
OpenMP benchmark using PARKBENCH

Mitsuhisa Sato, Kazuhiro Kusano and Sigehisa Satoh

Real World Computing Partnership, Japan

E-mail:fmsato,kusano,sh-satog@trc.rwcp.or.jp

1 Introduction

In this paper, we propose an OpenMP benchmark
using the PARKBENCH benchmark, and present
some results and experience on the benchmark.

To understand the performance of OpenMP pro-
grams, the following factors are important:

1. The overheads of OpenMP constructs such as
creating a team of threads, loop scheduling
and synchronization.

2. OpenMP is an API for shared memory pro-
gramming. While these overheads of OpenMP
constructs are an important factor, the per-
formance of parallel execution on the target
shared memory platform is signi�cant in de-
termining the performance of OpenMP paral-
lel programs.

Real application codes in OpenMP obviously mea-
sure the performance of OpenMP programming on
the real problems. Although this is ultimately what
the end-user wants, the full real applications are of-
ten complex and large. In order to obtain a guide
to the performance of OpenMP parallel programs
in any given parallel systems, kernel and synthetic
benchmarks are useful.

PARKBENCH[4] is a set of benchmark programs
proposed by PARKBENCH committee. It consists
of synthetic low-level benchmarks, kernel benchmarks
and compact applications. This hierarchical struc-
ture allows information derived from the simpler
code to be used in explaining the performance char-
acteristics of the more complicated codes. Cur-
rently, the low-level and kernel benchmarks are avail-
able. The kernel benchmarks includes some kernel
programs from the NAS parallel benchmarks. In
PARKBENCH, fundamental metrics such as the ac-
curacy of clock and the
op count is clearly de�ned.
In the current version, the parallel benchmarks are
written using MPI and PVM to evaluate parallel
program in distributed memory environments.

In this paper, we focus on the single processor
benchmarks in the low-level benchmark of PARK-
BENCH as an OpenMP benchmarks. We have par-
allelized these benchmarks using OpenMP. To un-
derstand the performance of OpenMP programs, it
is important to measure the performance of shared
memory hardware platforms as well as the OpenMP

constructs overheads. The benchmark programs in
OpenMP shows the performance of a set of loops
parallelized by using OpenMP programming model.
The benchmark assesses the signi�cance of the over-
heads of OpenMP loop constructs in several kinds
of loops. The overheads of the parallel constructs
should be evaluated with respect to shared memory
performance. This benchmark results show a guide
to parallelize loops using OpenMP. For example,
the OpenMP programmer can identify the e�ective
loop-length in OpenMP for several kinds of loops.

Some OpenMP benchmarks were already pro-
posed. EPCC OpenMPmicrobenchmark[2] is a syn-
thetic benchmark to measure the overheads of syn-
chronization primitives and loop scheduling for lan-
guage constructs in OpenMP. Although this bench-
mark gives a valuable information about the over-
heads of OpenMP constructs, it does not address
the performance of the shared memory hardware.

The NAS parallel benchmark suite[3] is the most
popular benchmark for distributed memory plat-
forms. Recently, a OpenMP version of the bench-
marks were already prepared, and is expected to be
available soon.

As realistic application benchmarks, One of
SPEChpc96, SPECclimate is parallelized by OpenMP.
SPEC HPG [6] has announced a plan of SPEC
OpenMP benchmarks as one of SPEC benchmark
suites for high performance computing �eld.

In the next section, we introduce the PARK-
BENCH benchmarks brie
y and the OpenMP ver-
sion of its low-level benchmark. Section 3 presents
the results of the measurements on the di�erent sys-
tems and di�erent compilers, and the analysis by
PARKBENCH outputs. We conclude our work in
Section 4.

2 PARKBENCH for OpenMP

benchmark

We use the low-level benchmarks of PARKBENCH
as a OpenMP benchmark. The low-level bench-
marks consist of the following programs:

� TICK1 and TICK2, which measure the timer
resolution and value.

� RINF1, which measures the performance of
basic arithmetic operations.

