
4.3 Singular Value Decomposition and Analysis

A. Purpose

Any M×N matrix, A, has a Singular Value Decomposi-
tion (SVD) of the form

A = USV t

where U is an M×M orthogonal matrix, V is an N×N
orthogonal matrix, and S is an M×N matrix having non-
negative elements on the diagonal and zeros elsewhere.
It is customary to arrange that the diagonal elements
of S, called the singular values of A, are in decreasing
order. This is done in the software described here.

The SVD can be useful in analyzing a linear least-
squares problem or other matrix problems, particularly
when there is reason to believe that the model is ill-
conditioned. The SVD also has a role as a component in
many specialized algorithms of linear algebra and statis-
tics.

Here we describe three subroutines to facilitate use of
the SVD:

(1) Let a matrix, A, and a matrix or vector, B, be
given. Denote the SVD of A by A = USV t. Subrou-
tine SSVDRS computes the SVD of a matrix, A, and
returns S, V , and the product, U tB. If one needs to
obtain the matrix U explicitly, call SSVDRS with B set
to be the M th order identity matrix.

(2) Subroutine SSVA uses SSVDRS and produces a re-
port of quantities useful for the singular value analysis
of a least-squares problem, Ax ' b.

(3) Subroutine SCOV3 can be used following SSVDRS
to compute a covariance matrix.

B. Usage

B.1 Singular Value Decomposition with Com-
putation of U tB

Compute the Singular Value Decomposition, USV t, of
a matrix, A, and optionally return the product, U tB,
where B is another given matrix.

B.1.a Program Prototype, Single Precision

INTEGER LDA, M, N, LDB, NB

REAL A(LDA, ≥N), SING(≥N), D(≥N),
WORK(≥ 2×N), B(LDB, ≥NB) or B(≥M)

Assign values to A(,), LDA, M, N, B(), LDB, and NB.

CALL SSVDRS (A, LDA, M, N, B,
LDB, NB, SING, WORK)

Computed quantities are returned in A(,), B(), and
SING().

B.1.b Argument Definitions

A(,) [inout] On entry, contains an M×N matrix, A.
On return contains the N×N matrix, V , such that
A = USV t.

LDA [in] First dimensioning parameter for A(,). Re-
quire LDA ≥ max(M,N).

M,N [in] Number of rows and columns, respectively,
in the given matrix, A. Either M > N or M ≤ N is
permitted. Require M > 0 and N > 0.

B() [inout] On entry, contains an M-vector, b, or an
M×NB matrix, B. On return, contains the M-vector,
g = U tb, or the M×NB matrix, G = U tB, where U
satisfies USV t = A. Note that if B is the M th order
identity matrix on entry, then on return the array
B(,) will contain U t.

LDB [in] First dimensioning parameter for the array
B(,). Require LDB ≥ max(M,N) when NB ≥ 1 and
LDB ≥ 1 when NB = 0.

NB [in] Number of columns in the input matrix, B.
Require NB ≥ 0. If NB = 1, the array B() may be
singly or doubly subscripted. If NB > 1, the array
B(,) must be doubly subscripted. If NB = 0, the
array B() will not be referenced.

SING() [out] On return, contains the singular val-
ues of A, in descending order, in locations indexed 1
through N. If M < N, SING(M+1) through SING(N)
will be set to zero.

WORK() [scratch] Work space of length at least 2×N.

B.2 Singular Value Analysis

Computes quantities useful for the singular value anal-
ysis of a least-squares problem, Ax ' b. Optionally
produces a report, with options to select the full report
or only parts of it, to select the output unit for the re-
port, and to specify the display width available for the
report.

B.2.a Program Prototype, Single Precision

INTEGER LDA, M, N, MDATA, ISCALE,
KPVEC(4)

REAL A(LDA, ≥N), B(≥M), SING(≥N), D(≥N),
WORK(≥ 2×N)

CHARACTER NAMES(≥ N) ∗ (lennam)
[lennam ≥ 1]
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Assign values to A(,), LDA, M, N, MDATA, B(),
KPVEC(), NAMES(), ISCALE, and optionally to D().

