
11.5 Least-Squares Data Fitting using Kth Order Splines
with Constraints

A. Purpose

This package contains two subprograms, DSFIT and
DSFITC, for fitting a polynomial spline function to dis-
crete data. A polynomial spline function is a piecewise
polynomial function having specified orders of continuity
at the abscissae, called internal knots, at which one poly-
nomial piece ends and another begins. Spline functions
have been found to be very useful in many computational
processes due to their capability of representing a wide
variety of shapes in a controlled way.

DSFIT can be used either for a weighted least-squares
fit or for interpolation. DSFITC adds capabilities for
the user to specify constraints on the fit in the form of
equality or inequality conditions on the value or deriva-
tive (of specified order), of the spline function at specified
points, or the integral of the spline function over a speci-
fied interval. These constraints can be used, for example,
to assure monotonicity or convexity of the fitted spline
function over specified intervals. Figure 1 illustrates a
monotone nondecreasing least-squares spline fit to data
computed using DSFITC.

0 1 2 3 4 5 6
0

1

2

3

4

5

Figure 1: Constrained spline fit to data.

The fitting subprograms return coefficients of a spline
function relative to B-spline basis functions using the
parameterization conventions given by Carl de Boor in
[1]. In this approach the spline function will be of a user-
specified order, K, which means the polynomial pieces
are of degree at most K−1. By default the continuity at
knots will be of order K − 2, however the user can spec-
ify a lower order of continuity at selected internal knots

to allow the curve to change direction more sharply.

Subprogram DSVAL can be used to evaluate a spline
function represented relative to the B-spline basis or any
of its derivatives, at a specified point, and subprogram
DSQUAD can be used to evaluate the definite integral
of the function between specified limits.

The B-spline representation has the desirable property
that usual continuity conditions at knots are “built-in”.
This keeps down the number of coefficients that must
be determined in interpolation or least-squares fitting.
A disadvantage is that evaluation of a function repre-
sented in the B-spline representation is more expensive
than is the use of an alternative representation using the
power basis.

If one is going to do a large number of evaluations of
a spline function one may choose to convert the repre-
sentation of the spline function from the B-spline basis
to the power basis to allow for more efficient evaluation.
Subprogram DSTOP can be used to do this conversion.
Then DPVAL can be used to evaluate the function or
any of its derivatives at a specified point, and DPQUAD
can be used to evaluate the definite integral of the func-
tion between specified limits.

B. Usage

Described below in Section B.1 to B.8, are:

B.1 Usage of DSFIT for fitting without
constraints . 1

B.2 Usage of DSFITC for fitting with
constraints . 3

B.3 Usage of DSVAL for evaluation using
the B-spline basis . 5

B.4 Usage of DSQUAD for integration
using the B-spline basis 5

B.5 Usage of DSTOP to convert from the
B-spline basis to the power basis 5

B.6 Usage of DPVAL for evaluation using
the power basis . 6

B.7 Usage of DPQUAD for integration using
the power basis . 6

B.8 Modifications for Single Precision 6

B.1 Usage of DSFIT for fitting without con-
straints

B.1.a Program Prototype, Double Precision

INTEGER NXY, KORDER, NCOEF, LDW,
IERR1

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–1

DOUBLE PRECISION BCOEF(≥NCOEF),
X(≥NXY), Y(≥NXY), SD(≥NXY),
TKNOTS(≥NCOEF+KORDER),
W(LDW, ≥KORDER+1), SIGFAC

Assign values to X(), Y(), SD(), NXY, KORDER,
NCOEF, TKNOTS(), and LDW.

CALL DSFIT(X, Y, SD, NXY, KORDER,
NCOEF, TKNOTS, BCOEF, SIGFAC,

IERR1, LDW, W)

Results are returned in BCOEF(), SIGFAC, and IERR1.
Following use of DSFIT, the user may use DSVAL to
compute values or specified derivatives of the fitted
curve, DSQUAD to compute the definite integral of the
fitted curve over a specified interval, or DSTOP to con-
vert the representation to the power basis.

B.1.b Argument Definitions

X(), Y() [in] Data pairs (X(i), Y(i), i = 1, ..., NXY).
Must be ordered so the X(i)’s are either nondecreas-
ing or nonincreasing.

SD() [in] If SD(1) > 0., each SD(i) must be positive
and must be the user’s a priori estimate of the stan-
dard deviation of the uncertainty (e.g., observational
error) in the corresponding data value Y(i).

If SD(1) < 0., |SD(1)| will be used as the a priori
standard deviation of each data value Y(I). In this
case the array SD() may be dimensioned as SD(1).

An error condition is reported if SD(1) = 0 or if SD(1)
> 0 and SD(i) ≤ 0 for 1 < i ≤ NXY.

NXY [in] Number of data points. Require NXY ≥
max(NCOEF, KORDER).

KORDER [in] Order of the spline function. Each
polynomial piece will be of degree at most KORDER
− 1. The default order of continuity at each internal
knot will be KORDER − 2. The popular case of a
cubic spline with C2 continuity at the knots is se-
lected by setting KORDER = 4. Require KORDER
≥ 1. Internal arrays in this package impose an upper
limit of kmax = 20 on KORDER.

NCOEF [in] Number of terms in the sum representing
the spline function. Require NCOEF ≤ NXY.

TKNOTS() [in] The knots, ti, i = 1, ..., NCOEF
+ KORDER. The interval [tKORDER, tNCOEF+1] will
be the proper interpolation interval for the problem.
This interval should contain all the X(j) values, so it
is reasonable to set tKORDER ≤ min(X(1), X(NXY))
and tNCOEF+1 ≥ max(X(1), X(NXY)). It is conve-
nient and reasonable to set the KORDER − 1 knots
with indices less than KORDER equal to tKORDER,

and the KORDER − 1 knots with indices greater
than NCOEF + 1 equal to tNCOEF+1.

Knots indexed from KORDER + 1 through NCOEF
are internal knots. Internal knots specify abscissae
at which one polynomial piece ends and the next be-
gins. Successively indexed internal knots may have
the same value. A knot appearing with multiplic-
ity µ means the order of continuity of the spline at
this knot will be at least KORDER− µ− 1. Require
1 ≤ µ ≤ KORDER.

Require ti ≤ ti+1 for i = 1, ..., NCOEF + KORDER
− 1; ti < ti+KORDER for i = 1, ..., NCOEF;
tKORDER < tKORDER+1; and tNCOEF < tNCOEF+1.
See Sections C and D for further discussion of knot
placement.

BCOEF() [out] Coefficients ci, i = 1, NCOEF, in the
sum representing the spline function as a sum of co-
efficients times B-spline basis functions.

SIGFAC [out] Set by the subroutine as a measure of
the residual error of the fit. The subroutine sets

SIGFAC =
RNORM

DOF1/2
, where

RNORM =

[
NXY∑
i=1

(
yfiti −Yi

SDi

)2
]1/2

, and

DOF = max(1,NXY−NCOEF).

Here SDi denotes SD(i) if SD(1) > 0, and |SD(1)|
otherwise.

IERR1 [out] Error status indicator. Set on the basis
of tests done in DSFIT as well as error indicators
IERR2 set by DBACC and IERR3 set by DBSOL,
both in Chapter 4.5. IERR1 is set as follows:

IERR1 Meaning

0 No errors detected.

100 NCOEF < 1 or NCOEF > NXY

150 KORDER > kmax (= 20)

200 TKNOTS(i) > TKNOTS(i+1)

250 TKNOTS(i) ≥TKNOTS(i+KORDER)

300 LDW < NCOEF + 2

400 The X(i)’s are neither nondecreasing nor non-
increasing.

600 LDW < NCOEF + 2.

700+IERR2 DBACC set IERR2 6= 0

800+IERR2 DBACC set IERR2 6= 0

900+IERR2 DBACC set IERR2 6= 0

1000+IERR3 DBSOL set IERR3 6= 0. Indicates
singularity.

1100 SD(1) = 0.0

1200 SD(1) > 0.0, and SD(i) ≤ 0.0 for some i ∈ [2,
NXY].

11.5–2 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

LDW [in] Leading dimension for the work array W().
Require LDW ≥ NCOEF + 2. Let α denote the
maximum number of data abscissae, X(i), in any
one knot interval, i.e. between TKNOTS(j) and
TKNOTS(j + 1) for some j. The subroutine will
be more efficient if LDW is at least NCOEF + 1 +α.

W(,) [scratch] Working space, dimensioned W(LDW,
≥KORDER+1).

B.2 Usage of DSFITC for fitting with con-
straints

B.2.a Program Prototype, Double Precision

INTEGER KORDER, NCOEF, ISET(3),
INFO(ninfo)

DOUBLE PRECISION X(mdim), Y(mdim),
SD(mdim), TKNOTS(≥NCOEF+KORDER),
BCOEF(≥NCOEF), RNORM, W(nwork)

CHARACTER*4 CCODE(mdim)

The dimension mdim must be large enough to provide
for specification of all constraint and least-squares equa-
tions as described below in the description of CCODE().
See ISET() for the specifications of ninfo and nwork.

Assign values to CCODE(), X(), Y(), SD(), KORDER,
NCOEF, TKNOTS(), and ISET().

CALL DSFITC(CCODE, X, Y, SD,
KORDER, NCOEF, TKNOTS, BCOEF,

RNORM, ISET, INFO, W)

Computed quantities are returned in BCOEF(),
RNORM, and INFO(). Following use of DSFITC, the
user may use DSVAL to compute values or specified
derivatives of the fitted curve, DSQUAD to compute the
definite integral of the fitted curve over a specified in-
terval, or DSTOP to convert the representation to the
power basis.

B.2.b Argument Definitions

CCODE() [in] CCODE(i), or in some cases CCODE(i)
and CCODE(i + 1) together, give specifications for
one constraint equation or one least-squares equa-
tion. CCODE(i) is regarded as consisting of four
single-character fields.

CCODE(i)(1:1) = kindi = ′1′, ′2′, ′3′, ′4′.

CCODE(i)(2:2) = derivi = ′0′, ′1′, ..., ′9′.

CCODE(i)(3:3) = relopi = ′∼′, ′=′, ′<′, ′>′.
CCODE(i)(4:4) = activei = ′A′, ′N′, ′!′.

