corresponding to the second inequality of (B.2).

Hence, the dual of the problem (B.2) is given by:
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max B—a' (Be—N'd)—m(1-d"d)

S.t. gT [g =1 (B 4)
2md = —Na

m20,a,20, 0i OB

The equality constraints of (B.4) were obtained from the first order conditions of the

Lagrangian function with respect to the varialjeendd. After further simplification,
(B.4) reduces to:

max  —m(d' d+1)

2rd = —N [
L (B.5)
e b =1
n=0,0,20,0i 0B

which is equivalent to:

min m(d [d+1)

. B (B.6)

n=0,0,20, 0 0B

Finally, it should be recognized that, as long as the problem (B.6) is bounded and the
solution is non trivial>0), the multiplierrtwill have no effect in the solution vectdof

the optimization problem (B.6). Therefore, (B.6) reduces to equation (4.7):
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AprPenDIXC ASCEND Models of
the Examples Solved
with the Boundary
Crossing Algorithm

In this appendix, we show a representative section af3beND models for the examples
described in Chapter 4.
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C.1 The Models

Example 1 Fluid Transition (Zaher,1995).

CONDITION
bound: (Pd - Pf) * 1.0 {atm”-1} < Mf - 1.0;
END CONDITION;

sonic_flow <==> SATISFIED(bound,1e-08);

subsonic: Pf = Pd;
sonic: Mf = 1.0;

WHEN (sonic_flow)
CASE TRUE:
USE sonic;
CASE FALSE:
USE subsonic;
END WHEN;

Example 2 Phase Equilibria (Zaher,1995).

components :==['B",E’,’W];
phases == ['A’,/O','V'];

CONDITION
FOR i IN phases CREATE
bound[i]: SUMIYIil[j] | j IN components ]+
phi[i] >= 1.0;
END FOR;
END CONDITION,;

FOR i IN phases CREATE
sum([i]: SUMI[Y[il[jl | j IN components ] = 1.0;
frac]i]: phi[i] = 0.0;
exist[i] <==> SATISFIED(bound]i],1e-08);

WHEN (exist[i])
CASE TRUE:
USE sum(i];
CASE FALSE:
USE fracfi];
END WHEN,;
END FOR;
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Example 3 Heat Exchanger (Zaher,1995)

components :==['B’,/P5’,'H’;

CONDITION
bound1: SUM[X[O][i] | i IN components] + phi[0] >= 1.0;
bound2: SUM[X[2][i] | i IN components] + phi[1] >= 1.0;
END CONDITION;

lig_exist[1] <==> SATISFIED(bound1,1e-08);
lig_exist[2] <==> SATISFIED(bound2,1e-08);

sumO: SUMIX[O][i] | i IN components] = 1.0;
fracO: phi[0] = 0.0;

sum2: SUM[x]2][i] | i IN components] = 1.0;
fracl: phi[1] = 0.0;

pl: eta[l] = 0.5;
p2: eta[2] = 0.5;

suml: SUM[X[1][i] | i IN components] = 1.0;
pl2: eta[1] = 0.0;

WHEN (liq_exist[1])

CASE TRUE:
USE sumO;
USE suml;
CASE FALSE:
USE fracO;
USE p12;
END WHEN;

WHEN (liq_exist[2])

CASE TRUE:
USE sum2;
USE p1;
CASE FALSE:
USE fracl;
USE p2;
END WHEN;
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Example 4 Pipeline Network (Bullard and Biegler, 1992). Model of a pipe with no

valve.

positive_flow IS A boolean_ var;

CONDITION
bound: Q >= 0.0 {gpm};
END CONDITION;

positive_flow <==> SATISFIED(bound,1e-08 {gpm});

positive_head: H = k * sqr(Q);
negative_head: H = -k * sqr(Q);

WHEN (positive_flow)
CASE TRUE:
USE positive_head,;
CASE FALSE:
USE negative_head;
END WHEN;

Example 5 Simple L-V Flash Calculation (King, 1980).

