3.3 Random Numbers: Exponential, Rayleigh, and Poisson

A. Purpose

Generate pseudorandom numbers from the exponential and Rayleigh distributions and pseudorandom integers from the Poisson distribution.

B. Usage

B. 1 Generating exponential pseudorandom numbers

The density function for the exponential distribution with mean and standard deviation, μ, has the value zero for $x<0$ and $\mu^{-1} \exp (-x / \mu)$ for $x \geq 0$. The cumulative distribution function has the value zero for $x<0$ and $1-\exp (-x / \mu)$ for $x \geq 0$. If u is a random variable having the uniform distribution on $[0,1]$ then $x=-\mu \log u$ is a random variable having the exponential distribution with mean and standard deviation, μ.

B.1.a Program Prototype, Single Precision
 real srane, Xmean, X
 Assign a value to XMEAN.

X = SRANE(XMEAN)

B.1.b Argument Definitions

XMEAN [in] Specifies the mean and standard deviation of the desired exponential distribution. Require XMEAN >0.
SRANE [out] The function returns a nonnegative pseudorandom number from the exponential distribution with mean and standard deviation equal to XMEAN.

B. 2 Generating Rayleigh pseudorandom numbers

The density function for the Rayleigh distribution with scaling parameter, α, has the value zero for $x<0$ and

$$
\left(x / \alpha^{2}\right) \exp \left(-x^{2} / 2 \alpha^{2}\right)
$$

for $x \geq 0$. The cumulative distribution function has the value zero for $x<0$ and

$$
1-\exp \left(-x^{2} / 2 \alpha^{2}\right)
$$

for $x \geq 0$. The mean and standard deviation of this distribution are

$$
\mu=\alpha \sqrt{\pi / 2} \approx 1.25331 \alpha
$$

[^0]and
$$
\sigma=\alpha \sqrt{2-\pi / 2} \approx 0.655136 \alpha
$$

If u is a random variable having the uniform distribution on $[0,1]$ then

$$
x=\alpha \sqrt{-2 \log u}
$$

is a random variable having the Rayleigh distribution with scaling parameter, α.

B.2.a Program Prototype, Single Precision

REAL SRANR, ALPHA, X
Assign a value to ALPHA.

$$
\mathrm{X}=\text { SRANR(ALPHA) }
$$

B.2.b Argument Definitions

ALPHA [in] Specifies the scaling of the desired Rayleigh distribution. Require ALPHA >0. The distribution will have mean $=$ ALPHA $\times \sqrt{\pi / 2}$ and variance $=$ ALPHA $^{2} \times(2-\pi / 2)$.
SRANR [out] The function returns a nonnegative pseudorandom number from the Rayleigh distribution with scaling parameter, ALPHA.

B. 3 Generating Poisson pseudorandom integers

The Poisson distribution with mean and variance, μ, is defined over nonnegative integers. The nonnegative integer, k, occurs with probability p_{k} given by

$$
p_{k}=e^{-\mu} \frac{\mu^{k}}{k!}
$$

B.3.a Program Prototype, Single Precision

REAL XMEAN
INTEGER ISRANP, K
Assign a value to XMEAN.
K = ISRANP(XMEAN)

B.3.b Argument Definitions

XMEAN [in] Specifies the mean and variance of the desired Poisson distribution. XMEAN must be positive and not so large that $\exp (-$ XMEAN) would underflow. For example if the underflow limit is 10^{-38}, XMEAN must not exceed 87. This subprogram requires more computing time for larger values of XMEAN or if XMEAN is changed frequently. See Section D.

ISRANP [out] The function returns a nonnegative pseudorandom integer from the Poisson distribution with mean XMEAN.

B. 4 Modifications for Double Precision

Change the names SRANE, SRANR, and ISRANP to DRANE, DRANR, and IDRANP respectively, and change the REAL type statements above to DOUBLE PRECISION. Note particularly that if either of the function names DRANE or DRANR is used it must be typed DOUBLE PRECISION either explicitly or via an IMPLICIT statement.

C. Examples and Remarks

The programs DRSRANE, DRISRANP, and DRSRANR demonstrate, respectively, the use of SRANE, ISRANP, and SRANR. These programs use SSTAT1 and SSTAT2, or ISSTA1 and ISSTA2 to compute and print statistics and a histogram based on a sample of 10000 numbers each.

To fetch or set the seed used in the underlying pseudorandom integer sequence use the subroutines described in Chapter 3.1.

