
CARNEGIE-MELLON UNIVERSITY

VERY LARGE SCALE MODELING

A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

by

Kirk André Abbott

Pittsburgh, Pennsylvania

March 1996

To Mom and Dad

Abstract

Very Large Scale Modeling (VLSM) requires a harmonious blend of language,

algorithms and tools to be done successfully and efficiently. The sheer size of the

modeling problem raises issues which are trivial when dealing with small

problems. This work addresses the problems associated with formulating,

representing and solving problems with up to 250,000 nonlinear differential-

algebraic equations on a workstation class machine. The primary hypothesis is

that for this undertaking to be successful, a dedicated VLSM environment is

required.

A requirements analysis of a VLSM environment is performed and the primary

issues of memory, speed and complexity are recognized. A review of the state of

the art in modeling environments shows that they are deficient in satisfying the

needs of a VLSM environment. A strongly typed, object-oriented, equation based

language, ASCEND IV, which is based on the ASCEND III language, is designed

to fulfill this role. Using partial implementations, ASCEND IV has been tested on

modeling problems with up to 86,000 variables and has demonstrated its

potential as a language capable of supporting a VLSM environment.

The large sparse linear algebra subproblem which is found in the solution of large

systems of equations, can dominate the cost of solving such systems. The current

approaches for reducing the linear algebra cost are reviewed. The deficiencies of

these approaches are highlighted. New partitioning and reordering algorithms

that exploit the hierarchical structures inherent in a structured modeling

languages such as ASCEND IV, are presented. These algorithms are shown to

give faster reorderings, much lower fill, reduced operation count and faster

matrix factorizations. In a detailed comparison, codes which can exploit these

better reorderings are shown to be competitive with state of the art linear algebra

codes.

Acknowledgments

I would like to thank Dr. David Chinloy and Mr. Richard Holzwarth of Alcan

International for providing my first introduction to modeling. My appreciation

goes to Professor Myung Jhon for giving me an opportunity to pursue graduate

studies at CMU.

Many thanks to my thesis advisor Professor Arthur Westerberg, with whom I

have had many interesting (at time fiery) discussions. He has always managed to

goad me into achieving more. To members of the ASCEND group, Bob Huss, Joe

Zaher, Mark Thomas and Boyd Safrit for their patience with me and my code. I

would like to thank Tom Epperly for providing me with an excellent platform, the

ASCEND compiler, for starting my work and his continued assistance over the

years. My appreciation goes to the n-dim group for making tika.ndim available

for my use. I am greatly indebted to Professor Mark Stadtherr and J. Mallya of the

University of Illinois for the many discussions on large scale linear algebra and

for providing the LU1SOL code.

To my friends Jacqueline, Lise, Chris, Juan and Jan, and Paula for helping to

maintain my sanity. To my brothers Rohan and Anthony and my parents, for all

their support over the years. To Debbie, whom has never lost faith nor love

despite the distance.

I would especially like to thank Ben Allan, Sean Levy and Arletta for the roles that

they have played in my life. To old Ben for his friendship, patience, knowledge

and ever cynical attitude towards life. To Arletta who has treated me like family

and showed me a different way of living. To Sean for being a brother, philosopher,

great hacker and friend.

To all, I again say my thanks.

And for those who made it more difficult, thanks for helping to build character.

Table of Contents

1 Introduction 1
1.1 Design 1

1.1.1 Very large-scale modeling 3
1.1.2 Tools and environments 5
1.1.3 The future 7

1.2 References 11

2 Very Large Scale Modeling Environments 13
2.1 Abstract 13
2.2 Introduction 14
2.3 Model classification 15
2.4 Survey of modeling languages 17

2.4.1 Object-oriented languages 17
2.4.2 Typing 19
2.4.3 Procedural versus Declarative 19

2.5 Memory 21
2.5.1 Background 21
2.5.2 Memory for problem representation 22
2.5.3 Memory for solution 25

2.6 Speed 26
2.6.1 Background 26
2.6.2 Realization 27
2.6.3 Solutions 29
2.6.4 Function and gradient evaluation 31
2.6.5 Solutions 32

2.7 Modeling support 33
2.7.1 Introduction 33
2.7.2 Query facilities 34
2.7.3 Persistency 34
2.7.4 Tool evolution 35
2.7.5 External packages 35
2.7.6 Other useful tools 36

2.8 Other 36
2.9 Discussion 37
2.10 Appendix 38

2.10.1 ASCEND III modeling environment 38
2.10.2 Omola modeling environment 39
2.10.3 A distillation column 40

2.11 References 41

3 Design of ASCEND IV 43
3.1 Abstract 43
3.2 Introduction 43
3.3 ASCEND IIIc 45

3.4 ppp example 47
3.4.1 Model instantiation 48
3.4.2 Implicit types 53

3.5 ASCEND IV 56
3.5.1 Example 10 revisited 56
3.5.2 Structural parameters 58
3.5.3 Types as parameters 59
3.5.4 Instances as parameters 60
3.5.5 Aliasing revisited 61

3.6 Repeated structures 62
3.6.1 Coarse grained structures 62
3.6.2 Fine grained structures 66
3.6.3 Shallow operations 68

3.7 Memory 68
3.7.1 Variables 68
3.7.2 Constants 69
3.7.3 Relations 70

3.8 Other 70
3.8.1 Very large scale modeling 70
3.8.2 Function and gradient evaluation 72
3.8.3 Deletion 72
3.8.4 ARE_ALIKE 72

3.9 Discussion 73
3.10 Appendix 75

3.10.1 Model flowsheet 75
3.10.2 Syntax 75
3.10.3 Instance counts by type for model ppp 77
3.10.4 General instance tree numbers for model ppp 78
3.10.5 A type hierarchy 79

3.11 References 80

4 New Language Features 81
4.1 Abstract 81
4.2 Introduction 81
4.3 Relations 82

4.3.1 ASCEND III relations 83
4.3.2 Token relations 84
4.3.3 Opcode relations 85
4.3.4 glass-box relations 86
4.3.5 Black-box relations 88

4.4 Procedures 91
4.5 Code generation 93
4.6 Other 96
4.7 Appendix 97

4.7.1 Relation term data structures 97
4.7.2 New relation data structure 98

4.7.3 Embedded black-box relation 99
4.8 References 99

5 Linear Algebra 101
5.1 Abstract 101
5.2 Introduction 101
5.3 Sparse matrix analysis 105

5.3.1 Block lower triangular forms 105
5.3.2 Sparsity preserving reorderings 107
5.3.3 Pivoting for numerical stability 108
5.3.4 Tearing 109
5.3.5 Block factorization 111

5.4 New algorithms 113
5.4.1 Motivation 113
5.4.2 Statement of algorithm 114

5.5 Numerical experiments 117
5.5.1 Test procedure 117
5.5.2 Codes 118
5.5.3 Test results 121

5.6 Discussion 127
5.7 Appendix 127

5.7.1 SPK1 algorithm 127
5.7.2 Test results 129

5.8 References 135

6 Tearing Algorithms 139
6.1 Abstract 139
6.2 Introduction 139
6.3 Trees and dags 141

6.3.1 Background 141
6.3.2 Partitioning 144

6.4 Algorithms 146
6.4.1 Depth-first partitioning 146
6.4.2 Partitioning for a BBD matrix 146
6.4.3 Partitioning for a RBBD matrix 150
6.4.4 Breadth-first algorithms 151
6.4.5 Chemical engineering flowsheets 152

6.5 Related work 154
6.6 Numerical results 156
6.7 Discussion 158
6.8 Appendix 160

6.8.1 Matrix formats 160
6.9 References 162

7 Conclusions 165

List of Figures

1 Basic model of a process plant . 17
2 Relation representations . 24
3 Schematic of a distillation column . 40
4 An instance tree. 63
5 Instance DAG with a type CLIQUE . 65
6 C3 separation unit . 75
7 Type hierarchy for atoms. 79
8 Original Relation Structure . 84
9 New Token Relations . 84
10 Opcode Relations . 86
11 Glass-box Relations. 86
12 Syntax for Glass-box Relations . 87
13 External Glass-Box Relation Registration . 88
14 Black-Box Relations . 89
15 Syntax for Black-box Relations . 90
16 Sparsity Pattern of Black-Box Relations when expanded 91
17 Black-box relation registration protocol . 91
18 Exploded View of Black-Box matrix . 99
19 Bordered Block Diagonal and Recursive Bordered Block
 Diagonal Matrices. . 111
20 A recursively bordered block lower triangular matrix 116
21 Trees and Directed Acyclic Graphs (DAGs) . 142
22 A model tree and its associated sparse matrix traversed
 Depth-First, Bottom-Up . 143
23 A model tree and its associated sparse matrix traversed
 Breadth-First, Bottom-Up . 143
24 An incidence matrix and its corresponding tree. 144
25 The partitioned matrix . 145
26 Basic Data Structures . 147
27 Standard Reorder versus TEAR_DROP algorithm . 150
28 Breadth-First Cleaving . 151
29 Breath-First cleaving of a DAG . 152
30 Simple recycle flowsheet.. 153
31 Pseudo 2 Level Hierarchy . 153
32 Model connectivity information . 161

List of Tables

1 Instantiation times (seconds). 29
2 Evaluation times (seconds) . 32
3 Instantiation Statistics. 47
4 Instantiation Statistics. 73
5 Matrix Reducibility . 106
6 Reordering Times . 108
7 Test Matrices . 117
8 Normal Reorder vs. TEAR_DROP . 122
9 Normal Reorder vs. TEAR_DROP . 123
10 Analyze and Factor Time summary. 124
11 Effect of NSRCH on ma48 . 125
12 Nonzeros in Factors . 126
13 Isom_30K . 130
14 4Cols . 130
15 10Cols . 131
16 BiqEquil . 131
17 PPP . 132
18 Wood7. 132
19 Wood8. 133
20 Ethyl60 . 133
21 Ethyl80 . 134
22 Statistics with RBBD TEAR_DROP . 157

1

CHAPTER 1 INTRODUCTION

1.1 DESIGN

The design of a large-scale system is a complex and difficult process. Design is an

optimization problem. Some measure of goodness is sought from the artifact being

designed, subject to the constraints of time, man power, computational resources,

finances and knowledge. The difficulties arise from the size of the problem and

the millions of pieces of information that need to be collected, manipulated and

analyzed over the course of a design. Invariably the process will involve many

designers and may take years to complete.

Modeling and design are closely related. Modeling is the process of mapping

reality into a representation that is thought to be useful for understanding that

reality. Designers use models to aid in their decision making. A designer/modeler

is then one who practices the art/science of modeling. Though there are many

different models that may used over the life time of a design, computational or

mathematical models are among the most important of these models and are the

DESIGN

2

primary focus of this work. In mathematical modeling, the problem to be

modeled may be represented as set of variables and the mathematical

relationships among these variables.

Very Large Scale (VLS) systems are very difficult to design and operate

monolithically. A concise and accurate definition of what constitutes a very large

scale system is also difficult. Qualitatively a very large scale system is one that is

too large to be solved efficiently as a whole. The process of attempting to

understand a VLS gives rise to very large scale modeling problems. Large scale

systems abound; the engineering disciplines provide a rich source of large scale

systems and problems. In electrical engineering, the design of complex electronic

circuits has given rise to a new acronym, VLSI (very large scale integrated)

circuits. Chemical engineering design and operation similarly has its share of

large scale systems. The example that most readily comes to mind is the design

and operation of a petrochemical complex. Likewise a detailed dynamic, thermal,

flow and vibration analysis of a single heat exchanger in such a design is just as

formidable a problem.

The difficulties associated with the design of large scale systems has given rise to

design research. Arising from this research are different design theories,

methodologies and software tools for making the design of large-scale systems

more tractable. A detailed discussion of design research is beyond the scope of

this work. However, all the methodologies involve decomposition of the design

problem and the subsequent coordination to achieve the desired goals of the

design. The decomposition may be functional, hierarchical, spatial or by domain.

Ponton [Pon94] in arguing for a design environment for process engineering points

out that the activities of

• decomposition and aggregation
• exploration
• evolution
• cooperation
• interaction

DESIGN

3

• automation and computation1

need to be supported [BA94]. Environments such as epee [CFSB94] and n-dim

[LSKC93] have developed to support these activities which may be considered

design in the large.

1.1.1 VERY LARGE-SCALE MODELING

Other design research assumes that a decomposition of the overall design

problem has been done and concentrates on the modeling and solution of the

computational models associated with subproblems of the design. In the design

of a large petrochemical complex for example, a domain decomposition is

normally performed such that process design is first performed and is later

followed by mechanical, civil and electrical engineering design. However, even

within these subproblems a very large computational model still needs to be

formulated and solved and will involve multiple designers. If taken as a whole

the sheer size simply overwhelms the modelers and computational resources.

Lasdon’s, Optimization Theory for Large Systems, [Las70] published in 1970

discusses techniques which are still in use today for dealing with large-scale

systems. The seminal work of Mesavoric, published in the same year [MMT70]

develops theories to formalize hierarchical decomposition, a technique which has

been used formally and informally for years to handle the complexity of large

systems. Haimes [HL88], points out that the fundamental characteristics of large-

scale systems is their multifarious nature; the structure of such systems (and they

all have structure) may be multilevel, multistage, hierarchical and dynamical.

What constitutes a large-scale model varies with the class of problem being

modeled. At the time of writing linear programs with millions of constraints and

special structure are being solved [Wri93]. Global optimization problems on the

other hand seem to be restricted to below a 100 variables though problems with

2500 variables with special forms have been solved [IP95]. For differential

1. The emphasized items are the authors embellishments.

DESIGN

4

algebraic systems there is at least one published benchmark of approximately

76,000 variables [ZBLZ95] for a full dynamic model of a chemical engineering

process done using the SpeedUp [spe90] system on a Cray C-90 computer. Kelly

et al [KFD91] have reported the solution of nonlinear optimization problems

involving 35,000 variables. This problem was the real-time optimization of an

ethylene plant. Recently the author has heard of a similar problem with over

400,000 variables being solved (private communication with D. Varvarezos 1995).

The details of the modeling and solution of both of these examples were not

given.

The literature reports very few hard numbers on the resources required to model

realistic large-scale problems. The benchmarks published describe solution

statistics such as problem size, number of nonzeros and the number of iterations

taken for solution. Very few statistics are available on resources (personnel and

computational) to perform the activities of

• developing a model formulation.
• encoding and realizing the model.
• debugging, scaling and initializing the model.
• analysis of the solution.

Frtizson et al, [FF92] in appealing for high level programming support in

mechanical analysis, do provide some data. They describe the design of code to

solve a saw-chain optimization problem. Using mainly low level tools

(FORTRAN code) it took 2 man years of modeling effort. Another 2 man years

was spent in exploratory design. The FORTRAN code had to modified over 1000

times. The solution time was 5 hours on a Sun 3/60. The problem had 73

equations.

The modeling activities along with the solution of the model are repeated over the

life time of a design project. It may be argued that the modeling activity will

consume more resources that the solution time over the project horizon.

In the absence of firm data it is necessary to use one’s own experience and

DESIGN

5

tangibles such as the raised eyebrows of workers in the field of modeling to

establish a basecase. The state of the art in modeling and solving arbitrary

problems in chemical engineering seems to be generously bounded from above to

about 20,000 variables.

1.1.2 TOOLS AND ENVIRONMENTS

Many disciplines, including chemical engineering, have attempted to use

computer tools and to a lesser extent environments to aid the design process.

Ponton [Pon94] defines a tool as a software package designed to carry out a well defined

although often complex task or set of related tasks and an environment as a software

system designed to support the use of one or more tools. Tools used in design are

process simulators (AspenPlus [Asp93]), matrix generators (GAMS [BKM88]),

linear algebra solvers (ma28 [Duf77]), differential equation solvers (LSODE

[RH93]) and language compilers (FORTRAN and C). Environments include

computer operating systems (DOS and Unix), process simulation packages

(AspenPlus [Asp93]) and modeling systems (ASCEND [PMW93]). The distinction

between tools and environments is often not clear; many tools have evolved into

environments with the attendant advantages and disadvantages of evolving

systems.

Some tools particularly in the computational aspects of design have been

tremendously successful. These include the process simulators, most of which

were based on the sequential modular solution technique. However very few tools

or environments exist for supporting other critical areas of design, such as

exploration and evolution.

Mattsson and Andersson [MA91] note that mathematical modeling is a time

consuming affair but can be greatly facilitated by the use of proper tools. They

strongly support an object-oriented framework for modeling through the Omola

project. Geoffrion [Geo92] envisions a new generation of modeling environments

that try to meet the design challenges of 1) a conceptual framework for thinking

about models, 2) an executive language based on this framework for representing

DESIGN

6

models and software integration on a large scale.

