# 4.6 Solution of a Positive-Definite System with Cholesky Factorization 

## A. Purpose

This subroutine computes the solution vector $\mathbf{x}$ for a system of equations of the form

$$
\begin{equation*}
P \mathbf{x}=\mathbf{d} \tag{1}
\end{equation*}
$$

where $P$ is an $\mathrm{N} \times \mathrm{N}$ positive-definite symmetric matrix, and $\mathbf{d}$ is an N -vector. This subroutine also returns the Cholesky factor of $P$ and thus is applicable where computing the Cholesky factor is the objective.

## B. Usage

## B. 1 Program Prototype, Double Precision

DOUBLE PRECISION $\mathbf{P}(L D P, \geq N)[L D P \geq N]$, $\mathbf{D}(\geq \mathrm{N}), \mathrm{U}, \mathrm{TOL}$

## INTEGER LDP, N, IERR

Assign values to $\mathrm{P}(), \mathrm{LDP}, \mathrm{N},, \mathrm{D}()$, U , and TOL.
CALL DCHOL (P, LDP, N, D, U, TOL, IERR)
The solution vector $\mathbf{x}$ will be stored in D() . Additional computed quantities that may be of interest to the user in some situations will be stored in $\mathrm{P}($,$) and \mathrm{U}$.

## B. 2 Argument Definitions

$\mathbf{P}($,$) [inout] On entry this array must contain the \mathrm{N} \times \mathrm{N}$ symmetric positive-definite matrix $P$ of Eq. (1). It suffices to provide only the elements on and above the diagonal. On return this array will contain the $\mathrm{N} \times \mathrm{N}$ upper triangular matrix F defined by Eq. (2) on and above the diagonal positions of the array $\mathrm{P}($,$) .$ Locations of the array $\mathrm{P}($,$) below the diagonal will$ not be referenced or modified by this subroutine.

LDP [in] Dimension of the first subscript of the storage array $\mathrm{P}($,$) . Require \mathrm{LDP} \geq \mathrm{N}$.
$\mathbf{N}$ [in] Order of the matrix $P$. Require $\mathrm{N} \geq 1$.
$\mathbf{D}()$ [inout] On entry D() must contain the vector $\mathbf{d}$ of Eq. (1). On return $D()$ contains the solution vector $\mathbf{x}$ for Eq. (1).
$\mathbf{U}$ [inout] If U contains the number $\mathbf{u}$ of Eq. (10) or (15) respectively on entry, then on return $U$ will contain the number $\rho$ of Eq. (11) or (16) respectively. If the user is not interested in having the number $\rho$ computed, U should be zero on entry and will be unchanged on return.

TOL [in] A user-provided relative tolerance parameter to be used in the conditioning test of Eq. (17). We suggest setting TOL to a value of $10^{-(k+1)}$ where $k=\min \left(k_{A}, k_{b}\right)$. Here $k_{A}$ is the user's estimate of the number of significant decimal digits in the elements of the matrix $A$ and $k_{b}$ is the corresponding estimate for b. See Eq. (7) or (12) for the definitions of $A$ and $\mathbf{b}$. If the TOL input is $<\varepsilon$, where $\varepsilon$ is the relative machine precision (i.e. the smallest positive number such that $1.0+\varepsilon \neq 1.0$ in the machine's floating point arithmetic), then $\varepsilon$ is used for TOL internally.
IERR [out] On return this is set to 0 if $t_{\text {min }}$ defined in Eq. (17) is greater than 0 . Otherwise results are of questionable validity and $|\operatorname{IERR}|$ will equal the index of the equation that resulted in the value for $t_{\text {min }}$. See Section E for more details.

## B. 3 Modifications for Single Precision

We recommend the use of double precision for this computation except on machines such as the Cray that have $10^{-14}$ precision in single precision. To use single precision change DCHOL to SCHOL, and the DOUBLE PRECISION type statement to REAL.