CALL SSVA (A, LDA, M, N, MDATA,
B, SING, KPVEC, NAMES,

ISCALE, D, WORK)

Computed quantities are returned in A(,), B(), SING(),
and optionally in D(). A report is produced if selected
by KPVEC().

B.2.b Argument Definitions

A(,) [inout] On entry, contains the M×N matrix, A,
of the least-squares problem to be analyzed. This
could be a matrix obtained by preliminary orthog-
onal transformations applied to the actual problem
matrix which may have had more rows (See MDATA
below.) On return, contains an N th order matrix in
which the jth column is the jth candidate solution
for the least-squares problem, i.e. the solution com-
puted as though singular values j+1 through N were
zero.

LDA [in] First dimensioning parameter for A(,). Re-
quire LDA ≥ max(M,N).

M,N [in] Number of rows and columns, respectively, in
the matrix, A. Either M > N or M ≤ N is permitted.
Require M > 0 and N > 0.

MDATA [in] Number of rows in actual least-squares
problem. Generally MDATA ≥ M. MDATA is used
only in computing statistics for the report and is not
used as a loop count or array dimension.

B() [inout] On entry, contains the right-side M-vector,
b, of the least-squares problem. On return, contains
the M-vector, g = U tb, where U comes from the
singular value decomposition of A.

SING() [out] On return, contains the singular val-
ues of A, in descending order, in locations indexed 1
through N. If M < N, SING(M+1) through SING(N)
will be set to zero.

KPVEC() [in] Option array controlling report gen-
eration. If KPVEC(1) = 0, default settings will be
used, producing the full report, sending it to the stan-
dard system output unit, formatted with a maximum
line length of 79. If KPVEC(1) = 1, the contents of
KPVEC(I), I = 2,..., 4, set options for the report, as
follows:

KPVEC(2) The decimal representation of
KPVEC(2) must be at most 6 digits, each being
0 or 1. The decimal digits will be interpreted
as independent on/off flags for the 6 possible

blocks of the report. Examples: 101010 selects
the 1st, 3rd, and 5th blocks, 111111 selects all
blocks, 0 suppresses the whole report, etc. The
default value is 111111. The six blocks are:

1. Header, with size and scaling option param-
eters.

2. V -matrix.

3. Singular values and related quantities.

4. Listing of YNORM and RNORM and their
logarithms.

5. Levenberg-Marquardt analysis.

6. Candidate solutions.

KPVEC(3) Define UNIT = KPVEC(3). If UNIT
≥ 0, UNIT will be used as the output unit num-
ber. If UNIT = −1, output will be written
to the “∗” output unit, i.e., the standard sys-
tem output unit. The default value is −1. The
calling program unit is responsible for opening
and/or closing the selected output unit if the
host system requires these actions.

KPVEC(4) Determines the width of blocks 2, 3,
and 6 of the output report. Define WIDTH
= KPVEC(4). The default value is 79. Each
output line will have a leading blank for For-
tran “carriage control” with line widths as fol-
lows: Output blocks 1, 4, and 5 always have
63, 66, and 66 character positions respectively.
Output blocks 2 and 6 will generally have at
most WIDTH character positions. One output
line will contain a row number, a name from
NAMES(), and from one to eight floating point
numbers. The space allocated for a name will be
that needed for the longest name in NAMES(),
which may be less than the declared length of
elements of NAMES(). The line length will
only exceed WIDTH if this is necessary to ac-
commodate the row number and name plus one
floating-point number. Output block 3 will have
69 character positions if WIDTH < 95 and oth-
erwise will have 95 character positions.

NAMES() [in] NAMES(j), for j = 1, ..., N, may con-
tain a name for the jth component of the solution
vector. If NAMES(1) contains only blank characters,
it will be assumed that no names have been provided,
and this subroutine will not access the NAMES() ar-
ray beyond the first element.

ISCALE [in] Set by the user to 1, 2, or 3 to select the
column scaling option.