(* Rachford-Rice *)

SUM[ (z[i] * (K[i]- 1))/ ((K[i]-1)* V_F) + 1)
| i IN components]=R-V_F;

(* Conditional Equations *)
CONDITION
boundl: R <= 0.0;
bound2: R <= 1.0;
END CONDITION;

(* Logical Relations *)
boll <==> SATISFIED(bound1,1e-08);
bol2 <==> SATISFIED(bound2,1e-08);

(* Variant Equations*)
lig_eq: V_F =0.0;
two_eq: V_F =R;
vap_eq: V_F=1.0;
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(* Disjunctions *)
WHEN (bol1,bol2)
CASE TRUE, TRUE:
USE lig_eq;
CASE FALSE,TRUE:
USE two_eq;
CASE FALSE,FALSE:
USE vap_eq;
OTHERWISE:
END WHEN;

Example 6 Linear Mass Balance (Grossmann and Turkay, 1996).

CONDITION
boundl: Fmain <= BJ[1];
bound2: Fmain >= BJ[2];
END CONDITION,;

boll <==> SATISFIED(bound1,1e-08{lb_mole/hour});
bol2 <==> SATISFIED(bound2,1e-08{lb_mole/hour});

(* Variant Equations *)

eqgla: Fsubl = a[1] * Fmain;
eqlb: Fsub2 = b[1] * Fmain;

eg2a: Fsubl = a[2] * Fmain;
eg2b: Fsub2 = b[2] * Fmain;

eg3a: Fsubl = a[3] * Fmain;
eq3b: Fsub2 = b[3] * Fmain;

(* Disjunction *)

WHEN (bol1,bol2)
CASE TRUE,FALSE:
USE eqla;
USE eqlb;
CASE FALSE,FALSE:
USE eqZ2a;
USE eq2b;
CASE FALSE,TRUE:
USE eq3a;
USE eq3b;
END WHEN;
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ArpENDIXD Complementarity
Equations of the
Examples of Chapter 5

This appendix presents the complementarity equations (or a representative part of them)

for each of the examples solved in Chapter 5.
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D.1  Complementarity Equations for the Examples
Solved in Chapter 5

Example 1 Fluid Transition (Zaher,1995).

A single complementarity equation is required. The definition of the positive residuals and
the complementarity equation are given by:
Pt =Py = P2,

— — =0
py, =0 . Py, =0 . Py, P2,
Py, 20 Py, 20 P1, p2120

Since the problem contains only one condition in each disjunctive term, our

(D.1)

complementarity representation reduces to the standard complementarity formulation.
Example 2 Phase Equilibria (Zaher,1995).

The representation of the existence-non existence of each phase is given by the following

set of equations:

Pa = Pq,
1_'gcyiA = Py,
! (D.2)
=0 =0| Py P =0
P, D P2, D
Py, 20 Py, 20 Py, Py, 20
There are three possible phases, but there is only one equation in each disjunction, and,

therefore, only one complementarity equation for each of phases is required. Each of the

complementarity equations is similar to the complementarity equation of Example 1.
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Example 3 Heat Exchanger (Zaher,1995)

In order to obtain the complementarity formulation of this example, we start by
recognizing that we can decouple the disjunctive statement of Example 4.3 in two

independent disjunctions:
@ =0 ichio i
ni=0 g gcxil: (D.3)
|

gcxio+¢o<1
i gcxioﬂpOZl
i

and
=0 Xi =1
(pl_ igc 2
r]2 =0.5 0 nl =05 (D4)

Xi +@,<1
igc i, T ®1 igcxi2+(plzl

® = p111 1- Xi, = p211
igt K
Ny = p121 1_i§CXil = p221

_ (D.5)
[plu = O] D [p211 = ] D plll I:pzll + p]-21 Ep221 - 0

p121 =0 pln Ep221 + p121 Epzn =0
pijlzo Oi0[1...2],j0[1...2]

p221 =

and
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¢ = Py, 1_-&)(5 = P2,

n,-05=p,  05-n;=p,
= D.6
P1, = 0 0 P2, = 0 P1,, Ep212 T Py, Epzzz =0 (D-6)
Py, =0 Py, P, + Py, Py =0
ijZZO Oio[1...2],j0O[1...2]