Piela in his Ph.D. thesis [Pie89] discusses at length the deficiencies of the state of

the art in 1989, in modeling tools. The result of his work was the development of

the ASCEND system which is based upon an objected-oriented language, where

he reports an order of magnitude reduction in the time taken to formulate and

debug models, when compared to traditional approaches. The ASCEND system

attempts to address the issues of exploratory and evolutionary design. These

design activities require flexibility in the types of problems that may be solved

and flexibility in the specification of what variables may be solved for. The

sequential modular strategy does not offer such flexibility. In the design of the

ASCEND system, a conscious decision was made to use an equation-based

solution strategy which largely decouples the posing of a problem and its

solution.

A detailed discussion of sequential modular versus equation-based modeling

techniques may be found in Westerberg et al. [WHMW79]. It suffices to mention

that equation-based solution techniques, apart from facilitating exploratory

design, introduce the potential for increased solution efficiency over the

sequential modular strategies. Pantelides and Britt [PB95] discuss multipurpose

process modeling tools and environments based on equation-based technology.

Recognition of the potential benefits has led to the development of equation-

based modeling tools such gPROMS [Bar92], GAMS [BKM88], AMPL [Gay91].

Some novel applications for these tools have been developed. Zenios, [Zen90], in

trying to aid the formulation and solution of large-scale network optimization

problems, remarks that a high-level modeling language such as GAMS can be

used as a prototyping environment for algorithm development. This approach

has been used by Paules and Floudas [PF89] for implementing algorithms for

Heat Exchanger Network (HEN) synthesis.

All of the above tools use different proprietary modeling languages in which a

model may be posed. This has prompted some workers to call for a universal

DESIGN

7

modeling language standard [MA91].

Equation-based modeling and solution techniques have introduced new

problems. In particular, at present, they require significantly larger amounts of

memory than the sequential modular strategies and require that the modeler

manipulate significantly more information. Object-oriented systems have

emerged to manage the information swell, but further increase the demands on

memory.

Arguably the state of the art in modeling software at the time of writing is an

object-oriented, equation-based modeling environment such as ASCEND or

Omola.

1.1.3 THE FUTURE

In the last few years, a number of changes have taken place in the world in which

we live which will irrevocably affect the way that modeling is conducted. These

include

• a drastic and continuing reduction in the cost of high speed memory in com-
puters, and at the same time an increase in the speed and number of proces-
sors.

• the explosion in information technology, via systems such as the World Wide
Web.

• increased awareness of the need to protect the environment, and the dwin-
dling of naturally exploitable resources.

• increased competition in the global marketplace.

At first it may seem that some of these are unrelated to the topic of Very Large

Scale Modeling. The relevance will explained in the next few paragraphs.

Software needs have managed to remain one generation ahead of the available

hardware. In the context of mathematical modeling, modeling aspirations have

always demanded more memory and greater speed than that which is available.

However, desktop workstations with upwards of 64 MB of RAM are becoming

more common place, and processor speeds, by all metrics, are higher by a factor

of 5 to 10 than they were 5 years ago; the gallium arsenide chip, which is expected

DESIGN

8

to raise the performance of these machines by another order of magnitude, is not

far away. Parallel processing on distributed processors is also becoming available

on workstation class machines.

The World Wide Web (WWW), among its yet untold effects, has brought

information availability to unprecedented heights. The latest technical report

from Argonne National Laboratories, or data on an arbitrary chemical species, is

now available via one’s favorite web crawler. The implications for modeling are

numerous. The fidelity of a model need not be limited by information availability.

The ability to share models, and tools for their solution, has only become easier.

The possibility of distributed modeling is now real [Pon94].

Increased awareness of the need to protect the environment has led to the

development of new products and services. It has also led to the need for models

of higher fidelity and greater size. Chemical engineering for example has seen

changes in the way that plants are designed and operated; it is no longer

acceptable to pump untreated effluent down to the nearest river. As a

consequence, chemical species which were once considered trace components now

exist in process streams in much greater concentrations. The effects that these

species may have on the main process will now have to be modeled. An

interesting side effect in the domain of chemical engineering is the change in the

density of the problem under consideration. The sparse matrix associated with the

model of a chemical plant has roughly the same number of nonzeros per row as

the number of chemical species. The writer thinks that with the need to monitor

these additional species that chemical engineering matrices could see an order of

magnitude increase in density over the next few years. The modeling practices

and sparse matrix solution techniques will need to be rethought. This

environmental protection awareness will affect other disciplines and their

modeling practices in similar ways.

A competitive global economy, with the need to get higher quality products and

services to the market place as early as possible, can only increase the modeling

DESIGN

9

demands. Models will need to be of higher fidelity, which in most cases increases

their size, complexity and connectivity. It will require that concurrent

multidisciplinary modeling become the standard way of doing design. In

addition the time taken to develop and to formulate these complex models has to

remain low, despite their increased size and scope, due to time to market

considerations.

The above discussion then sets the framework for the rest of this work. Models

will only become larger and more complex, requiring techniques to deal with the

critical issues of speed, memory and complexity. In light of these issues, the primary

hypothesis of this work is:

A dedicated environment is required to efficiently conduct the practice of Very Large
Scale Modeling.

In more concrete terms, the objective of this work is to provide this environment,

so as to allow an order of magnitude reduction in the time taken to formulate and

solve arbitrary problems with up to 250,000 variables on a reasonably equipped,

currently available workstation.

Given this background, and the objective of this work, the rest of this thesis is

organized as follows:

In Chapter 2, a detailed requirements analysis is done of a Very Large Scale

Modeling (VLSM) Environment. The strengths and weaknesses of the state of the

art systems are discussed. Finally the ASCEND III system is chosen as the

platform for the start of the development of a VLSM environment.

Chapter 3 looks critically at the ASCEND III system and sets about designing a

new language called ASCEND IV to fulfill the needs of a VLSM environment as

laid out in Chapter 2. The emphasis here is on scalable language constructs,

reducing the memory required for representation of large models, and features

that will allow fast realization of model instances. The features needed to support

fast function and gradient evaluation (a critical part of most numerical solution

DESIGN

10

techniques) are also discussed. In Chapter 4, the implementation details of some

of the new features of ASCEND IV are described.

Chapters 5 and 6 address the solution times of the linear algebra system, which is

perhaps the most memory intensive and speed limiting feature of large scale

modeling. Algorithms which make use of hierarchical decomposition in a novel

way are presented.

Finally, the successes and failings of this research are summarized, along with the

directions for future research.

REFERENCES

11

1.2 REFERENCES

[Asp93] Aspen Technology, Inc.Advent Examples Manual, 1993.

[BA94] R. Banares-Alcantara. Design support systems for process engineering I. re-
quirements and proposed solutions for a design process representation. Tech-
nical Report 1994-07, Dept of Chemical Engineering, Edinburgh University,
Edinburgh, Scotland, 1994.

[Bar92] P. I. Barton.The modeling and simulation of combined discrete/continuous
processes. PhD thesis, Department of Chemical Engineering, Imperial Col-
lege of Science, Technology and Medicine, 1992.

[BKM88] A. Brooke, D. Kendrick, and A. Meeraus.GAMS - A user’s guide. Scientific
Press, 1988.

[CFSB94] D. J. Costello, E. S. Fraga, N. Skilling, and G. H. Ballinger. epee: A support
environment for process engineering software. Technical Report 1994-19,
Dept of Chemical Engineering, Edinburgh University, Edinburgh, Scotland,
September 1994.

[Duf77] I. S. Duff. MA28 - a set of fortran subroutines for sparse unsymmetric linear
equations. Report r8730, AERE, HMSO, London, 1977.

[FF92] P Fritzson and D. Fritzson. High-level programming support for mechanical
analysis.Computers and Structures, 45(2):387–395, 1992.

[Gay91] D. M. Gay. Automatic differentiation of nonlinear AMPL models. Numerical
Analysis Manuscript 91-05, AT&T Bell Laboratories, August 1991.

[Geo92] A. M. Geoffrion. The sml language for structured modeling: Levels 1 and 2.
Operations Research, 40(1):38–57, 1992.

[HL88] Y.Y. Haimes and D. Li. Hierarchical multiobjective analysis for large-scale
systems: Review and current status.Automatica, 24:53–69, 1988.

[IP95] Marianthi G. Ierapetritou and Efstratios N. Pistikopoulos. Batch plant design
and operations under uncertainty.Industrial & Engineering Chemistry Re-
search, 1995. Submitted and accepted.

[KFD91] D. N. Kelly, F. C. Fatora, and S. L. Davenport. Implementation of a closed
loop real-time optimization system on a large scale ethylene plant. Meeting
of the Instrument Society of America, Anaheim, California, October 1991.

[Las70] L. S. Lasdon.Optimization Theory for Large Systems. The MacMillan Com-
pany, 1970.

[LSKC93] S. N. Levy, E. Subrahamanian, S. Konda, and R. et al. Coyne. An overview
of the n-dim environment. Edrc–05-65-93, Carnegie Mellon University, Feb-
ruary 1993.

REFERENCES

12

[MA91] A. Mattson and M. Andersson. Towards a universal modeling language.ISA/
91, pages 571–578, 1991.

[MMT70] M. D. Mesavoric, D. Macko, and Y. Takahara.Theory of Hierarchical Mul-
tilevel Systems. New York: Academic Press, 1970.

[PB95] C. C. Pantedlides and H. I. Britt. Multipurpose processs modeling environ-
ments. volume Proc. Conf. on Foundations of Computer-Aided Process De-
sign 94 ofCACHE Publications, pages 128–141, 1995.

[PF89] G. E. Paules and C. A. Floudas. APROS: algorithmic development method-
ology for discrete-continuous optimization problems.Operations Research,
37:902–915, 1989.

[Pie89] P. Piela.ASCEND: An Object-Oriented Computer Environment for Modeling
and Analysis. PhD thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, Pennyslvania, April 1989.

[PMW93] P. Piela, R. McKelvey, and A. Westerberg. An introduction to the ASCEND
modeling system: its language and interactive environment.J. Manage. Inf.
Syst., 9(3):91–121, Winter 1992-1993.

[Pon94] J. W. Ponton. Software environments for more effective process engineering.
Technical Report 1994-23, Dept of Chemical Engineering, Edinburgh Uni-
versity, Edinburgh, Scotland, September 1994.

[RH93] K. Radharkrishnan and A. C. Hindmarsh. Description and Use of LSODE,
the Livermore Solver of Ordinary Differential Equations. Technical Report
UCRL-ID-113855, Lawrence Livermore National Laboratory, December
1993. NASA Reference Publication 1327.

[spe90] SpeedUp, 1990.

[WHMW79] A. W. Westerberg, H. P. Hutchinson, R. L. Motard, and P. Winter.Process
Flowsheeting. Cambridge University Press, 1979.

[Wri93] M. H. Wright. Some linear algebra issues in large-scale optimization. volume
Linear Algebra for Large-Scale and Real Time Applications ofNATO Ad-
vanced Study Institute. Kluwer, 1993.

[ZBLZ95] S. E. Zitney, L. Brull, L. Lang, and R. Zeller. Plantwide dynamic simulation
on supercomputers: Modeling a bayer distillation process. Escape 95, 1995.

[Zen90] A. Zenios. Integrating network optimization capabilities into a high-level
modeling language.ACM Transactions on Mathematical Software, (2):113–
142, 1990.

13

CHAPTER 2 VERY LARGE
SCALE MODELING
ENVIRONMENTS

2.1 ABSTRACT

Very Large Scale Modeling (VLSM) requires a harmonious blend of language,

algorithms, and tools to be done successfully and efficiently. The sheer size of the

modeling problem raises issues that are trivial when dealing with small problems.

This chapter discusses the problems that need to be addressed to allow efficient

formulation, representation, debugging and solving of problems with up to

250,000 nonlinear variables. The primary hypotheses is that for this undertaking

to be successful, a dedicated modeling environment is required.

A number of Very High Level Languages are discussed in detail and whilst none

are suitable in their current incarnations, the ASCEND III systems is seen to

possess the best architecture to allow its modification to suit the needs of a VLSM

environment.

INTRODUCTION

14

2.2 INTRODUCTION

Very Large Scale Modeling (VLSM) is a broad, all encompassing area. It is then

necessary to restrict the following discussion to models that may be represented

as a set of differential-algebraic relations and the variables incident upon these

relations. The relations may be equalities or inequalities whereas the variables

may be continuous or discrete valued. Additionally, one or more of the variables

may be required to be maximized. This restriction still admits a very large class of

problems that are of interest to chemical engineers although it probably excludes

most of finite element modeling1. Furthermore it will be assumed that the models

developed will be solved by numerical techniques.

This work seeks to make modeling and solution of problems with up to 250,000

variables a routine occurrence given the current levels of computing resources

and that reasonably skilled people are involved in the modeling process.

To achieve these goals it is necessary to examine the currently available modeling

technology. The principal difficulties seem to lie in the very broad areas of:

• memory.
• speed.
• complexity.

The first two are internal concerns for the developer of an efficient modeling

environment and normally manifest themselves in the inability of the end user

(the modeler) to be able to model a problem of the size/complexity that he/she

desires. The third affects the modeler(s) directly: how to deal with literally

millions of pieces of information. If the models developed are eventually going to

be solved by some numerical technique, the issues of bounding, scaling and

initialization have to be addressed for every variable in the problem. The data

gathering process to feed large models may be considerable. In some applications,

such as real time optimization, this data arrives at the rate of thousands of points

1. auto gridding of fem is not considered, but representation of the problem once gridded
is considered.

MODEL CLASSIFICATION

15

every 1/2 second from the plant control system. The post solution analysis of the

problem is also very important.

The rest of this chapter attempts to raise an appreciation for the difficulties

involved in creating a VLSM system. First, a more detailed description of the

model classes that this work attempts to accommodate will be given. A

requirements analysis of a VLSM environment will then be done. This analysis

was made possible by having used a number of such systems. A non-exhaustive

survey of such systems, their strengths and weaknesses, will follow. Finally a

recommendation is made for the use of the ASCEND III system as the starting

point for development of a VLSM environment.

2.3 MODEL CLASSIFICATION

The models that can appear within the overall model problem may widely vary.

Associated with each model class are peculiarities which present challenges for

solving individual models, and coordination among models becomes a

formidable task.

Models may be broadly classified into black-box models and grey/glass-box

models. The former group is characterized by lack of information on their

structure and implementation. In general, analytic derivatives are not available

and the functions involved may be discontinuous. These models are typified by

canned subroutines that are accessible only through a subroutine prototype where

inputs and outputs are specified by the model developer. When embedded within

a calculational sequence, black-box models may not yield a solution and in such

cases tend to do so without any stack backtracing, thus providing limited if any

information on the cause of failure. Grey/glass-box models represent the

antithesis of black-box models. They tend to be equation-based, where the

functional form of the relations (equalities, inequalities, objective function) are

known. The difference between grey and glass-box models is the degree to which

MODEL CLASSIFICATION

16

this information is accessible. Most of the modern modeling languages such as

ASCEND [PMW93] and GAMS [BKM88] promote a glass-box style of modeling.

The most common model classes that are found in chemical engineering design

are described below. Most models may be coerced into these classes at them of

solution e.g., a system of ordinary differential equations (ODE) is very often

solved by discretization, resulting in a set of algebraic equations.

• Linear and non-linear equations solving of square systems of equations
(1)

• Ordinary differential equations (ODE) and differential algebraic systems
(DAE) [RH93]

(2)

• Constrained simulation problems (CSP) [Bul91]
(3)

• Linear programming (LP) and non-linear programming (NLP)
(4)

h x u,() 0=

u given

ż
ξd

d
z≡ f z ξ() u ξ() ξ, ,()=

z ξ0() z0 given=

u ξ() given

h x u,() 0=

u given

g x u,() 0=

h x u,() 0=

u given

g x u,() 0=

minx u, f x u,()

SURVEY OF MODELING LANGUAGES

17

• Mixed integer linear (MILP and mixed integer non-linear programming
(MINLP) [SG91]

(5)

2.4 SURVEY OF MODELING LANGUAGES

Some of the state of the art modeling languages and environments will be

described in the next few sections. A case will be argued for the use of a strongly

typed, equation-based, object-oriented language, as the base language for a VLSM

environment.

2.4.1 OBJECT-ORIENTED LANGUAGES

 In order to motivate the discussion, consider the design of a chemical engineering

process plant.

FIGURE 1 Basic model of a process plant

At an early stage of the design the model may represented as shown in Figure 1.

