4.7 Sparse Square Nonsingular Systems of Equations

A. Purpose

For a sparse square nonsingular matrix, A, of order N , and an optional vector or matrix B, this routine will factor A, solve $A X=B, A^{T} X=B$, compute the reciprocal of the condition number, and obtain the determinant and the inverse. This code has similar functionality to the dense codes described in Chapter 4-1. The program in Chapter 19-6 can be used together with the code here to solve problems with the matrix given in Matrix Market format.

B. Usage

With minimal options, this simply solves $A \mathbf{x}=\mathbf{b}$ for a single vector \mathbf{b}, and does not preserve the factorization. Other features are available through the options in ISPEC.

B.0.a Program Prototype, Single Precision
 INTEGER N, ISPEC(?), IA(?)
 DOUBLE PRECISION A(?), B(?), OPT(3)

Assign values to $\mathrm{N}, \operatorname{ISPEC}(), \mathrm{IA}(), \mathrm{A}()$, and B() .

CALL DSPGE (N, ISPEC, IA, A, B, OPT)

Computed quantities are returned in IA()$, \mathrm{A}(), \mathrm{B}()$, and ISPEC.

B.0.b Argument Definitions

\mathbf{N} [in] The order of the matrix A and number of rows in the B and X.

ISPEC() [inout] An array used to return a flag, specify dimensions and specify options. Locations are used as follows.

1 [inout] Must be 0 if the matrix is not factored. The value returned on the first call must be preserved on later calls when the matrix is already factored. If the returned value is <0, then the matrix was not factored. See Section E. on page 2 for details.
2 [in] Declared dimension of IA() (or at least all that you want this routine to know about. This number must be at least the space required for storing the factors of the matrix + twice the space needed for the original matrix +7 N .
3 [in] Declared dimension of A() , this can have a dimension 4 N less than that for IA.

4 [out] The total free space in A at the solution. If there was insufficient free space this gives the negative of the number of columns left to be factored.
5 [in] Start of options, see the next Section.
IA() [inout] IA(1) gives the number of nonzeros in the first column. $\mathrm{IA}(2)$ to $\mathrm{IA}(1+\mathrm{IA}(1))$ give the row indexes for rows in the first column which must be in increasing order. $\mathrm{IA}(2+\mathrm{IA}(1))$ then gives the number of nonzeros in the second column, etc. Locations after this input data are used internally.
$\mathbf{A}()$ [inout] For each row index given in IA, the corresponding location in A contains the coefficient corresponding to that row and column. The remaining locations in A are used internally.
\mathbf{B} () [inout] Used to hold the right hand side(s) on entry and to hold the solution on exit.
OPT() [out] Used only for some options..
$\operatorname{OPT}(1)=$ reciprocal condition number if requested.
$\mathrm{OPT}(2) \times 10^{O P T[3]}=$ the determinant if requested.

B. 1 Options

First, a summary of the options.

Name Value		Brief Description
IPS	0	Solve $A \mathbf{x}=\mathbf{b}$
IPST	1	Solve $A^{T} \mathbf{x}=\mathbf{b}$
IPBDIM	2	Specifies dimensions on B
IPRCON	3	Compute reciprocal condition number
IPDET	4	Compute determinant

Starting in ISPEC(5) there is an index for an action which we denote here by I_{a}. Each I_{a} has associated with it a parameter name, a value for that parameter, and a (possibly empty) list of arguments, which follow immediately after I_{a} in ISPEC. After the last argument for an I_{a}, the next location in ISPEC contains the next I_{a}, with its associated arguments. This continues until the last I_{a} has been specified. An option index ≤ 1 ends the option list (other options must precede these). Setting $\operatorname{ISPEC}(5)=0$, gives the default action.
It is assumed that B is a one dimensional of length N if option IPBDIM is not used.

All the above options except for IPBDIM, take no arguments, and the above table should be self-explanatory. IPBDIM uses 3 locations in ISPEC, the 2 to indicate this option, next I_{2} to indicate the number of columns (default is 1), and then J_{2} to indicate the distance between successive columns of B. In addition one can get

[^0]the inverse by setting $I_{2}=-1$, and DSPGE will initialize B to the identity matrix computing a solution. If no backsolve is desired, set I_{2} to 0 . In the case of a B with 5 columns one might have $\operatorname{ISPEC}(5)=2, \operatorname{ISPEC}(6)=5$, and $\operatorname{ISPEC}(7)=\mathrm{N}$. Note that the code always assumes that B is dense.

If you want to compute the inverse matrix and are not an expert, chances are you should ask an expert who is likely to tell you - don't. Given the ability to backsolve using a previous factorization the inverse should very rarely be needed.

B.1.a Program Prototype, Single Precision

Usage is the same as for double precision, except the "DOUBLE PRECISION" statement is changed to "REAL", and the name DSPGE is changed to SSPGE.

C. Examples and Remarks

Program DRDSPGE illustrates the use of DSPGE to solve a system of linear equations and compute the reciprocal condition number of the matrix of the system. Output is shown in ODDSPGE. The data for this problem were chosen so the exact solution has components 2 , -5 , and 3 .