1 The subroutine will use identity scaling and ig-
nore the D() array.
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2 The subroutine will scale nonzero columns of A
to have unit Euclidean length, and will store re-
ciprocal lengths of the original nonzero columns
in D().

3 User supplies column scaling factors in D(). The
subroutine will multiply column j by D(j), and
remove the scaling from the solution at the end.

D() [ignored or out or in] Usage of D() depends on
ISCALE as described above. When used, its length
must be at least N.

WORK() [scratch] Scratch work space.

B.3 Computation of the Covariance Matrix

Subroutine, SCOV3, can be used to compute the co-
variance matrix for the solution vector of a least-squares
problem, Ax ' b, following use of SSVDRS in cases in
which M > N and all N singular values of A are nonzero.

B.3.a Program Prototype, Single Precision

INTEGER LDA, N, IERR

REAL A(LDA, ≥N), SING(≥N), VAR,
WORK(≥N)

On entry, the arguments, A(,), LDA, N, and SING()
should contain the same values as on return from a pre-
vious call to SSVDRS.

CALL SCOV3( A, LDA, N, SING,
VAR, WORK, IERR)

Computed quantities are returned in A(,) and IERR.

B.3.b Argument Definitions

A(,) [inout] On entry, contains the N×N matrix, V ,
computed by a previous call to SSVDRS. (Note that
the quantities left in the array A() by SSVA are not
appropriate for use as input to SCOV3.) On return
contains the N×N symmetric covariance matrix, C,
for the solution vector of the least-squares problem,
Ax ' b.

LDA [in] First dimensioning parameter for A(,). Must
be the same value used when SSVDRS was called to
compute the V matrix.

N [in] Number of rows and columns of the matrix, V ,
contained in the array, A(,). Must be the same value
used when SSVDRS was called to compute the V
matrix.

SING() [in] Contains the singular values of A in loca-
tions indexed 1 through N. Must all be nonzero.

VAR [in] User-supplied estimate of the variance of er-
ror in the vector, b, of the least-squares problem.

WORK() [scratch] Work space of length at least N.

IERR [out] Set to 0 if all of the N given singular val-
ues are nonzero. Otherwise IERR will be set to the
index of the first zero element of the array, SING().
In this latter case the covariance matrix cannot be
computed and the contents of A(,) on return will be
meaningless.

B.4 Modifications for Double Precision

For double precision usage change all REAL type state-
ments to DOUBLE PRECISION, and change the sub-
routine names from SSVA, SSVDRS, and SCOV3 to
DSVA, DSVDRS, and DCOV3, respectively.

C. Examples and Remarks

The program, DRDSVA, illustrates the use of DSVA
to compute and report quantities for the singular value
analysis of a 15 × 5 least-squares problem. This is an
artificially constructed problem that was used as an ex-
ample in [1]. The output of this example is shown in
ODDSVA.

C.1 Large problems

If M >> N and storage limitations make it awkward or
impossible to allocate M×N locations for the array, A(,),
one can use sequential accumulation of the rows of data
to produce a smaller matrix to which SSVDRS or SSVA
can then be applied. When the ratio M / N is sufficiently
large this approach will be faster than direct application
of SSVDRS to the original matrix. See Chapter 4.4 for
sequential accumulation.

C.2 The pseudoinverse of A

The pseudoinverse of A, conventionally denoted by A+,
can be computed using results produced by SSVDRS.
Set B = I, the Mth order identity matrix. Then call
SSVDRS obtaining S, V , and U t. Since S is diagonal,
its pseudoinverse, S+, is its transpose with nonzero el-
ements replaced by their reciprocals. Depending on the
application, it may be appropriate to treat nonzero sin-
gular values that are smaller than some problem-related
threshold as though they were zero. After defining S+,
one can compute A+ = V S+U t.