� PLOY1 and POLY2, which measure cache and
memory bottleneck.

� COMM1, COMM2 and COMM3 which mea-
sure the performance of message passing in
the distributed memory environments.

� PLOY3, a distributed memory version of
POLY1.

� SYNC1, which measures barrier synchroniza-
tion time of massage passing.

RINF1, PLOY1 and PLOY2 are for a single pro-
cessor, and COMM1, COMM2, COMM3, PLOY3
and SYNC1 are for a distributed memory multi-
processors. RINF1, POLY1 and POLY2 are also in
GENESIS benchmarks[1].

As an OpenMP benchmark, we focus on the sin-
gle processor benchmarks. RINF1 characterizes the
performance of basic arithmetic operations in sev-
eral kinds of parallel loops. This benchmark takes
a set of commonly used DO-loops and analyzes the
time of execution in terms of the two parameter r1
(the asymptotic performance rate in MFlops/s) and
n1=2 (the half-performance length). Suppose that a
loop (or vector) length is n and the loop contains q

oating-point operations per element per iterations,
the execution time Tn is approximated by:

Tn = (q � n)=r1 + T0

where T0 is the loop startup overhead. Then the
performance late rn at the loop length n is given
by:

rn =
q � n

Tn
=

r1
1 + (T0 � r1=q � n)

n1=2 is de�ned as the loop length to required to
achieve 50 % performance of the the asymptotic
performance rate r1. The overhead T0 is given by:

T0 =
n1=2 � q

r1

The parameter n1=2 is a way to measuring the
importance of vector startup overheads in the terms
of quantities known to the programmer (loop or
vector length). In a loop in OpenMP, the overhead
T0 includes the overhead of loop scheduling. In the
benchmark program, the two parameter are deter-
mined by a least square �t of the data to the straight
line de�ned by:

rn =
r1

1 + n1=2=n

The loops are parallelized by OpenMP for the
measurement as follows:

T1 = DWALLTIME00()

!$OMP parallel private(JT)

DO JT=1,NTIM

CALL DUMMY(JT)

!$OMP do

DO I=1,N

... vector computation ...

END DO

!$OMP end do

END DO

!$OMP end parallel

T2 = DWALLTIME00()

The function DWALLTIME00 returns the wall clock
time. The execution time is computed by T = T2

- T1 - T0. T0 is computed by a dummy loop in
advance. Note that calling DUMMY is inserted to pre-
vent optimizations.

The loops in RINF1 are listed in Table 1. The
original loops are from 1 to 17. The loops from 18
to 20 are to measure the overhead of OpenMP loop
scheduling methods, based on the loop 16 (DAXPY).
The loop 18 uses PARALLEL DO instead of DO
for the internal loop, and loop 19 and 20 spec-
ify static and dynamic scheduling respectively with
chunk size 10.

POLY1 and POLY2 are to measure the basic
hardware performance on shared memory access bot-
tleneck. The computational intensity, f , of a DO-
loop is de�ned as the number of
oating point op-
erations performed per memory reference to an el-
ement of a vector variable. The asymptotic perfor-
mance, r1, is observed to increase as the computa-
tional intensity increases, since the e�ect of mem-
ory access delayed become negligible compared the
time spent on arithmetic. This is modeled by the
two parameter, ^r1(the peek hardware performance
of the arithmetic unit) and f1=2 (the half computa-
tional intensity). The asymptotic performance r1
is given by:

r1 =
^r1

1 + f1=2=f

Like n1=2, f1=2 is the computational intensity to
achieve a half of the peek arithmetic hardware per-
formance. Note that if memory access and arith-
metic is not overlapped, f1=2 shows the ratio of
arithmetic speed to the memory speed.

The POLY1 benchmark repeats the evaluation
of polynomials by Horner's rule for vector length up
to 10,000 which would normally �ts into the cache.
It is therefore an in-cache test between the registers
and the cache memory. The POLY2 is an out-of-
cache tests which repeats the polynomial evaluation
upto 100,000. To measure f1=2, the order of the
polynomial is increased, and the measured perfor-
mance is �tted to the above equation.