The model is a black-box, and there is a requirement to calculate a certain quantity

of material z, given the availability of inputs x and y. As the design proceeds the

internals of the box will become more apparent; the plant is now broken down

into the feed, reaction and separation sections. These can and will be further

divided into the unit operations that may up each section, the reactors, columns,

minx y, f x y,() b
T
y+

g x() Ay 0≤+

x ℜn∈

y 0 1,{ }∈

x

y

z

SURVEY OF MODELING LANGUAGES

18

heat exchangers and pumps among others. Towards the final stages of the design,

there will be models describing the layout of the piping and even the size of the

hold down bolts for the pumps.

This process of recursively decomposing a problem into sub-parts to make it more

tractable is known as hierarchical decomposition. For any of the sub-models there

will may be an ancestry of models. Initially the heat exchangers may be modeled

as ideal machines with infinite area; later they may be modeled rigorously using

Bell’s method (see the HEDH, [Sch83]). There are a number of reasons why

simpler, less rigorous models are used in place of the intended final model. At a

given stage of the overall design process, it is the gross features of the design that

may be important and a rigorous model is unnecessary. Indeed the rigorous

model may not exist, as is in the case with new products or processes. Rigorous

models tend to be difficult to initialize, until they are well understood. A

technique which is often used to cope with this problem is to a create a reduced

model, explore its solution space, then use these results to initialize a more

rigorous model. This may be thought of as structural homotopy.

What should be apparent is that there are two distinct and very important

concepts that a modeling language must support in an efficient manner across all

phases of model development: the concepts of hierarchical decomposition and

refinement. When combined these techniques form the core of object-oriented

modeling.

Object oriented techniques have become popular in the last decade. Initially

developed to manage large software engineering projects [Mey88], they have

found their way into database design and into modeling languages. The

ASCEND III language, Omola [And90] [Nil93], gPROMS [Bar92], and MODEL.lA

[SHL90] all support the object-oriented paradigm of modeling.

In ASCEND, MODELs are containers for variables, relations and for other models.

The part-of notion is achieved with the IS_A construct. At the leaves of the model

hierarchy are the variables in the model which are called ATOMs. The language

SURVEY OF MODELING LANGUAGES

19

supports refinement and specialization through the use of its REFINES, and

IS_REFINED_TO constructs, and allows any part of a model to later become

more specialized through deferred binding. This applies not only to the static

type information but also to instances of models. The use of an incremental

compiler makes this possible.

Omola is an object-oriented modeling language built on top of an earlier

structured modeling language DYMOLA. It is biased towards the modeling and

simulation of dynamic chemical engineering problems. It has been used by

Nilsson to model entire chemical engineering flowsheets and recently in the K2

study of a powerhouse [EN94].

gPROMS [Bar92] borrows constructs from both Omola and ASCEND and adds a

number of new features. In particular it emphasizes the modeling of combined

discrete/continuous processes. SpeedUp supports structured modeling but only

allows hierarchies of limited depth. GAMS at the time of writing has no

hierarchical or even modular modeling constructs and may be thought of as being

planar. Of the languages mentioned, Omola, ASCEND and GAMS are domain

independent.

2.4.2 TYPING

A strongly typed language has benefits certainly in the traditional object oriented

languages. Its utility seems unexploited in the object oriented modeling

languages. The older simulation languages which have the notion of a module

with very definite functionality are strongly typed languages.

2.4.3 PROCEDURAL VERSUS DECLARATIVE

A model is a collection of variables and the relationship among those variables.

These relationships may be conditional depending on the values of other

variables. The dependency may be static, being determined at the time of

realization of the model, or dynamic, being determined during the solution

process.

SURVEY OF MODELING LANGUAGES

20

Two main representations exist for relations among variables (hereafter simply

called relations). These are the procedural or functional representation, and the

declarative or equation based representation. The earlier modeling languages

required a procedural representation, reflecting their heritage as being extensions

of general procedural programming languages such as FORTRAN. In a

procedural representation, a relation is represented as

(6)

where the sets y and x are disjoint, and represent output and input variables

respectively, and u is a vector of parameters. With this representation there is very

little flexibility to change what variables are calculated. The declarative

representation has no preset notion of what variables must be calculated and, in

the most general representation, states what must be true at the solution of the

problem. These relations are of the form

(7)

The modern languages such as GAMS, ASCEND, gPROMS and Omola all

support the latter style of modeling. To determine what should be calculated

versus what should be held fixed during the solution process, the different

languages use mechanisms based on tagging the fixed variables (i.e.,

manipulating an attribute associated with variable). The ASCEND language takes

this one step further and makes no differentiation among continuous, integral,

boolean or state variables leaving the interpretation to the eventual solver and the

definition that it sets for a variable. As will be seen later in this work, the utility of

the extra flexibility is questionable.

The issue of a procedural versus declarative representation is not simply one of

syntactic beauty. The efficiency of the solution process can be drastically affected

by the insistence of which variables should be calculated. The procedural

yi g x u,()=

i 1…m∈

f x u,() 0=

MEMORY

21

representation in most cases requires the solution of the system implied by

Equation 6. However, when embedded as part of a larger problem, many sub-

iteration loops may be set up, resulting in lost overall efficiency of solution. In

addition, recent work by the author (unpublished manuscript) has demonstrated

the dramatic changes on condition number of the jacobian matrix associated with

a nonlinear system of equations, for different choices of computed variables.

In many traditional programming languages there is a formal declaration of

variables and functions. This is normally associated with the requirement that the

declaration of these declarations precede their use. This is normally done for

efficiency of type checking. These traditional languages also support explicit

iterators, through some form of do-while or for loop, for constructing repeated

structures. Some workers ([Nil93], [Pie89]) have argued that these requirements

and utilities imply order, which is a ‘foreign construct in a declarative language.’ A

pure declarative language in the context of mathematical modeling seems to be of

little utility. However, as just seen, a declarative statement of the relationship among

the variables in a model is often of very great utility. Particularly in the case of

very large systems, the potential inefficiencies that may be incurred by an overly

strict interpretation of the term declarative seem unjustified.

2.5 MEMORY

2.5.1 BACKGROUND

If there is one invariant feature of large scale problems, it is perhaps the great

computational resources required to represent and to solve them. Many of the

algorithms in the early days of mathematical programming were designed

around minimizing high speed memory requirements; computers just did not

have enough RAM. This restriction on memory is largely responsible for the early

decomposition algorithms and sequential solution strategies including sequential

modular strategies used in chemical engineering flowsheeting. The block

MEMORY

22

decomposition schemes used in linear algebra [WB78] were also heavily

motivated by memory limitations.

In recent years the cost of high speed memory has dropped significantly.

Consequently, the minimum memory configuration (certainly for personal

computers) has moved from 512K to a 8MB over the last decade. Workstations are

now routinely outfitted with 64 MB of RAM, and units with 256 MB to 1 GB of

RAM are becoming more common. At the time of writing, technology is on the

side of the mathematical modeler. Nevertheless, the need to be concerned with

efficient use of memory can not be overstressed. Aspirations of modelers tend to

outstep the limits of the available hardware. The need to keep memory

requirements low has often resulted in limits on problem sizes as implementors

make use of short integers rather than integers for vector indexes (2 bytes versus 4

bytes on 32 bit architecture). Furthermore, some of the older languages did not

support dynamic memory allocation and thus have hard wired limits on their

size. Numerical accuracy has also been sacrificed, by the use of single precision

versus double precision arithmetic. Finally the requirements of low memory

tends to conflict with the requirements of high speed of solution. The complexity

bound of an algorithm is effected by the data structures used, which has a direct

affect on the memory requirements. In other cases, out of core techniques are used

to augment fast memory. Reading and writing of the former is significantly more

expensive.

The memory required to pose and solve a problem may be divided into the

memory for the code itself, that for the data (the model), and for the solution

algorithm. These will be discussed in the next few sections.

2.5.2 MEMORY FOR PROBLEM REPRESENTATION

If the purpose of modeling a problem is to achieve a solution vector of the

calculated variables then everything else needed to set up and to solve the problem

is overhead. Strictly speaking, this includes even the memory required to represent

the relationship among the variables and all the features (structure, support tools

MEMORY

23

and user interface) needed to deal with the complexity of the problem.

If this definition is relaxed somewhat to include the lower bounds, upper bounds

and nominals (for scaling) on every variable and some allowance is made for

constants, the cost of representation is , where n is the number of calculated

variables. At 32 bytes/variable (4 double precision numbers at 8 bytes apiece

(value, lower bound, upper bound, nominal)), one would require a trivial amount

of memory for even n = 1x105.

However, things are not quite so idealized. The overhead associated with an

object oriented paradigm is high. In addition to the minimum 32 bytes, variables

need to carry around flags telling their state (fixed or free), information

concerning their ancestry, and type among others. The ASCEND III supports a

dimensionality field for all its variables (ATOMs) and their subatomic children.

GAMS additionally supports Lagrange multipliers for its variables. This quickly

adds up; in one system examined the cost of representing a variable was 200

bytes.

In addition, the relations need to be represented. In many of the high level

modeling languages examined, the relations are held in form to be read by an

interpreter to perform function and gradient evaluation. This form is normally a

stream of tokens held in postfix or as a threaded binary tree [KLT91]. The

gPROMS system uses a binary tree of terms (tokens), ASCEND IIIc ([Epp89]) uses

a list of tokens held in postfix order and AMPL [Gay91] saves its relations as

opcodes which are normally postfix streams of integer codes representing the

different algebraic operators and offsets into a constant vector and variable vector.

These representations are shown in Figure 2. The opcode representation is the

most efficient for storage and evaluation, but is not as convenient as tree based

representations for doing symbolic analysis of a relation.

O n()

MEMORY

24

.

FIGURE 2 Relation representations

The estimated cost for naively representing 100,000 relations in the ASCEND

system is over 300 MB. It is numbers like these that have discouraged the use of

the equation based representation of modeling.

The memory requirements for computing derivatives will depend upon the

method used for these computations and seems to involve a difficult memory/

speed trade off. Finite difference gradients add little extra memory cost but may

be slow and numerically unstable. Symbolic differentiation may be used, but

generating the derivatives may be slow. To offset this, iterative calculations that

requires gradients could generate the derivative structures at the start of the

calculation which are then evaluated when required. However, the derivative

structures would then have to be stored at a cost which is more expensive than

the original relations. Otherwise the symbolic derivatives could be generated as

needed every iteration with the resulting generation/evaluation speed penalty.

Automatic Differentiation (AD) [Gri89] may be used instead of symbolic

derivatives, a priori, or as needed during a calculation. However, Gay [Gay91]

reports AD, though fast to generate and evaluate, can be very memory expensive.

He reports on a problem where it takes over 100 MB to save the derivative

infix: x ^ 2.5 + 3.0 - 9.0 *y

postfix: x 2.5 ^ 3.0 + 9.0 y * -

opcodes:

variables:

constants:

2 1 6 1 3 6 2 4 6 3 2 2 7 5 -1

x y

2.5 3.0 9.0

code meaning
2
3
4
5
6
7

variable
^
+
-
constant
*

MEMORY

25

structures for a 1000 variable problem.

Finally, the structures that are needed to support the features of object-oriented

and/or structured modeling also need to be represented.

2.5.3 MEMORY FOR SOLUTION

For large systems, the solution algorithm will determine a large portion of the

memory cost. The largest cost item tends to be the cost of representing and

solving the underlying linear system of equations. Even when sparse matrix

technology is used (which is almost a given for large problems), the storage cost is

normally given as being , where is the number of nonzeros in the final

solution matrix and k is a small integer; the ma28 manual [Duf77] puts this at

around 5. When using the direct methods of solving a general linear system of

equations, some variant of Gaussian elimination is used to convert the matrix into

its upper and lower triangular factors. The number of nonzeros in the final matrix

is not known a priori but will depend upon the fill in during factorization. This in

turn is dependent upon the nature of the problem being solved, the factorization

algorithm, the effectiveness of the sparsity preserving reorderings which are

normally used in these direct methods, and the pivoting strategy.

To put the size into perspective, consider a problem with order n = 1x105. In

chemical engineering problems, , the average number of nonzeros per row in

the initial matrix will vary from 4 to 15. As one models with more trace species,

this number will only become higher. Using a of 10, the original matrix then has

1x106 elements. The fill in may require a factor of 8 to 10, so that the number of

elements in the final matrix, , is then 1x107. Using 8 byte double precision

numbers 1x108 bytes (100 MB) is necessary just to store the real values of the

matrix after factorization. Actual memory is k times this size, resulting in

bytes for representing the linear system alone.

The solution algorithm will add its own overhead of vectors for its

implementation. This overhead tends to be proportional to n, the order of the

kτ τ

ρ

ρ

τ

O 10
8

 
 

SPEED

26

system. The cost may be nontrivial depending upon the solution algorithm being

used by a solver.

2.6 SPEED

2.6.1 BACKGROUND

A VLSM environment has to be concerned with the time taken to formulate,

debug and solve a problem. The existence and continued development of very

high level modeling environments has been justified by the assistance that they

lend to the model formulation and debugging process. Despite all the other

benefits that a high level modeling language may offer over lower level

representations (FORTRAN and C codes), their use will be limited if they are not

within reasonable performance of the lower level languages; they will remain

prototyping environments with real modeling left to hand crafted code. Indeed

continued research in Automatic Differentiation [Gri89], which has resulted in

systems that will generate derivatives for an arbitrary FORTRAN or C program,

has removed one of the main, if understated, advantages of high level modeling

languages; the modeler need not be concerned with the provision of derivatives.

A universal problem for modelers, independent of the implementation language

or environment of their models, is that of obtaining solutions in a time which is

proportional to the size of their problem. This may or may not be possible, as

there are known problem classes (integer programming) where no known

polynomial time solutions are known to exist. At worst case, a modeling

environment should allow a modeler to access tools and algorithms easily as they

become available.

The areas of speed that a high level environment has control over include the

speed of realization of a model and the speed of function and gradient evaluation.

These will be discussed in the next few sections. Other areas where a VLSM

environment can assist in speed will be taken up in Chapter 6.

SPEED

27

2.6.2 REALIZATION

The process of translating one or more input files of a model (typically an ASCII

file) into the internal representation (IR) that a solver and user interface can query

normally involves a number of phases. A popular model of translation is that of:

• syntax analysis.
• semantic analysis.
• code generation.

In the syntax analysis phase a lexical analyzer (scanner) and a parser work

together to break up the input file first into a stream of tokens, and then to check

that the sequence of tokens satisfy the grammar of the language. If a production is

found to be syntactically correct, then a data structure is created that captures the

essential information of the production. This process is continued until all the

specified source files have been analyzed. This constitutes the static analysis

phase. The semantic analysis phase operates upon these data structures to ensure

that the data is semantically correct, after which another data structure(s) will be

created which is normally a decorated syntax tree. The amount of work done at

each stage is highly dependent upon the language, the tightness of the grammar,

the semantics of the language, and whether the data structure created at the end

of semantic analysis is the desired final product.

In languages that do code generation, such as the low level languages (C and

FORTRAN), the semantic analysis phase would be followed by a machine code

generation phase. SpeedUp, CSSL and many of the earlier simulation languages,

as Barton points out in his thesis [Bar92], generate intermediate code, such as

FORTRAN, which is then passed through another translator (a FORTRAN

compiler) which would emit the machine code. He describes these languages as

code-generators; they generate code in some intermediate language which is then

compiled and linked against the solution routines to create executable simulation

code.

In other languages such as ASCEND and gPROMS, the data structures which

SPEED

28

exist at the end of the syntax analysis phase represent a type library. In the case of

the ASCEND system this phase is very fast; it takes 3 to 4 seconds to process the

15 model files necessary to represent an ethylene plant, inclusive of the

thermodynamic model library files, the library of physical properties for 40

components and all the unit operations.

The semantic analysis phase is normally much longer. In this phase the model is

checked for type consistency, array bounds are checked, the variables are created

and eventually the relation structures are created. Most of the memory needed to

represent the problem will be created in this phase.Table 1 gives the instantiation

times in the ASCEND IIIc system, for a 5 component tray model using rigorous

thermodynamics. (see the Appendix for a description of a tray and distillation

column). The times to instantiate an entire column model with 5 components and

columns with varying number of trays are also given.

In the ASCEND IIIc system, all the information necessary to speak to a solver can

be generated as C-code. This is known as black-box code generation. The system

thus has the capabilities of the code-generator languages described above. The

generation routines can optionally generate only the function evaluation routines.

These features were used to generate the C code representation for all the tray and

column models in order to simulate the realization strategies used by some of the

earlier systems. The time to compile the C-code representation of these models is

also given in Table 1. In the table

• n is the number of variables, and
• nnz is the number of nonzeros in the Jacobian matrix.