P2, =

Example 4 Pipeline Network (Bullard and Biegler, 1992).
1) Arcs with no valve
2 _
Hj + KIQ;™ = pg

2
Ky =Hj = P,
Qi = P1,— P2,

1

1

(D.7)
P1, = 0| | P2, = 0] ) Pr P2, ¥ Py, 0, =0
P, =0 |Py, =0 Py, [Py, + Py, [Py =0
pquo OkO[1...2],q0[1...2]
2)Arcs with check valve
K Einj = Py,
K [inj —Hj = py,
Hij = pL—P
PR (D.8)

P, =0| |pp,=0] P1, LR+ Py, Py =0
P 20 OkO[1...2],q0[1...2]

[pll ] O] . [pzl ) O] 5 P P, * Py, [Pz, = 0
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Example 5 Simple L-V Flash Calculation (King, 1980).

The behavior described in Example 4.5 can be represented in terms of the following

disjunctive statement:

z, (K, -1)
IZ(Ki—l) QV/F)+1

V/F=0|g|V/F=R |V/F=1
R<0 O0<R<1 R=>1

= R-V/F

(D.9)

This example includes a disjunction with three disjunctive terms in it, but a
complementarity formulation can still be obtained. Also, in this case, some of the residual
variablegp will appear in more than one disjunctive term and a representation including an
indexi for each disjunctive term could be confusing. For that reason, we use the variables

p indexed in successive order as follows:

V/E=p, V/F=R+p-p; V/F=1-p,

(D.10)
R= ps—pg R=1+p;-pg
The disjunctive representation in terms of the residuals is:
p,=0 p,=0 p,=0
pSZODpGZODDGZO
P3=0] |p3=0] |ps=0 (D.11)
P7=0] [P7=0 [Pg=0)

p;20 0jO0[1...8]

Note that several conditions appear in two different disjunctive terms. We could generate
the complementarity equations as we described in section 5.2.1.3. The formulation

obtained would still be consistent. However, we took advantage of the structure of the
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disjunctive representation given above in order to simplify the formulation. The following

structure can be identified:

H DH 0 H 0 (AOB)O(COB)0(COD) (D.12)
B [B| |D

and converting from Disjunctive Normal Form to Conjunctive Normal Form:

(AOB)O(COB)O(COD)O (ADC)O(BOC)O(BOD) (D.13)

This derivation tells us that, in order to represent the three-term disjunctive term, we can

use the union of three two-term disjunctions:

Tp=0 [p,=0]0 Hlps=0] [p,=0]0 lps=0] _[p,=0]0
|:|pl_ 0 p2_ DDng_ 0 p2_ DDng_ 0 p4_ 0
O ps=0 Ps=0{0 Op,=0 Ps=00 Op,=0 pg=00 (D.14)
O O 0 O 0 []

p;20  OjO[1..8]

which is equivalent to

% b Lp OE E Lp [p OE E [p Lp OE

+ = + = + =
Dpl 2% Ps P DDDps 27 P76 DDDpS 4+ P71 Pg -
Eplﬁpe+psEbz=OE Engbewabz:OE Engb8+p7Ep4:0E(D.15)

p;20 0jO[1...8]

If we apply that simplification for this example, the number of terms in our
complementarity representation decreases significantly: strictly, a disjunction with three
terms and four conditions in each term requirks@¥ trilinear terms for its

representation. On the other hand, the previous derivation tells us that 12 bilinear terms are

enough for the representation of this particular problem.
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We still need to find out how to distribute the 12 bilinear terms through the 4
complementarity equations required to obtain a square system of equations. Such a
distribution is not unique, and we can use any set of complementarity equations which
does not introduce numerical singularities (any set in which it can be proved that there is a
possible pivot for each complementarity equation in the Jacobian matrix) to the system.