No. Arithmetic Ops. Fops Note

1 DYADS, A(I)=B(I)*C(I) 1.0 contiguous

2 DYADS, A(I)=B(I)*C(I) 1.0 stride=8

3 TRIADS, A(I)=B(I)*C(I)+D(I) 2.0 contiguous

4 TRIADS, A(I)=B(I)*C(I)+D(I) 2.0 stride=8

5 Random Scatter/Gather 2.0

6 A(I)=B(I)*C(I)+D(I)*E(I)+F(I) 4.0 contiguous

7 Inner Product, S=S+B(I)*C(I) 2.0 single, reduction

8 First Order Recurrence 2.0 not parallelized

9 Charge Assignment: A(J(I))=A(J(I))+S 1.0 atomic

10 Transposition: B(I,J)=A(J,I) N

11 Matrix Mult BY Inner Product 2*N*N

12 Matrix Mult BY Middle Product 2*N*N

13 Matrix Mult BY Outer Product 2*N

14 DYADS, A(I)=B(I)*C(I) 1.0 stride=128

15 DYADS, A(I)=B(I)*C(I) 1.0 stride=1024

16 DAXPY, A(I)=S*B(I)+C(I) 2.0 contiguous

17 DAXPY, A(J(I))=S*B(K(I))+C(L(I)) 2.0 Indirect

18 DAXPY, A(I)=S*B(I)+C(I) 2.0 contiguous, parallel do

19 DAXPY, A(I)=S*B(I)+C(I) 2.0 contiguous, schedule(static,10)

20 DAXPY, A(I)=S*B(I)+C(I) 2.0 contiguous, schedule(dynamic,10)

Table 1: Description of kernel loops in RINF1 benchmark

To measure ^r1 and f1=2 of OpenMP loops, we
parallelized these benchmarks as for RINF1.

3 Results and Analysis

We have run the OpenMP version of RINF1, POLY1
and POLY2 on the following systems and compilers:

� COMPAQ ProLiant 6500 (Intel Pentium II
Xeon 450MHz, 1MB cache/CPU, 4CPU, 1GB
main memory, Linux Red-Hat 6.0) using RWCP
Omni Fortran77 OpenMP compiler[5] (a trans-
lator to C. the backend C compiler is egcs-
2.91.66 with options -O3 -malign-double). This
platform is indicated as 'Omni-Linux'.

� COMPAQ ProLiant 6500 using PGI Fortran
OpenMP compiler (pgcc 3.1-2). This plat-
form is indicated as 'PGI-Linux'.

� Sun Enterprise 450 (Ultra Sparc 300MHz,
4CPU, 1GB, Solaris 2.6) using RWCP Omni
Fortran77 compiler (the backend C compiler
is SUN Wspro 4.2 with options -fast). This
platform is indicated as 'Omni-Sun'.

We have run the benchmarks varying the number
of processors from one to four.

The RINF1 benchmark outputs several informa-
tion including the execution time data for each ker-
nel and loop length. Figure 1 shows the perfor-
mance rate rn of the kernel loop 6 on each platform
with the number of processor 1, 2 and 4. Horizon-
tal and vertical axis indicate the loop-length and

the performance rate in Flops respectively for the
number of processors 1,2,4.

As found in these �gures, there are two asymp-
totic performance rates for in-cache case and out-
cache case. When the vector length exceeds out
of the cache size, the performance rates drops down
due to cache miss. The least-squre �tting routine in
RINF1 detects this change of performance rates by
checking the execution time, and restart the least
square �tting from this point. The RINF1 output
the summary of selected values in the measurement
including the two two asymptotic performance rates
for in-cache and out-of-cache, and the max and min
values.