The results obtained are very interesting. It is noteworthy that the C-code

compilation times are significantly higher than the interpreted instantiation times

for all the problems considered and not, surprisingly, show highly nonlinear

behavior. Automatically generated code is notorious for breaking compilers; very

few compiler writers would expect a single source file to contain 6727 functions.

The ASCEND IIIc compilation times are impressively linear, though very high. A

SPEED

29

native attempt to build a model with 100,000 relations of similar complexity to

these examples would require over 3200 seconds to instantiate. Since modeling is

a formulate, input, instantiate, solve, debug, formulate cycle, this instantiation

cost would have to be incurred each time that a model formulation is changed.

N/A - Not attempted as compilation times excessively high

The other very high level systems such as gPROMS and Omola seem to have a

very similar instantiation model as that used in the ASCEND system.

2.6.3 SOLUTIONS

The problem observed in the previous section is simple: the high level modeling

languages, through their object oriented constructs, have placed considerable

effort into the creation of libraries of reusable static objects but have not extended

these constructs to the realization of these objects.

In other words, if it were possible to recognize that m objects of the same type are

going to be needed to instantiate a model, then conceptually one need only

perform semantic analysis for 1 object and then clone that object m-1 times. If the

cloning process is faster than performing the semantic analysis great savings in

realization speed may be obtained. The ability to recognize that an object is

structurally the same as another object comes about from the strength in typing of

the language. Once a valid instance has been obtained (which is part of a larger

Table 1: Instantiation times (seconds)

Model n (nnz) ASCEND III
C no

gradients
C with

gradients

Ratio of
compile

times
(gradients)

5_comp tray 114 (607) 3.56 13.8 44.7 3.87 (12.56)

11 tray column 1567 (7715) 55.92 189.0 700.0 3.37 (12.52)

33 tray column 4408 (21817) 145.09 952.0 N/A 6.56 (N/A)

51 tray column 6727 (33355) 277.34 N/A N/A N/A

SPEED

30

model), it should be possible to create a persistent representation of this instance

so that it may be used across multiple simulation runs and/or shared among

multiple modelers. The potential savings in memory using such a technique are

vast as well. As previously discussed the cost of representation of relation

structures is a very large contributor to the total memory used by the internal

representation of a high level modeling environment. The opportunity then exists

to share relations, though variables must have their own individual memory.

Revisiting the 33 tray model of the previous example, there would be only 4

unique sets of relations: those necessary to represent the condenser, reboiler and

feed tray, and a single instance of the relations for the internal tray which would

be shared by all of the internal trays. This may be naturally extended to even

more primitive objects such as streams (chemical engineering) or beams and

plates (civil engineering).

This is by no means a novel concept; it is the model that has been used in software

engineering of large systems, where tools such as make (to track dependencies)

and the use of library archives prevent the unnecessary recompilation of possibly

hundreds of source files that exist in such systems. It is also the technique used for

years in the modular modeling systems.

With these observations a sketch of a development program is then:

1. Formulate a model in a high level modeling language.
2. Submit it for translation.
3. If no errors are encountered (semantic or logic errors) and many instances of

this type are potentially required, clone it, and put it into a dynamic object
library.

4. Whenever an instance is required which is structurally the same as an existing
prototype, clone the prototype.

5. If the model is well understood and mature, create a persistent representation
of its dynamic representation taking the opportunity to exploit any speed
gains, from using an alternate representation of the relations.

Given that some of these changes are possible, the hurdles that need to be crossed

in achieving good translation speed include:

• efficient algorithms for copying objects.

SPEED

31

• language constructs to allow automatic recognition of similar objects.
• lowering the cost of realizing the prototypical object to begin with.
• efficient persistent representations that will allow an instance to be saved and

restored efficiently, with a possibly different underlying representation of its
relations whilst maintaining the flexibility to manipulate the object, as if it
were in its original form.

2.6.4 FUNCTION AND GRADIENT EVALUATION

Practically all numerical solution techniques make use of residuals and gradients

in their solution algorithms. In the basic Newton algorithm for solving a system

of nonlinear equations, at step k it is necessary to solve for a direction by

solving the system of equations given by Equation 8, and taking a step in that

direction as in Equation 9.

(8)

(9)

Here J is an nxn matrix and f and are n-vectors. In order to solve this linear

system the residual vector, f and the Jacobian matrix, J need to computed at the

current point xk. This basic iteration may be repeated many times during the

course of solution. Function and gradient evaluations can be expensive so it is

necessary to be able to perform them efficiently.

In the past, it was difficult, time consuming and error prone to program the

gradient relationships. Many systems then resorted to finite-differences which for

many problems is an expensive process. Curtis, Powell and Reid [CPR74] have

developed a very efficient algorithm for doing finite differences. However, the

problem persists of numerical errors because of roundoff with finite differences.

The high level modeling languages such as GAMS, ASCEND and gPROMS have

always provided these derivatives automatically thus relieving the modeler of

such concerns. These systems compute their functions and gradients by using an

∆x
k

∆x
k

J–() 1–

x
kf

x
k=

x
k 1+

x
k ∆x

k
+=

∆x

SPEED

32

interpreter which operates on an internal representation of their relations. As

mentioned in Section 2.6.2 the older systems (SpeedUp, CSSL) tend do their

function and gradient evaluation by making calls on externally compiled machine

code.

Barton, in his thesis, bemoans the slow code compilation step of SpeedUp

especially for use in an interactive environment and argues that although

interpreted code runs slower than machine code, overall modeling productivity is

greater with the interpreted evaluators. The numbers presented in Table 1 clearly

tell how slow the code compilation step can be.

N/A - Not attempted as compilation times excessively high

However, Table 2 shows that the evaluation times for the compiled C code is an

order of magnitude faster than the interpreted code. Gay [Gay91] has reported a

range of 8 to 30 times speed up for function and gradient evaluation using

compiled rather than interpreted code. Extrapolating the above data to n =

100,000 would yield evaluation times of 105 versus 4.5 seconds for the interpreted

and compiled code respectively. A crude optimization exercise yields a break

even point (for this example) after 85 function evaluations. For the larger

problems, it would seem that a choice does not exist; interpreted code has to be

used, as it is impossible to compile the C code generated.

2.6.5 SOLUTIONS

Fortunately the above analysis is flawed. The C code that was generated and the

resulting object file obtained from compilation is persistent. It may be used across

Table 2: Evaluation times (seconds)

Model ASCEND III
functions gradients

C code
functions gradients

Ratio of
function

times

5_comp tray 0.14 0.23 0.01 0.03 14.0

10 tray column 1.63 3.54 0.07 0.17 23.23

33 tray column 4.63 9.97 0.15 N/A 30.86

51 tray column 7.05 15.25 N/A N/A N/A

MODELING SUPPORT

33

multiple simulations in one modeling session, as well as across multiple sessions.

This will be so until its description in the modeling language changes. The

economics then looks very attractive compared to interpreted code after a few

invocations.

The problem of not being able to compile the C code because of its size still

remains. This again is misleading. The C code that was generated for these

experiments was not done intelligently; code was generated for an entire

distillation column. But consistent with the strategy of hierarchical

decomposition, the code should have been generated for a single tray. Additional

code should then be generated for the equations that wire up the trays. Thus the

same approach for achieving instantiation speed can be used for obtaining

efficient function and gradient evaluation, i.e. the use of persistent

representations and recognizing repeated structures. The challenge lies in making

these faster evaluation routines (but now external) accessible to the modeling

environment.

A VLSM environment has considerable flexibility in determining the format of

the persistent representation used. This will examined in subsequent sections.

2.7 MODELING SUPPORT

2.7.1 INTRODUCTION

The modeling activity iteratively involves posing a problem, attempting to solve

it and then querying the results. Throughout this cycle, the modeling

environment needs to give support to the modeler. This is true for any model but

becomes particularly important for large scale modeling. In a large model posed

in an equation based manner, the information that it is available and that needs to

be manipulated quickly becomes overwhelming. Most modeling environments

(rather than modeling language) give some form of user support. The ASCEND

and Omola modeling environments are described in the Appendix.

MODELING SUPPORT

34

2.7.2 QUERY FACILITIES

A feature that seems to be lacking in the environments reviewed is a full suite of

query facilities. The ASCEND III and Omola environments are reflexive to

different degrees, allowing query of their state. An instance of a model may then

be considered as an in-core database and the user interface is really just a

mechanism for probing and manipulating that database. These databases may be

large. The ASCEND III system typically shows a factor of 10 objects for every for

variable. It is expected that 2.5 to 3 million objects will have to be manipulated for

the size of problems being targeted.

Given the volume of information embodied in a large model, a full-blown query

language, perhaps based on SQL2 should be available. This would allow queries

for debugging, initialization and reporting. The ability to make queries such as

find all instances of vapor flows that are < 20.0 moles/sec and are within 0.0001% of
their upperbound.

is an invaluable tool for determining why a model is suffering problems with

convergence. In both the ASCEND III and Omola environments, manually

browsing an instance to find information is a painful and costly exercise for large

models. In addition, it should be possible to make queries across different runs of

a numerical solution and indeed across different modeling sessions.

2.7.3 PERSISTENCY

In previous sections the benefits of persistency were discussed as a means of

saving instantiation time, of increasing function and gradient evaluation speed

(through C code and the persistency of the associated machine code), and of

making the associated savings in memory. This requires that there be efficient

tools in a VLSM environment for saving and restoring instances. These tools need

to be able to ensure consistency between the static type information from which

the model was derived, any external code and the persistent object. Consistent

with the rest of this work, the emphasis is on efficiency.

2. SQL is the defacto standard for database query languages.

MODELING SUPPORT

35

The ability to make queries across multiple modeling sessions (see Section 2.7.2)

for changes in data and model structure results in a database design problem. The

data representation and data base management system for a VLSM environment

should be chosen with the following consideration: a VLSM environment will

eventually be just one of many nodes in a wider design-in-the-large environment,

such as that being realized through the epee [CFSB94], and n-dim [ndg95]

projects.

2.7.4 TOOL EVOLUTION

Associated with model evolution is the need for tool evolution. A motivating

example is the case of a given subproblem being a linear program representing an

aggregated model of a heat exchanger network. At a more detailed design stage

this model becomes a nonlinear program (NLP). A solver (tool) capable of

handling NLPs is then necessary. Even for a fixed model type, there needs to be

flexibility to change the tool used. It is a fairly common occurrence in solving

optimization problems for example to experience failure using one solver and to

invoke another solver and have convergence. The software engineering issues of

dealing with multiple and possibly proprietary solvers is one that seems to have

been successfully handled by GAMS. At the time of writing at least 14 different

solvers are accessible to the GAMS modeling language ([Cor95a]).

2.7.5 EXTERNAL PACKAGES

For large scale modeling many models may exist in well tested external subroutines

which may be black-box or glass-box in nature. A VLSM environment needs to be

able to give seamless support to these external models and, in general, support

models covering the entire spectrum of model transparency. This requires that a

VLSM environment have the ability to imbed procedural models within a

declarative environment. This has been extensively discussed by Barton

[Bar92][, though he only considers the black-box case. A VLSM must also support

arbitrary external function calls to allow access to code that is perhaps more

efficiently written in another language, as well as for providing access to

OTHER

36

databases and other service routines.

2.7.6 OTHER USEFUL TOOLS

In addition to the features supported by the current state of the art modeling

environments, other very useful features include techniques that run through

mathematical modeling. A non-exhaustive list of these features include:

• Linearizations of relations with checks for unboundedness and linear depen-
dence.

• Quadratic (general nonlinear) approximations to replace highly nonlinear
functions.

• Algorithms for finding initial feasible starting points.
• Sensitivity analysis of the objective and constraints.
• Algorithms for analyzing degrees of freedom.
• Constraint relaxation.
• Deletion of rows and columns from a model.
• Provision of partial derivatives as a modeling construct.
• Analysis of bounds and scaling of variables and relations.
• Problem reformulation to make solution more tractable for different algo-

rithms.

Very few of these features are implemented/accessible in the current modeling

environments. Greenberg, [Gre95] among others, have examined the pre and post

analysis of linear programs in some detail. The results of his research has been

realized through the ANALYZE tool.

2.8 OTHER

The user interface issues of presenting the results of a large-scale computation or

analysis to a user needs to be addressed in a VLSM environment. For example, in

one system examined, a degree of freedom analysis tool for nonlinear systems of

equations reported that a model was underspecified. A list of over 5,000 possible

variables was then presented for the user, to fix one (1) of these variables.

Obviously some information filtering needs to be done with large-scale problems.

An interactive modeling environment is invaluable in the early stages of model

DISCUSSION

37

development. It becomes less useful as the model becomes more mature, at which

time it may be safely and more conveniently run as a batch or semi-batch job.

There should exist a sufficiently powerful executive language to provide control

for iterative strategies and for solving problems with long execution times.

Finally, recent advances in computer science techniques such as dynamic loading

and exploitation of parallel architectures should not be forgotten in the design

and implementation of the ideal VLSM environment.

2.9 DISCUSSION

The ease of model reuse, interchange and upgrade that comes from the object-

oriented programming paradigm, the numerical efficiencies that can be achieved

through an equation-based format, and the potential benefits that arise from

recognizing an object by its signature, suggests that the ideal VLSM environment

should be based on a strongly typed, equation-based, object-oriented modeling

language. The very serious problems related to memory, speed and complexity

were discussed and solutions proposed. These solutions exploit repeated

structures and make use of persistency. It has been argued that the very high level

modeling languages and environments, with appropriate modifications and

support tools, can prove to be just as efficient and significantly more flexible than

lower level representations. The relationship between large scale (computational)

modeling and design-in-the-large was elucidated.

The ASCEND III system will used as the basis for design and implementation of a

VLSM environment. The decision to use the ASCEND III system as the platform

is driven by its availability in the public domain, its domain independence and

the conceptual cleanliness of its design. In the next chapter, a more detailed

examination will be done of the issues involved in the creation of ASCEND IV, a

language and environment to efficiently conduct very large scale modeling.

APPENDIX

38

In closing, an intriguing question is whether a VLSM environment can assist in

keeping the solution cost to be linear with the size of the problem being solved.

Conceivably information concerning the nature of the problem being solved

could be passed onto the solver. At least one language has introduced language

constructs to aid this process. The GAMS note on special ordered sets for mixed

integer programs, [Cor95b] describes a SOS1 set as a set where at most one

member of the set can have a non-zero value. They also describe a type SOS2 and

features that allow specification of special branching rules. Apparently this

information is passed to solvers that may choose to ignore it if they so desire. The

note points out that the introduction of special ordered sets has been driven ‘...by

internal algorithmic consideration, than by broader modelling concepts’. Integer

programming is a difficult task; any information about the problem is then useful.

Arguably one could derive an algorithm that would find these special ordered

sets. The writer doubts that it will be as fast as the algorithm implied by the

SOS1 construct, i.e., explicit labelling of these sets by the user.

An interesting application of a high level language in aiding the solution of large-

scale linear algebra problems will be discussed in Chapters 5 and 6.

2.10 APPENDIX

2.10.1 ASCEND III MODELING ENVIRONMENT

The ASCEND III 3system has a multi window graphical user interface (GUI)

which allows interactive setting up of a problem, changing of values, and flags on

variables and relations. There is a LIBRARY which gives the user access to the

static representation of the model and the type ancestry of all the models in the

library. Once a model has been realized, the main access is through the

BROWSER. The BROWSER in ASCEND III gives a 2 level view of the model, a

3. ASCEND or ASCEND III refers to the modeling environment implemented by Piela as
part of his Ph.D. thesis and later whilst doing post-doctoral work at Carnegie Mellon
University up to 1992.

O 1()

APPENDIX

39

parent model and its children thus showing a slice of the model hierarchy. It has

facilities for finding objects by name and by type but is limited to single queries.

The environment supports a PROBE, where arbitrary but selected parts of a

model may be exported and viewed. For long running and repeated exercises, it

allows instructions to be given in a SCRIPT. The SCRIPT is essentially the

language of the interface, and in ASCEND III is weak, not permitting any looping

constructs. The SCRIPT possesses a useful recording feature which allows capture

of many of the commands given through the graphical user interface. The notable

features of the ASCEND environment are its interactive refinement and its

SOLVER interface. From the BROWSER, a user can make any part of an model

more specialized, provided that a valid subclass (in the ancestral sense) exists in

the LIBRARY. The SOLVER supports automatic degrees of freedom analysis,

checks for structural and numeric dependency, an incidence matrix viewer, and a

DEBUGGER for querying the variables and relations currently held by the solver.

The system also has software bridges to external plotters and spreadsheets and

some features for saving and restoring objects.