D. Functional Description

To factor the matrix, Gaussian elimination is used on columns to get a factorization of the form $A=U L^{-1}$. Pivot selection permutes rows and columns independently balancing a desire to keep an upper triangular form of the matrix without sacrificing stability.
Internal scaling first computes scale factors to make all the columns have an L_{∞} norm of 1 , and follows this by doing the same to the rows.

D. 1 Estimating reciprocal condition number

The condition number of an $n \times n$ nonsingular matrix, A, is defined as $\kappa=\|A\| \times\left\|A^{-1}\right\|$, a quantity that is never less than unity. This is the largest factor by which the relative error in a vector, \mathbf{y}, can be amplified as a result of multiplication by A or by A^{-1}. Roughly speaking, if $\kappa=10^{k}$ and the components of the vector \mathbf{b} in the problem, $A \mathbf{x}=\mathbf{b}$, are known to d decimal digits, and the components of A are known to more than d decimal digits, and the problem is solved using precision greater than d decimal digits, then the solution will be known to about $d-k$ decimal digits. In particular, if $k \geq d$, the solution may have no reliable digits at all.

We use the procedure described in [1, pp. 128-130] (based on work in [2]), which requires on the order of $3 n^{2}$ additional operations. In a test with 1250 cases reported in [2], the maximum value for the condition number / estimated condition number was just slightly more than 16.

DRDSPGE

```
c>> 2006-03-11 DRDSPGE Krogh Initial code.
c--D replaces "?": DR?SPGE, ?SPGE
c Demo driver for DRSPGE
    integer N, LA, LIA
    parameter ( }\textrm{N}=6,\textrm{LA}=300,\textrm{LIA}=\textrm{LA}+5*\textrm{N}
    integer IA(LA+5*N), ISPEC(7), I, J, K
    double precision A(LA),OPT(3),SIZE,B(N),BB(N),X(N),ERRX,ERRRES
    data IA (1),A(1), IA (2),A(2), IA(3),A(3) / 2,0.D0, 1, -2.D0, 4,1.D0/
    data IA(4),A(4), IA(5),A(5) /1,0.D0, 3,-2.E0/
    data IA(6),A(6), IA (7),A(7), IA(8),A(8) /2,0.D0, 2, -2.D0, 5, -2.D0/
    data IA( 9),A( 9), IA(10),A(10), IA(11),A(11), IA(12),A(12) /
    1 3,0.D0, 1,-1.D0, 5,-1.D0, 6,2.D0 /
    data IA(13),A(13), IA(14),A(14), IA(15),A(15), IA(16),A(16),
    1 IA(17),A(17), IA (18),A(18) / 5,0.D0, 1, -1.D0, 2,-2.D0, 3,2.D0,
    2 4,-1.D0, 6,-2.D0 /
        data IA(19),A(19), IA (20),A(20), IA (21),A(21), IA(22),A(22) /
    1 3,0.D0, 1,-2.D0, 3,2.D0, 6,1.D0 /
    data X / -2.0D0, -1.0D0, -2.0D0, -1.0D0, -1.0D0, -1.0D0 /
    data B / 8.0D0, 6.0D0, -2.0D0, -1.0D0, 5.0D0, -1.0D0 /
    data ISPEC / 0, LIA, LA, 0, 3, 4, 0 /
    do 100 I = 1, N
                BB}(\textrm{I})=\textrm{B}(\textrm{I}
    100 continue
c
    call DSPGE(N, ISPEC, IA, A, B, OPT)
    Get maximal errors in the residual and the solution.
    ERRRES = 0.D0
    SIZE = 0.D0
    K=1
    do 280 J = 1, N
        do 270 I = K+1, K + IA(K)
            SIZE = max(SIZE, abs(A(I) * X(J)))
            BB(IA(I)) = BB(IA(I)) - A(I) * B(J)
            continue
            K= I
        continue
        do 300 J = 1, N
            ERRRES = max(ERRRES, abs (BB(J)))
    300 continue
        ERRRES = ERRRES / SIZE
    ERRX = 0.D0
    do 320 I = 1, N
            ERRX = max(ERRX, abs(X(I) - B(I)))
    320 continue
    I = int(log10(abs(OPT(2))))
    if (I .gt. 0) I = I + 1
    OPT(2)=OPT(2)*10.D0**(-I)
    I = I + nint(OPT(3))
    print '(', Problem N RESERR XERR Unused Used'',
    1 ,', ROOND DET x10^?',')'
    print '(''DEMOTEST 6 ',',1P,2 E10.2,2 I8,E10.2,0PF9.5, I6 )',
    1 ERRRES,ERRX, ISPEC (4),ISPEC(3)-ISPEC (4),OPT (1),OPT (2), I
    stop
    end
```


ODDSPGE

Problem	N	RESERR	XERR	Unused	Used	ROOND	DET	x $10^{\wedge} ?$
DEMOTEST	6	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	196	104	$5.99 \mathrm{E}-03$	-4.00000	0

[^0]: (C) 2015 Math à la Carte, Inc.