Table 2 shows the summary of RINF1 results
on Omni-Linux. In Tables 3 and 4, a part of the
summary on PGI-Linux and Omni-Sun is included.
Comparing to the result on Omni-Linux, PGI-Linux
achieves fairly better performance especially when
the vector length is �tting in the cache size. Note
that because the Omni compiler is a translator to C
codes, the result of Omni re
ects the performance
of the backend C compiler. In the Sun platform, the
di�erences between in-cache rate and out-of-cache
rate is smaller than that in the Intel's platform.

As described in the previous section, the over-
heads of OpenMP constructs are included in n1=2.
If the performance rate increases with more pro-
cessors, the n1=2 values becomes larger and more
large startup time is required to get performance
e�ectively. In case of out-of-cache, the n1=2 value
becomes negative in many kernel loops. It means

that the loop overhead becomes negligible when the
vector length is large enough to incur cache-miss.

Figure 2 compares the di�erent versions of
DAXPY (Loop 16, 18, 19, 20) with four proces-
sors on each platform. The loop 18 ('PARALLEL
DO') startups slower than the loop 16('DO'). This
is also indicated as a larger n1=2 value of cache-in
case in the summary table. As the vector length
becomes longer, the di�erences between di�erent
loop scheduling is getting smaller because that loop
scheduling overhead can be negligible.

Table 5 shows the results of shared memory bot-
tleneck analysis by POLY1 and POLY2. The POLY1
in-cache test shows that in th modern microproces-
sors cache-memory bandwidth is enough for arith-
metic operation speeds of CPU. However, POLY2
out-of-cache test indicates especially in PGI-Linux
that the Intel processor's shared memory system
needs a higher computational intensity against to
use its high performance CPU e�ectively.

4 Conclusion

In this paper, we have proposed an OpenMP bench-
mark using the low-level single processor bench-
marks of PARKBENCH benchmark, and results and
analysis are shown using this benchmark. The loop
overheads including that of OpenMP loop schedul-
ing are shown as loop or vector length in the terms
of quantities known to the programmer. The cache
e�ect can be clearly analyzed by the asymptotic
performance rate analysis. The performance anal-
ysis of shared memory provides a valuable guide
to OpenMP programmers as well as OpenMP con-
struct overheads analysis.

We have also made a C OpenMP version of
PARKBENCH low-level benchmarks. We are plan-
ing to make these PARKBENCH OpenMP bench-
marks available at Netlib.

References

[1] C.A. Addison, V.S. Getov, A.J.G Hey, R.W.
Hockney and I.C. Walton, \ The GENESIS
Distributed-memory Benchmarks", Computer
Benchmarks, J.J. Dongara and W. Gentzsch
(eds), Advances in parallel Programming, Vol.
8., pp. 257-27.1

[2] J. M. Bull, \Measuring Synchronization and
Scheduling Overheads in OpenMP", Proc. of
EWOMP '99, pp. 99-105, 1999.

[3] D. Bailery, et.al, \The NAS Parallel Bench-
marks", Int. J. on Supercomputer Application,
5(3):63-73,1991.

[4] R.W. Hockey, and M. Berry, (eds), \Public In-
ternational Benchmark for Parallel Computer",
PARKBENCH Committee: Report-1.

[5] RWCP Omni OpenMP compiler System,
http://pdplab.trc.rwcp.or.jp/pdperf/Omni/.

[6] Standard Performance Evaluation Corporation,
http://www.spec.org.

No. #P vlen(1) r1 n1=2 vlen(2) r1 n1=2 rn min rn max

1 seq <= 400 52.95 4.8 >= 800 9.74 -4414.7 9.64 53.67
2 <= 8000 53.02 35.5 >= 30000 15.41 -15515.9 5.96 58.41
4 <= 8000 81.03 0.1 >= 30000 18.38 -21211.0 4.31 97.46

2 seq <= 50 49.53 1.4 >= 90 3.83 -554.4 3.58 48.95
2 <= 90 63.42 92.7 >= 400 6.93 -879.4 6.17 33.33
4 <= 1000 35.75 18.2 >= 5000 15.12 -2910.6 4.81 61.32