Where alphabetic characters are shown, the corre-
sponding lower case character is also acceptable.

activei = ′!′ signals the end of information in this
array. The user must provide this termina-
tion signal. The other fields in this array el-
ement will be ignored. activei = ′A′ means
CCODE(i) is active so CCODE(i) will be pro-
cessed. activei = ′N′ means CCODE(i) is inac-
tive so processing will advance to CCODE(i+1).
To activate or inactivate a pair [CCODE(i),
CCODE(i + 1)] in which kindi = 3 or 4, place
the same code ′A′ or ′N′ in both activei and
activei+1.

relopi = ′=′, ′<′, or ′>′ denotes a constraint equa-
tion with ′=′ meaning equal to, ′<′ meaning less
than or equal to, and ′>′ meaning greater than
or equal to. relopi = ′∼′ denotes a least-squares
equation. For a least-squares equation the value
SD(i) (or |SD(1)|) will be used as the a priori
standard deviation.

kindi = 1 specifies an equation of the form

f (di)(X(i)) relopi Y(i)

where f (di) denotes the derivative of order
derivi of the spline function to be determined.
The zeroth order derivative is the function itself.

kindi = 2 specifies an equation of the form

f (di)(X(i))− f (di)(Y(i)) relopi0

Note that Y(i) is an independent variable value
in this case.

kindi = 3 uses items indexed by both i and i+1 and
specifies an equation of the form

f (di)(X(i))−Y(i+ 1)× f (di+1)(X(i+ 1)) relopiY(i)

where f (di+1) denotes the derivative of order
derivi+1 of the spline function to be determined.

kindi = 4 uses items indexed by both i and i+1 and
specifies an equation of the form∫ X(i+1)

X(i)

f(x) dx relopi Y(i)

See Section C for discussion of expected applications
of these different equation forms.

X(), Y() [in] Data for use in building constraint or
fitting equations as specified by the contents of
CCODE().

SD() [in] SD(i) specifies the a priori standard deviation
of the error in the equation specified by CCODE(i)
when relopi = ′∼′. The weighted fitting algorithm
will take account of these SD(i) values. Optionally,
the user may set SD(1) to a negative value. Then this
subroutine will use |SD(1)| as the standard deviation
for the right-side value in each fitting equation. In
this latter case the SD() array can be dimensioned

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–3

SD(1). Note that a negative value in SD(1) will al-
ways be interpreted in this way regardless of the con-
tents of CCODE(1). An error condition is reported
if SD(1) = 0 or if SD(1) > 0 and SD(i) ≤ 0 for
1 < i ≤ NXY.

KORDER [in] Order of the spline function. Each
polynomial piece will be of degree at most KORDER
− 1. The default order of continuity at each internal
knot will be KORDER − 2. The popular case of a
cubic spline with C2 continuity at the knots is se-
lected by setting KORDER = 4. Require KORDER
≥ 1. Internal arrays in this package impose an upper
limit of kmax = 20 on KORDER.

NCOEF [in] Number of terms in the sum representing
the spline function.

TKNOTS() [in] The knots, ti, i = 1, ..., NCOEF
+ KORDER. The interval [tKORDER, tNCOEF+1] will
be the proper interpolation interval for the prob-
lem. This interval should contain all the abscissa
values occurring in the least-squares and constraint
equations, so it is reasonable to set tKORDER less
than or equal to the minimum of these abscissae and
tNCOEF+1 greater than or equal to the maximum. It
is convenient and reasonable to set the KORDER
− 1 knots with indices less than KORDER equal to
tKORDER, and the KORDER − 1 knots with indices
greater than NCOEF + 1 equal to tNCOEF+1.

Knots indexed from KORDER + 1 through NCOEF
are internal knots. Internal knots specify abscissae
at which one polynomial piece ends and the next be-
gins. Successively indexed internal knots may have
the same value. A knot appearing with multiplic-
ity µ means the order of continuity of the spline at
this knot will be at least KORDER− µ− 1. Require
1 ≤ µ ≤ KORDER.

Require ti ≤ ti+1 for i = 1, ..., NCOEF + KORDER
− 1; ti < ti+KORDER for i = 1, ..., NCOEF;
tKORDER < tKORDER+1; and tNCOEF < tNCOEF+1.
See Sections C and D for further discussion of knot
placement.

BCOEF() [out] Coefficients ci, i = 1, NCOEF, in the
sum representing the spline function as a sum of co-
efficients times B-spline basis functions.

RNORM [out] Set by the subroutine as a mea-
sure of the residual error of the fit. RNORM=[∑

i

(
residi
SDi

)2]1/2
, where the summation is over in-

dices for which relopi = ′∼′, and residi denotes
the residual after the fit in the equation specified by
CCODE(i). Here SDi denotes SD(i) if SD(1) > 0,
and |SD(1)| otherwise.

ISET() [in] Array of length 3. These specifications use
the following values:

ns = the number of elements in CCODE() contain-
ing relop = ′<′ or ′>′ and active = ′A′.

m1 = the number of elements in CCODE() contain-
ing relop = ′=′, ′<′ or ′>′ and active = ′A′.

mfit = the number of elements in CCODE() con-
taining relop = ′∼′ and active = ′A′.

ntot = NCOEF + ns,

mtot = m1 +mfit,

minmn = min(mtot, ntot).

ISET(1) = ninfo, the dimension of INFO(). A suffi-
ciently large value is 7 + 2ntot.

ISET(2) = nwork, the dimension of WORK(). A
sufficiently large value is nwork = mtot×ntot+
3mtot+ 6ntot+ 3minmn+m1.

ISET(3) = kprint, a diagnostic print flag in the
range [0, 4]. It is passed on to DBLSE. Zero
means no printing. Larger values produce more
printing.

INFO() [out and scratch] The first 7 elements of
INFO() are used to return information about the
problem. The following 2× (NCOEF +ns) locations
are used as scratch. The dimension of INFO() is ninfo
given in ISET(1).

INFO(1) = ierr5, a status indicator incorporating
information from IERR4 issued by DBLSE. Pos-
sible values of ierr5 are as follows:

0 No errors detected.

100 NCOEF < 1

150 KORDER > kmax(= 20)

200 TKNOTS(i) > TKNOTS(i+ 1)

250 TKNOTS(i) ≥ TKNOTS(i+ KORDER)

300 ninfo or nwork is too small. Recom-
mended values are returned in INFO(2) and
INFO(3).

500 derivi has bad value for some i.

600 relopi has bad value for some i.

700 kindi has bad value for some i.

800 activei has bad value for some i.

1000 + IERR4 IERR4 6= 0 due to error de-
tected in DBLSE. For the interpretation of
IERR4 see Section E.

1100 SD(1) = 0.0

1200 SD(1) > 0.0, and SD(i) ≤ 0.0 for some i
for which relopi = ′∼′.

INFO(2) = need1, the dimension needed for
INFO().

INFO(3) = need2, the dimension needed for
WORK().

11.5–4 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

INFO(4) = m1, the number of constraint rows in the
matrix representation of the problem. This will
be the number of elements in CCODE() contain-
ing relop = ′=′, ′<′ or ′>′ and active = ′A′

INFO(5) = mfit, the number of least-squares equa-
tions. This will be the number of elements in
CCODE() containing relop = ′∼′ and active =
′A′.

INFO(6) = ns, the number of slack variables. This
will be the number of elements in CCODE()
containing relop = ′<′ or ′>′ and active = ′A′.

INFO(7) = nsets, the number of variables in “Set S”
at termination. These variables are at values de-
termined by solution of a system of equations.
The other NCOEF + ns − nsets variables will
be at fixed values, either at one of their bounds
or at zero.

WORK() [scratch] Work space dimensioned nwork.
See ISET(2) above.

B.3 Usage of DSVAL for evaluation using the
B-spline basis

DSVAL returns the value at argument X of the derivative
of order IDERIV of the spline function defined by the
parameter sequence [KORDER, NCOEF, TKNOTS(),
BCOEF()].

B.3.a Program Prototype, Double Precision

INTEGER NCOEF, KORDER, IDERIV

DOUBLE PRECISION DSVAL,
TKNOTS(≥NCOEF+KORDER),
BCOEF(≥NCOEF), X

Assign values to all arguments.

D = DSVAL(KORDER, NCOEF, TKNOTS,
BCOEF, X, IDERIV)

B.3.b Argument Definitions

KORDER, NCOEF, TKNOTS(), BCOEF() [in]
Quantities defining a spline function relative to the
B-spline basis as returned by DSFIT or DSFITC. In-
ternal arrays in this subprogram impose an upper
limit of kmax = 20 on KORDER.

X [in] Argument at which the IDERIV order derivative
of the spline function will be evaluated.

IDERIV [in] Derivative order desired. Require
IDERIV ≥ 0. Zero means to evaluate the spline func-
tion itself.

B.4 Usage of DSQUAD for integration using
the B-spline basis

DSQUAD returns the value of the integral from X1 to X2
of the spline function defined by the parameter sequence
[KORDER, NCOEF, TKNOTS(), BCOEF()].

B.4.a Program Prototype, Double Precision

INTEGER KORDER, NCOEF

DOUBLE PRECISION DSQUAD,
TKNOTS(≥NCOEF+KORDER),
BCOEF(≥NCOEF), X1, X2

Assign values to all arguments.

D = DSQUAD(KORDER, NCOEF,
TKNOTS, BCOEF, X1, X2)

B.4.b Argument Definitions

KORDER, NCOEF, TKNOTS(), BCOEF() [in]
Quantities defining a spline function relative to the
B-spline basis as returned by DSFIT or DSFITC.

X1, X2 [in] Limits of the integral to be evaluated. Per-
mit X1 < X2 or X1 ≥ X2.

B.5 Usage of DSTOP to convert from the B-
spline basis to the power basis

DSTOP converts the representation of a spline func-
tion from the B-spline parameterization [KORDER,
NCOEF, TKNOTS(), BCOEF()] to the power basis
form [KORDER, NPC, XI(), PCOEF()]. KORDER will
not be changed. Typically the B-spline parameters will
have come from DSFIT or DSFITC. The power coeffi-
cients can be used by DPVAL and DPQUAD.