D. Functional Description

Method

The exponential random number is computed as $x=$ $-\mu \log u$ where u is a random number from the uniform distribution on $[0,1]$.
The Rayleigh random number is computed as $x=$ $\alpha \sqrt{-2 \log u}$ where u is a random number from the uniform distribution on $[0,1]$.
The Poisson subprogram uses ideas from [1]. The method begins by obtaining a random number, u, from the uniform distribution on $[0,1]$. Then the probabilities p_{0}, p_{1}, \ldots, defined above in Section B.3, are summed until the sum reaches or exceeds u. The index of the last term in the sum is then returned as the Poisson random integer.
To improve efficiency on the assumption that the subprogram may be referenced many successive times with the value of XMEAN remaining unchanged, the partial sums through at most the term p_{84} are stored in an internal array as they are computed. On subsequent references, if the value of XMEAN has not been changed, previously computed partial sums can be tested without the need to recompute them. The testing starts at the index near-
est to the value, XMEAN, since these indices have the highest probabilities of being selected.
These subprograms obtain uniform pseudorandom numbers by calling SRANUA or DRANUA, using the array in common block /RANCMS/ or /RANCMD/ as a buffer as described in Chapter 3.1.

Values returned as double-precision random numbers will have random bits throughout the word, however the quality of randomness should not be expected to be as good in a low-order segment of the word as in a highorder part.

References

1. Richard H. Snow, Algorithm 342 - Generator of random numbers satisfying the Poisson distribution, Comm. ACM 11, 12 (Dec. 1968) 819.

E. Error Procedures and Restrictions

In subprograms SRANE, DRANE, SRANR, and DRANR the input parameter should be positive, however no test is made of this. The input parameter is simply used as a multiplicative factor.
Subprogram ISRANP will issue an error message and return the value -1 if XMEAN ≤ 0 or if XMEAN $\geq-0.5 \times \log$ (underflow limit).

F. Supporting Information

Entry Required Files
DRANE DRANE, ERFIN, ERMSG, RANPK1, RANPK2
DRANR DRANR, ERFIN, ERMSG, RANPK1, RANPK2
IDRANP AMACH, ERFIN, ERMSG, IDRANP, RANPK1, RANPK2, DERM1, DERV1
ISRANP AMACH, ERFIN, ERMSG, ISRANP, RANPK1, RANPK2, SERM1, SERV1
SRANE ERFIN, ERMSG, RANPK1, RANPK2, SRANE
SRANR ERFIN, ERMSG, RANPK1, RANPK2, SRANR
Based on subprograms written for JPL by Stephen L. Richie, Heliodyne Corp., and Wiley R. Bunton, JPL, 1969. Adapted to Fortran 77 for the JPL MATH77 library by C. L. Lawson and S. Y. Chiu, JPL, April 1987.

1991 November: Lawson reorganized and renamed common blocks.

DRSRANE

```
c program DRSRANE
c>> 2001-05-22 DRSRANE Krogh Minor change for making .f90 version.
c>> 1996-05-28 DRSRANE Krogh Added external statement.
c>> 1994-10-19 DRSRANE Krogh Changes to use Mr7CON
c>> 1987-12-09 DRSRANE Lawson Initial Code.
c--S replaces "?": DR?RANE, ?RANE, ?STAT1, ?STAT2
c
c
c
c
c
    integer I, NCELLS
    parameter (NCELLS = 12+2)
    integer IHIST(NCELLS),N
    external SRANE
    real SRANE, STATS (5), STDDEV, Y1, Y2, YTAB(1), ZERO
c
    parameter (ZERO = 0.0 E0)
    data N / 10000 /
    data Y1, Y2 / 0.0E0, 6.0E0 /
    data STDDEV / 1.0E0 /
c
    STATS(1) = ZERO
    do 20 I = 1, N
c
            YTAB(1) = SRANE(STDDEV)
                Accumulate statistics and histogram.
c
c
            call SSTAT1(YTAB(1), 1, STATS, IHIST, NCELLS, Y1, Y2)
    20 continue
c
    print '(11x,a)','Exponential random numbers from SRANE'
    print '(11x,a,g12.4,/1x)',',with STDDEV = ',STDDEV
c
c Print the statistics and histogram.
c
    call SSTAT2(STATS, IHIST, NCELLS, Y1, Y2)
    stop
    end
```