2.10.2 Omola MODELING ENVIRONMENT

Omsim is an interactive environment with a graphical user interface (GUI) for

defining and simulating dynamical models, based on the Omola modeling

language. It contains the Omola parser which is used to load Omola model

definitions into the environment. The class browser is the main window in the

environment from which other tools may be activated. The model inheritance

hierarchy and object hierarchy can be displayed graphically. There is also a

graphical model editor. The Omsim environment has a number of built-in

numerical integration routines for simulating a model. The simulator has subtools

to access and to display variables, parameters and simulation results along with

debugging tools.

In addition, there are features for displaying plots and saving and restoring

simulations. The Omsim environment supports a command language (OCL) for

performing batch operations.

APPENDIX

40

2.10.3 A DISTILLATION COLUMN

FIGURE 3 Schematic of a distillation column

CONDENSER

FEED TRAY

REBOILER

INTERNAL TRAYS

INTERNAL TRAYS

REFERENCES

41

2.11 REFERENCES

[And90] M. Andersson.Omola An Object-Oriented Language for Model Representa-
tion. PhD thesis, Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden, May 1990.

[Bar92] P. I. Barton.The modeling and simulation of combined discrete/continuous
processes. PhD thesis, Department of Chemical Engineering, Imperial Col-
lege of Science, Technology and Medicine, 1992.

[BKM88] A. Brooke, D. Kendrick, and A. Meeraus.GAMS - A user’s guide. Scientific
Press, 1988.

[Bul91] L. Bullard. Iterated linear programming strategies for constrained and non-
smooth simulation. PhD thesis, Department of Chemical Engineering, Carn-
egie Mellon University, 1991.

[CFSB94] D. J. Costello, E. S. Fraga, N. Skilling, and G. H. Ballinger. epee: A support
environment for process engineering software. Technical Report 1994-19,
Dept of Chemical Engineering, Edinburgh University, Edinburgh, Scotland,
September 1994.

[Cor95a] GAMS Development Corp. GAMS solvers. http://www.gams.com/solv-
ers.html, November 1995.

[Cor95b] GAMS Development Corp. Special mip features. http://www.gams.com/
docs/mipfea.htm#semiv, October 1995.

[CPR74] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse ja-
cobian matrices.J. Inst. Maths. Applics., 13:117–120, 1974.

[Duf77] I. S. Duff. MA28 - a set of fortran subroutines for sparse unsymmetric linear
equations. Report r8730, AERE, HMSO, London, 1977.

[EN94] J. Eborn and B. Nilsson. Object-oriented modelling and simulation of a pow-
er plant. application study in the K2 project. Technical Report ISRN
LUTFD2/TFRT–7527–SE, Department of Automatic Control, Lund Institute
of Technology, December 1994 1994.

[Epp89] T. G. Epperly. Implementation of an ASCEND interpreter. Technical report,
Engineering Design Research Center, Carnegie Mellon University, 1989.

[Gay91] D. M. Gay. Automatic differentiation of nonlinear AMPL models. Numerical
Analysis Manuscript 91-05, AT&T Bell Laboratories, August 1991.

[Gre95] H. J. Greenberg. Analyze bibliography. WWW, 1995. http://www-math.cud-
enver.edu/ hgreenbe/analref.html.

[Gri89] A. Griewank. On automatic differentiation.Mathematical Programming: Re-
cent Developments and Applications, pages 83–108, 1989. Also appeared as
Preprint MCS-P10-1088, Mathematics and Computer Science Division, Ar-

REFERENCES

42

gonne National Laboratory, Argonne Ill., October 1988.

[KLT91] R. L. Kruse, B. P. Leung, and C. L. Tondo.Data structures and program de-
sign in C. Prentice Hall, 1991.

[Mey88] B. Meyer.Object Oriented Software Construction. Prentice Hall, 1988.

[ndg95] The n-dim group. n-dim - an environment for realizing computer supported
collaboration in design work. Technical Report EDRC 05-93-95, The Engi-
neering Design Research Center, Carnegie Mellon University, Pittsburgh, PA
15213, 1995.

[Nil93] B. Nilsson. Object-Oriented Modeling of Chemical Processes. PhD thesis,
Department of Automatic Control, Lund Institute of Technology, Lund, Swe-
den, August 1993.

[Pie89] P. Piela.ASCEND: An Object-Oriented Computer Environment for Modeling
and Analysis. PhD thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, Pennyslvania, April 1989.

[PMW93] P. Piela, R. McKelvey, and A. Westerberg. An introduction to the ASCEND
modeling system: its language and interactive environment.J. Manage. Inf.
Syst., 9(3):91–121, Winter 1992-1993.

[RH93] K. Radharkrishnan and A. C. Hindmarsh. Description and Use of LSODE,
the Livermore Solver of Ordinary Differential Equations. Technical Report
UCRL-ID-113855, Lawrence Livermore National Laboratory, December
1993. NASA Reference Publication 1327.

[Sch83] E. U. Schundler.Heat Exchanger Design Handbook. International Center for
HEAT and Mass Transfer. Washington : Hemisphere Pub. Corp., 1983.

[SG91] N. V. Sahinidis and I. E. Grossmann. Convergence properties of generalized
Benders decomposition.Computers Chem. Engng, 15(7):481–491, 1991.

[SHL90] G. Stephanopoulus, G. Henning, and H. Leone. MODEL.LA. A Modeling
Language for Process Engineering. Part I: The Formal Framework.Comput.
chem. Engng, 14:813–819, 1990.

[WB78] A. W. Westerberg and T. J. Berna. Decomposition of very large-scale new-
ton-raphson based flowsheeting problems.Computers and Chemical Engi-
neering, 2:61–63, 1978.

43

CHAPTER 3 DESIGN OF
ASCEND IV

3.1 ABSTRACT

Using the ASCEND IIIc language as a starting point a new language ASCEND IV

is proposed. This language will form the core of a very large scale modeling

(VLSM) environment. In designing the new language emphasis was placed on

efficiency of representation, speed of model realization, and efficient function and

gradient evaluation.

3.2 INTRODUCTION

ASCEND III is a modeling environment composed of a language interpreter, a

solver toolbox and multi-window graphical user interface. It is built on top of the

ASCEND III equation-based, object-oriented modeling language. A detailed

description of the language and environment is given by Piela [PMW93],

[PEWW91]. A detailed presentation of current modeling languages inclusive of

INTRODUCTION

44

ASCEND III was given in Chapter 2. The ASCEND III language has deficiencies

which make it unsuitable as a language capable of supporting a VLSM

environment.

The first major problem with ASCEND III is its implementation language. It is

written in the Domain Pascal (DP) language. DP is based on Pascal but with many

language extensions. Compilers for DP are rare. The upshot is that ASCEND III is

not portable. It was envisioned that portability would be an important feature of a

VLSM environment, especially if distributed modeling would eventually need to

be supported. The language compiler was rewritten in C by Thomas Epperly. The

solver was rewritten in C, by Karl Westerberg. Using the C versions of the code

another graduate student1, Benjamin Allan, and the author rewrote the graphical

user interface (GUI) and pulled the entire system together over a 9 month period.

The GUI was written in Tcl/Tk [Ost94] and the opportunity was seized to open the

system. Every aspect of the system is now modifiable by the user, though good

defaults are provided. The scripting language is now disguised Tcl, which gives

access to the GUI, the internal ASCEND III datastructures and the underlying

operating system. The system is now known as ASCEND IIIc; wherever

necessary, a distinction will be made between ASCEND III and ASCEND IIIc.

Given the requirements analysis of a VLSM environment, as discussed in Chapter

2, the following deficiencies were also found with ASCEND III:

• closed interface (fixed in ASCEND IIIc).
• no input/output capabilities.
• poor connectivity/connection to its solvers.
• weak procedural capabilities, both internally and externally.
• inability to talk to external code.
• slow instantiation of models.
• slow solution speed for large models.
• slow procedure execution.
• very high memory requirements for representation of objects, in particular

relations.
• little support for model reuse.

1. and very good friend of the author

ASCEND IIIC

45

This has prompted the design of a new language/environment which will be

known as ASCEND IV. Unless otherwise specified the term ASCEND IVwill used

to describe the language and/or the environment. The term ASCEND IV.alpha

will be used to describe the prototype implementation of ASCEND IV used

during this work.

The following statement is taken from the synopsis of Piela’s dissertation:

“Our hypothesis has been that a special purpose modeling language will not only reduce

the time it takes to build these systems (models), but will also give designers a formalism

by which they can organize and share their work in a cooperative manner”

ASCEND IV seeks to build on this premise in a highly efficient manner and uses

the terms Very Large Scale as its guiding adjective. This means scalability.

ASCEND IV has to be as much like ASCEND III as possible, and more. However

whenever conflicts of flexibility versus efficiency arise, the new language errs on

the side of the latter. The rest of this chapter is organized as follows:

The ASCEND IIIc language will be described in some detail. Using examples, the

deficiencies of the language will highlighted and solutions will be proposed.

Finally conclusions about the new language, ASCEND IV, will made.

3.3 ASCEND IIIC

In order to keep the discussion relatively self contained, the critical features of the

ASCEND III language will be discussed. The language supports MODELs, ATOMs,

and the fundamental types of real, integer, boolean, symbol and set. The type

system is rooted on these fundamental types. ATOMs all inherit from one of these

base types. The distinctive feature of ATOMs is that they have may have a value. In

the case of real ATOMs, there is dimensionality associated with the value. MODELs

are made up of ATOMs, other MODELs and relations. Though strictly not classified

as ATOMs, relations behave like ATOMs and have a value (residual) and

dimensionality. MODELs and ATOMs may be made more specialized through

ASCEND IIIC

46

inheritance or refinement using the REFINES construct. The semantics implied by

inheritance is one of textual substitution. A type may inherit from only one type,

i.e. single inheritance. New parts (children, slots, fields, parts are all synonymous

terms) may be added, but none may be removed in a refinement to a more

specialized type.

Within the scope of a MODEL definition there is a declarative section and a

procedural section. The start of the procedural section is given by the

INITIALIZATION keyword. In the declarative section, variables and relations

are declared and constructed. The four main constructs are, IS_A ,

IS_REFINED_TO, ARE_THE_SAME, and ARE_ALIKE.

The IS_A construct serves to declare an instance of a type and, at the time of

instantiation, becomes the constructor for the type. In effect the IS_A behaves like

the automatic variables in a language such as C or FORTRAN. For instances of

MODELs, the construction takes place recursively. The analogue in C is that of

structures, having slots which are themselves structures, but containing no

pointers. Only value and not reference, semantics is applied.

The ARE_THE_SAME construct allows the merging of two or more instances of

compatible type. The merge is recursive and, in the simplest case of merging two

ATOMs, will yield a single instance of an ATOM which may be referred to by two (2)

different names. For both MODELs and ATOMs, assuming that type compatibility

exists, the more refined MODEL/ATOM will exist at the end of the merge. The

checking of the type compatibility has to be done recursively for models.

IS_REFINED_TO allows any instance to be transformed into a more specialized

type, provided that the new type is type compatible with the old type.

IS_REFINED_TO may be applied to any part of a MODEL but not to parts of an

atom. ASCEND IIIc introduced this restriction to allow more efficient

representation of ATOMs.

The ARE_ALIKE construct is used for type propagation. If a number of instances

PPP EXAMPLE

47

are said to be ARE_ALIKE, then changes in the type of any one of the instances in

the clique of instances will be propagated to all the members. Change in the type

of an instance is achieved explicitly through the IS_REFINED_TO construct, and

both implicitly and explicitly through the ARE_THE_SAME operator.

In the procedural section, PROCEDUREs are used for doing assignments of values

to ATOMs. The standard iterators that are found in most procedural languages are

provided. PROCEDUREs are not however parameterized and operate within the

scope of the instance to which they are bound. Procedures may also call other

procedures at the same scope.

3.4 PPP EXAMPLE

The example described here is that of a simple separation sequence involving 3

components and 2 distillation columns. The components (i.e. the chemical

species) are propylene, propane and propadiene and represent the C3 separation

section of a hydrocarbon process.

Throughout this document this example will be referred to as the example PPP. A

1. Memory does not include system
overhead of 5.74 MB

Table 3: Instantiation Statistics

ASCEND III

Relations 17516

Variables 18113

Size 1(MB) 65.36

Instances 247380

Formal Types 43

Arrays 13581

Instantiation Time 2(sec) 985.76

Function Time (sec) 13.19

Gradient Time (sec) 28.73

PPP EXAMPLE

48

sketch of the process is given in the Appendix. Rigorous thermodynamic models

are used throughout. The number of trays in the first and second columns are 30

and 164 respectively.The performance of ASCEND IIIc is shown in Table 3. As

before, scaling to 100,000 relations assuming linear behavior, the instantiation

time, and memory requirements would be over 5700 seconds and 373 MB

respectively.

3.4.1 MODEL INSTANTIATION

Instantiation in ASCEND III is slow, as seen from the above results. There are

numerous reasons for this, and it is perhaps easiest to understand these reasons

though an example. In the following valid code fragment, the MODELtest1

introduces a number of streams and also specifies that stream[1] is a

liquid_stream, whereas the other streams are vapor_streams. MODELtest2 makes

use of test1 and specifies the number of streams that are to be created and the

types of their constituents, in this case, acetone, benzene and chloroform. MODEL

test3 makes test2 more specialized and adds an interface to the problem by the

ARE_THE_SAME on line 24. If an instance (named t3) of test3 were to be created,

then one could now say t3.T rather than t3.stream[1].T.

MODEL test1; 1
2

nstreams IS_A integer; 3
stream[1..nstreams] IS_A td_stream; 4
stream[1] IS_REFINED_TO liquid_stream; 5
stream[2..nstreams] IS_REFINED_TO vapor_stream; 6

7
END test1; 8

9
MODEL test2; 10

11
components IS_A set OF symbol; 12
t1 IS_A test1; 13
t1.stream[1..nstreams].components, 14

components ARE_THE_SAME; 15
components := [‘acetone’,’benzene’,’chloroform’]; 16
t1.nstreams := 4; 17

PPP EXAMPLE

49

18
END test2; 19

20
MODEL test3 REFINES test2; 21

22
T IS_A temperature; 23
T, t1.stream[1].T ARE_THE_SAME; 24

25
END test3; 26

EXAMPLE 10 Ascend Code Fragment

Of the three models shown here, test2 and test3 have complete definitions and

may be said to be closed. test1 requires information about the number of streams

(nstreams) and the types of the components for each of the streams. These are

specified on line 17 and line 16 respectively.

This example demonstrates a number of problems with the language. In

particular it demonstrates

1. absence of a structural parameterization.
2. lack of order.

Each of these and how they affect instantiation speed will be discussed below.

3.4.1.1 OBJECT INTERFACES

ASCEND III has does not have an interface to any of its MODELs/ATOMs; they must

be all reached by their parents in a part-of sense, through the use of qualified

naming. This applies to all variables inclusive of those that Nilsson, [EN94] refers

to as structure_parameters, which are the variables necessary to define the number

and size of the objects that are to be created.

The reasons for having an interface to an object are numerous. It is now widely

accepted that interfaces provide an abstraction boundary and lies at the core of

good software engineering practice [Mey88]. With an interface to an object, the

underlying implementation may change, but all code depending on this object

need not. Some languages (C++, Modula-3) have the notion of private parts which

are invisible to the outside world. This notion of private parts at first seems as an

PPP EXAMPLE

50

attractive way to deal with the complexity of modeling large complex systems.

For example, in a chemical engineering flowsheet, one is not always interested in

knowing the pressure drop across every valve in every section of a plant.

However, as Piela argues in his thesis [Pie89], in an equation based system, any

variable may be calculated; it is then difficult to determine what a good interface

should be. Nilsson also discusses these issues at length in Chapter 6 of his thesis

[Nil93].

3.4.1.2 STRUCTURAL PARAMETERIZATION

The lack of structural parameterization requires that the values for these

structural variables must be set by deference or lifting. This was seen on line 17 of

Example 10. In trying to create an instance of MODELtest2, the instantiator starts

the construction of part t1 but has to stop as it does not know the value of the

structural variable nstreams. It then gets this value and can proceed.

This is possible through the use of an incremental compiler that uses lazy

evaluation and multipass instantiation [Epp89]. The basic principle is that a

pending queue is used, and partially instantiated objects are placed on the

pending queue. The mechanism used to keep track of the completeness of an

object is a bitlist associated with the object. There is a bit associated with each

statement in the type description of the model. Each bit then corresponds to the

binary states of executed or pending. The pending queue is repeatedly processed

until it is determined that no more statements can be executed or that

instantiation has been successful. Many failed attempts occur whilst trying to

instantiate a model. This was just demonstrated above. A statement has to be

marked as pending once it cannot be fully executed. Until all the instances

necessary to execute the statement have been constructed, the execution has to be

deferred. This becomes particularly expensive whilst attempting to instantiate

compound statements such as FOR statements and relations. In this case, only 1

bit is associated with each statement. Relations are perhaps even more expensive

to instantiate. Instantiation of a relation can not be completed until all the

variables incident upon the relation have been constructed. In many cases the

PPP EXAMPLE

51

semantic analysis is almost complete before it is realized that some of the

variables do not yet exist. The relation statement has to be marked as pending and

the entire process repeated the next time that this instance/statement is visited.