B.5.a Program Prototype, Double Precision

INTEGER KORDER, NCOEF, NPC

DOUBLE PRECISION TKNOTS(≥NCOEF+
KORDER), BCOEF(≥NCOEF),
BDIF(≥ NCOEF×KORDER), XI(mpc+1),
PCOEF(≥KORDER×mpc)

The dimension mpc must be as large as the output value
NPC. In terms of input quantities it suffices to set mpc ≥
NCOEF − KORDER + 1. Assign values to KORDER,
NCOEF, TKNOTS(), and BCOEF().

CALL DSTOP(KORDER, NCOEF, TKNOTS,
BCOEF, BDIF, NPC, XI, PCOEF)

Results are returned in NPC, XI(), and PCOEF().

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–5

B.5.b Argument Definitions

KORDER, NCOEF, TKNOTS(), BCOEF() [in]
Quantities defining a spline function relative to the
B-spline basis, as returned by DSFIT or DSFITC.

BDIF() [scratch] Work space of size NCOEF ×
KORDER.

NPC [out] NPC + 1 will be the number of distinct
values in the sequence [TKNOTS(i), i = KORDER,
..., NCOEF + 1]. NPC will satisfy NPC ≤ NCOEF
− KORDER + 1.

XI() [out] A strictly increasing sequence of length NPC
+ 1 consisting of all the distinct values from the se-
quence [TKNOTS(i), i = KORDER, ..., NCOEF +
1].

PCOEF() [out] PCOEF(i+ (j − 1)× KORDER) will
be be the coefficient of (t− XI(j))(i−1) in the power
basis representation of the spline function. (i = 1,
..., KORDER; j = 1, ..., NPC)

B.6 Usage of DPVAL for evaluation using the
power basis

DPVAL returns the value at argument X of the deriva-
tive of order IDERIV of the spline function defined
by the parameter sequence [KORDER, NPC, XI(),
PCOEF()].

B.6.a Program Prototype, Double Precision

INTEGER NPC, KORDER, IDERIV

DOUBLE PRECISION DPVAL,
XI(≥NPC+KORDER),
PCOEF(≥KORDER×NPC), X

Assign values to all arguments.

D = DPVAL(KORDER, NPC, XI,
PCOEF, X, IDERIV)

B.6.b Argument Definitions

KORDER, NPC, XI(), PCOEF() [in] Quantities
defining a spline function relative to the power ba-
sis, as returned by DSTOP.

X [in] Argument at which the IDERIV order derivative
of the spline function will be evaluated.

IDERIV [in] Derivative order desired. Require
IDERIV ≥ 0. Zero means to evaluate the spline func-
tion itself.

B.7 Usage of DPQUAD for integration using
the power basis

DPQUAD returns the value of the integral from X1 to
X2 of the spline function defined by the parameter se-
quence [KORDER, NPC, XI(), PCOEF()].

B.7.a Program Prototype, Double Precision

INTEGER KORDER, NPC

DOUBLE PRECISION DPQUAD,
XI(≥NPC+KORDER),
PCOEF(≥KORDER×NPC), X1, X2

Assign values to all arguments.

D = DPQUAD(KORDER, NPC, XI,
PCOEF, X1, X2)

B.7.b Argument Definitions

KORDER, NPC, XI(), PCOEF() [in] Quantities
defining a spline function relative to the power ba-
sis, as returned by DSTOP.

X1, X2 [in] Limits of the integral to be evaluated. Per-
mit X1 < X2 or X1 ≥ X2.

B.8 Modifications for Single Precision

For single precision usage change the DOUBLE PRECI-
SION statements to REAL and change the initial “D”
in the subprogram names to “S”.

C. Examples and Remarks

C.1 Demonstration of DSFIT.

The demonstration driver DRDSFIT sets up a curve fit-
ting problem having 12 (x, y) pairs of data. It uses
DSFIT to do a least-squares fit to this data with an
8-parameter cubic spline function. It uses DSVAL to
evaluate the fitted function over the given set of x val-
ues. It uses DSQUAD to compute the definite integral
of the fitted function from 5.0 to 20.0. It uses DSTOP to
convert the B-spline representation to the power repre-
sentation. It then uses DPVAL and DPQUAD to repeat
the function evaluation and integral computation using
the power representation. The output is listed in ODD-
SFIT.

C.2 Demonstration of DSFITC.

The program DRDSFITC illustrates the use of DSFITC
to compute a constrained least-squares spline fit to data.
Output from DRDSFITC is listed in ODDSFITC and
graphs prepared using splot from Chapter 16-03 are
shown in Figures 1 and 2. We have 24 data points, given
in the the first 24 entries of the arrays XI() and YI() in
the DATA statement in DRDSFITC. These points are
shown as circles in Figure 1.

Suppose these data are measurements of some phe-
nomenon that is known to be monotone nondecreasing
and we wish to find a monotone nondecreasing function
that closely fits the data. An unconstrained least-squares
fit to this data by a single polynomial or by a poly-
nomial spline function will have unwanted oscillations.

11.5–6 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

There are rational functions and exponential functions
with three parameters that are monotone and of some-
what the desired shape, but these functions do not have
enough free parameters to allow the function to fit the
data really closely. A satisfactory fit can be obtained
using a cubic spline function having C2 continuity.

The data abscissae range from 0 to 6. We shall place
quadruple knots at these two points and internal knots
at 1.5, 2.5, 3.3, 4.0, and 4.7. The number and loca-
tions of these internal knots were selected by some trial
and error. These knot values are stored in TKNOTS().
Their locations are shown by triangles in Figures 1 and 2.
Since we have selected a total of 13 knots and we have
KORDER = 4 to specify a cubic spline, the number of
coefficients will be set to NCOEF = 13− 4 = 9.

We shall require the curve to be concave up over [0, 2.5]
by requiring f ′′ ≥ 0 at 0 and at the first two inter-
nal knots. These constraints, along with the constraint
f ′(0) ≥ 0, will forcef ′ to be nonnegative over [0, 2.5].
Similarly we require the curve to be concave down over
[3.3, 6] by requiring f ′′ ≤ 0 at the last three internal
knots and at 6. These constraints, along with the con-
straint f ′(6) ≥ 0, will force f ′ to be nonnegative over
[3.3, 6]. It follows that f ′ ≥ 0 over [2.5, 3.3] since in
this interval f ′ is a quadratic polynomial that is non-
negative and nondecreasing at 2.5 and nonnegative and
nonincreasing at 3.3.

The second derivative of a cubic spline is linear between
knots. Thus the conditions f ′′(2.5) ≥ 0 and f ′′(3.3) ≤ 0
imply that f ′′ can have at most one sign change in the in-
terval between the successive knots at 2.5 and 3.3. This
assures the only inflection point of the curve over (0, 6)
will occur in the interval [2.5, 3.3]. See Figure 2 for
graphs of the resulting f ′ and f ′′.

Supposing we also wish to have the fitted curve take the
value 1 at 0 and the value 5 at 6, we also impose these
constraints.

Recall that the four characters in each entry of CCODE()
are interpreted as (kind, deriv, relop, active). All but
the last element of CCODE() have active = ′a′ mean-
ing these elements are active, while the last element has
active = ′!′, which is the termination signal. All of the
active elements have kind = ′1′, meaning the specified
equation is of the form

f (di)(XI(i)) relopi YI(i).

The first 24 entries have relop = ′∼′ meaning that
each specifies one of the least-squares equations. The
ten elements of CCODE() beginning with CCODE(25)
specify the constraints. For example CCODE(26) has
deriv = ′1′ and relop = ′>′ meaning the first derivative
at XI(26) is constrained to be ≥ YI(26).

0 1 2 3 4 5 6

−4

−2

0

2

4

f ′

f ′′

Figure 2: First and second derivatives
of fitted function.

C.3 Using constraints to control shape.

A function with at least C1 continuity is nondecreasing
over [c, d] if its first derivative is nonnegative through-
out [c, d]. A function with at least C2 continuity is
concave up over an interval [c, d] if its second derivative
is nonnegative throughout [c, d]. Although these are
properties defined over an interval, it is possible to im-
pose these conditions on spline functions by appropriate
assignment of constraints at a finite number of points.

Note that if f is a cubic spline function with C2 continu-
ity, then f ′ is a quadratic spline with C1 continuity, and
f ′′ is a linear spline function with C0 continuity, i.e., f ′′

is a continuous piecewise linear function with possible
slope changes only at knots. It follows that by requiring
f ′′ ≥ 0 at c and d, and at any knots between c and d,
f ′′ will necessarily be nonnegative throughout [c, d], and
therefore f will be concave up throughout [c, d].

If one wants f to be monotone nondecreasing as well as
concave up over [c, d] it suffices to require f ′(c) ≥ 0
along with the second derivative conditions already dis-
cussed, since with f ′′ ≥ 0 throughout [c, d], f ′ cannot
have a smaller value anywhere in [c, d] than it has at c.

If one wants monotonicity for f without second deriva-
tive constraints, one could let f be a quadratic spline
rather than a cubic spline. Then f ′ will be piecewise
linear and one can control the sign of f ′ over an interval
by constraining f ′ at knots as was done above for f ′′.
If one prefers to use cubic splines, one can do trial and
error placement of constraints on f ′ and eventually keep
f ′ from changing sign.

C.4 Periodicity.

When periodicity is desired it should be specified for the
function value and all orders of derivatives that are con-
tinuous at the points referenced in the specification. For

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–7

example suppose one wants periodicity of 360 degrees.
The proper interpolation interval could be set as [a, b] =
[0.0, 360.0]. If one uses KORDER = 4 one should spec-
ify periodicity for f , f ′, and f ′′. This can be done by
setting CCODE(1:3) = ′20=a′, ′21=a′, ′22=a′; X(1:3)
= 0.0, 0.0, 0.0; and Y(1:3) = 360.0, 360.0, 360.0.

Although it does not change the fit obtained, one may
wish to have the periodicity reflected in the coeffi-
cients. Letting p denote the period, and assuming
p + tKORDER = p + a = b = tNCOEF+1, this can
be done by setting the initial knots as ti = −p +
tNCOEF+1−KORDER+i, for i = 1, ..., KORDER − 1, and
the final knots as tNCOEF+1+i = p+ tKORDER+i, for i =
1, ..., KORDER − 1. Then the coefficients will reflect
the periodicity by satisfying cNCOEF+1−KORDER+i = ci,
for i = 1, ..., KORDER − 1.