## C. Examples and Remarks

Consider the least-squares problem $A \mathbf{x} \simeq \mathbf{b}$ where $A$ is the 3 by 2 matrix and $\mathbf{b}$ is the 3 -vector defined by the DATA statements in the program DRDCHOL below. This program forms normal equations by computing $P=A^{T} A$ and $\mathbf{d}=A^{T} \mathbf{b}$. It also computes $u=\mathbf{b}^{T} \mathbf{b}$. It uses the subroutine DCHOL to solve the normal equations $P \mathbf{x}=\mathbf{d}$, and to compute the quantity RNORM $=\rho=\|\mathbf{b}-A \mathbf{x}\|$. Output from this program is given in the file ODDCHOL.

For programming convenience one may prefer to store the matrix $A$ and the vector $\mathbf{b}$ together in the same array. The code in DRDCHOL2 shows how this example can be programmed storing $A$ and $\mathbf{b}$ together in the array AB() and using the array PDU() to hold $P$, $\mathbf{d}$, and $u$.

## D. Functional Description

Given the problem $P \mathbf{x}=\mathbf{d}$, where $P$ is an $\mathrm{N} \times \mathrm{N}$ positivedefinite symmetric matrix, there exists an upper triangular $\mathrm{N} \times \mathrm{N}$ matrix $F$ satisfying

$$
\begin{equation*}
F^{T} F=P \tag{2}
\end{equation*}
$$

[^0]Eq. (2) defines the Cholesky decomposition of $P$. The upper triangular elements of $F$ will be computed from those of $P$ by the following equations, where $i=1, \ldots$, N.

$$
\begin{align*}
g_{i} & =p_{i, i}-\sum_{k=1}^{i-1} f_{k, i}^{2}  \tag{3}\\
f_{i, i} & =g_{i}^{1 / 2}  \tag{4}\\
f_{i, j} & =\frac{p_{i, j}-\sum_{k=1}^{i-1} f_{k, i} f_{k, j}}{f_{i, i}}, \quad j=i+1, \ldots, \mathrm{~N} \tag{5}
\end{align*}
$$

In these formulas the summation is to be skipped when $i=1$.

After computing $F$ the subroutine solves the lower triangular system of equations,

$$
F^{T} \mathbf{y}=\mathbf{d}
$$

and then computes the vector $\mathbf{x}$ which satisfies $P \mathbf{x}=\mathbf{d}$ by solving the upper triangular system

$$
F \mathbf{x}=\mathbf{y}
$$

Besides computing the solution vector $\mathbf{x}$ this subroutine uses the input number $u$ given in the Fortran variable U to compute

$$
\begin{equation*}
\rho=\left[\max \left(0, u-\mathbf{y}^{T} \mathbf{y}\right)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

This number $\rho$ is stored in U on return. If the problem $P \mathbf{x}=\mathbf{d}$ arose as the system of normal equations for a least-squares problem and if $u$ was computed appropriately by the user then $\rho$ represents the norm of the residual vector for the least-squares problem.
Specifically if the user wishes to solve the least-squares problem of minimizing

$$
\begin{equation*}
\|\mathbf{b}-A \mathbf{x}\|=\left[(\mathbf{b}-A \mathbf{x})^{T}(\mathbf{b}-A \mathbf{x})\right]^{1 / 2} \tag{7}
\end{equation*}
$$

then $P$, $\mathbf{d}$, and $u$ should be initialized as

$$
\begin{align*}
P & =A^{T} A  \tag{8}\\
\mathbf{d} & =A^{T} \mathbf{b}  \tag{9}\\
u & =\mathbf{b}^{T} \mathbf{b} \tag{10}
\end{align*}
$$

Then theoretically, the quantity, $u-\mathbf{y}^{T} \mathbf{y}$ of Eq. (6) will be nonnegative and the number $\rho$ of Eq. (6) will have the interpretation

$$
\begin{equation*}
\rho=\|\mathbf{b}-A \mathbf{x}\| \tag{11}
\end{equation*}
$$

More generally, if the user is solving the weighted leastsquares problem of minimizing

$$
\begin{equation*}
\left[(\mathbf{b}-A \mathbf{x})^{T} W(\mathbf{b}-A \mathbf{x})\right]^{1 / 2} \tag{12}
\end{equation*}
$$

where $W$ is a positive definite symmetric matrix, then $P, \mathbf{d}$, and $u$ should be initialized as

$$
\begin{align*}
P & =A^{T} W A  \tag{13}\\
\mathbf{d} & =A^{T} W \mathbf{b}  \tag{14}\\
u & =\mathbf{b}^{T} W \mathbf{b} \tag{15}
\end{align*}
$$