C.3 Solution of the least-squares problem,
Ax ' b

From A and b, SSVDRS can compute V , S, and g =
U tb. The user can then determine S+ from S as de-
scribed in the preceding paragraph and compute the so-
lution vector as x = V S+g.
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D. Functional Description

D.1 Method in SSVDRS

Subroutine SSVDRS computes the singular value decom-
position by an algorithm due to G. Golub and W. Kahan,
as described in [1]. This method uses approximately 2N
Householder orthogonal transformations to reduce the
given A matrix to a bidiagonal matrix and then calls
SQRBD to apply a specialized version of the QR eigen-
value algorithm to the bidiagonal matrix to complete the
reduction to the diagonal S matrix. The QR algorithm
generally requires about 2N iterations to reach conver-
gence to machine accuracy. The product of the orthog-
onal transformations is accumulated to produce the V
matrix and the product, G = U tB.

Results are permuted so the singular values are in de-
creasing order. The largest singular value will be ac-
curate to nearly the machine accuracy. Other singular
values will have about the same absolute accuracy as the
largest one. The matrices V and U will be orthogonal
to nearly machine accuracy.

This implementation gives special treatment to any col-
umn of A that is exactly zero. If M > N each such
column will give rise to an exactly zero singular value
in the SING() array. This is convenient if one wishes
to remove a variable from a problem by just zeroing its
column in A.

D.2 Method in SSVA

When the matrix of a least-squares problem is ill-
conditioned it will frequently be true that the vector x
that minimizes the residual norm ‖Ax−b‖ is undesirably
large, i.e., ‖x‖ is large. It is also generally true that there
will be other vectors, x, that are significantly smaller in
norm than the exact solution vector, with only a small
increase in the residual norm. One of these vectors may
be preferable to the true solution as an operational so-
lution for the problem.

There are various ways to define either a discrete or
a continuous family of candidate solutions for a least-
squares problem that range from the true solution
through x’s having smaller norms but allowing larger
residual norms. This subroutine gives information on
two such families of candidate solutions.

To simplify the discussion we assume M > N; however
the subroutine also handles M ≤ N. A useful discrete
family of candidate solutions is obtained by defining x(i)

to be the solution obtained when all singular values fol-
lowing the ith are set to zero. Then x(N) is the true solu-
tion, x(0) is the zero vector, and the intermediate candi-
date solution vectors satisfy the monotonicity conditions,
‖x(i)‖ ≤ ‖x(i+1)‖ and ‖Ax(i) − b‖ ≥ ‖Ax(i+1) − b‖.

A useful continuous family of candidate solutions is de-
fined by letting xλ, for λ ≥ 0, be the vector that mini-
mizes ‖Ax− b‖2 + λ2‖x‖2. This is equivalent to asking
for the solution of the augmented least-squares problem:[

A
λI

]
xλ '

[
b
0

]
where I denotes the N th order identity matrix. If λ < µ
then ‖xλ‖ ≥ ‖xµ‖ and ‖Axλ − b‖ ≤ ‖Axµ − b‖. This
family of candidate solutions is discussed in the literature
under various names, such as ridge regression, damped
least-squares, and Levenberg-Marquardt stabilization.

Since the units in which variables are expressed is ar-
bitrary and the value of ‖x‖, and thus the family of
candidate solutions, depends on the choice of units, this
subroutine gives the user the ability, via the parameters
ISCALE and D(), to scale the columns of A and thus
the components of x.

Given A and b defining a least-squares problem, Ax ' b,
SSVA performs the following steps, doing the indicated
printing only if selected by the settings of KPVEC().

1a. As specified by the user’s setting of ISCALE and
D(), introduce a nonsingular diagonal scaling matrix,
D, reformulating the problem as (AD)(D−1x) ' b.
Let y = D−1x so the problem can be written as
(AD)y ' b.

1b. Use SSVDRS to compute the singular value decom-
position of AD, obtaining U , S, and V satisfying
AD = USV t, and g = U tb. Let si denote the ith

diagonal element of S, i.e. the ith singular value
of AD. The scaled solution vector, y, is given by
y = V S+U tb, and thus may be computed in two
steps as p = S+g and y = V p. Specifically the com-
ponents of the N-vector p are computed as pi = gi/si
if si 6= 0 and pi = 0 if si = 0.