C.5 Differential equations.

Using kind = 3, conditions such as f ′(x) − cf(x) = d,
or f ′(x) − cf(x) ∼ d (and slightly more general expres-
sions) can be specified for given values of x, c and d.
Thus DSFITC can be used to implement the collocation
method of computing an approximate solution to linear
differential equations.

C.6 Assignment of knots.

Many discussions of spline interpolation are based on
the assumption that many, or all, of the knots will be
assigned to coincide with data abscissae. This is not nec-
essary, either for interpolation or least-squares fitting.

Let, {Bi: i = 1, ..., NCOEF}, be a family of B-spline
basis functions of order K. An unconstrained interpo-
lation or least-squares fitting problem using this family
gives rise to a full-rank matrix, and thus has a unique
solution if and only if there are at least NCOEF distinct
data abscissae, and it is possible to choose NCOEF of
these and relabel them, say as ui, i = 1, NCOEF, so
they will satisfy Bi(ui) 6= 0 for i = 1, ..., NCOEF. This
condition will be satisfied if the (possibly relabled) ui’s
relate to the knots according to ti < ui < ti+K for i = 1,
..., NCOEF.

Consider an interpolation problem with NXY data
points, all data abscissae being distinct. Choose a spline
order K ≥ 2. We must use exactly NCOEF = NXY
B-spline basis functions. Thus NCOEF + K knots must
be assigned. Let a and b be the minimum and max-
imum data abscissae respectively. Assign the first K
knots the value a and the last K knots the value b. Then
NCOEF−K knots remain to be assigned and there are
NCOEF − 2 data abscissae distinct from a and b. One
simple approach is to use any NCOEF − K of these
NCOEF − 2 data abscissae as knots. In the popular
case of cubic spline interpolation(K = 4) there would be

just two data abscissae not used as knots. It is common
to choose these to be the first one after a and the last
one before b.

Another method suggested in [1], pp. 218–219, for assign-
ing the interior knots for interpolation is the formula

ti = (ui−K+1 + ...+ ui−1)/(K − 1),

i = K + 1, ..., NCOEF

where the ordered set of data abscissae is denoted by
{ui: i = 1, ..., NCOEF}.

For least-squares fitting one must choose NCOEF <
NXY.

D. Functional Description

D.1 Representation of an individual B-spline
basis function.

Let {t1, ..., tK+1} be a sequence of strictly increasing
real numbers that we will call knots. To within a multi-
plicative scale factor, there is one, and only one, spline
polynomial function of order K (i.e., having polynomial
pieces of degree at most K − 1), having at least CK−2

continuity at these knots, and being nonzero through-
out the open interval (t1, tK+1), and zero outside this
interval. With some convention for assigning the scale
factor, such a function is called a B-spline basis function.
The interval 〈t1, tK+1〉 will be called the support interval
for this B-spline basis function. We use angle brackets
〈 〉 to indicate that we are not specifying whether the
endpoints are included or not. Graphs of B-spline basis
functions of orders 1, 2, 3, and 4 over uniformly spaced
knots are given in Figures 3–5.

Following [1], these definitions can be generalized to al-
low knots to coalesce. This has a natural mathemati-
cal interpretation of reducing the order of continuity at
the affected knots. At an ordinary non-multiple knot, a
spline function of order K has CK−2 continuity. At a
knot of multiplicity µ a spline function of order K has
CK−µ−1 continuity. For example a B-spline basis func-
tion of order 4 defined over the knot set {0, 1, 1, 5, 6}
consists of only three nontrivial cubic pieces, and these
have C2 continuity at 0, 5, and 6, but only C1 continu-
ity at 1. This freedom to lower the order of continuity
at specified places can be useful in allowing a curve to
change direction more sharply at such a point. Graphs of
B-spline basis functions of order 4 having multiple knots
at the left end are given in Figure 6.

0

1

11.5–8 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

Figure 3: B-spline basis functions
of orders 1 and 2.

0

1

Figure 4: B-spline basis function of order 3.

0

1

Figure 5: B-spline basis function of order 4.

0

1

Figure 6: Cubic B-spline basis functions
having multiple knots at the left.

D.2 Representation of a spline function using
the B-spline basis.

Suppose we wish to construct a family of spline functions
of order K, and having NCOEF degrees of freedom, over
an interval [a, b], which will be called the proper inter-
polation interval for this spline family. We require a < b
and NCOEF≥ K. Construct a knot sequence T = {t1, ...,
tNCOEF+K}. This sequence must be nondecreasing and
have tK = a and tNCOEF+1 = b. The values of the knots
indexed before K or after NCOEF + 1 do not affect the
shapes that can be achieved by the family of splines to
be defined. A convenient way to set these knots is to set
t1 = ... = tK = a, and tNCOEF+1 = ... = tNCOEF+K = b.

The knots indexed fromK+1 through NCOEF are called
internal knots. Internal knots define where the differ-
ent polynomial pieces meet. Their placement determines
the shapes that the resulting spline family can achieve.
We require tK < tK+1, and tNCOEF < tNCOEF+1, and
ti < ti+K for i = 1, ..., NCOEF. Within the limitations
of these constraints, successive interior knots need not be
distinct. At an internal knot of multiplicity µ members
of this spline family will have CK−µ−1 continuity.

For each i = 1, ..., NCOEF, we define a B-spline basis
function Bi having 〈ti, ti+K〉 as its support interval. For
i = K, ..., NCOEF, each interval 〈ti, ti+1〉 is in the sup-
port interval of exactly K basis functions, namely {Bj :
j = i − K + 1, ..., i}. If such an interval 〈ti, ti+1〉 has
nonzero length, the K basis functions that contain this
interval in their support intervals form a basis for the
space of all polynomials of degree ≤ K − 1 over this

interval. The closed union of these intervals is the in-
terval [a, b]. This is the interval over which it is most
reasonable to use linear combinations of the Bi’s to fit
data.

Any polynomial of degree ≤ K − 1 can be exactly rep-
resented over [a, b] by a linear combination of the Bi’s,
i = 1, ..., NCOEF. In particular the constant function
whose value is one is representable over [a, b] by a linear
combination of the Bi’s.

In this package the scaling of the Bi’s is determined
by the requirement that all the coefficients in this lin-
ear combination be ones, i.e.,

∑NCOEF
i=1 Bi(t) = 1 for all

t ∈ [a, b].

Given coefficients, ci, i = 1, ..., NCOEF, a spline
function, f(t), is represented for t ∈ [a, b] as f(t) =∑NCOEF
i=1 ciBi(t).

Although this is a sum of NCOEF terms, at most K of
the terms are nonzero at any single point, t, due to the
properties of the basis functions. For evaluation of f(t)
at a point t ∈ (a, b) that coincides with a knot, this pack-
age uses the polynomial piece defined over the nonzero
subinterval immediately to the right of t. This package
allows extrapolation outside the interval (a, b) using the
convention that for t ≤ a the package will extend the
polynomial that is defined over 〈tK , tK+1〉, and for t ≥ b
the package will extend the polynomial that is defined
over 〈tNCOEF, tNCOEF+1〉.

Within this package a spline function is fully specified
relative to the B-spline basis by two integers, KORDER
and NCOEF, and two floating point arrays, TKNOTS()
and BCOEF(), containing [ti: i = 1, ..., NCOEF +
KORDER] and [ci: i = 1, ..., NCOEF].

D.3 Representation of a spline function using
the piecewise power basis.

Assume a spline function f(t) has been defined relative
to the B-spline basis as described above. Let NPC be
the number of subintervals of nonzero length into which
[a, b] is partitioned by the knot sequence T. Let xj ,
j = 1, ..., NPC be the left endpoints of these subinter-
vals, and let xNPC+1 = b. For the half-open subinterval
[xj , xj+1) coefficients pi,j can be determined so the poly-
nomial

p1,j + p2,jh+ p3,jh
2 + ...+ pK,jh

K−1

with h = (t − xj), is identical to the polynomial spline
function f(t) over this interval. If evaluation for t outside
[a, b) is requested the package will use the coefficients in-
dexed by j = 1 if t < a, and will use j = NPC if t ≥ b.

Within this package a piecewise polynomial represented
relative to the power basis is specified by two integers,

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–9

KORDER and NPC, and two floating point arrays, XI()
and PCOEF(), containing {xi, i = 1, ..., NPC +1} and
{pi,j , i = 1, ..., KORDER; j = 1, ..., NPC}.
The power representation does not inherently assure any
particular order of continuity at the knots, however if the
coefficients are determined by conversion from a B-spline
representation they will represent the same spline func-
tion and thus have the same continuity properties.

D.4 Computation using B-spline basis functions

Suppose a spline function f is defined relative to a B-
spline basis by the quantities KORDER, NCOEF, T()
and BCOEF() as discussed above. The proper interpo-
lation interval for f is [a, b] where a = tKORDER, and
b = tNCOEF+1. With any argument x we associate a ref-
erence index, j, and reference interval 〈tj , tj+1〉 having
tj < tj+1. If x ∈ [a, b), j is chosen so that x ∈ [tj , tj+1),
otherwise, if x < a set j = KORDER, and if x ≥ b set
j = NCOEF. Given x, subprogram DSFIND determines
its reference index. From an initial trial value for j the
subprogram searches forward or backward, doubling the
index increment for each trial, until either a bracketing
pair of knots is found or the search reaches one end of the
specified search range. If a bracketing interval is found
bisection is used, if necessary, to reduce the interval to
the prescribed form.

To describe the computational algorithms we need to
consider families of lower order basis functions over the
same knot sequence T. Let NT denote the number of
knots in T, i.e., NT = KORDER + NCOEF. For k = 1,
..., KORDER, let {Bi,k, i = 1, ..., NT − k}, be the set
of B-spline basis functions of order k associated with T.
The support interval for the function Bi,k is 〈ti, ti+k〉.
Formally one may follow [1], p. 118, and define Bi,k ≡ 0
if ti = ti+k, however it happens that these functions do
not occur in the algorithms we consider.