3.4.1.3 ORDER

ASCEND III, in addition to being equation-based, attempts to be a declarative

language. Consequently, the statements may be written in any order. Variables

may be used before they are declared, and declarations may be mixed freely with

other statements. The instantiation algorithm has to respect the lack of order as

provided in the language definition, so there is no guarantee of the order of which

statements may be executed.

This results in a very flexible language where decisions concerning the problem to

be modeled may be deferred and, in the limiting case, not even specified at the

time of instantiation.

Apart from placing some restrictions on the expressiveness of the language

(ordered sets, type-of, size-of queries etc.), the lack of any guaranteed order places

severe demands upon the instantiation algorithm as seen in Section 3.4.1.2. In

addition, the lack of order makes it very difficult to exploit repeated structures.

From the data shown in Table 3, there were 13581 array instances in the final

instantiated object, suggesting that large potential exists for exploiting repeated

structures (see Section 2.6.3 and Section 2.6.5). Other impediments to exploiting

repeated structure will seen in subsequent sections.

3.4.1.4 CONSTRUCTORS

The language does not separate declaration and construction of objects. In order

to achieve consistent naming ASCEND III requires the combined use of IS_A and

IS_REFINED_TO constructs, which eventually proves expensive. This is

demonstrated in MODELtest1. In order to provide consistent naming, an array of

stream instances is created, and the necessary instance refinements is done to a

achieve the required stream type. The alternative would have required:

PPP EXAMPLE

52

MODEL test1_alternative; 1
2

nstreams IS_A integer; 3
stream_1 IS_A liquid_stream; 4
stream[2..nstreams] IS_A vapor_stream; 5

6
END test1_alternative; 7

It is more expensive to instantiate an IS_REFINED_TO statement than an IS_A

statement. The other reasons for separating declaration from construction will be

seen later.

It should be pointed out that this style of modeling is very desirable in some

situations, especially when developing generic models where the final types of

the instances are not known. A typical use is shown below.

MODEL stream_collection; 1
2

nstreams IS_A integer; 3
stream[1..nstreams] IS_A td_stream; 4

5
END stream_collection; 6

7
MODEL liquids REFINES stream_collection; 8

9
stream[1..nstreams] IS_REFINED_TO liquid_stream; 10

11
END liquids; 12

3.4.1.5 ALIASING

In the absence of constructs that allow an object to have an interface, modelers in

ASCEND III seem to have developed their own crude interfacing techniques.

Referring again to Example 10, on line 23 and line 24, a new variable T is

introduced which is ARE_THE_SAME’d with a variable deeper down in the model.

Ostensibly the modeler would then always refer to the variable by its shorter

name, thus providing an interface to the model test3 (and a firewall to changes

that make take place in the definition of t1.stream[1].T).

PPP EXAMPLE

53

The ARE_THE_SAME operator then serves at least two purposes in the ASCEND

III language. The first is aliasing to provide an interface to objects; the second is

that which it was originally intended to be used for, the merging of objects.

The overloading of the ARE_THE_SAME operator can have a very detrimental

effect of the cost of instantiation. Two or more possibly very complex objects are

created, only to then destroy one of them during an ARE_THE_SAME. The

provision of a true alias feature, combined with separation of type declaration

and construction, will remove this waste. It is interesting to note that Barton

[Bar92] rejects the ARE_THE_SAME feature in the design of gPROMS, and

introduces an IS construct in its place.

3.4.2 IMPLICIT TYPES

Object-oriented languages fall broadly into two groups: the class based systems

and the prototyped based ones. A very clear exposition is given in [US91] on the

differences between these two approaches. ASCEND III is a hybrid language

which uses constructs from both paradigms, but, in attempting to be strongly

typed, it behaves more like a class based system. The language, however, does

permit implicit typing. This breaks the strict boundaries normally imposed in class

based systems, but this is part of the powerful expressiveness of the language.

MODEL test1; 1
var IS_A solver_var; 2

END test1; 3
4

MODEL test2; 5
t1, t2 IS_A test1; 6
t1.var IS_REFINED_TO molar_rate; 7
t2.var IS_REFINED_TO temperature; 8

END test2; 9
10

MODEL test_all REFINES test2; 11
t1, t2 ARE_THE_SAME; 12

END test_all; 13
EXAMPLE 11 Implicit Types

PPP EXAMPLE

54

It is perhaps easiest to explain implicit types through an example. In Example 11,

all of the types shown are complete. In test2, the parts t1, and t2 are introduced as

being instances of type test1. However, in the proceeding lines (line 7 and line 8),

the part var in t1 is refined to a molar_rate while its counterpart in t2 becomes a

temperature. Clearly t1 and t2 are now type incompatible, and any attempt to

create an instance of test_all will fail. The modeler has just created implicit types

test1’ and test1’’, now shown explicitly below:

MODEL test1’; 1
var IS_A molar_rate; 2

END test1’; 3
4

MODEL test1’’; 5
var IS_A temperature; 6

END test1’’; 7

The interest here in implicit types is driven solely by the impact that it has on

instantiation speed and cost of representation. As suggested in Chapter 2, a

significant benefit can be derived from knowing the type of object under

consideration. For example, if a group of relations (as collected under a type

description) is required and an exact group of relations has already been created,

then the new relations do not need to be created, and hence they do not need to be

represented. The first results in a saving of instantiation time, the second in a

saving in memory. This is the perhaps the single most important feature in the efficiency

of creation and representation of models in low level languages or in traditional modeling

languages employing the sequential modular paradigm.

The difficulty described is not unique to ASCEND III. In the prototype based

object oriented languages, the lack of a type system has resulted in slow execution

of procedure calls. Research to address these difficulties is very active and good

progress has been made with the SELF language [CU91].

A few definitions will be introduced to aid later discussions.

PPP EXAMPLE

55

DEFINITION: A formal or explicit type is any type that was explicitly declared

and defined in a type library.

The natural converse is then

DEFINITION: Implicit typing results in the creation of new types which were not

explicitly declared or defined in a type library.

DEFINITION: A complete type is a formal type which may fully instantiated

without further specification of structural parameters.

Implicit types are created by

• The IS_REFINED_TO of a child of an instance, potentially creates implicit
types for all instances on the path back to the root instance.

• The ARE_THE_SAMEing of a formal type with an implicit type.

Likewise all incomplete types are potentially implicit types.

DEFINITION: Two instances created with the same formal type description and

the same structural arguments are said to be equivalent.

This equivalence is maintained until either of the instances has its type

description changed through instance refinement (IS_REFINED_TO) or through

merging with an instance of a different type. This may or may not create implicit

types. Needless to say, the user interface of ASCEND III can be the largest source

of implicit types. In Chapter 2, the use of structural homotopy was described as a

way of getting difficult models to solve. This structural homotopy is largely

possible through the use of implicit types and has been shown to be one of the

most useful features of the language.

The challenge of providing a language that caters to the development and

understanding of immature models but is efficient for formulation and solution of

very large scale problems is taken up in the next section.

ASCEND IV

56

3.5 ASCEND IV
In order to overcome the short comings of ASCEND III, a number of new

constructs are introduced into the language. Not surprisingly, they attempt to

address the items highlighted in Section 3.4. These constructs are:

• parameterized types.
• separation of declaration and construction of instances.
• ordered instantiation.
• IS_A_PROTOTYPE, CLONES and copy semantics.
• IS and reference semantics.

The above items are tightly coupled and are perhaps best explained by working

through the earlier example but with the new syntax and semantics. A detailed

discussion of the semantics will not be attempted. At the time of writing the full

implications are not all known (though they have been tested in prototype

implementations).

3.5.1 EXAMPLE 10 REVISITED

MODEL test1(nstreams : integer; 1
 components : set OF symbol); 2

3
stream[1..nstreams] : td_stream; 4
stream[1] IS_A liquid_stream(components); 5
stream[2..nstreams] IS_A vapor_stream(components); 6

7
END test1; 8

9
MODEL test2; 10

11
nstreams IS_A integer; 12
nstreams := 4; 13
components IS_A set OF symbol; 14
components := [‘acetone’,’benzene’,’chlorofrom’] 15

16
t1 IS_A test1(nstreams, components); 17

18
END test2; 19

20
MODEL test3 REFINES test2; 21

ASCEND IV

57

22
T : temperature; 23
T IS t1.stream[1].T; 24

25
END test3; 26

EXAMPLE 12 New Language constructs

MODELtest1 is now a parameterized type over the structural variables nstreams,

and components. The : syntax declares the type of the formal arguments to allow

type checking. The first statement in this model declares an array of streams

rooted at the base type td_stream but does not attempt construction of the

instance(s). This step is critical with parameterized types. In the case of arrays of

instances of parameterized types, the arguments to each element of the array may

be different. The following code fragment demonstrates what would happen with

the definition of MODELliquid_stream.

MODEL liquid_stream(components : set OF symbol); 1
1

pure[components] : pure_component; 2
FOR i IN components CREATE 3

pure[i] IS_A pure_component(i); 4
END; 5

6
END liquid_stream; 7

The separation of declaration from construction preserves the name consistency

and allows the creation of the desired object without the extra step of refinement.

Each statement in the model can now be executed in the order that it was defined

and the determination of whether the model is closed or not is trivial. If, at the

closure of test1, constructors through the IS_A statement had not been provided,

an error would have been flagged. In test2 on line 17, an instance of t1 is created

using the parameterized type test1. If the values for the structural variables,

nstream and components were not proved or were inconsistent with the formally

declared arguments, then an error would also have been flagged.

ASCEND IV

58

3.5.2 STRUCTURAL PARAMETERS

Parameterized types, by themselves, add very little to the ASCEND III language.

They formalize the construction of objects over structural parameters only and do

not attempt to answer the important question of information hiding. However, by

insisting on this formalism, the actual structural arguments may be bound to the

instance. In the original language, at least two (2) passes would have been

required to instantiate a model that was structurally parametric. There was no

way to write a generic model and to be able to say in one construct how many

parts it was to have. The arguments to the parametric type are limited to the types

of integer, symbol and set.

Combined with the order of instantiation, parametric types allow shallow

checking of an instance’s state to make some operations more efficient. Though a

detailed discussion of the semantics will not be done, the syntax of parameterized

types will be described through some small examples.

1
MODEL test1(nstreams : integer; 1

 components : set OF symbol); 2
3

stream[1..nstreams] : td_stream; 4
stream[1] IS_A liquid_stream(components); 5
stream[2..nstreams] IS_A vapor_stream(components); 6

7
END test1; 8

9
MODEL newtest(nstreams : integer;

 ntanks : integer) 10
 REFINES test1; 11

12
tank[1..ntanks] IS_A square_tank; 13
components := [‘C2H4’,’C3H6’]; 14

15
END newtest; 16

17
MODEL newtest2 REFINES newtest; 18

19
nstreams := 4; 20

ASCEND IV

59

ntanks := 12; 21
22

END newtest2; 23
EXAMPLE 13 Syntax of parameterized types

MODELtest1 is the same as from Example 10. It is a model parameterized over

structural variables with names nstreams and components. These names are part of

the scope of the model. At the time of writing, the semantics imposed is that of

argument passing by value. MODELnewtest, inherits from test1 but commits to the

value of the structural parameter components. This is done on line 14. It is then

illegal to still have components in the argument list. Once a type is still parametric

over some structural variables, all of the structural parameters must be present in

the argument list of the MODEL declaration. From the standpoint of syntactic

beauty this may be unattractive. In practice, the longest argument list seen had

only five (5) elements (the entire distillation column library of the ASCEND III

system, inclusive of the thermodynamics libraries were converted to accept

parametric types). The insistence of this syntax is driven by the following:

In using a model m from a library (which the modeler may not have devel-
oped), a modeler would have to look at the code for all models on the type
hierarchy of m to determine what structural parameters would be necessary,
in order to instantiate m. With the proposed syntax, only the code for m needs
to be consulted.

A similar effect is observed when coding in ANSI C with prototypes as compared

to coding in old style C.

In MODELnewtest2, all of the structural information has been specified, so that the

parameter list is empty. Thus the argument list can grow and contract through the

type hierarchy of a model. Finally, by being an argument list rather than a set, the

ordering of the elements is important.

3.5.3 TYPES AS PARAMETERS

It is sometimes useful to be able to pass types as parameters. This enhances the

expressiveness of the language for large or small scale modeling.

ASCEND IV

60

MODEL generic_stream(components : set OF symbol, 1
whattype : TYPE) 2

3
s : molar_stream; (* say what base type *) 4

5
SWITCH (whattype) 6
 CASE SRK_stream: 7

s IS_A SRK_stream(components); 8
 CASE BWRS_stream: 9

s IS_A BWRS_stream(components,2); 10
 CASE Ideal: 11

s IS_A stream(components); 12
END; 13

14
END generic_stream; 15

The new TYPE construct accomplishes this. TYPE is now a reserved keyword in

ASCEND IV and may not be used as the name of a type.

3.5.4 INSTANCES AS PARAMETERS

The internal representation of ASCEND III is a directed acyclic graph or DAG.

Because of the directed nature it is not possible to refer (through qualified

naming) to an instance that is higher in the DAG. The root instance of the DAG is

owned by the external environment and is called a simulation. It is possible to

have an arbitrary number of simulations, but the language and environment does

not explicitly allow the communication between simulations, as it would violate

being able to access objects higher up on the tree. With parameterized types that

allow instances as parameters and certain mild restrictions, it is then possible to

refer to external instances. Among the reasons for the restrictions is the need to

prevent the creation of cycles in the ASCEND III instance DAG. At the time of

writing the restrictions are

• the instance that is eventually passed as a formal argument must be a simula-
tion instance.

• the instance that is passed as a formal argument is read only.2The following
example shows a model that accepts an instance of type simple_tray to be

2. It is easy for an instantiator to recognize the difference between a simulation instance
and a structural instance of integer, symbol and set.

ASCEND IV

61

passed into a parameterized type.

MODEL column(tray_template : simple_tray; 1
 ntrays : integer; 2
 feedloc : integer); 3

4
tray[1..ntrays] : VLE_flash; 5
tray[1] IS_A 6

condenser(tray_template.state.components); 7
8

tray[2..(feedloc-1),(feedloc+1)..(ntrays-1)] 9
CLONES tray_template; 10

(...) 11
END column; 12

EXAMPLE 14 Instance as Parameters

On line 7 of Example 14, the value of the components of the instance tray_template

is used as the argument to construct an instance of a condenser. On line 10, the

instance tray_template is copied explicitly to create the internal stages of the

column model.

3.5.5 ALIASING REVISITED

ASCEND IV introduces the concept of an alias through the IS operator to

overcome the overloading of the ARE_THE_SAME operator, which was discussed

in Section 3.4.1.5. In effect the simplistic approach used by modelers to provide an

interface to objects in ASCEND III has been formalized.

MODEL test3 REFINES test2; 13
14

T : temperature; 15
T IS t1.stream[1].T; 16

17
END test3; 18

EXAMPLE 15 Model test3 of Example 12

In Example 15, MODELtest3 also uses the new separation of type and construction

features of ASCEND IV. The insistence of order, the deferral of instance

construction and the use of the new aliasing construct, IS , allows the instantiator

to save the step of constructing instance T then destroying it. The saving in

REPEATED STRUCTURES

62

instantiation time would be trivial in this case but would be significant in the

following ASCEND III code listing:

reb IS_A Reboiler; (* create the instance reb *)
c1 IS_A Column; (* create the instance c1 *)
c1.tray[30],

reb ARE_THE_SAME; (* destroy instance reb *)

versus

reb : Reboiler; (* state type of reb *)
c1 IS_A Column; (* create the instance c1 *)
reb IS c1.tray[30]; (* use the IS alias construct *)

where instance reb is a fairly complex object.

3.6 REPEATED STRUCTURES

In earlier sections, the potential savings was shown that can be derived from the

exploitation of repeated structures. The benefits are realized through prototyping

and cloning. This will be discussed in the next few sections.

3.6.1 COARSE GRAINED STRUCTURES

If it is recognized (manually or automatically) that many instances, all of the same

type, are required, then the coarse grained structure of the type may be exploited.

