2.3 Gamma and Log-Gamma Functions

A. Purpose

These subprograms compute values of the gamma function and the natural logarithm of the gamma function, [1] and [2]. The gamma function is defined by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-s} s^{x-1} d s
$$

For integer values of $n \geq 0$, it satisfies the relation

$$
n!=\Gamma(n+1) .
$$

B. Usage

B. 1 Program Prototype, Single Precision

REAL SGAMMA, SLGAMA, X, Y
Assign a value to X and obtain gamma or the natural logarithm of gamma, respectively, through use of the function statements:

$$
\begin{array}{|l|l|}
\hline \mathbf{Y}=\text { SGAMMA }(X) & \mathrm{Y}=\text { SLGAMA }(\mathrm{X}) \\
\hline
\end{array}
$$

B. 2 Argument Definition

\mathbf{X} [in] Argument at which function evaluation is desired. See Section E for restrictions on X.

B. 3 Modifications for Double Precision

For double precision usage, change the REAL type statement to DOUBLE PRECISION and change the function names from SGAMMA to DGAMMA and SLGAMA to DLGAMA.

B. 4 Program Prototype, Complex
 INTEGER MODE
 COMPLEX CARG, CVAL
 REAL ERREST

Assign the complex argument in CARG. Set MODE to 0 or 1 .

CALL CGAM(CARG, CVAL, ERREST, MODE)

The complex result will be in CVAL with an error estimate in ERREST.

[^0]
B. 5 Argument Definitions

CARG [in] Complex argument. The argument must not be zero or a negative real integer value.
CVAL [out] Computed complex value of either loggamma or gamma. The imaginary part of loggamma, say v, will be standardized to satisfy $-\pi<$ $v \leq \pi$.
ERREST [out] On return ERREST gives an estimate of the absolute error (for log-gamma) or the relative error (for gamma) of the computed value.
MODE [in] Set value to 0 for log-gamma and 1 for gamma.

B. 6 Program Prototype, Double Precision Complex

INTEGER MODE

DOUBLE PRECISION CARG(2), CVAL(2), ERREST

Assign the complex argument in CARG(), with real part in CARG(1) and imaginary part in CARG(2). Set MODE to 0 or 1.

CALL ZGAM(CARG, CVAL,
ERREST, MODE)

The result will be in $\operatorname{CVAL}()$ with an error estimate in ERREST.

B. 7 Argument Definitions

CARG() [in] Array of 2 values representing the complex argument, $\operatorname{CARG}(1)$ for the real part and CARG(2) for the imaginary part. The argument must not be zero or a negative real integer value.
CVAL() [out] Array of 2 values representing the complex function value returned: CVAL(1) and CVAL(2) for real and imaginary parts, respectively. The imaginary part of log-gamma, say v, will be standardized to satisfy $-\pi<v \leq \pi$.
ERREST [out] On return ERREST gives an estimate of the absolute error (for log-gamma) or the relative error (for gamma) of the answer.
MODE [in] Set value to 0 for log-gamma and 1 for gamma.

Although the Fortran 77 standard does not support a double precision complex type, many vendors do provide for this using a declaration COMPLEX*16 or DOUBLE COMPLEX. With such a compiler one can probably use

ZGAM with its first two arguments declared as double precision complex.

C. Examples and Remarks

C. 1 Example

The gamma function satisfies a "duplication" identity which may be written as

$$
z=\frac{2 \sqrt{\pi} \Gamma(x)}{2^{x} \Gamma(x / 2) \Gamma\left(x / 2+\frac{1}{2}\right)}-1=0
$$

The listing of DRSGAMMA and ODSGAMMA gives an example of using these subprograms to evaluate this identity. The program DRCGAM and output ODCGAM illustrate the use of CGAM.

C. 2 Remarks

Neither the Fortran 77 standard nor the Fortran 90 standard includes intrinsic functions for gamma or log-gamma; however, such functions with the names GAMMA, DGAMMA, LGAMMA, ALGAMA, and DLGAMA are provided as intrinsic functions in some vendors' Fortran systems. In particular these latter functions are provided with the UNISYS ASCII Fortran and IBM VS-Fortran, but not with the VAX-11 Fortran. In the UNISYS and IBM systems GAMMA and LGAMMA are "generic" names and thus can be used with either single or double precision arguments.

In a system having DGAMMA or DLGAMA as intrinsics a reference to one of these function names will cause the vendor-supplied code to be used. If one wishes to override this and use the code from this library one must declare the function name to be EXTERNAL in the referencing program unit.