A B-spline basis function of order k can be expressed in
terms of two basis functions of order k − 1 as

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x)

+
ti+1 − x
ti+k − ti+1

Bi+1,k−1(x). (1)

This formula was discovered and published indepen-
dently by M. G. Cox and C. de Boor in 1972. It is a very
favorable formula with regard to propagation of round-
off error since, except when used for extrapolation, the
B’s and the factors multiplying the B’s are always non-
negative, so the central “ + ” always involves addition of
nonnegative quantities.

Consider now the problem in which we are given an x
and its reference index j, and we need to compute values

at x of the KORDER basis functions of order KORDER
that are nonzero on 〈tj , tj+1〉. These functions will be
Bj−KORDER+1,KORDER through Bj,KORDER.

Among the basis functions of order 1, only Bj,1 is
nonzero on 〈tj , tj+1〉 and its value is 1 throughout this
interval. At order 2 only the two basis functions Bj−1,2
and Bj,2 are nonzero on 〈tj , tj+1〉. These can be com-
puted using Eq. (1) and the known values of Bj−1,1, Bj,1,
and Bj+1,1, which are 0, 1, and 0, respectively. Clearly
this process can be continued until the values of the
KORDER nonzero basis functions of order KORDER
are computed. This method is implemented in subpro-
gram DSBASD. For the case of cubic splines (KORDER
= 4), this involves nine applications of Eq. (1) and in six
of these applications one of the entering B’s is known to
be zero.

To evaluate a spline function f at a given argument x,
one could use this method to evaluate the nonzero ba-
sis functions and then form the sum of these multiplied
by the coefficients that define f . There is a more effi-
cient method however. For a spline function f of order
k, its evaluation for a point x with reference index j
can be expressed as f(x) =

∑j
i=j−k+1 ci,kBi,k(x). Re-

placing each Bi,k in this expression by the right side of
Eq. (1) and collecting terms on the Bi,k−1’s, and noting
that only k− 1 of these (k− 1)-order basis functions are
nonzero on the reference interval, gives the expression
f(x) =

∑j
i=j−k+2 ci,k−1(x)Bi,k−1(x) where

ci,k−1(x) =
(x− ti) ci,k + (ti+k−1 − x) ci−1,k

ti+k−1 − ti
. (2)

One can continue reducing the spline order and the num-
ber of terms in the sum in this way, finally reaching
spline order 1 with only one term in the sum: f(x) =
cj,1(x)Bj,1(x) ≡ cj,1(x), since Bj,1(x) = 1.

Thus, as an algorithm for evaluating a spline function of
order KORDER at an argument x with reference index
j, one initializes the process by setting ci,KORDER = ci,
for i = j − KORDER + 1, ..., j. Then for k =
KORDER, KORDER − 1, ..., 2, one computes ci,k−1 for
i = j−k+2, ..., j, using Eq. (2). The final quantity cj,1 is
the value f(x). This method is implemented in subpro-
gram DSVAL. For the case of cubic splines (KORDER
= 4), this involves six applications of Eq. (2).

The first derivative of a spline function f of order
k is a spline function of order k − 1 over the same
knot sequence. For an x with reference index j
we have f(x) =

∑j
i=j−k+1 ci,kBi,k(x) and f ′(x) =∑j

i=j−k+2 c
(1)
i,k−1Bi,k−1(x), where it can be shown that

c
(1)
i,k−1 =

(k − 1) (ci,k − ci−1,k)

ti+k−1 − ti
. (3)

11.5–10 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

To compute the value of the nth derivative of a spline
function, Eq. (3) can be applied as many times as neces-
sary to compute coefficients of a B-spline representation
of the nth derivative, and then Eq. (2) can be used to
evaluate the derivative. This algorithm is implemented
in DSVAL with all computation being done from scratch
for a given x.

Since Eq. (3) does not involve x, it is possible to use
Eq. (3) to precompute an array of coefficients for later
use in computing derivative values for many x values.
This approach is implemented in DSDIF and DSVALA.
DSDIF computes the array of coefficients for all deriva-
tives of orders up to a specified NDERIV and DSVALA
uses these coefficients in computing the values of all
derivatives of orders up to NDERIV for a given x. Sub-
program DSTOP for the conversion from the B-spline
basis to the power basis uses DSVALA, since the coeffi-
cients relative to the power basis are just derivatives of
the spline function divided by factorials.

For an x with reference index j, DSBASD computes the
NDERIVth derivative of the KORDER basis functions
of order KORDER that are nonzero on the reference in-
terval. From Eq. (3) we can express the first derivative
of a single basis function as

B′i,k = (k − 1)

[
Bi,k−1(x)

ti+k−1 − ti
− Bi+1,k−1(x)

ti+k − ti+1

]
. (4)

DSBASD first uses Eq. (1) to compute the values
Bi,KORDER−NDERIV(x), for i = j − KORDER +

NDERIV + 1, ..., j. Then for d = 1,
..., NDERIV, DSBASD uses Eq. (4) to compute

B
(d)
i,KORDER−NDERIV+d(x), for i = j − KORDER +

NDERIV− d+ 1, ...,j.

It is possible to derive formulas for the exact integration
of a spline function by appropriate inverse use of Eq. (3).
The resulting method is unwieldy, and suspect with re-
gard to propagation of round-off error. Instead we follow
the approach of Amos, [2], that uses Gaussian quadra-
ture. An n-point Gaussian quadrature formula is exact
for polynomials up to degree 2n-1. The formula is ap-
plied separately to each polynomial piece needed to cover
a specified integration interval. This method is used in
DSQUAD and in DSBASI. Each of these subprograms
contains stored constants for 2, 6, and 10-point Gaus-
sian formulas. The 2-point formula is used for KORDER
from 1 to 4, the 6-point formula from 5 to 12, and the
10-point formula from 13 to 20.

The fitting subroutine DSFIT uses DSBASD to form
rows of the matrix for the least-squares problem. Each
row will have at most KORDER nonzeros in consecutive
locations giving rise to a block-banded form for the ma-
trix. DSFIT uses DBACC and DBSOL (Chapter 4.5)

to process and solve this system. This approach takes
advantage of both the band structure and sequential pro-
cessing to reduce the amount of working space needed.

The constrained fitting subroutine DSFITC uses
DSBASD and DSBASI, as appropriate to form rows of
matrices representing the constraint conditions and the
least-squares problem. Due to the general form of con-
straints allowed the overall problem is not assumed to
have a banded form so the matrices are formed in full.
The resulting problem is linear least-squares with gen-
eral linear equality and inequality constraints which is
solved using the lower level subroutine DBLSE.

References

1. Carl de Boor, A Practical Guide to Splines,
Springer Verlag, Berlin (1978) 392 pages.

2. D. E. Amos. Technical Report SAND79–1825, Sandia
Laboratory, Albuquerque, NM (June 1979).

3. T. M. Lang, R. J. Hanson, and D. R. Campbell,
French Curve. Internal Computing Memorandum
203, Jet Propulsion Laboratory, Pasadena, CA (Sept.
1968) 27 pages.

E. Error Procedures and Restrictions

DSFIT, DSFITC, and DSVAL each contain an internal
dimensioning parameter kmax = 20. It is an error if
KORDER > kmax in any of these subprograms.

DSFIT handles any detected error by setting IERR1, re-
porting the error to the library error message processing
subroutines of Chapter 19.2 with LEVEL = 0 and then
returning. DSFITC handles errors similarly, setting the
indicator ierr5 in INFO(1).

The only error detected in DSVAL is KORDER > kmax,
in which case DSVAL calls the library error processing
subroutines with LEVEL = 2 which nominally causes
message printing and termination of execution.

Abscissae and weights for 2-point, 6-point, and 10-point
Gaussian quadrature are stored to 40 decimal digits in
DSQUAD. With infinite precision abscissae and weights,
these formulae would be exact for splines of KORDER
up to 20. DPQUAD does not use any inexact stored
constants.

The lower level subroutine DBLSE is used by DSFITC to
solve the constrained least-squares problem. If it detects
error conditions it sets ierr4 6= 0 and DSFITC returns
with INFO(1) = 1000 + ierr4. Possible nonzero values
of ierr4 are:

−1 Failed to triangularize the m1 general constraint
equations. The subroutine attempts to complete the

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–11

computation, omitting the constraint rows not tri-
angularized. User should check the residuals of the
constraint rows.

+1 mtot ≤ 0 or ntot ≤ 0.

+2 Inconsistent setting of bounds.

+3 Too many iterations needed. Nominal: itmax =
5× ntot.

For definitions of m1, mtot, and ntot see the specification
of ISET() in Section B.2.b.

F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

DSFIT and DSFITC evolved from codes originally de-
signed by R. J. Hanson and C. L. Lawson at JPL in 1968.
The initial version of DSFITC, [3], was called “French
Curve” to call attention to the flexibility it provided for
shaping a fitted curve. Subprograms DSVAL, DPVAL,
and DSTOP are modifications by Lawson of codes de-
veloped by C. de Boor, [1]. Subprograms DSQUAD and
DPQUAD are modifications by Lawson of codes due to
D. E. Amos, [2].