Only one of the n required instances would be subjected to a full semantic

analysis yielding a prototypical object. This object may then be copied to provide

the necessary objects of the same type, sharing structures wherever possible. The

prototype and clone features have been implemented in ASCEND IV.alpha. It

takes 3.0 seconds to instantiate a tray model with 5 chemical species (141

equations), but takes only 0.13 seconds to prototype it3.

The prototype and clone metaphor require an ordering to instantiation and may

3. Times as measured in cpu seconds on a HP9000/715.

REPEATED STRUCTURES

63

be applied recursively. The multipass lazy evaluation scheme of ASCEND III

(which uses a queue) is thus replaced by a top down, depth first instantiator in

ASCEND IV.

One of the open questions in the design of ASCEND IV is the level of

responsibility that should be placed on the modeler versus that placed on the

instantiator for making use of repeated structures.

FIGURE 4 An instance tree

Consider for example the instance tree shown in Figure 4. If the objects numbered

1 and 2, are vapor_streams, then a top-down, depth first instantiator would have

seen them locally (see line 6 in Example 12) and could have made use of the

repeated structures, to save time and memory. Assuming that the instances 4, 5

and 6 are also vapor_streams, then an instance of 4 could be created and copied to

instances 5 and 6. However, if all the vapor_streams were equivalent, (using the

definition as given earlier), then the instantiator would have missed an

opportunity to save some work; it could have just created instance 1 and copied it

to 2,4,5 and 6. In order to do this, it needs to have a global view of the final object

that is to be created and to do some scheduling. A rough sketch of the modified

instantiation algorithm would then be:

• Given a type description of the top level object, attempt to determine a type
dependency graph, making note of the number of each instance type (explicit
and implicit) and obtaining an estimate of the number of unique types that
will occur in the instance.

• Using some metric determine which types should be used as prototypes when
creating the instance tree. The objective function will be to minimize memory
and to minimize instantiation time.

8

3

1 2

7

4 5 6

Depth First - Bottom Up

REPEATED STRUCTURES

64

• Perform the real instantiation of the object, making use of the derived informa-
tion.

The efficiency and complexity bounds of this algorithm need to be seen. The

presence of implicit types complicates the analysis in the first step. To determine

the number and frequency of formal types that would occur in the final object is

straightforward enough; the same may not necessarily hold for implicit types.

It should be noted that modern C compilers will not attempt global optimizations.

They do not optimize across function calls nor do they attempt optimizations

across multiple files. These optimizations are simply too expensive. Programmers

resort to inlining to achieve efficiency while maintaining code readability

[Dow93].

If it is assumed that a global analysis is prohibitively expensive and a modeler

through provided language constructs is able to instruct the instantiator, then

great efficiencies can be achieved. For example in a model of a large chemical

process plant, there may be 500 to 1500 streams. If it assumed that there are really

only four (4) unique stream types, i.e., liquid and vapor streams defined over two

different sets of chemical species, then a modeler at the start of large problem

could do the following:

% l1 IS_A_PROTOYPE liquid_stream(stream_set1); 1
% v1 IS_A_PROTOYPE vapor_stream(stream_set1); 2
% l2 IS_A_PROTOYPE liquid_stream(stream_set2); 3
% v2 IS_A_PROTOYPE vapor_stream(stream_set2); 4

Here the new language construct IS_A_PROTOYPE is used to create prototype

instances of the different kinds of streams. If these instances are then stored in a

global prototype library using the names of their types as the primary key and an

encrypted version of their arguments used as a secondary key, then the

determination of whether a repeated structure exists which may be exploited is

very fast. An instantiation algorithm which is applicable at any stage of

REPEATED STRUCTURES

65

instantiation is then:

• When a new model scope is entered, perform a local analysis of the instance
types that need to be created. For each type check the prototype library for
compatible prototypical objects. For those that exist, clone the object from the
library. For those that do not, perform a local analysis to see if n objects of the
same type are needed.

• If n > 1, create a prototypical object, and clone it n-1 times.
• If n = 1, create the object.

It should be pointed out that the instantiator cannot add any structures created

locally to the global prototype library as it may add an object of implicit type. The

reason for this is as follows:

• The instantiator decides to add an object o of type t to the global prototype
library.

• To determine quickly if an object of type t is already in the prototype library, it
uses a shallow comparison (using the type t and the arguments of the object o),
to perform the look up. A deep comparison could be too expensive. Assuming
that an object of type t did not already exist, it would be successfully added to
the prototype library.

If the object o happened to be of implicit type t’ rather than the explicit type t, the

prototype library would have become corrupted. A subsequent shallow query of

the library for the type t would succeed, with fatal results.

FIGURE 5 Instance DAG with a type CLIQUE

In order to avoid this situation, the instantiator could keep track of the true type

of all objects and to update the type information whenever operations are

8

3

1 2

7

4 5 6

a type CLIQUE

8

3

1 2

7

4 5 6

(a) (b)

REPEATED STRUCTURES

66

performed that can create implicit types.

This updating may be expensive. If an operation is performed on instance 4 in

Figure 5a which creates an implicit type for that object, then all objects on all paths

back to the root instance (i.e., 4, 7 and 8) now possess implicit types. In addition

the type propagation mechanism of ARE_ALIKE, which in this example places

objects 4, 5 and 6 in the same clique, would require updating the information for

all objects on all paths leading from 5 and 6 back to the root. Thus object 3 would

have been sullied as well (see Figure 5b). It is thought that maintaining this

implicit/formal type information is too expensive.

The IS_A_PROTOYPE construct provides a reasonable way of achieving fast

instantiation, without resorting to the significantly more onerous option: making

implicit types illegal. In this way ASCEND IV behaves more like a prototype

based object-oriented system, while offering the efficiency that arises from class

based systems.

3.6.2 FINE GRAINED STRUCTURES

In the previous section, the ability was shown to exploit repeated coarse grained

structures. Significant potential also exists for exploiting repeated structures at a

finer level of granularity. This happens with the explicit iterators used for

constructing groups of relations. In ASCEND III a group of similar relations may

be constructed by use of the FOR construct. This is shown in Example 16.

In this example the linear system Ax = b, is formed, and there will be m equations

all the form . Structurally all of the equations are the same, i.e. they

have the same variable incidence pattern. This is not always the case, as some

relations may involve set operators which can change the number of terms in the

relation. However these deviations are easy to recognize and involve a single scan

of the static expression structure that represents the relation. For a group of

relations which are structurally the same, an instantiator can perform the loop

index evaluation and create the necessary relation instances. It can then perform

Aij xj bi=
j

∑

REPEATED STRUCTURES

67

semantic analysis on a single relation. The variable incidence pattern derived

whilst doing the semantic analysis can then be applied to all the relation

instances. Only one check on the correctness of the relations has to be done, and

only one copy of the relation structure needs to be stored. It is interesting to note

that the above model could have been written in the following way:

MODEL dot_product(n : integer) 1
2

row[1..n] IS_A solver_var; 3
x[1..n], b IS_A solver_var; 4

5
dproduct : SUM(row[i] * x[i] | i IN [1..n]) = b; 6

7
END dot_product; 8

9
MODEL matrix_multiply(m : integer; 10

 n : integer); 11
12

A[1..m] IS_A dot_product(n); 13
x[1..n] IS_A solver_var; 14
b[1..m] : solver_var; 15

16
x, A[1..m].x ARE_THE_SAME; (* a single x vector *) 17
FOR i IN [1..m] CREATE 18

b[i] IS A[i].b; 19
END; 20

21

MODEL matrix_multiply(m : integer; 1
 n : integer); 2

3
A[1..m][1..n] IS_A solver_var; 4
x[1..n], b[1..n] IS_A solver_var; 5

6
FOR i IN [1..m] CREATE 7
 eqn[i]: SUM(A[i][j] * x[j] | j IN [1..n]) = b[i]; 8
END; 9

10
END matrix_mulitply; 11

EXAMPLE 16 Fine Grained Repeated Structure

MEMORY

68

END matrix_multiply; 22

In this case the instantiator using the coarse grained prototyping algorithm would

see the potential for repeated structure on line 13, and the result would have been

the same, in terms of speed and memory requirements. This proves the validity of

the fine grained analysis.

3.6.3 SHALLOW OPERATIONS

The use of implicit types requires that operations such ARE_THE_SAME use deep

comparisons, rather than shallow comparison. In deep comparisons two instances

that are to be merged have to checked recursively for compatibility. For a shallow

comparison, just the signatures need to be checked. If compatible, then one object

is deleted and the references adjusted. If there is a cheap way to keep track of

implicit types (perhaps through dirty and clean bits), then an instantiator would

be able to tell when a deep versus a shallow operation should be done. The

efficiency of maintaining this information remains to be seen.

3.7 MEMORY

It is expected that the cost to represent a problem in a high level modeling

language will be higher than that of a low level language. This is reasonable, given

the wider range of queries to which a high level modeling language/environment

can respond. However if this cost becomes excessively high, then, regardless of

their potential utility, high level modeling languages will fail. These issues were

discussed at length in Chapter 2. The memory management issues of ASCEND IV

are discussed in the next few sections.

3.7.1 VARIABLES

ASCEND III uses the everything is an object philosophy in its implementation. This

philosophy also applies to the children of atoms (sub atomic parts). This is done

in a space efficient manner, but, being full instances, the cost is greater than the

cost of representing the equivalent double precision number. The ASCEND III

MEMORY

69

system also employs a very loose definition of what constitutes a variable and

leaves the determination of the minimum state that a variable must possess to the

solver being invoked. The definition for a compiler variable is any atomic instance

which is rooted at the real type hierarchy, i.e., any REAL_ATOM_INSTANCE. All

of the solvers developed and attached to the ASCEND III system, however,

employ a much more restricted definition; a solver variable is any atomic instance

which is rooted at the solver_var type hierarchy. (see Figure 7 in the Appendix).

The definition of a solver_var is dynamic and is determined by what base

libraries are loaded when starting an ASCEND III session. For the example PPP

the cost a solver variable was 200 bytes or a 168 byte overhead.

By raising the minimal definition of a variable to that of the current solver_var,

the cost of a variable can be reduced to 96 bytes. Projected saving in memory is 9

MB at 100,000 variables. This requires the introduction of a new fundamental kind

of instance, a SOLVER_REAL_INST, to augment the REAL_ATOM_INST. The

definition is

struct SolverRealInstance {
[...] object overhead;

 double lower, upper, nominal, value;
 boolean fixed;
 boolean integral;
 Dimensionality *dims;
};

These are purely internal changes that do not affect the language in any other

way, save for the implementation of code that makes queries on variables.

3.7.2 CONSTANTS

Most languages have the notion of a constant. A constant is a parameter that has

its value set at creation, and this value is immutable. A compiler can treat a

constant in special ways because of this immutability. It may be constant folded

and put into reserved storage locations. In ASCEND III there are no constants.

The constant type shown in the type library of the example PPP is just an artifact

of the modeler’s naming convention (but in this case does have the same

OTHER

70

semantics). There is a non-trivial number of them. With over 33,000 instances of

constants or twice as many variables as the solver thinks are in this problem, at a

cost of 64 bytes apiece (an excess of 56 bytes), it may be worthwhile to introduce

this concept into the language. Projected saving in memory is 11.0 MB at 100,000

variables. The impact on speed of solution could also be nontrivial.

3.7.3 RELATIONS

All of the issues discussed with respect to the use of repeated structures

drastically affect the memory required for the representation of relations, by

simply reducing the number of relation structures that have to be maintained. For

the PPP example these schemes have resulted in a 37 MB savings by exploiting

the coarse grained repeated structures. The other major savings will come from a

fundamental change in the internal representation of relations. This is discussed

in detail in the next chapter.

3.8 OTHER

3.8.1 VERY LARGE SCALE MODELING

In the earlier sections, the prototype and clone metaphor was proposed as a means

of improving instantiation speed and minimizing memory consumption.

However, as model development moves towards the root of the instance DAG,

models start to become more specialized, and the ability to make use of repeated

coarse grained repeated structures diminishes and eventually stops.

This is in keeping with reality. It is possible to buy a generic heat exchanger for

water service off the shelf. Disposal of these units at decommissioning is also

fairly easy. It is perhaps less easy to acquire and dispose of a 100 tonne/hour

Bayer liquor evaporator. A one-a-of-a-kind object is required [US91]. A simple

application of a prototype and clone metaphor starts becoming more expensive in

memory. In addition these difficulties arise where instantiation speed is needed

most; i.e., when the model becomes large. The solution to this dilemma is the

OTHER

71

provision of reference semantics.

A large model will not be fully developed and debugged in a single modeling

session. In order to propagate efforts from one modeling session to the other,

some form of persistent representation is required. These issues were discussed in

some detail in Section 2.6.3. Given that a persistent representation of a model

exists, then a new modeling session would first involve restoring this model from

its database. If the example PPP is used and the instances c3_c4 and c3_splitter had

been previously stored, then the following code issued from a command line will

restore these instances. The IS_A construct is being overloaded for convenience.

% c3_c4 IS_A Column30; 1
% c3_splitter IS_A Column164; 2

Using the instance as a parameter feature as discussed in Section 3.5.4, it is

possible to pass these external instances into a model definition as is done on

line 16 below.

% %% 3
> MODEL coldsection(c1 : Column30; 4

 c2 : Column164); 5
6

m1 : mixer; 7
FOR i IN c1.components CREATE 8

connect[i]: 9
c1.reboiler.f[i] = c2.feed.f[i]; 10

END; 11
(...) 12

 END coldsection; 13
> %% 14
% 15
% qqq IS_A coldsection(c3_c4,c3_splitter); 16
% 17

Instances c3_c4 and c3_splitter remain unchanged; they are simply referred to, not

copied. If an error occurs whilst constructing the instance qqq of coldsection, the

instance may be deleted without affecting the instances c3_c4 and c3_splitter and

reconstructed with the only cost being that of reinstantiating the statements

OTHER

72

introduced in this model. If, however, restrictions were not placed on instances

passed as parameters, it would be possible to corrupt these instances, and they

would be have to be deleted at the same time as qqq.

With these capabilities the cost of building arbitrarily complex models rapidly

and with efficiency of memory use is possible through all phases of the modeling

exercise. This has been implemented. The cost of reinstantiation for MODEL

coldsection is less than 1 second.

3.8.2 FUNCTION AND GRADIENT EVALUATION

In Chapter 2, it was argued that judicious use of code generation could yield

significant improvements in function and gradient evaluation times. The use of

both coarse and fine grained repeated structures may be used to keep the

generated code small and yield reasonable compilation times for the generated

code. Using the glass-box code generation features implemented in ASCEND

IV.alpha, a 6.5 and 5.9 time speed up for function and gradient evaluation

respectively, over pure interpreted code was achieved. These results were

obtained with about 90% compiled code and 10% interpreted code. The protocol

to allow compiled external code to reside seamlessly with interpreted code in a

manner transparent to the user was made possible through the new PATCH

construct.

The details of the code generation mechanism and the PATCH are discussed in

Chapter 4.

3.8.3 DELETION

Destroying a part of a highly connected structure, such as an instance DAG, can

be a slow process; an orderly shut down is required. With a fewer number of

structures present and with purely reference semantics, deletion of portions of a

simulation becomes cheaper.

3.8.4 ARE_ALIKE

Type propagation with the ARE_ALIKE construct breaks just about every feature

DISCUSSION

73

discussed in this chapter. In practice this language feature of ASCEND III has

been rarely invoked. In its implementation ARE_ALIKE involves some

algorithms. ARE_ALIKE is not supported in ASCEND IV.alpha.

3.9 DISCUSSION

In this chapter, a new language ASCEND IV has been proposed which addresses

some of the weaknesses of its predecessor ASCEND III. It maintains and

augments the expressiveness of the ASCEND IIIl language, whilst being more

efficient in the areas identified in Chapter 2 as being essential for a Very Large

Scale Modeling environment. This has been demonstrated by using full and

experimental implementations of many of the features described. The current and

projected results for the example PPP are shown in Table 4.

1. data obtained using prototype implementations of the new language.
2. projected for full implementation of ASCEND IV.
3. reduction in the number of instances because of the new SOLVER_REAL

instance and introduction of constants.

Table 4: Instantiation Statistics

ASCEND III ASCEND IV1

alpha ASCEND IV2

Relations 17516 17516 17516

Variables 18113 18113 18113

Size (MB) 65.36 27.66 < 20.0

Instances 247380 247380 <1250003

Formal Types 43 43 > 43

Arrays 13581 13581 13581

Instantiation Time (sec) 985.76 25.0 < 10.0

Function Time (sec) 13.19 2.02 < 1.0

Gradient Time (sec) 28.73 4.90 < 2.0

O n
2

 
 

DISCUSSION

74

Compared with ASCEND III, the savings in instantiation time for ASCEND

IV.alpha, are noteworthy, the savings in memory satisfactory while the savings in

evaluation time are somewhat disappointing, given the results seen in

Section 2.6.4.