Then, theoretically, the quantity $u-\mathbf{y}^{T} \mathbf{y}$ of Eq. (6) will be nonnegative and the number $\rho$ of Eq. (6) will have the interpretation

$$
\begin{equation*}
\rho=\left[(\mathbf{b}-A \mathbf{x})^{T} W(\mathbf{b}-A \mathbf{x})\right]^{1 / 2} \tag{16}
\end{equation*}
$$

The Cholesky factor matrix $F$ will appear in the upper triangular portion of the array $\mathrm{P}($,$) on return. If IERR$ $\geq 0$, the user can input this matrix $F$ to the library subroutine DCOV2 of Chapter 4.2 to compute the unscaled covariance matrix for the associated least-squares problem. This requires building the $\operatorname{IP}()$ array: $\operatorname{IP}(I)=I$, for $\mathrm{I}=1, \ldots, \mathrm{~N}$.

Theoretically the numbers $g_{i}$ of Eq. (3) will be strictly positive for all $i$ if and only if the symmetric matrix $P$ is positive-definite. If all $g_{i}$ are positive but the ratio $g_{i} / p_{i, i}$ is very small for some $i$ this is an indication that the problem is ill-conditioned. The square of the relative tolerance parameter TOL is used to test this ratio. Let

$$
\begin{equation*}
t_{\min }=\min _{1 \leq i \leq \mathrm{N}}\left\{g_{i}-(T O L)^{2} \times\left|p_{i, i}\right|\right\} \tag{17}
\end{equation*}
$$

If $t_{\min } \geq 0$, then IERR is set to 0 . Otherwise let $m$ be a value of $i$ that gives the minimum value in Eq. (17). Then IERR is set to $m$ if $g_{m}>0$, and is set to $-m$ otherwise. See Section E below for more details.
If one knows or suspects that the least-squares problem is ill-conditioned it is suggested that the Singular Value Analysis subroutine, Chapter 4.3, be used to obtain a more complete analysis and a more reliable solution for the problem.

A nonnegative definite symmetric matrix has a Cholesky factor even if it is singular. In computing a Cholesky factor for such matrices this subroutine does the following: If $g_{i}$ of Eq. (3) is nonpositive, Eqs. $(4-5)$ are replaced by

$$
\begin{equation*}
f_{i, j}=0, \quad j=i, i+1, \ldots, \mathrm{~N} \tag{18}
\end{equation*}
$$

When solving the triangular systems below Eq. (5), if $f_{i, i}=0$ the solution components $y_{i}$ and $x_{i}$ are set to zero.

If $P$ is a singular nonnegative definite matrix, the matrix $F$ produced in this way is its (nonunique) Cholesky factor, i.e., it satisfies Eq. (2). In such a case Eq. (1) may or may not have a solution and the vector $\mathbf{x}$ produced in this way is the solution only if a solution exists.

## E. Error Procedures and Restrictions

If $t_{\text {min }}<0$ in Eq. (17), the subroutine sets IERR nonzero as indicated above. When IERR $<0$, at least one row of the augmented matrix [upper triangle of $P, D$ ] will have been set to zero.

If IERR $\neq 0$ we suggest that the user apply the Singular

Value Analysis subroutine, Chapter 4.3, to the associated least-squares problem.

## F. Supporting Information

The source language is ANSI Fortran 77.

## Entry Required Files <br> DCHOL AMACH, DCHOL <br> SCHOL AMACH, SCHOL

Programmed by: C. L. Lawson, JPL, May 1969.
Program Revised by: F. T. Krogh, JPL, September 1991.