Entry Required Files

DPQUAD DERV1, DPQUAD, DSFIND, ERFIN,
ERMSG, IERM1, IERV1

DPVAL DERV1, DPVAL, DSFIND, ERFIN,
ERMSG, IERM1, IERV1

DSFIT DBACC, DBSOL, DERV1, DHTCC,
DNRM2, DSBASD, DSFIT, ERFIN,
ERMSG, IERM1, IERV1

Entry Required Files

DSFITC DAXPY, DBLSE, DBSOL, DCOPY,
DDOT, DHTCC, DERV1, DNRM2,
DRANU, DROTG, DSBASD, DSBASI,
DSFIND, DSFITC, DSWAP, ERFIN,
ERMOR, ERMSG, IERM1, IERV1,
RANPK1, RANPK2

DSQUAD DERV1, DSBASD, DSFIND, DSQUAD,
DSVAL, DSVALA, ERFIN, ERMSG,
IERM1, IERV1

DSTOP DERV1, DSBASD, DSDIF, DSFIND,
DSTOP, DSVALA, ERFIN, ERMSG,
IERM1, IERV1

DSVAL DERV1, DSFIND, DSVAL, ERFIN,
ERMSG, IERM1, IERV1

SPQUAD ERFIN, ERMSG, IERM1, IERV1, SERV1,
SPQUAD, SSFIND

SPVAL ERFIN, ERMSG, IERM1, IERV1, SERV1,
SPVAL, SSFIND

SSFIT ERFIN, ERMSG, IERM1, IERV1, SBACC,
SBSOL, SERV1, SHTCC, SNRM2,
SSBASD, SSFIT

SSFITC ERFIN, ERMOR, ERMSG, IERM1, IERV1,
RANPK1, RANPK2, SAXPY, SBLSE,
SBSOL, SCOPY, SDOT, SHTCC, SERV1,
SNRM2, SRANU, SROTG, SSBASD,
SSBASI, SSFIND, SSFITC, SSWAP

SSQUAD ERFIN, ERMSG, IERM1, IERV1, SERV1,
SSBASD, SSFIND, SSQUAD, SSVA,
SSVALA

SSTOP ERFIN, ERMSG, IERM1, IERV1, SERV1,
SSBASD, SSDIF, SSFIND, SSTOP, SSVAL

SSVAL ERFIN, ERMSG, IERM1, IERV1, SERV1,
SSFIND, SSVAL

DRDSFIT

c program DRDSFIT
c>> 1996−07−03 DRDSFIT Krogh Spec i a l code f o r C convers ion .
c>> 1996−06−19 DRDSFIT Krogh Changes in formats f o r C convers ion .
c>> 1996−05−28 DRDSFIT Krogh Added e x t e r na l & removed Fortran 90 syntax
c>> 1994−10−19 DRDSFIT Krogh Changes to use M77CON
c>> 1992−11−18 DRDSFIT CLL Changed order o f arguments in DSFIT.
c>> 1992−10−29 C. L . Lawson , JPL
c Demonstration d r i v e r f o r DSFIT, DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD
c −−
c−−D rep l a c e s ”?”: DR?SFIT , ?SFIT , ?SVAL, ?SQUAD, ?STOP, ?PVAL, ?PQUAD
c−−& ?PRPL
c −−
c++ Code f o r .C. i s i n a c t i v e
c%% long i n t k ;
c++ End

integer I , IERR, NXY, KORDER, MPC, NCOEF, NDERIV, NPC, NT, LDW
parameter (NXY = 12 , NCOEF=8, KORDER=4, NT = NCOEF+KORDER,LDW = 10)
parameter (MPC = NCOEF−KORDER+1)

11.5–12 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

external DSVAL, DSQUAD, DPVAL, DPQUAD
double precision BDIF(NCOEF∗KORDER) , DSVAL, DSQUAD, DPVAL, DPQUAD
double precision BCOEF(NCOEF) , PCOEF(MPC∗KORDER)
double precision SD(1) , SIGFAC, TKNOTS(NT) , W(LDW,KORDER+1)
double precision X(NXY) , XI (MPC+1) , Y(NXY) , YFIT , Z
character IMAGE∗31
data X / 2 .D0 , 4 .D0 , 6 .D0 , 8 .D0 , 1 0 .D0 , 1 2 .D0 ,
∗ 14 .D0 , 1 6 .D0 , 1 8 .D0 , 2 0 .D0 , 2 2 .D0 , 2 4 .D0/
data Y /2.2D0 , 4 . 0D0 , 5 . 0D0 , 4 . 6D0 , 2 . 8D0 , 2 . 7D0 ,
∗ 3 .8D0 , 5 . 1D0 , 6 . 1D0 , 6 . 3D0 , 5 . 0D0 , 2 . 0D0/
data TKNOTS / 4∗2 .0D0 , 6 . 4D0 , 10 .8D0 , 15 .2D0 , 19 .6D0 , 4∗24 .0D0 /
data NDERIV / 0 /
data SD(1) / −1.0D0 /

c −−
print ’ (’ ’ DRDSFIT ’ ’ / ’ ’ Demo d r i v e r f o r DSFIT , DSVAL, DSQUAD, ’ ’ ,
∗ ’ ’ DSTOP, DPVAL, DPQUAD’ ’) ’
print ’ (/ ’ ’ KORDER =’ ’ , i3 , ’ ’ , NCOEF =’ ’ , i 3) ’ , KORDER, NCOEF

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (’ ’ TKNOTS() = ’ ’ ,4 f10 . 5/ (14 x , 4 f10 . 5)) ’ ,
∗ (TKNOTS(I) , I = 1 , NT)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (”\n TKNOTS() = ”) ;
c%% fo r (i = 1 ; i <= NT+3; i+=4){
c%% for (k = i ; k <= min(i +3, NT) ; k++)
c%% p r i n t f (”%10.5 f ” , Tknots [k]) ;
c%% i f (i + 3 < NT) p r i n t f (”\n ”) ;}
c++ End

ca l l DSFIT(X, Y, SD, NXY, KORDER, NCOEF, TKNOTS, BCOEF,
∗ SIGFAC, IERR, LDW, W)

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (/ ’ ’ After c a l l to DSFIT : ’ ’ / ’ ’ IERR =’ ’ , i5 ,
∗ ’ ’ , SIGFAC =’ ’ , f 10 . 5 // ’ ’ BCOEF() = ’ ’ ,
∗ 4 f10 . 5/ (13 x , 4 f10 . 5)) ’ , IERR, SIGFAC, (BCOEF(I) , I=1,NCOEF)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (”\n Af ter c a l l to DSFIT:\n IERR =%5ld , SIGFAC =”
c%% ”%10.5 f \n\n BCOEF() = ” , i e r r , s i g f a c) ;
c%% fo r (i = 1 ; i <= NCOEF+3; i+=4){
c%% for (k = i ; k <= min(i +3, NCOEF) ; k++)
c%% p r i n t f (”%10.5 f ” , Bcoef [k]) ;
c%% i f (i + 3 < NCOEF) p r i n t f (”\n ”) ;}
c++ End

print ’ (/ ’ ’ Evaluat ing f i t t e d s p l i n e func t i on us ing DSVAL: ’ ’) ’
print ’ (/
∗ ’ ’ I X Y YFIT R=Y−YFIT YFIT ’ ’ /) ’

do 20 I=1,NXY
YFIT= DSVAL(KORDER, NCOEF, TKNOTS, BCOEF, X(I) , NDERIV)
ca l l DPRPL(YFIT, ’ ∗ ’ , IMAGE, 31 , 1 . 9 d0 , 6 . 3 d0 , . true .)
print ’ (3x , i2 , f 6 . 0 , 2 f 9 . 3 , f10 . 3 , 3 x , a31) ’ ,

∗ I , X(I) , Y(I) , YFIT , Y(I)−YFIT, IMAGE
20 continue

Z = DSQUAD(KORDER, NCOEF, TKNOTS, BCOEF, 5 .0 d0 , 20 .0 d0)
print ’ (/ ’ ’ I n t e g r a l from 5 .0 to 20 .0 us ing DSQUAD: ’ ’ , f 12 . 5) ’ ,Z

ca l l DSTOP(KORDER, NCOEF, TKNOTS, BCOEF, BDIF , NPC, XI , PCOEF)
print ’ (/
∗ ’ ’ Using DSTOP to convert from B−s p l i n e ba s i s to power ba s i s . ’ ’) ’
print ’ (’ ’ NPC =’ ’ , i 3) ’ ,NPC

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–13

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (’ ’ XI () = ’ ’ ,4 f10 . 5/ (14 x , 4 f10 . 5)) ’ , (XI (I) , I=1,NPC+1)
print ’ (’ ’ PCOEF() = ’ ’ ,4 f10 . 5/ (14 x , 4 f10 . 5)) ’ ,
∗ (PCOEF(I) , I=1,NPC∗KORDER)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (” XI () = ”) ;
c%% fo r (i = 1 ; i <= (npc + 1) ; i+=4){
c%% fo r (k = i ; k <= min(i +3, npc+1) ; k++)
c%% p r i n t f (”%10.5 f ” , Xi [k]) ;
c%% i f (i <= npc) p r i n t f (”\n ”) ;}
c%% p r i n t f (”\n PCOEF() = ”) ;
c%% fo r (i = 1 ; i <= (npc∗KORDER) ; i+=4){
c%% fo r (k = i ; k <= min(i +3, npc∗KORDER) ; k++)
c%% p r i n t f (”%10.5 f ” , Pcoef [k]) ;
c%% i f (i < npc∗KORDER) p r i n t f (”\n ”) ;}
c++ End

print ’ (/ ’ ’ Evaluat ing f i t t e d s p l i n e func t i on us ing DPVAL: ’ ’) ’
print ’ (/
∗ ’ ’ I X Y YFIT R=Y−YFIT YFIT ’ ’ /) ’

do 40 I=1,NXY
YFIT= DPVAL(KORDER, NPC, XI , PCOEF, X(I) , NDERIV)
ca l l DPRPL(YFIT, ’ ∗ ’ , IMAGE, 31 , 1 . 9 d0 , 6 . 3 d0 , . true .)
print ’ (3x , i2 , f 6 . 0 , 2 f 9 . 3 , f10 . 3 , 3 x , a31) ’ ,

∗ I , X(I) , Y(I) , YFIT , Y(I)−YFIT, IMAGE
40 continue

Z = DPQUAD(KORDER, NPC, XI , PCOEF, 5 .0 d0 , 20 .0 d0)
print ’ (/ ’ ’ I n t e g r a l from 5 .0 to 20 .0 us ing DPQUAD: ’ ’ , f 12 . 5) ’ ,Z
end

ODDSFIT

DRDSFIT
Demo dr i v e r f o r DSFIT , DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD

KORDER = 4 , NCOEF = 8
TKNOTS() = 2.00000 2.00000 2.00000 2.00000

6.40000 10.80000 15.20000 19.60000
24.00000 24.00000 24.00000 24.00000

After c a l l to DSFIT :
IERR = 0 , SIGFAC = 0.14664

BCOEF() = 2.20672 3.33355 7.10955 0.91845
4.88398 7.24971 5.03117 1.99475

Evaluat ing f i t t e d s p l i n e func t i on us ing DSVAL:

I X Y YFIT R=Y−YFIT YFIT

1 2 . 2 .200 2 .207 −0.007 ∗
2 4 . 4 .000 3 .958 0 .042 ∗
3 6 . 5 .000 5 .111 −0.111 ∗
4 8 . 4 .600 4 .430 0 .170 ∗
5 10 . 2 .800 2 .959 −0.159 ∗