D. Functional Description

The gamma function is defined and takes positive values for all real $x>0$, becoming unbounded both as $x \rightarrow 0$ and as $x \rightarrow+\infty$. As $x \rightarrow 0, \Gamma(x)$ is asymptotic to $1 / x$, and as $x \rightarrow \infty, \Gamma(x)$ is asymptotic to

$$
h(x)=(x / e)^{x} \sqrt{2 \pi / x}
$$

As an estimate of the size of $\Gamma(x)$ for large positive real x, note that for $x>9, \Gamma(x)$ satisfies $h(x)<\Gamma(x)<$ $1.01 h(x)$. The gamma function is also defined for negative x except at the negative integers where it has poles.

As a function of a complex variable the gamma function is analytic throughout the complex plane except for poles at zero and the negative real integer points. See [1] and [2] for further discussion of the gamma function.
The subprograms SGAMMA, DGAMMA, SLGAMA, and DLGAMA are based on subprograms developed by
W.J. Cody, Argonne National Laboratory, which were designed for 10^{-20} precision. These subprograms use rational minmax approximations on selected subintervals as well as asymptotic formulas and argument reduction techniques. The degrees of the rational approximations are not varied between the single precision and double precision subprograms or as a function of the host computer's precision.

Subprograms CGAM and ZGAM are based on [3], making use of the Stirling asymptotic series and recursive formulas. The accuracy adjusts to the host machine up to about 17 significant decimal digits. CGAM and ZGAM reference $\operatorname{I1MACH}(10)$ to find the radix of the host system's floating point arithmetic.

Accuracy tests

Accuracy tests were run on a Univac 1108 in 1969 and on a Univac 1100 in 1983. The arithmetic precision of these systems is $\rho_{1}=2^{-27} \approx 0.745 \mathrm{E}-8$ for single precision and $\rho_{2}=2^{-60} \approx 1.15 \mathrm{E}-18$ for double precision.
Subprograms SGAMMA and SLGAMA were tested in 1983 on a Univac 1100 by comparison with DGAMMA and DLGAMA at 18,000 points. The test results may be summarized as follows:

Function	Argument Interval	Max. Rel. Error
SGAMMA	$[0 ., 1]$.	$2.5 \rho_{1}$
	$[1 ., 2]$.	$1.4 \rho_{1}$
	$[2 ., 10]$.	$9.2 \rho_{1}$
	$[10 ., 17]$.	$100.0 \rho_{1}$
	$[17 ., 30]$.	$180.0 \rho_{1}$
SLGAMA	$[0.0,0.5]$	$2.7 \rho_{1}$
	$[0.5,4.0]$	$6.5 \rho_{1}$
	$[4.0,35.0]$	$2.8 \rho_{1}$

To test the double precision functions, and as an additional test of the single precision functions, the function
$z(x)$ defined in Section C and a logarithmic form of $z(x)$ defined as

$$
\begin{aligned}
& w(x)=\operatorname{LGAM}(x)+0.5 \ln (2 \pi)+(0.5-x) \ln (2) \\
& \quad-\operatorname{LGAM}(0.5 x)-\operatorname{LGAM}(0.5 x+0.5)=0
\end{aligned}
$$

were evaluated on a Univac 1100 in 1983 at about 100 points. These tests are summarized as follows ("Max. Error" is the maximum magnitude of the test function):

Subprogram Used	Argument Interval	Test Function	Max. Error
SGAMMA	$[-20.75,-11.25]$	z	$114 \rho_{1}$
	$[-11.25,11.50]$	z	$6 \rho_{1}$
DGAMMA	$[11.50,34.00]$	z	$100 \rho_{1}$
	$[-20.75,43.60]$	z	$130 \rho_{2}$
	$[43.60,106.80]$	z	$384 \rho_{2}$
SLGAMA	$[106.80,170.00]$	z	$1186 \rho_{2}$
	$[0.0625,3.1]$	w	$3 \rho_{1}$
	$[3.1,11.5]$	w	$8 \rho_{1}$
DLGAMA	$[11.5,0.12 \mathrm{E} 37]$	$w /$ SLGAMA	$2.7 \rho_{1}$
	$[0.0625,12.0]$	w	$110 \rho_{2}$
	$[12.0,0.77 \mathrm{D} 305]$	$w /$ DLGAMA	$2.9 \rho_{2}$

Subprogram ZGAM was tested in 1969 on a Univac 1108. The maximum relative error noted for complex arguments, x, satisfying $|x|<30$, was $345 \rho_{2}$ for gamma and $93 \rho_{2}$ for log-gamma. The test function, z, was evaluated at a few complex points, x, of magnitude near one on a Univac 1100 in 1983. The maximum value of $|z|$ was $30 \rho_{2}$.