The distribution can be as simple as the following:

Py [P+ ps [hg = 0
Py [P+ ps Lo, = 0
P3 [Pz + p7 [g + p3 [y + p7 [g
P3 [Pg + p7 Ly + p3 [hg + p7 [y
p,20  OjO[L..8]

(D.16)

in which the terms of two disjunctions are joined to generate two of the equations, or a

more thoughtful one like:

Py P, + p3 g + p; Lpg = 0
Py Lpg+ P3P, + p; L, =0
Ps [P, + p7 L + p3 Ly = 0 (D.17)
Ps [Pg + p7 L, + p3 g = 0
p; =0 0j0O[1...8]

in which the complementarity pairs are arranged to avoid repeated indices in the
complementarity equations. When incorporated with the rest of the system, both sets of
complementarity equations provide the correct solution to the problem. The number of
iterations that we reported in Chapter 5 corresponds to the straightforward formulation

given first.

Example 6 Linear Mass Balance (Grossmann and Turkay, 1996).

Even though the original disjunctive problem is linear, the introduction of the
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complementarity equations leaves us with a nonlinear system of equations. Also, as in
Example 4.5, this example contains disjunctions with 3 disjunctive terms. As a
consequence, the formulation once again becomes complicated. Units 1 through 5 (those
containing two equations in each term) can be represented by similar sets of disjunctive
equations. Here we only show the complementarity equations for unit operation 1. The
equations for unit operation 2 to 5 are very similar to the equations generated for this one.
For the case of unit 6 (which has only one equation in each disjunctive term), the
disjunctive statement and the complementarity equations are similar from those obtained

for the example of the simple flash calculation.
The simplification process for this example is also the same as that given in Example 5.

Definition of the residual and slack variables:

F7 =50+ pg—pyg F; = 80+p;;—pygp

Disjunctive statement in terms of the residual and slack variables:

pl:O p3:O p3:
p5:O p7:O p7:

Pg =0 0 P10 = 0 P10 =

p,=0 Py = Py = (D.19)
p6 =0 p6 = p8 =
P11=0] [Py = P12=0

p;20 0jO[1...12]

After converting to Conjunctive Normal Form:
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| 0o O 0 O 0
5 0 R =8 P e = = i
D=0 |pw=02 Jpp=0 |py=02 Jpy=0 |p,=0F @
| 0o O 0 O 0

One possible set of complementarity equations:

Py L3+ Py Ly + Pg LP7 + Pg LP1o+ Py L1 = 0
Py L7 + Py Lpg + Pg LPyo + Pg L3 + Py [, = 0
Py EPyo+ P2 LPy2 + Pg [LP3 + Pg L7 + gy g = 0
Ps [P3 + Pg [Py + P1y P10+ P2 L7 = 0 (D.21)
Ps [Pz + pg [g + P13 3 + P [Py = 0
Ps P10+ Pg P12+ P1 [Py + P2 T3 = 0
p,20  0jO[1.12]

The number of iterations reported in Chapter 5 corresponds to the solution of the system
of equations including the set of complementarity equations (C.21), but some other

alternative sets were also successfully used to obtain the solution to the problem
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AprPeNDIXE  Proof of the descent of
the potential function in
Wang'’s Algorithm

This appendix presents the demonstration developed by ¥Yahd1996). Based on the
work of Kojimaet al.(1994), Wang shows that perturbed Newton direalias a descent

direction of the function potential functiap(w) such that:
P(w+Ad) - P(w) s —aA(1-0)({—ny)

wherea 0 (0,1) A is a scalar and there existd>0 such that, for al\ 0 (O,A) , we get
w+AdOQs.
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E.1 Demonstration

Wanget al (1996) establish some important properties about the perturbed Newton
direction calculated within the potential reduction algorithm. These properties are

established in Lemma 1 below.