3 seq <= 80 80.56 0.8 >= 300 15.27 -2981.9 15.26 87.98
2 <= 800 114.20 79.9 >= 3000 26.71 -6478.7 11.99 102.97
4 <= 3000 162.49 97.1 >= 7000 41.11 -9602.1 8.78 180.82

4 seq <= 40 81.25 2.1 >= 80 5.35 -491.8 5.33 77.42
2 <= 80 116.20 83.5 >= 300 8.37 -967.8 7.59 59.34
4 <= 900 62.70 17.6 >= 4000 17.59 -3300.3 9.69 94.25

5 seq <= 600 46.56 1.1 >= 1000 15.87 -4791.7 15.17 46.79
2 <= 8000 52.64 17.5 >= 30000 22.81 -17599.7 6.08 58.86
4 <= 8000 91.91 117.5 >= 30000 52.35 -491.9 4.60 96.01

6 seq <= 90 102.62 1.1 >= 400 19.78 -2588.6 20.20 101.83
2 <= 800 149.79 37.0 >= 3000 31.33 -6960.7 23.46 151.86
4 <= 1000 331.29 165.1 >= 5000 47.27 -8693.8 17.85 278.73

7 seq <= 500 99.02 2.0 >= 900 24.27 -5711.7 22.80 98.62
2 <= 8000 62.76 188.9 >= 30000 36.79 -10951.7 2.92 61.70
4 <= 10000 116.27 759.5 >= 50000 69.94 -3324.1 1.44 109.04

9 seq <= 800 33.72 0.7 >= 3000 26.43 -1015.7 26.33 33.79
2 <= 80 2.00 3.3 >= 300 1.44 -615.5 1.33 1.97
4 <= 80 1.01 1.5 >= 300 0.88 -27.9 0.84 1.00

10 seq >= 50 12.85 -43.2 14.35 60.53
2 <= 80 34.85 4.8 18.68 33.39
4 >= 50 23.50 -42.6 13.88 61.38

11 seq <= 20 75.84 1.9 >= 60 41.90 -29.7 44.86 69.67
2 <= 80 33.02 0.8 29.74 32.80
4 <= 80 66.51 2.8 49.28 65.32

12 seq <= 80 70.85 0.3 50.23 72.25
2 <= 90 33.10 0.8 >= 400 30.79 -3.1 30.32 32.87
4 <= 90 66.32 2.5 >= 400 57.98 -4.8 49.54 65.52

13 seq >= 40 10.73 -3096.8 10.70 23.39
2 <= 400 35.80 62.0 >= 60 20.01 -3378.0 20.04 33.12
4 >= 1 54.11 -699.8 21.24 64.64

14 seq >= 30 7.52 -27.7 6.96 44.46
2 >= 1 16.91 8.5 6.16 18.04
4 >= 1 36.58 53.9 4.81 34.04

15 seq >= 30 7.45 -7.1 7.95 10.10
2 >= 1 18.20 22.8 5.67 14.70
4 >= 1 33.56 58.5 4.92 20.46

16 seq <= 300 111.00 2.3 >= 700 18.56 -4606.4 18.18 110.20
2 <= 8000 96.38 15.0 >= 30000 32.94 -14964.2 12.10 111.29
4 <= 8000 165.11 69.2 >= 30000 66.69 -3101.9 8.42 187.62

17 seq <= 80 123.20 2.7 >= 300 10.21 -1504.8 10.30 119.05
2 <= 300 88.68 60.3 >= 700 11.63 -3480.7 11.82 73.64
4 <= 800 149.69 136.4 >= 3000 14.30 -6877.4 9.78 130.71

18 2 <= 8000 97.85 227.8 >= 30000 31.33 -17117.0 3.36 96.71
4 <= 9000 175.79 685.2 >= 40000 34.91 -27387.0 2.20 164.45

19 2 <= 800 61.04 39.3 >= 3000 23.70 -5772.4 12.27 57.80
4 <= 8000 96.59 53.2 >= 30000 46.85 -6425.8 10.25 98.71