2. Print the V matrix.

3. For i = 1, ..., N, print si, pi, 1/si, gi, and g2i .
Define ρ2j = ‖Ax(j)−b‖2. This quantity is computed
as

ρ2j =

N∑
i=j+1

g2i

and is printed with the heading “Cumulative Sum of
Squares.”
An estimate of the variance of the errors in the
data vector b, under the assumption that the sin-
gular values following the jth are zero, is given by√
ρ2j/(M− j). This quantity is printed with the

heading “Scaled Sqrt of Cum. S.S.” for Scaled Square
Root of the Cumulative Sum of Squares.
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4. The quantities ‖y(j)‖ are computed (using the pi’s)
and printed along with the corresponding values of
ρj , with the headings YNORM and RNORM.

5. A range of values of the Levenberg-Marquardt pa-
rameter, λ, and associated ‖yλ‖ and ‖ADyλ − b‖
are computed and printed. These quantities are com-
puted from formulas involving si’s, pi’s, and gi’s.

6. The candidate solutions, x(j) = Dy(j), are computed
and printed.

SSVA calls SPRTSV to print the V matrix and the can-
didate solutions.

D.3 Method for SCOV3

If the variance of the error in the data vector, b, is VAR,
the covariance matrix, C, for the solution vector, x, is
conventionally defined as C = VAR × (AtA)−1. Using
the singular value decomposition, A = USV t, one can
write C = VAR × (V StSV t)−1 = VAR × V S+(V S+)t.
SCOV3 computes C using this latter formula.

References
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E. Error Procedures and Restrictions

In SSVA, if M ≤ 0 or N ≤ 0 an immediate return will be
made.

SSVDRS will issue an error message, set SING(1) =
−1.0, and do an immediate return if any of the following
conditions are noted.

M < 1, N < 1, NB < 0, LDA < max(M,N),

LDB < M when NB > 0, or LDB < 1 when NB = 0.

SCOV3 requires N nonzero singular values. If this is sat-
isfied it will set IERR = 0. Otherwise it will set IERR to

the index of the first zero singular value and the results
returned in A(,) will be meaningless.

The subroutine SCOV3 is intended for use following
SSVDRS. It cannot be used following SSVA since SSVA
does not leave the V matrix in the A(,) array on return.

F. Supporting Information

The source language is ANSI Fortran 77.

These subroutines were adapted from [1] for use with
Fortran 77 by C. L. Lawson and S. Y. Chiu, May 1986,
June 1987. Altered March 1989 by Lawson to introduce
the vector KPVEC() to provide more report options.

Entry Required Files

DCOV3 DCOPY, DCOV3, DDOT, DSCAL, ERFIN,
ERMSG, IERM1, IERV1

DSVA AMACH, DAXPY, DCOPY, DDOT,
DHTCC, DHTGEN, DNRM2, DPRTSV,
DQRBD, DROT, DROTG, DSVA,
DSVDRS, DSWAP, ERFIN, ERMOR,
ERMSG, IERV1

DSVDRS AMACH, DAXPY, DCOPY, DDOT,
DHTCC, DHTGEN, DNRM2, DQRBD,
DROT, DROTG, DSVDRS, DSWAP,
ERFIN, ERMOR, ERMSG, IERV1

SCOV3 ERFIN, ERMSG, IERM1, IERV1, SCOPY,
SCOV3, SDOT, SSCAL

SSVA AMACH, ERFIN, ERMOR, ERMSG,
IERV1, SAXPY, SCOPY, SDOT, SHTCC,
SHTGEN, SNRM2, SPRTSV, SQRBD,
SROT, SROTG, SSVA, SSVDRS, SSWAP