References

1. Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards (1966).
2. J. F. Hart et al., Computer Approximations, J. Wiley and Sons, New York (1968) Section 6.6.
3. H. Kuki, Complex gamma function with error control, Comm. ACM 15, 4 (April 1972) 262-267 and 271272.

E. Error Procedures and Restrictions

Subprograms SGAMMA and DGAMMA accept negative as well as positive arguments. These subprograms will issue an error message and return the largest machine number, Ω, if x is zero or a negative integer, or if $x \geq x_{g}$.
The subprograms SLGAMA and DLGAMA are designed only for positive arguments. These subprograms will issue an error message and return the value, Ω, if $x \leq 0$, or if $x \geq x_{\lambda}$.

The complex gamma subroutines CGAM and ZGAM issue an error message and return the complex value (Ω, $\Omega)$ if the argument is zero, a negative real integer, or a large argument that would cause overflow.

Let Ω denote the machine overflow limit. Let x_{g} denote the value of x for which $\Gamma(x)=0.875 \Omega$, and let x_{λ} denote the value of x for which $\ln (\Gamma(x))=0.875 \Omega$. Some examples of these values follow.

Computing System	x_{g}	x_{λ}
VAX 11/780, SP \& DP	34.8	1.8 e 36
UNISYS (Sperry) 1100, SP	34.5	1.8 e 36
IEEE Math processor, SP	35.0	3.6 e 36
IBM Mainframe 3xxx, DP	57.5	3.8 e 73
UNISYS (Sperry) 1100, DP	171.5	1.1 e 305
IEEE Math processor, DP	171.6	2.2 e 305
Cray, SP \& DP	966.9	8.5 e 2461

The values listed above are computed on a first-time flag at run time making use of the overflow limit obtained from R1MACH(2) or D1MACH(2).

F. Supporting Information

Entry Required Files
CGAM AMACH, CGAM, ERFIN, ERMSG, SERM1, SERV1
DGAMMA AMACH, DERM1, DERV1, DGAMMA, ERFIN, ERMSG
DLGAMA AMACH, DERM1, DERV1, DGAMMA, DLGAMA, ERFIN, ERMSG
SGAMMA AMACH, ERFIN, ERMSG, SERM1, SERV1, SGAMMA
SLGAMA AMACH, ERFIN, ERMSG, SERM1, SERV1, SGAMMA, SLGAMA
ZGAM AMACH, DERM1, DERV1, ERFIN, ERMSG, ZGAM

Subprograms SGAMMA, DGAMMA, SLGAMA, and DLGAMA were developed by W.J. Cody, Argonne National Lab., 1982, and adapted to the JPL MATH 77 library by C. Lawson and S. Chiu, JPL, 1983.

Subroutines CGAM and ZGAM were developed by H. Kuki with the name CDLGAM ([3] above), adapted for JPL Univac 1108 usage by E.W. Ng, 1969, and adapted to the JPL MATH 77 library by C. Lawson and S. Chiu, JPL, 1983.

DRSGAMMA

```
c DRSGAMMA
c>> 1996-07-12 DRSGAMMA Krogh Minor changes for conversion to C.
c>> 1994-10-19 DRSGAMMA Krogh Changes to use M77CON
c>> 1992-06-11 DRSGAMMA Krogh Changed "duplication" identity.
c>> 1991-10-21 DRSGAMMA CLL
c>> 1987-12-09 DRSGAMMA Lawson Initial Code.
c
c--S replaces "?": DR?GAMMA, ?GAMMA, ?LGAMA
            external SGAMMMA, SLGAMA
            real SGAMMA, SLGAMA
            real LGAM, GAM, PI, X(12), Z
            integer I
c
    data X / - 1.5e0, - 0.5e0, 0.5e0, 1.0e0, 1.5 e0, 2.0 e0,
    * }3.0\textrm{e}0,4.0\textrm{e}0,5.0\textrm{e}0, 10.0\textrm{e}0,20.0\textrm{e}0, 30.0\textrm{e}0
    data PI / 3.1415926535897932385e0 /
c
    print '(', X',',9X,''SGAMMA', ,10X,''SLGAMA',',10X,'',Z',/1x)'
c
    do 10 I = 1, 12
        GAM = SGAMMA(X ( I ) )
        Z = (2.e0 * SQRT(PI) * GAM) / ((2.0 e0**X(I )) *
    1 SGAMMM(0.5 e0*X(I )) * SGAMMA(0.5 e0*X(I )+.5 e0 )) - 1.e0
        if(X(I) . lt . 0.0e0) then
            print '(1x,F4.1,3X,G15.8, 13x , 1X, E13.2)', X(I ), GAM, Z
        else
            LGAM = SLGAMA(X(I ) )
            print '(1x,F4.1,3X,G15.8,F13.5,1X,E13.2)', X(I ), GAM, LGAM, Z
        endif
    10 continue
    end
```