20 2 <= 8000 18.35 52.7 >= 30000 12.74 -9432.3 2.56 18.29
4 <= 20000 13.33 57.5 >= 60000 10.76 -9723.3 1.15 13.52

Table 2: RINF1 summary of results on Omni-Linux

No. #P vlen(1) r1 n1=2 vlen(2) r1 n1=2 rn min rn max

1 1 <= 500 65.72 10.7 >= 900 9.63 -4899.4 9.61 66.13
2 <= 800 134.66 131.1 >= 3000 20.83 -5841.2 9.33 119.04
4 <= 2000 228.20 353.3 >= 6000 35.89 -4893.0 5.62 183.46

5 1 <= 700 58.62 7.9 >= 2000 15.64 -6135.0 15.00 58.58
2 <= 1000 81.23 67.6 >= 5000 31.65 -6253.4 9.52 75.70
4 <= 8000 102.88 76.4 >= 30000 58.93 -2.4 5.68 115.67

6 1 <= 100 164.45 7.8 >= 500 20.86 -3130.6 21.48 155.21
2 <= 800 249.93 36.0 >= 3000 31.35 -7970.1 31.16 272.29
4 <= 1000 596.44 246.7 >= 5000 60.75 -7593.7 22.33 465.62

7 1 <= 800 107.90 16.1 >= 3000 24.49 -7688.6 23.53 107.15
2 <= 8000 139.09 96.6 >= 30000 63.03 -11193.3 6.46 163.40
4 <= 9000 259.27 762.7 >= 40000 156.56 23904.3 2.91 240.68

9 1 <= 900 8.14 0.7 >= 4000 7.69 -198.6 7.28 8.13
2 <= 80 1.54 -0.4 >= 300 1.28 -32.9 1.28 1.59
4 <= 80 1.21 1.1 >= 300 0.87 -77.5 0.87 1.22

10 1 >= 50 11.90 -40.7 13.24 35.52
2 <= 60 54.84 2.7 >= 100 17.44 -68.1 22.20 68.89
4 >= 80 24.46 -66.0 16.76 115.46

11 1 <= 20 62.92 1.9 >= 60 40.04 -25.1 41.61 58.71
2 <= 20 128.00 2.6 >= 60 84.09 -20.9 86.69 115.05
4 <= 90 222.73 5.2 >= 400 180.09 -6.6 119.40 220.28

16 1 <= 500 125.20 10.6 >= 900 19.31 -5091.3 19.19 122.20
2 <= 800 247.96 120.2 >= 3000 44.22 -5887.6 18.28 217.41
4 <= 2000 412.96 311.1 >= 6000 81.97 -1996.7 11.24 341.93

18 2 <= 900 219.67 197.5 >= 4000 43.08 -6962.8 10.40 183.32
4 <= 8000 207.95 67.6 >= 30000 80.45 -4456.4 4.35 275.49

19 2 <= 800 99.66 28.3 >= 3000 28.18 -7065.6 23.72 100.00
4 <= 8000 145.94 19.3 >= 30000 44.20 -23393.995 13.04 168.04

20 2 <= 10000 21.52 93.470 >= 50000 13.51 -15460.935 4.06 21.39
4 <= 8000 14.36 59.509 >= 30000 11.56 -5000.789 1.92 14.30

Table 3: RINF1 summary of results on PGI-Linux (partial)

No. #P vlen(1) r1 n1=2 vlen(2) r1 n1=2 rn min rn max

1 1 <= 600 42.27 18.9 >= 1000 20.62 -2965.8 8.15 50.25
2 <= 8000 58.25 12.8 >= 30000 41.63 1727.2 4.11 81.68
4 <= 8000 112.21 129.3 >= 30000 54.95 5262.3 2.87 131.05

5 1 <= 800 57.50 63.5 >= 3000 24.67 -2159.4 7.80 54.16
2 <= 8000 54.40 46.1 >= 30000 43.55 -5266.6 3.87 60.90
4 <= 9000 96.48 226.0 >= 40000 75.78 -323.2 2.83 96.11