SSVDRS AMACH, ERFIN, ERMOR, ERMSG,
IERV1, SAXPY, SCOPY, SDOT, SHTCC,
SHTGEN, SNRM2, SQRBD, SROT,
SROTG, SSVDRS, SSWAP

DRDSVA

program DRDSVA
c>> 1996−06−27 DRDSVA Krogh Spec i a l code f o r C convers ion .
c>> 1996−05−28 DRDSVA Krogh Removed imp l i c i t s ta tement .
c>> 1994−10−19 DRDSVA Krogh Changes to use M77CON
c>> 1989−03−07 DRDSVA CLL
c Demo dr i v e r f o r DSVA, S ingu la r Value Ana lys i s .
c
c Mar 1987 , C. L . Lawson & S . Y. Chiu , JPL . This sample problem
c taken from the book , So l v ing Least Squares Problems ,
c Prent ice−Hal l , 1974 , by C. L . Lawson and R. J . Hanson .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−D rep l a c e s ”?”: DR?SVA, ?SVA
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , J , KPVEC(4 ) , M, MDATA, MMAX, N, NMAX, NMAX2
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parameter (MMAX = 15 , NMAX = 5 , NMAX2 = NMAX∗2)
double precision A(MMAX,NMAX) , B(MMAX) , SING(NMAX)
double precision D(NMAX) , WORK(NMAX2)
character∗6 NAMES(NMAX)

c
data ( (A( I , J ) , J=1 ,5) , I =1 ,15) /
∗−.13405547D0,− .20162827D0,− .16930778D0,− .18971990D0,− .17387234D0 ,
∗−.10379475D0,− .15766336D0,− .13346256D0,− .14848550D0,− .13597690D0 ,
∗−.08779597D0,− .12883867D0,− .10683007D0,− .12011796D0,− .10932972D0 ,
∗ .02058554D0 , .00335331D0,− .01641270D0 , .00078606D0 , .00271659D0 ,
∗−.03248093D0,− .01876799D0 , .00410639D0,− .01405894D0,− .01384391D0 ,
∗ .05967662D0 , .06667714D0 , .04352153D0 , .05740438D0 , .05024962D0 ,
∗ .06712457D0 , .07352437D0 , .04489770D0 , .06471862D0 , .05876455D0 ,
∗ .08687186D0 , .09368296D0 , .05672327D0 , .08141043D0 , .07302320D0 ,
∗ .02149662D0 , .06222662D0 , .07213486D0 , .06200069D0 , .05570931D0 ,
∗ .06687407D0 , .10344506D0 , .09153849D0 , .09508223D0 , .08393667D0 ,
∗ .15879069D0 , .18088339D0 , .11540692D0 , .16160727D0 , .14796479D0 ,
∗ .17642887D0 , .20361830D0 , .13057860D0 , .18385729D0 , .17005549D0 ,
∗ .11414080D0 , .17259611D0 , .14816471D0 , .16007466D0 , .14374096D0 ,
∗ .07846038D0 , .14669563D0 , .14365800D0 , .14003842D0 , .12571177D0 ,
∗ .10803175D0 , .16994623D0 , .14971519D0 , .15885312D0 , .14301547D0 /

c
data (B( I ) , I =1 ,15) /
∗−.4361D0 , −.3437D0 , −.2657D0 , −.0392D0 , .0193D0 , .0747D0 ,
∗ . 0935D0 , .1079D0 , .1930D0 , .2058D0 , .2606D0 , .3142D0 ,
∗ . 3529D0 , .3615D0 , .3647D0 /

c
data NAMES / ’ Earth ’ , ’Water ’ , ’ Air ’ , ’ F i r e ’ , ’Time ’ /
data KPVEC / 1 , 111111 , −1, 76/

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c

M = MMAX
N = NMAX
MDATA = M
print ’ ( ’ ’ DRDSVA. . Demonstrate S ingu la r Value Ana lys i s ’ ’ /
∗ ’ ’ L i s t i n g o f input matrix , A, and vector , B, f o l l ow s . . ’ ’ ) ’