11.5–14 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

6 12 . 2 .700 2 .646 0 .054 ∗
7 14 . 3 .800 3 .734 0 .066 ∗
8 16 . 5 .100 5 .162 −0.062 ∗
9 18 . 6 .100 6 .132 −0.032 ∗

10 20 . 6 .300 6 .233 0 .067 ∗
11 22 . 5 .000 5 .033 −0.033 ∗
12 24 . 2 .000 1 .995 0 .005 ∗

I n t e g r a l from 5 .0 to 20 .0 us ing DSQUAD: 66.54641

Using DSTOP to convert from B−s p l i n e ba s i s to power ba s i s .
NPC = 5
XI () = 2.00000 6.40000 10.80000 15.20000

19.60000 24.00000
PCOEF() = 2.20672 0.76829 0.11795 −0.03213

5.13370 −0.05990 −0.30617 0.04307
2.61122 −0.25290 0.26231 −0.02300
4.61735 0.71946 −0.04132 −0.00801
6.30079 −0.10933 −0.14704 −0.01148

Evaluat ing f i t t e d s p l i n e func t i on us ing DPVAL:

I X Y YFIT R=Y−YFIT YFIT

1 2 . 2 .200 2 .207 −0.007 ∗
2 4 . 4 .000 3 .958 0 .042 ∗
3 6 . 5 .000 5 .111 −0.111 ∗
4 8 . 4 .600 4 .430 0 .170 ∗
5 10 . 2 .800 2 .959 −0.159 ∗
6 12 . 2 .700 2 .646 0 .054 ∗
7 14 . 3 .800 3 .734 0 .066 ∗
8 16 . 5 .100 5 .162 −0.062 ∗
9 18 . 6 .100 6 .132 −0.032 ∗

10 20 . 6 .300 6 .233 0 .067 ∗
11 22 . 5 .000 5 .033 −0.033 ∗
12 24 . 2 .000 1 .995 0 .005 ∗

I n t e g r a l from 5 .0 to 20 .0 us ing DPQUAD: 66.54641

DRDSFITC

c program DRDSFITC
c>> 2001−07−16 DRDSFITC Krogh Added exponent 0 to some cons tan t s .
c>> 1996−07−11 DRDSFITC Krogh Spec i a l code f o r C convers ion .
c>> 1996−05−28 DRDSFITC Krogh Changed Fortran 90 code & changes f o r C.
c>> 1994−10−19 DRDSFITC Krogh Changes to use M77CON
c>> 1993−01−13 DRDSFITC C. L . Lawson , JPL
c>> 1992−11−10 C. L . Lawson , JPL
c>> 1992−11−04 C. L . Lawson , JPL
c>> 1989−03−02 C. L . Lawson , JPL
c>> 1988−04−01 C. L . Lawson , JPL
c DRDSFITC. . Demo d r i v e r f o r DSFITC, Sp l ine f i t wi th c on s t r a i n t s .
c The problem has 24 data po in t s and 10 con s t r a i n t s .
c The s p l i n e i s order 4 wi th 9 c o e f f i c i e n t s .
c −−
c−−D rep l a c e s ”?”: DR?SFITC, ?SFITC, ?SVAL, ?SVALA, ?PRPL, ?SDIF
c −−

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–15

c++ Code f o r .C. i s i n a c t i v e
c%% long i n t k ;
c%%#de f i n e MT (NCOEF+KORDER)
c++ End

integer I , KORDER, KPRINT, MXY, MT
integer NCOEF, NDATA, NINFO, NWORK
parameter (NDATA = 24 , MXY = NDATA+10)
parameter (NINFO = 41 , NWORK = 843)
parameter (NCOEF=9, KORDER = 4 , MT = NCOEF+KORDER)
parameter (KPRINT = 0)
integer INFO(NINFO) , ISET(3)
external DSVAL
double precision DSVAL
double precision BCOEF(NCOEF) , BDIF(NCOEF∗3) , DELX, RNORM
double precision SDI (MXY) , SMAX, SMIN, SVALUE(0 : 2)
double precision TKNOTS(NCOEF+KORDER)
double precision WORK(NWORK) , X, XI (MXY) , YI (MXY) , YFIT
character CCODE(MXY+1)∗4 , IMAGE∗49
data TKNOTS / 4∗0 .0D0 , 1 . 5D0 , 2 . 5D0 , 3 . 3D0 , 4 . 0D0 , 4 . 7D0 , 4∗6 .0D0/
data CCODE / 24∗ ’ 10˜a ’ ,
∗ ’10=a ’ , ’11>a ’ , ’12>a ’ , ’12>a ’ , ’12>a ’ ,
∗ ’12<a ’ , ’12<a ’ , ’12<a ’ , ’11>a ’ , ’10=a ’ ,
∗ ’ ! ’ /
data XI / 0 .0D0 , 0 . 3D0 , 0 . 7D0 , 1 . 0D0 , 1 . 3D0 , 1 . 7D0 , 2 . 0D0 , 2 . 3D0 ,
∗ 2 .5D0 , 2 . 6D0 , 2 . 8D0 , 2 . 9D0 , 3 . 0D0 , 3 . 1D0 , 3 . 2D0 , 3 . 5D0 ,
∗ 3 .7D0 , 4 . 0D0 , 4 . 3D0 , 4 . 7D0 , 5 . 0D0 , 5 . 3D0 , 5 . 7D0 , 6 . 0D0 ,
∗ 0 .0D0 , 0 . 0D0 , 0 . 0D0 , 1 . 5D0 , 2 . 5D0 ,
∗ 3 .5D0 , 4 . 5D0 , 6 . 0D0 , 6 . 0D0 , 6 . 0D0/

data YI / 1 .0D0 , 1 . 1D0 , 0 . 9D0 , 1 . 0 2D0 , 1 . 2D0 , 1 . 0D0 , 1 . 2D0 , 1 . 4D0 ,
∗ 1 .76D0 , 2 . 0D0 , 2 . 4D0 , 2 . 6D0 , 3 . 0D0 , 3 . 4D0 , 3 . 7D0 , 4 . 3D0 ,
∗ 4 .45D0, 4 . 7 6D0 , 4 . 8D0 , 5 . 0D0 , 4 . 9 6D0 , 4 . 9D0 , 4 . 9D0 , 5 . 0D0 ,
∗ 1 .0D0 , 0 . 0D0 , 0 . 0D0 , 0 . 0D0 , 0 . 0D0 ,
∗ 0 .0D0 , 0 . 0D0 , 0 . 0D0 , 0 . 0D0 , 5 . 0D0/

data SDI (1) / −1.0D0 /
data ISET / NINFO, NWORK, KPRINT /

c −−
print ’ (’ ’ DRDSFITC . . Demo dr i v e r f o r DSFITC ’ ’ / ’ ’ Least−squares ’ ’ ,
∗ ’ ’ polynomial s p l i n e f i t to data with c on s t r a i n t s . ’ ’) ’

c
print ’ (/
∗ ’ ’ I kind de r i v r e l op a c t i v e X Y’ ’) ’
do 10 I = 1 ,MXY

print ’ (1x , i3 , 3 x , a1 , 7 x , a1 , 7 x , a1 , 7 x , a1 , f12 . 3 , f10 . 3) ’ , I ,
∗ CCODE(I) (1 : 1) ,CCODE(I) (2 : 2) ,CCODE(I) (3 : 3) ,CCODE(I) (4 : 4) ,
∗ XI(I) ,YI (I)

10 continue
I = MXY+1
print ’ (1x , i3 , 3 x , a1 , 7 x , a1 , 7 x , a1 , 7 x , a1) ’ , I ,
∗ CCODE(I) (1 : 1) ,CCODE(I) (2 : 2) ,CCODE(I) (3 : 3) ,CCODE(I) (4 : 4)
print ’ (/ ’ ’ KORDER =’ ’ , i3 , ’ ’ , NCOEF =’ ’ , i 3) ’ , KORDER, NCOEF

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (’ ’ TKNOTS() = ’ ’ ,4 f10 . 5/ (14 x , 4 f10 . 5)) ’ ,
∗ (TKNOTS(I) , I = 1 , MT)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (”\n TKNOTS() = ”) ;
c%% fo r (i = 1 ; i <= MT+3; i+=4){
c%% for (k = i ; k <= min(i +3, MT) ; k++)

11.5–16 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

c%% p r i n t f (”%10.5 f ” , Tknots [k]) ;
c%% i f (i + 3 < MT) p r i n t f (”\n ”) ;}
c%% p r i n t f (”\n”) ;
c++ End
c

ca l l DSFITC(CCODE, XI , YI , SDI , KORDER, NCOEF, TKNOTS,
∗ BCOEF, RNORM, ISET , INFO, WORK)

c
print ’ (/ ’ ’ After c a l l to DSFITC: ’ ’) ’
print ’ (/3x , ’ ’ IERR5 =’ ’ , i6 , ’ ’ , NEED1 =’ ’ , i7 , ’ ’ , NEED2 =’ ’ , i 7 /
∗ 3x , ’ ’M1 =’ ’ , i6 , ’ ’ , MFIT =’ ’ , i7 , ’ ’ , NS =’ ’ , i 7 /
∗ 3x , ’ ’RNORM =’ ’ , f12 . 5) ’ , INFO(1) , INFO(2) , INFO(3) , INFO(4) , INFO(5) ,
∗ INFO(6) , RNORM

c++ Code f o r ˜ .C. i s a c t i v e
print ’ (/ ’ ’ BCOEF() = ’ ’ ,4 f10 . 5/ (13 x , 4 f10 . 5)) ’ ,
∗ (BCOEF(I) , I=1,NCOEF)

c++ Code f o r .C. i s i n a c t i v e
c%% p r i n t f (”\n BCOEF() = ”) ;
c%% fo r (i = 1 ; i <= NCOEF+3; i+=4){
c%% for (k = i ; k <= min(i +3, NCOEF) ; k++)
c%% p r i n t f (”%10.5 f ” , Bcoef [k]) ;
c%% i f (i + 3 < NCOEF) p r i n t f (”\n ”) ;}
c%% p r i n t f (”\n”) ;
c++ End
c

ca l l DSDIF(KORDER, NCOEF, TKNOTS, BCOEF, 2 , BDIF)
SMIN = 0.0 d0
SMAX = 0.0 d0
DELX = (XI (NDATA)−XI (1)) / 30 . 0D0
X = XI (1)
do 20 I = 0 , 31

ca l l DSVALA(KORDER, NCOEF, TKNOTS, 2 , BDIF , X, SVALUE)
SMIN = min(min(SMIN, SVALUE(0)) , min(SVALUE(1) , SVALUE(2)))
SMAX = max(max(SMAX, SVALUE(0)) , max(SVALUE(1) , SVALUE(2)))
X = X + DELX