ODSGAMMA

X SGAMMA SLGAMA Z

-1.5	2.3632717		$0.00 \mathrm{E}+00$
-0.5	-3.5449078	$0.00 \mathrm{E}+00$	
0.5	1.7724539	0.57236	$0.00 \mathrm{E}+00$
1.0	1.0000000	-0.00000	$0.00 \mathrm{E}+00$
1.5	0.88622695	-0.12078	$0.00 \mathrm{E}+00$
2.0	1.0000000	0.00000	$0.00 \mathrm{E}+00$
3.0	2.0000000	0.69315	$0.00 \mathrm{E}+00$
4.0	6.0000000	3.178176	$0.00 \mathrm{E}+00$
5.0	24.000000	12.80183	$0.00 \mathrm{E}+00$
10.0	362880.00	39.33989	$-0.12 \mathrm{E}-06$
20.0	$0.12164482 \mathrm{E}+18$	71.25703	$0.64 \mathrm{E}-05$
30.0	$0.88417885 \mathrm{E}+31$		

DRCGAM

```
        program DROGAM
c>> 2001-05-22 DRCGAM Krogh Minor change for making .f90 version.
c>> 1996-06-14 DRCGAM Krogh Changes for C conversion.
c>> 1994-08-17 CLL
c>> 1991-10-18 Demo driver for CGAM
c
c-- D version uses DRZGAM, ZGAM
c-- S version uses DRCGAM, CGAM
c
    real ARG(2),GAM(2),LGAM(2), X(2,8)
    real ERR0, ERR1
    integer I, J
    data ( ( X (I,J), I=1,2 ), J=1,8 ) /
    * 1.0E0,0.0E0, 1.0E0,0.5 E0, 1.5 E0,0.0 E0, 1.5E0,0.5E0,
    * 0.0E0,0.5E0, -1.5E0,0.5E0, -1.5E0,0.0 E0, -1.5E0, -0.5E0 /
c
            print ', 5x,''X EmMMA Est',', 11x,
        * ''LGAMA Err Est ''')'
            do 10 J = 1,8
                ARG(1) = X (1,J)
                ARG(2) = X (2,J)
                call OGAM (ARG,GAM,ERR1,1)
            call OGAM (ARG,LGAM,ERR0,0)
            print
        * '(1x,f5.1,g20.10,g10.2,g22.10,g10.2/1x,f5.1,g20.10,g32.10/)',
        * ARG(1),GAM(1),ERR1, LGAM(1), ERR0,
    * ARG(2),GAM(2), LGAM(2)
10 continue
    end
```


ODCGAM

X	GAMMA	Err Est	LGAMA	Err Est
1.0	0.9999998212	$0.22 \mathrm{E}-05$	-0.2384185791E-06	$0.22 \mathrm{E}-05$
0.0	0.000000000		0.000000000	
1.0	0.8016943932	$0.25 \mathrm{E}-05$	-0.1909457445	$0.25 \mathrm{E}-05$
0.5	-0.1996398121		-0.2440582514	
1.5	0.8862264752	$0.23 \mathrm{E}-05$	-0.1207830906	$0.23 \mathrm{E}-05$
0.0	0.000000000		0.000000000	
1.5	0.7907390594	$0.25 \mathrm{E}-05$	-0.2341866493	$0.25 \mathrm{E}-05$
0.5	$0.2742525190 \mathrm{E}-01$		$0.3466916084 \mathrm{E}-01$	
0.0	-0.3992792964	$0.26 \mathrm{E}-05$	0.5022014380	$0.26 \mathrm{E}-05$
0.5	-1.603387952		-1.814854503	
-1.5	0.9379166365	$0.41 \mathrm{E}-05$	$0.8158981800 \mathrm{E}-03$	$0.41 \mathrm{E}-05$
0.5	0.3492053747		0.3564195633	
-1.5	2.363272190	$0.44 \mathrm{E}-05$	0.8600471020	$0.44 \mathrm{E}-05$
0.0	-0.5165094876E-06		-0.000000000	
-1.5	0.9379166365	$0.41 \mathrm{E}-05$	$0.8158981800 \mathrm{E}-03$	$0.41 \mathrm{E}-05$

$$
\begin{array}{ccc}
-0.5 & -0.3492053747 & -0.3564195633
\end{array}
$$

[^0]: © 1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