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (/ (5F12 . 7 , F13 . 4 ) ) ’ ,
∗ ( (A( I , J ) , J=1,N) ,B( I ) , I=1,M)

c++ Code f o r .C. i s i n a c t i v e
c%% for ( i = 1 ; i <= m; i++){
c%% p r i n t f ( ”\n” ) ;
c%% fo r ( j = 1 ; j <= n ; j++)
c%% p r i n t f ( ”%12.7 f ” , a [ j − 1 ] [ i − 1 ] ) ;
c%% p r i n t f ( ”%13.4 f ” , B[ i ] ) ;}
c%% f p r i n t f ( s tdout , ” \n\n\n \n” ) ;
c++ End

print ’ (1X///1X) ’
c

ca l l DSVA(A, MMAX, M, N, MDATA, B, SING, KPVEC, NAMES, 1 , D, WORK)
c

stop
end
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ODDSVA

DRDSVA. . Demonstrate S ingu la r Value Ana lys i s
L i s t i n g o f input matrix , A, and vector , B, f o l l ow s . .

−0.1340555 −0.2016283 −0.1693078 −0.1897199 −0.1738723 −0.4361
−0.1037948 −0.1576634 −0.1334626 −0.1484855 −0.1359769 −0.3437
−0.0877960 −0.1288387 −0.1068301 −0.1201180 −0.1093297 −0.2657
0.0205855 0.0033533 −0.0164127 0.0007861 0.0027166 −0.0392
−0.0324809 −0.0187680 0.0041064 −0.0140589 −0.0138439 0 .0193
0.0596766 0.0666771 0.0435215 0.0574044 0.0502496 0 .0747
0.0671246 0.0735244 0.0448977 0.0647186 0.0587645 0 .0935
0.0868719 0.0936830 0.0567233 0.0814104 0.0730232 0 .1079
0.0214966 0.0622266 0.0721349 0.0620007 0.0557093 0 .1930
0.0668741 0.1034451 0.0915385 0.0950822 0.0839367 0 .2058
0.1587907 0.1808834 0.1154069 0.1616073 0.1479648 0 .2606
0.1764289 0.2036183 0.1305786 0.1838573 0.1700555 0 .3142
0.1141408 0.1725961 0.1481647 0.1600747 0.1437410 0 .3529
0.0784604 0.1466956 0.1436580 0.1400384 0.1257118 0 .3615
0.1080317 0.1699462 0.1497152 0.1588531 0.1430155 0 .3647

S ingu la r Value Ana lys i s o f the l e a s t squares problem , A∗X = B,
s ca l ed as (A∗D)∗Y = B.
M = 15 , N = 5 , MDATA = 15

Sca l i ng opt ion No . 1 . D i s the i d e n t i t y matrix .

V−Matrix o f the S ingu la r Value Decomposition o f A∗D.
( Elements o f V s ca l ed up by a f a c t o r o f 10∗∗4)

COL 1 COL 2 COL 3 COL 4
1 Earth 3742 . −7526. 3382 . 1981 .
2 Water 5196 . −636. 2301 . −6349.
3 Air 4123 . 6510 . 4741 . 1067 .
4 F i re 4796 . 689 . −2493. 6877 .
5 Time 4359 . 302 . −7388. −2707.

COL 5
1 Earth 3741 .
2 Water −5195.
3 Air 4123 .
4 F i re −4797.
5 Time 4359 .

INDEX SING . VAL. P COEF RECIPROCAL G COEF SCALED SQRT
SING . VAL. o f CUM. S . S .

0 0 .2635
1 1 .000 0 .9998 1 .000 0 .9998 0 .5452E−01
2 0 .1000 2 .000 10 .00 0 .2000 0 .1111E−01
3 0 .1000E−01 −4.005 100 .0 −0.4005E−01 0 .4055E−04
4 0 .9997E−05 −1.776 0 .1000E+06 −0.1776E−04 0 .4201E−04
5 0 .9717E−07 −192.7 0 .1029E+08 −0.1872E−04 0 .4366E−04

INDEX SING . VAL. G COEF G∗∗2 CUMULATIVE SCALED SQRT
SUM of SQRS o f CUM. S . S .