20 continue
print ’ (/ a) ’ ,
∗ ’ X YFIT YFIT ’ ’ YFIT ’ ’ ’ ’ ’
X = XI (1)
do 40 I =0 ,31

ca l l DSVALA(KORDER, NCOEF, TKNOTS, 2 , BDIF , X, SVALUE)
IMAGE = ’ ’
ca l l DPRPL(SVALUE(0) , ’ ∗ ’ , IMAGE, 49 , SMIN, SMAX, . fa l se .)
ca l l DPRPL(SVALUE(1) , ’ 1 ’ , IMAGE, 49 , SMIN, SMAX, . fa l se .)
ca l l DPRPL(SVALUE(2) , ’ 2 ’ , IMAGE, 49 , SMIN, SMAX, . fa l se .)
print ’ (1x , f 6 . 3 , f 7 . 3 , f 7 . 3 , f 7 . 3 , 1 x , a49) ’ ,X, SVALUE(0) , SVALUE(1) ,

∗ SVALUE(2) , IMAGE
X = X + DELX

40 continue
c Compute and p r i n t r e s i d u a l s .

print ’ (/ ’ ’ Res idua l s at the data po in t s : ’ ’ //
∗ ’ ’ I XI (I) YI (I) YFIT YFIT−YI(I) ’ ’ ,
∗ ’ ’ YFIT−YI(I) ’ ’) ’
do 60 I = 1 , NDATA

YFIT = DSVAL(KORDER, NCOEF, TKNOTS, BCOEF, XI (I) , 0)
ca l l DPRPL(YFIT−YI(I) , ’ ∗ ’ , IMAGE, 39 , −0.18d0 , 0 .18 d0 , . true .)
print ’ (1x , i4 , f 8 . 3 , f 8 . 3 , f 8 . 3 , f10 . 3 , 1 x , a39) ’ ,

∗ I , XI (I) , YI (I) , YFIT , YFIT−YI(I) , IMAGE(1 : 3 9)
60 continue

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–17

end

11.5–18 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

ODDSFITC

DRDSFITC . . Demo dr i v e r f o r DSFITC
Least−squares polynomial s p l i n e f i t to data with c on s t r a i n t s .

I kind de r i v r e l op a c t i v e X Y
1 1 0 ˜ a 0 .000 1 .000
2 1 0 ˜ a 0 .300 1 .100
3 1 0 ˜ a 0 .700 0 .900
4 1 0 ˜ a 1 .000 1 .020
5 1 0 ˜ a 1 .300 1 .200
6 1 0 ˜ a 1 .700 1 .000
7 1 0 ˜ a 2 .000 1 .200
8 1 0 ˜ a 2 .300 1 .400
9 1 0 ˜ a 2 .500 1 .760

10 1 0 ˜ a 2 .600 2 .000
11 1 0 ˜ a 2 .800 2 .400
12 1 0 ˜ a 2 .900 2 .600
13 1 0 ˜ a 3 .000 3 .000
14 1 0 ˜ a 3 .100 3 .400
15 1 0 ˜ a 3 .200 3 .700
16 1 0 ˜ a 3 .500 4 .300
17 1 0 ˜ a 3 .700 4 .450
18 1 0 ˜ a 4 .000 4 .760
19 1 0 ˜ a 4 .300 4 .800
20 1 0 ˜ a 4 .700 5 .000
21 1 0 ˜ a 5 .000 4 .960
22 1 0 ˜ a 5 .300 4 .900
23 1 0 ˜ a 5 .700 4 .900
24 1 0 ˜ a 6 .000 5 .000
25 1 0 = a 0.000 1 .000
26 1 1 > a 0 .000 0 .000
27 1 2 > a 0 .000 0 .000
28 1 2 > a 1 .500 0 .000
29 1 2 > a 2 .500 0 .000
30 1 2 < a 3 .500 0 .000
31 1 2 < a 4 .500 0 .000
32 1 2 < a 6 .000 0 .000
33 1 1 > a 6 .000 0 .000
34 1 0 = a 6.000 5 .000
35 !

KORDER = 4 , NCOEF = 9
TKNOTS() = 0.00000 0.00000 0.00000 0.00000

1.50000 2.50000 3.30000 4.00000
4.70000 6.00000 6.00000 6.00000
6.00000

After c a l l to DSFITC:

IERR5 = 0 , NEED1 = 41 , NEED2 = 843
M1 = 10 , MFIT = 24 , NS = 8
RNORM = 0.37206

BCOEF() = 1.00000 1.01613 1.04300 1.07848
4.07150 4.87706 4.92040 4.96864
5.00000

X YFIT YFIT’ YFIT ’ ’
0 .000 1 .000 0 .032 0 .000 2 ∗

July 11, 2015 Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5–19

0 .200 1 .006 0 .032 0 .000 2 ∗
0 .400 1 .013 0 .032 0 .000 2 ∗
0 .600 1 .019 0 .032 0 .000 2 ∗
0 .800 1 .026 0 .032 −0.000 2 ∗
1 .000 1 .032 0 .032 −0.000 2 ∗
1 .200 1 .039 0 .032 −0.000 2 ∗
1 .400 1 .045 0 .032 −0.000 2 ∗
1 .600 1 .052 0 .052 0 .395 1 2 ∗
1 .800 1 .076 0 .210 1 .186 1 ∗2
2 .000 1 .147 0 .527 1 .977 1 ∗ 2
2 .200 1 .297 1 .001 2 .768 1 ∗ 2
2 .400 1 .558 1 .634 3 .559 ∗1 2
2 .600 1 .959 2 .360 3 .045 ∗ 1 2
2 .800 2 .480 2 .787 1 .225 2 ∗1
3 .000 3 .049 2 .850 −0.595 2 1∗
3 .200 3 .595 2 .549 −2.414 2 1 ∗
3 .400 4 .047 1 .943 −3.064 2 1 ∗
3 .600 4 .377 1 .382 −2.543 2 1 ∗
3 .800 4 .606 0 .926 −2.022 2 1 ∗
4 .000 4 .755 0 .573 −1.500 2 1 ∗
4 .200 4 .842 0 .317 −1.065 2 1 ∗
4 .400 4 .887 0 .147 −0.629 2 1 ∗
4 .600 4 .907 0 .065 −0.194 21 ∗
4 .800 4 .919 0 .059 0 .022 2 ∗
5 .000 4 .931 0 .063 0 .019 2 ∗
5 .200 4 .944 0 .066 0 .015 2 ∗
5 .400 4 .957 0 .069 0 .011 2 ∗
5 .600 4 .971 0 .071 0 .007 2 ∗
5 .800 4 .986 0 .072 0 .004 2 ∗
6 .000 5 .000 0 .072 0 .000 2 ∗
6 .200 5 .014 0 .072 −0.004 2 ∗

Res idua l s at the data po in t s :

I XI (I) YI (I) YFIT YFIT−YI(I) YFIT−YI(I)
1 0 .000 1 .000 1 .000 0 .000 ∗
2 0 .300 1 .100 1 .010 −0.090 ∗ 0
3 0 .700 0 .900 1 .023 0 .123 0 ∗
4 1 .000 1 .020 1 .032 0 .012 0∗
5 1 .300 1 .200 1 .042 −0.158 ∗ 0
6 1 .700 1 .000 1 .060 0 .060 0 ∗
7 2 .000 1 .200 1 .147 −0.053 ∗ 0
8 2 .300 1 .400 1 .412 0 .012 0∗
9 2 .500 1 .760 1 .740 −0.020 ∗ 0

10 2 .600 2 .000 1 .959 −0.041 ∗ 0
11 2 .800 2 .400 2 .480 0 .080 0 ∗
12 2 .900 2 .600 2 .763 0 .163 0 ∗
13 3 .000 3 .000 3 .049 0 .049 0 ∗
14 3 .100 3 .400 3 .330 −0.070 ∗ 0
15 3 .200 3 .700 3 .595 −0.105 ∗ 0
16 3 .500 4 .300 4 .226 −0.074 ∗ 0
17 3 .700 4 .450 4 .503 0 .053 0 ∗
18 4 .000 4 .760 4 .755 −0.005 ∗0
19 4 .300 4 .800 4 .869 0 .069 0 ∗
20 4 .700 5 .000 4 .913 −0.087 ∗ 0
21 5 .000 4 .960 4 .931 −0.029 ∗ 0
22 5 .300 4 .900 4 .950 0 .050 0 ∗
23 5 .700 4 .900 4 .978 0 .078 0 ∗
24 6 .000 5 .000 5 .000 −0.000 ∗

11.5–20 Least-Squares Data Fitting using Kth Order Splines with Constraints July 11, 2015

	Least-Squares Data Fitting using Kth Order Splines with Constraints
	Purpose
	Usage
	Usage of DSFIT for fitting without constraints
	Usage of DSFITC for fitting with constraints
	Usage of DSVAL for evaluation using the B-spline basis
	Usage of DSQUAD for integration using the B-spline basis
	Usage of DSTOP to convert from the B-spline basis to the power basis
	Usage of DPVAL for evaluation using the power basis
	Usage of DPQUAD for integration using the power basis
	Modifications for Single Precision

	Examples and Remarks
	Demonstration of DSFIT.
	Demonstration of DSFITC.
	Using constraints to control shape.
	Periodicity.
	Differential equations.
	Assignment of knots.

	Functional Description
	Representation of an individual B-spline basis function.
	Representation of a spline function using the B-spline basis.
	Representation of a spline function using the piecewise power basis.
	Computation using B-spline basis functions

	Error Procedures and Restrictions
	Supporting Information