## DRDCHOL

```
c program DRDCHOL
c>> 1996-06-17 DRDCHOL Krogh Minor format change for C conversion.
c>> 1996-05-28 DRDCHOL Krogh Added external statement.
c>> 1994-10-19 DRDCHOL Krogh Changes to use Mr7CON
c>> 1994-08-09 DRDCHOL WVS remove '0' from formats
c>> 1992-03-04 DRDCHOL Krogh Initial version.
c Demonstration driver for DCHOL
c
c--D replaces "?": DR?CHOL, ?CHOL, ?DOT
c
    integer LDP, M, N
    parameter ( }\textrm{M}=3,N=2, LDP=2
    integer I, IERR, J
    double precision A(M,N), B(M)
    external DDOT
    double precision P(LDP,LDP), D(LDP), U, DDOT
    data }\textrm{A}(1,1),\textrm{A}(1,2),\textrm{B}(1)/0.7\textrm{D}0,0.6\textrm{D}0, 1.726\textrm{D}0 /
    data }\textrm{A}(2,1),\textrm{A}(2,2),\textrm{B}(2) / -0.8D0, 0.5D0, -5.415D0 /
    data }\textrm{A}(3,1),\textrm{A}(3,2),\textrm{B}(3)/0.6\textrm{D}0,-0.7\textrm{D}0, 5.183\textrm{D}0 
c
    U = DDOT(M, B, 1, B, 1)
    do 20 I = 1, N
        D(I) = DDOT(M, A(1, I ), 1, B, 1)
        do 10 J = 1, N
            P}(\textrm{I},\textrm{J})=\operatorname{DDOT}(\textrm{M},\textrm{A}(1,\textrm{I}), 1, A(1, J ), 1
    10 continue
    20 continue
    call DCHOL(P, LDP, N, D, U, 0.0d0, IERR)
    print '(', X() = ,',2f15.6)', D(1), D(2)
    print '(', RNORM = ,',f15.6)', U
    if (IERR .ne. 0) print '(
    * ',' Matrix failed conditioning test in DCHOL, IERR = ',',I3)',IERR
        end
```


## ODDCHOL

| X()$=$ | 5.000000 | -3.000000 |
| :--- | :--- | :--- |
| $\mathrm{RNORM}=$ | 0.121614 |  |

## DRDCHOL2

```
c program DRDCHOL2
c>> 1996-06-17 DRDCHOL2 Krogh Minor format change for C conversion.
c>> 1996-05-28 DRDCHOL2 Krogh Added external statement.
c>> 1994-10-19 DRDCHOL2 Krogh Changes to use M77CON
c>> 1993-02-18 DRDCHOL2 CLL.
c>> 1992-03-04 DRDCHOL2 Krogh Initial version.
c Demonstration driver for DCHOL
c
c--D replaces "?": DR?CHOL2, ?CHOL, ?DOT
c
    integer LDPDU, M, N, NP1
    parameter ( }\textrm{M}=3,N=2,NP1=N+1, LDPDU = 3
    integer I, IERR, J
    double precision }\textrm{AB}(\textrm{M},NP1
    external DDOT
    double precision PDU(LDPDU,LDPDU), DDOT
    data }\textrm{AB}(1,1),\textrm{AB}(1,2),\textrm{AB}(1,3) / 0.7D0, 0.6D0, 1.726D0 /
    data }\textrm{AB}(2,1),\textrm{AB}(2,2),\textrm{AB}(2,3) / -0.8D0, 0.5D0, -5.415D0 /
    data }\textrm{AB}(3,1),\textrm{AB}(3,2), \textrm{AB}(3,3) / 0.6D0, -0.7D0, 5.183D0 /
c
    do 20 I = 1, NP1
            do 10 J = 1, NP1
                PDU(I,J) = DDOT(M, AB(1,I), 1, AB(1, J ), 1)
            continue
    20 continue
        call DCHOL(PDU, LDPDU, N, PDU(1,NP1), PDU(NP1,NP1), 0.0d0, IERR)
        print '(',' X() = ',,,2f15.6)', PDU(1,NP1), PDU(2,NP1)
        print '(',' RNORM = ,',f15.6)',, PDU(NP1,NP1)
        if (IERR . ne. 0) print '(
        * ,', Matrix failed conditioning test in DCHOL, IERR = ,',I3)',IERR
        end
```


## ODDCHOL2

| X()$=$ | 5.000000 | -3.000000 |
| :--- | :--- | :--- |
| $\mathrm{RNORM}=$ | 0.121614 |  |


[^0]:    © 1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