Lemma 1 Let{ >n, be given. Under the assumptions

« Os#20andQs = {w0Q|G(w) >0} and

* His continuously differentiable on the s,

the following properties are valid for an arbitrary veaor] Qs and any scalar
a (o, 1):

(i) W(w)=({—ny) Hog(v(w)) + nylog(n,)
(ii) Y is continuously differentiable ai and has a gradient:
Ow(w) = V—Z— 20F (w) F(w) + 0G(w)e) — 0G(0) G(w)

(w)

(iii) If dis a solution of

H'(w)d = F'(wd| _ —F(w)
G'(w)d —-G(w) + op(w)e

then
OW(w) ' d<=(1-0) +(Z-ny);
hence there exists a scal0 such that for al\ [ (O,A)
w+Ad0Qy,
P+ Ad) -P(w) <—aA(1-0)({—n,) <0

Proof. The inequalityi) is frequently used in the study of interior point methods. This

proof is taken from Kojimat al. (1994):

Starting with the definitions of the potential functigit)
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ny

(@) =  Oog(F(w) F(w) + €' G(w)) - Y logGi(w)
and the measure of the erndiw)

V() = F(w) F(w) + &' G(w)

Then, we get

P(w) = ¢ Hog(v(w) - logG;(w) (E.1)
P(w) = ({—ny) Oog(v(w)) + n, Oog(v(w)) - 10gG;(w) (E.2)
W(®) = (T —ny) Oog(v(w) + N, Cog(e' G(w)) > 10gG;(w) (E.3)

O O

O 5 O

O(e G(w))/n, O
P(w) = ({—n,) Hog(v(w)) + n, Hog# o DUHZE+ n,log(n,) (E.4)

G. [l
158 §

W(w) 2 ({ —ny) Hog(v(w)) + n,log(ny) (E.5)

Here the last inequality follows from

(-

0
T 0
(e G(w))/n, O
=0 (E.6)

nZD

n, Oog -
||G-m [
Y '( )% ]

55

The identity in (ii) follows from the following computation. Consider the definition of
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W(w) givenin (E.1). For eaghF 1,2,...n+ny,

oM ™ 9G. (0
) V(Zw) Emz 2F (63 )D—'( ) z —( )m ZG( )" D—'( ) €7

J J

and, therefore,

OP(w) = H20F (w) F(w) + OG(w)e) — DG(oo)G(oo)_1 (E.8)

( )

To prove the first inequality iii) , we usg(ii) and the definition ofi(w) = eTG(w)/ n,

to get
(@) = 5 )[(ZF(w) F(0)d+ € G(@d) - (G@ ™) G@d  (E9)
(E.10)
Og(w) 'd = o )E(ZF((D) (-F(@)) + €' (-G()) + op(@)n,) + n, - op(w)e’ Gw)
(E.12)
Og(w)'d = _ﬁ 2F(w) F(w) + (L-0)e' G(w)) + ny—an, 16w ¢ Grf‘*’)
N, 2

n, 1/n,- n, 1/n,
OY(w) ' d<—Z(1-0) +n,— onz{ M Gi(w)} { M Gi(w)_l} (E.12)
i=1

OP(w) ' d<-Z(1-0) +ny(1-0) (E.13)
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OPw) d<—(1-0) +(Z—ny) (E.14)

where the inequality in (E.12) follows from the arithmetic-geometric mean inequality
applied to the termeTG(w)/ n, arel G(oo)_l/ n, and the fact that(1-o0)

Finally, Wang establishes the last assertiofiiiln Using the second assumption and the
fact thatQs is an open set, it is concluded that there exists a Scalasuch that, for all
AO(OA), w+Ad0Q; and

W@+ Ad) —P(w) < MOY(w) d+ (L—a)(L-p) (L —n,)) (E.15)
P+ Ad) — P(w) < —aA(1-0)(] - n,) (E.16)
Q.E.D.
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