6 1 <= 200 85.47 20.1 >= 600 22.74 -3961.2 21.04 79.11
2 <= 800 159.51 86.1 >= 3000 63.66 -2694.4 15.26 149.19
4 <= 1000 316.30 241.7 >= 5000 99.08 -3675.8 11.23 265.27

7 1 <= 8000 147.14 118.6 >= 30000 181.59 20963.9 8.02 151.75
2 <= 30000 224.98 571.9 >= 70000 407.31 152418.1 2.28 246.33
4 <= 40000 244.55 357.3 >= 80000 767.84 183760.5 1.16 346.71

9 1 <= 80 4.14 2.9 >= 300 3.40 167.2 3.03 4.42
2 <= 80 2.81 5.0 >= 300 1.87 -595.5 1.70 2.88
4 <= 300 1.45 5.5 >= 700 0.85 -2170.5 0.81 1.45

10 1 <= 30 136.92 24.4 >= 70 8.52 -66.6 10.76 76.77
2 <= 40 159.61 125.9 >= 80 14.44 -69.9 9.60 91.50
4 <= 80 -174.89 -299.9 >= 300 7.08 77.34

11 1 <= 20 75.29 1.7 >= 60 18.90 -50.7 22.42 70.99
2 <= 20 141.95 2.0 >= 60 37.38 -50.4 44.47 132.66
4 <= 30 286.93 6.0 >= 70 72.50 -53.0 88.22 243.04

16 1 <= 500 63.58 19.8 >= 900 28.43 -2024.7 15.33 67.00
2 <= 1000 129.44 139.5 >= 5000 61.02 -423.6 8.01 118.90
4 <= 5000 160.46 66.2 >= 9000 102.29 3867.2 5.84 199.02

18 2 <= 20000 73.31 98.7 >= 60000 63.55 -457.6 2.54 83.25
4 <= 10000 139.30 505.0 >= 50000 87.96 -8901.0 1.39 142.05

19 2 <= 8000 40.96 5.8 >= 30000 27.79 -9396.0 9.82 43.51
4 <= 8000 82.47 76.5 >= 30000 59.90 -7262.9 7.50 84.22

20 2 >= 1 14.37 150.1 2.58 14.63
4 <= 20000 12.95 144.3 >= 60000 11.32 -6518.9 1.03 12.90

Table 4: RINF1 summary of results on Omni-Sun (partial)

POLY1(in-cache) POLY2(out-cache)
platform #P ^r1 f1=2 ^r1 f1=2

Omni-Linux 1 80.28 -0.15 75.86 1.24
2 160.65 0.01 152.60 1.27
4 314.13 -0.09 409.09 5.84

PGI-Linux 1 189.81 0.39 233.66 8.30
2 380.14 0.38 472.96 8.63
4 761.34 0.43 978.93 9.25

Omni-Sun 1 98.71 0.23 95.89 1.20
2 197.12 0.20 197.78 2.50
4 390.89 0.19 349.96 2.02

Table 5: POLY1 and POLY2 results

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k06-1
k06-2
k06-4

MFlops

Loop Length
(a) Omni-Linux

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k06-1
k06-2
k06-4

MFlops

Loop length
(b) PGI-Linux

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k06-1
k06-2
k06-4

MFLOPS

Loop length
(c) Omni-Sun

Figure 1: Performance rate rn of Kernel Loop 6

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k16-4(do, default)
k18-4(parallel do)

k19-4(do, static10)
k20-4(do, dynamic10)

MFlops

Loop length
(a) Omni-Linux

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k16-4(do, default)
k18-4(parallel do)

k19-4(do, static10)
k20-4(do, dynamic10)

MFlops

Loop length
(b) PGI-Linux

0

50

100

150

200

250

300

350

400

450

500

10 100 1000 10000 100000

k16-4(do, default)
k18-4(parallel do)

k19-4(do, static10)
k20-4(do, dynamic10)

MFLOPS

Loop length
(c) Omni-Sun

Figure 2: Performance rate rn of DAXPY with loop
scheduling