July 11, 2015 Singular Value Decomposition and Analysis 4.3–7



0 1 .041 0 .2635
1 1 .000 0 .9998 0 .9996 0 .4162E−01 0 .5452E−01
2 0 .1000 0 .2000 0 .4001E−01 0 .1604E−02 0 .1111E−01
3 0 .1000E−01 −0.4005E−01 0 .1604E−02 0 .1973E−07 0 .4055E−04
4 0 .9997E−05 −0.1776E−04 0 .3153E−09 0 .1941E−07 0 .4201E−04
5 0 .9717E−07 −0.1872E−04 0 .3505E−09 0 .1906E−07 0 .4366E−04

INDEX YNORM RNORM LOG10 LOG10
YNORM RNORM

0 0.000E+00 0 .102E+01 −1000.000 0 .009
1 0 .100E+01 0 .204E+00 −0.000 −0.690
2 0 .224E+01 0 .400E−01 0 .350 −1.397
3 0 .459E+01 0 .140E−03 0 .662 −3.852
4 0 .492E+01 0 .139E−03 0 .692 −3.856
5 0 .193E+03 0 .138E−03 2 .285 −3.860

Norms o f s o l u t i o n and r e s i d u a l v e c t o r s f o r a range o f va lue s
o f the Levenberg−Marquardt parameter , LAMBDA.

LAMBDA YNORM RNORM LOG10 LOG10 LOG10
LAMBDA YNORM RNORM

0.100E+02 0.990E−02 0 .101E+01 1.000 −2.004 0 .005
0 .354E+01 0.738E−01 0 .948E+00 0.549 −1.132 −0.023
0 .126E+01 0.388E+00 0 .644E+00 0.099 −0.411 −0.191
0 .445E+00 0.840E+00 0 .255E+00 −0.352 −0.076 −0.593
0 .158E+00 0.113E+01 0 .150E+00 −0.802 0 .054 −0.824
0 .558E−01 0 .183E+01 0 .614E−01 −1.253 0 .262 −1.212
0 .198E−01 0 .232E+01 0 .328E−01 −1.704 0 .365 −1.484
0 .701E−02 0 .349E+01 0 .132E−01 −2.154 0 .543 −1.878
0 .248E−02 0 .438E+01 0 .233E−02 −2.605 0 .642 −2.632
0 .880E−03 0 .456E+01 0 .339E−03 −3.056 0 .659 −3.470
0 .312E−03 0 .458E+01 0 .146E−03 −3.506 0 .661 −3.836
0 .110E−03 0 .459E+01 0 .141E−03 −3.957 0 .661 −3.852
0 .391E−04 0 .459E+01 0 .140E−03 −4.407 0 .662 −3.853
0 .139E−04 0 .463E+01 0 .140E−03 −4.858 0 .665 −3.854
0 .491E−05 0 .481E+01 0 .139E−03 −5.309 0 .682 −3.856
0 .174E−05 0 .494E+01 0 .139E−03 −5.759 0 .693 −3.856
0 .617E−06 0 .678E+01 0 .139E−03 −6.210 0 .831 −3.856
0 .218E−06 0 .322E+02 0 .139E−03 −6.661 1 .508 −3.857
0 .774E−07 0 .118E+03 0 .138E−03 −7.111 2 .072 −3.859
0 .274E−07 0 .179E+03 0 .138E−03 −7.562 2 .252 −3.860
0 .972E−08 0 .191E+03 0 .138E−03 −8.012 2 .281 −3.860

Sequence o f candidate s o l u t i on s , X

SOLN 1 SOLN 2 SOLN 3 SOLN 4
1 Earth 0.374096 −1.13139 −2.48573 −2.83753
2 Water 0 .519519 0.392268 −0.529133 0.598666
3 Air 0 .412234 1.71454 −0.184141 −0.373618
4 Fi re 0 .479494 0.617368 1.61568 0.394121
5 Time 0.435809 0.496254 3.45479 3.93558

SOLN 5
1 Earth −74.9158
2 Water 100.682
3 Air −79.8044
4 Fi re 92 .8170
5 Time −80.0529
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