ODSRANE

Exponential random numbers from SRANE with STDDEV $=1.000$				
$\begin{aligned} & \text { BREAK PT } \\ & 0.00 \end{aligned}$	COUNT		LOT OF COUNT	
				*
0.50	2359	0	*	
1.00				
	1465	0	*	
1.50	897	0	*	
2.00				
	507	0 *		
2.50				
	341	0 *		
3.00		$0 *$		
3.50	200			
	116	0*		
4.00				
	74	0*		
4.50	51			
5.00				
	27	*		
5.50				
	14	*		
6.00	19	*		
Count	Minimum	Maximum	Mean	Std. Deviation
10000	$0.97578 \mathrm{E}-04$	8.1793	1.0001	0.98840

DRSRANR

```
c
    program DRSRANR
c>> 2001-05-22 DRSRANR Krogh Minor change for making.f90 version.
c>> 1996-05-28 DRSRANR Krogh Added external statement.
c>> 1994-10-19 DRSRANR Krogh Changes to use Mr7CON
c>> 1987-12-09 DRSRANR Lawson Initial Code.
c--S replaces "?": DR?RANR, ?RANR, ?STAT1, ?STAT2
c
c Driver to demonstrate use of SRANR to generate random numbers
c from the Rayleigh distribution with parameter, ALPHA.
c Program computes histogram for N numbers
c
    integer NCELLS
    parameter(NCELLS = 13+2)
    external SRANR
    real ALPHA, SRANR, ONE, PIOV2
    real STATS(5), TWO, Y1, Y2, YTAB(1), ZERO
    integer I, IHIST(NCELLS), N
c
    parameter (ONE = 1.0 E0, TWO = 2.0E0, ZERO = 0.0 E0)
    data N / 10000/
    data Y1, Y2 / 0.0 E0, 4.33333E0/
    data ALPHA / 1.0E0 /
c
    PIOV2 = TWO * \boldsymbol{atan}(ONE)
    STATS(1) = ZERO
    do 20 I=1,N
c
c
c Accumulate statistics and histogram.
c
            call SSTAT1(YTAB(1), 1, STATS, IHIST, NCELLS, Y1, Y2)
        20 continue
    print '(13x,a)', 'Rayleigh random numbers from SRANR'
    print '(13x,a,g12.4)',',with ALPHA =, ,ALPHA
    print '(1x,a/13x,g13.5,a,g13.5/1x)',
    * 'The Mean and Std. Dev. of the theoretical distribution are',
    * ALPHA * sqrt(PIOV2), , and ',ALPHA * sqrt(TWO - PIOV2)
    call SSTAT2(STATS, IHIST, NCELLS, Y1, Y2)
        stop
        end
```


ODSRANR

DRISRANP

```
c program DRISRANP
c>> 1996-07-09 DRISRANP Krogh Added external statement.
c>> 1994-10-19 DRISRANP Krogh Changes to use M%7CON
c>> 1994-06-23 DRISRANP Changing name to DRI[D/S]RANP.
c>> 1987-12-09 DRISRANP Lawson Initial Code.
c
c Driver to demonstrate use of ISRANP to generate random integers
c from the Poisson distribution with mean, XMEAN.
c Program computes histogram for }N\mathrm{ samples.
c
c--S replaces "?": DRI?RANP, I?RANP, I?STA1, I?STA2
c
    integer NCELLS, NI
    parameter (NCELLS = 7+2, NI = 100)
    external ISRANP
    integer I, IHIST(NCELLS), ISRANP, ISTATS(3), ITAB(NI), LOW, J,N
    real XMEAN, XSTATS(2)
c
    data N / 10000 /
    data LOOW / 0 /
    data XMEAN / 1.0 e0 /
c
    ISTATS(1) = 0
    do 30 J = 1, N/NI
        do 20 I = 1, NI
c
    20
            ITAB}(I)=\mathrm{ ISRANP (XMEAN )
        continue
c
c
        call ISSTA1(ITAB, NI, ISTATS, XSTATS, IHIST, LOW, NCELLS)
    30 continue
c
c
```


ODISRANP

Poisson random integers from ISRANP with XMEAN $=1.000$

VALUE	COUNT	PLOT OF COUNT		
0	3711	0		*
1	3635	0		*
2	1825	0	*	
3	634	0 *		
4	151	0*		
5	37	*		
6	7	*		
Count	Minimum	Maximum	Mean	Std. Deviation
10000	0	6	1.0018	1.0099

[^0]: $\ominus^{〔} 1997$ Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