The largest problem on which ASCEND IV.alpha has been tested is an 86,000

variable, 79,000 relations model of an ethylene plant, and it requires 175 MB for

problem representation, 15.0 and 55.0 seconds for function and gradient

evaluation respectively and takes 740.0 seconds to instantiate. These numbers are

expected to be lower by a factor of 2 to 3, when ASCEND IV is fully implemented,

as there are known inefficiencies in the prototype implementations.

Further implementation details and results, particular with respect to relation

representation will be presented in Chapter 4. It is thought that ASCEND IV can

be almost as efficient in terms of representation, instantiation speed and

evaluation speed as a lower level language.

Perhaps the primary failure of ASCEND IV is that it does not address the difficult

issue of information hiding or information filtering. It is also not minimal in its

use of constructs. The detailed semantics of some operations and the efficiency

with which they can be implemented remains to be seen. In addition, ASCEND IV

also requires somewhat greater modeler responsibility; this may or may not be a

failing.

APPENDIX

75

3.10 APPENDIX

3.10.1 MODEL FLOWSHEET

FIGURE 6 C3 separation unit

3.10.2 SYNTAX

A simplified description of the language ASCEND IV is presented below.

3.10.2.1 FUNDAMENTAL TYPES

real

boolean

symbol_index (now symbol)

integer_index (now integer)

integer (now mut_integer)

symbol (now mut_symbol)

set

TYPE

3.10.2.2 MODELING CONSTRUCTS

IS_A

IS

c3 splitter
164 trays

c3/c4 unit
30 trays

APPENDIX

76

IS_REFINED_TO

IS_A_PROTOTYPE

:

ARE_THE_SAME

ARE_ALIKE (dropped)

CLONES

ATOM

MODEL

3.10.2.3 GRAMMAR

model : MODEL model_name;

| MODEL model_name REFINES refined_type;

| MODEL model_name (formal_args);

| MODEL model_name (formal_args)

REFINES refined_type ;

;

formal_args : formal_arg

| formal_args ; formal_arg

;

formal_arg : arg : type_of_arg

;

arg : identifier extension

| arg extension

;

extension : []

;

type_of_arg : integer_index

| symbol_index

| TYPE

| set OF integer_index

| set OF symbol_index

APPENDIX

77

;

3.10.3 INSTANCE COUNTS BY TYPE FOR MODEL PPP

Pitzer_component 588
Pitzer_mixture 196
Rackett_component 591
UNIFAC_constants 197
UNIFAC_mixture 197
UNIFAC_parameter 1182
UNNAMED ARRAY NODE 13581
boolean 35823
column164 1
column30_eq 1
constant 33393
energy_rate 589
equilibrium_mixture 196
factor 2952
fraction 792
gas_constant 1768
integer 35633
liquid_stream 197
mixture 198
molar_energy 5306
molar_rate 2376
molar_stream 198
molar_volume 2356
mole_fraction 1973
partial_component 1179
pressure 788
propadiene 1
propane 1
propylene 1
real 55327
recovery_backend 1
relation 17516
relative_volatility 784
scaling_constant 3932
set 4534
symbol 4927
td_condenser_PPP 2
td_reboiler_PPP 2

APPENDIX

78

td_simple_feed_tray_PPP 2
td_simple_tray_PPP 188
temperature 197
vapor_liquid_stream 2
vapor_stream 196

3.10.4 GENERAL INSTANCE TREE NUMBERS FOR MODEL PPP

Number of models and complex atoms: 73170
Number of atom children instances: 125597
Number of relations: 17516
Number of array instances: 13581

APPENDIX

79

3.10.5 A TYPE HIERARCHY

FIGURE 7 Type hierarchy for atoms

real constant

solver_var

gas_constant

permittivity_constant

permeability_constant

circle_constant

electron_charge

speed_of_light

gravity_constant

avogadro_constant

scaling_constant

proton_mass

planck_constant

electron_mass

UNIFAC_parameter

factor

fraction

solver_int

viscosity

angle

inductance

electric_field

capacitance

molar_entropy

distance

frequency

solid_angle

molar_energy

voltage

monetary_unit

acceleration

heat_capacity

mass_rate

cost_per_time

entropy

molar_volume

solver_semi

magnetic_field

mass_density

time

volume_expansivity

volume

temperature

area

speed

thermal_conductivity

mass

energy

volume_rate

entropy_rate

pressure

cost_per_mass

current

generic_real

molar_density

molar_rate

energy_rate

resistance

diffusivity

molar_mass

cost_per_volume

mole

relative_volatility

mass_fraction

mole_fraction

solver_binary

REFERENCES

80

3.11 REFERENCES

[Bar92] P. I. Barton.The modeling and simulation of combined discrete/continuous
processes. PhD thesis, Department of Chemical Engineering, Imperial Col-
lege of Science, Technology and Medicine, 1992.

[CU91] C. Chambers and D. Ungar. Iterative type analysis and extend message split-
ting: Optimizing dynamically-typed object-oriented programs.Lisp and Sym-
bolic Computation: An International Journal, 4(3), 1991.

[Dow93] K. Dowd.High Performance Computing. ORLY, 1 edition, June 1993.

[EN94] J. Eborn and B. Nilsson. Object-oriented modelling and simulation of a pow-
er plant. application study in the K2 project. Technical Report ISRN
LUTFD2/TFRT–7527–SE, Department of Automatic Control, Lund Institute
of Technology, December 1994 1994.

[Epp89] T. G. Epperly. Implementation of an ASCEND interpreter. Technical report,
Engineering Design Research Center, Carnegie Mellon University, 1989.

[Mey88] B. Meyer.Object Oriented Software Construction. Prentice Hall, 1988.

[Nil93] B. Nilsson. Object-Oriented Modeling of Chemical Processes. PhD thesis,
Department of Automatic Control, Lund Institute of Technology, Lund, Swe-
den, August 1993.

[Ost94] J. K. Osterhout.Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[PEWW91] P. Piela, T. Epperly, K. Westerberg, and A. Westerberg. An object-oriented
computer environment for modeling and analysis: The modeling language.
Computers and Chemical Engineering, 15(1):53–72, 1991.

[Pie89] P. Piela.ASCEND: An Object-Oriented Computer Environment for Modeling
and Analysis. PhD thesis, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, Pennyslvania, April 1989.

[PMW93] P. Piela, R. McKelvey, and A. Westerberg. An introduction to the ASCEND
modeling system: its language and interactive environment.J. Manage. Inf.
Syst., 9(3):91–121, Winter 1992-1993.

[US91] D. Ungar and R. B. Smith. Self: The power of simplicity.Lisp and Symbolic
Computation: An International Journal, 4(3), 1991.

81

CHAPTER 4 NEW LANGUAGE
FEATURES

4.1 ABSTRACT

This chapter looks at some of the language features introduced into the ASCEND

III language to allow it to be useful as a language in a VLSM environment.

Emphasis has been placed on features that will improve the speed of building,

efficiency of representation and speed of solution of arbitrarily large and complex

mathematical models.

4.2 INTRODUCTION

In Chapter 3, a detailed proposal was presented for a new language to support a

VLSM environment. That discussion was supported by results that were obtained

from doing prototypes and full implementations of a number of new language

features. The resulting product is called ASCEND IV.alpha which is an

intermediate environment which, when completed, will be ASCEND IV. Some of

RELATIONS

82

the implementation details are given in the following sections.

4.3 RELATIONS

Relations are perhaps the most expensive items to process and to represent in a

modeling language. For large sparse systems that will be solved by some

numerical technique, a relation has to be able to respond to some minimal

queries. These include:

• to return the sparsity pattern of its incident variables so as to allow construc-
tion of the sparse matrix representation of the problem.

• to return the residual for given a vector .

• to return the derivative vector at , as well as possibly higher

order derivatives.

A modeling environment needs to provide a solver with this information

efficiently. In addition symbolic processing and analysis of a relation is sometimes

necessary. A modeling language also has to support relations written in a

language other than the provided modeling language. Two types of external

relations have been identified, black-box and glass-box external relations.

The ability to support these different requirements efficiently has led to the

development of four (4) different data structures and their support routines in the

ASCEND IV.alpha environment. These are

• token relations.
• opcode relations.
• glass-box relations.
• black-box relations.

Over the life cycle of a large scale modeling problem it is expected that all of these

relations will be used in different proportions by the ASCEND IV environment. In

the early stages of model development where speed of solution is not paramount

and symbolic analysis of relations is required, 90 to 100% of the relations used will

f x() x x̂=

x∂
∂

f x() x x̂=

RELATIONS

83

be token or opcode relations. For mature models, it is expected that 10% of the

relations will be opcode relations, 85% will be external glass-box relations, with

the rest being external black-box relations.

Protocols in the ASCEND IV system have been set up to accommodate the

different relation needs over the entire spectrum of model development and to do

so automatically. The purpose of each of these types of relations will become clear

in the following sections.

4.3.1 ASCEND III RELATIONS

In the ASCEND III system, relation instances hold pointers to relation structures

(see Figure 8). These relation structures in turn hold

• a variable list of pointers to the REAL_ATOM_INSTances that are incident
upon the relation.

• a list of tokens associated with the left hand side and the right hand side of the
relation, held in postfix.

• space for the residual, Lagrange multiplier, nominal, dimensionality, and the
type of the relation. The type tells whether the relation is an inequality, equal-
ity or an objective function.

The token list points to relation terms1, where each term is a union of the different

types of terms that can exist in a relation. These include:

• real tokens (numeric constants and their dimensionality).
• integer tokens.
• variable tokens, which hold an index into the variable list of the given vari-

able.
• function tokens, which includes all the standard transcendental functions and

some common polynomials.
• unary operators (unary minus and unary plus).
• binary operators (plus, minus, divide, times and power).

The inclusion of the unary and binary tokens allows a relation to be wired up as a

threaded tree, which allows infix scanning at no additional cost as the size of the

union is dominated by the cost of representing real tokens.

1. relation tokens and relation terms are synonymous.

RELATIONS

84

FIGURE 8 Original Relation Structure

4.3.2 TOKEN RELATIONS

The representation of relations in ASCEND III is convenient but expensive. Each

relation term costs 24 bytes (see the Appendix). More importantly, as each relation

instance owns the relation structure which it is associated with, no mechanism

exists to share relation structures among multiple relation instances.

In order to allow the sharing of relations, a level of indirection is introduced into

the original representation of Figure 8 to yield the representation shown in

Figure 9. In addition, a reference count for destroying the relations is associated

with each relation structure. The relation structure is actually a union of the four

(4) types of relation structures identified in Section 4.3.

FIGURE 9 New Token Relations

Variables

Token list (lhs)

Token list (rhs)

Relation
Instance

relation structure

Token list (lhs)

Token list (rhs)

Relation
Instance

Variables

relation structure

RELATIONS

85

In addition, the variable list is now associated with the relation instance rather

than with the relation structure. Although expensive, the ASCEND III token

relation data structure is useful for symbolic analysis inclusive of symbolic

differentiation, as well being a useful intermediate data structure when

performing instantiation of relations. Token relations are hence supported in

ASCEND IV.

4.3.3 OPCODE RELATIONS

As discussed in Chapter 2, the opcode representation is a very efficient

representation for relations in terms of both memory and evaluation speed (when

using an interpreter to perform evaluations). Though there are many possible

representations for opcodes, a simple but effective model is to use

• a vector of double precision numbers to represent the numeric constants.
• an integer vector of opcodes, to represent the algebraic operators and offsets

into a variable list and the constant vector.

This representation is shown in Figure 10. The cost of this representation is

approximately 25% that of the cost of token relations. However, symbolic analysis

(such as dimensionality checking of a relation) when using this representation is

clumsy. Opcodes will have to be expanded into token relations to perform these

analyses, or these analyses should be done prior to mapping into the opcode

representation.

Although the data structures have been set up to accommodate opcode relations,

the interpreter to perform function and gradient evaluations over these structures

is not fully implemented in ASCEND IV.alpha.

RELATIONS

86

FIGURE 10 Opcode Relations

4.3.4 GLASS-BOX RELATIONS

External glass-box relations are expected to be the workhorse relations of

ASCEND IV. An external glass-box relation is a relation that can answer the

minimal set of queries identified in Section 4.3 and hides none of its sparsity

information from the main environment but uses external code to perform its

evaluations. To the rest of the system, an external glass-box relation behaves

exactly like a token relation. The internal representation is shown in Figure 11.

FIGURE 11 Glass-box Relations

The workings of an external glass-box relation are best shown through an

example. In the following code fragment:

a_relation: fast_flash(x[1],x[25],y[12]; 2); 1

a_relation is the name of the external glass-box relation. fast_flash is a symbolic

reference to the code which does the function and gradient evaluations. The

variables

opcodes

constants

lhs

rhs

Relation
Instance

opcode relation

function
jump table

glass-box relationRelation
Instance

variables

RELATIONS

87

comma delimited terms in parentheses are the names of ASCEND IV variables

that are incident upon the relation, in this case variables x[1], x[25] and y[12]. The

integer 2, says that the code to do the evaluations is the 2nd function in the block

of external code for fast_flash. With this syntax, all the information necessary to

construct a sparse matrix and to perform evaluations is available. The flexibility

to fix and free variables is still maintained.

The syntax in extended BNF is shown in Figure 12. The significance of the

optional_scope qualifier seen in the grammar will be explained later.

FIGURE 12 Syntax for Glass-box Relations

To make the ASCEND IV system aware of the external relations, the protocol

shown in Figure 13 has been set up for registering the code. These external

functions may be statically or dynamically linked to the ASCEND IV binary. For

dynamically linked code, the IMPORT statement of ASCEND III was extended to

deal with libraries of compiled code. For example, the following ASCEND IV

code fragment will link a dynamically loadable object,

libreactor.so2, locate the routine reactor_1_Init and execute it. This routine may

contain arbitrary statements, but, if it includes the registration protocol described

glassbox_relation : name : IDENTIFIER (varlist ; INTEGER)
 optional_scope

name : INDENTIFIER ([IDENTIFIER])*

qualified_name : name (. name)*

varlist : qualified_name (, qualified_name)*

optional_scope : qualfied_name

IMPORT reactor_1_Init FROM libreactor;

RELATIONS

88

in Figure 13, then the ASCEND IV system will have access to all the external

function and gradient evaluation code.

FIGURE 13 External Glass-Box Relation Registration

4.3.5 BLACK-BOX RELATIONS

Black-box relations are a set of relations which are of the form

(17)

where represent outputs, are the inputs to a system of equations

and u represents parameters to the problem. Internal to a black-box there will

usually be a set of equations

(18)

used to solve for variables z, which are strictly internal to it. The black-box will

have to solve these equations, in order to compute the residual vector given as

2. The extension .so is automatically determined based on the host operating system.
HPUX uses .sl while OSF, and SUNOS use .so.

typedef int
ExtEvalFunc(int *mode, int *m, int *n,
 double *x, double *u, double *f, double *g);

extern int
CreateUserFunction(CONST char *name, /* a symbolic handle */
 ExtEvalFunc *init, /* initialization code */
 ExtEvalFunc **value, /* residual function table */
 ExtEvalFunc **deriv, /* 1st derivatives func table */
 ExtEvalFunc **deriv2, /* 2nd derivatives func table */
 char *help); /* help information */

/*
 * the function and derivative tables are arrays of pointers to functions.
 * all arguments to the evaluation routines are by reference to support
 * mixed language calls.
 */

y f x u,()=

y ℜm∈ x ℜn∈

g y x u z, , ,() 0=

RELATIONS

89

(19)

and the mxn sensitivity matrix

(20)

This information is needed by most modern algorithms for solving the larger

system of equations in which these black-box equations are embedded. Arguably

this is not the most efficient way to solve the overall system of equations, as it

involves repeated convergence of the inner set of equations represented by the

black-box. Westerberg [WHMW79] gives convincing arguments why this is so.

However, it may be necessary to deal with external codes that have a limited

interface and/or legacy or proprietary codes. Black-boxes are accommodated in

ASCEND IV through a syntax similar to that used for glass-box relations.

FIGURE 14 Black-Box Relations

The syntax is shown in Figure 15. With this syntax the ASCEND IV compiler has

enough information to check the validity of the input and output arguments

which must resolve to REAL atomic instances. The DATA argument allows

additional information to be passed to the external routine, where this

information may be anything that is accessed through an ASCEND IV model. The

instantiator verifies the existence of the external code through the symbolic

handle and then expands the blackbox_relation statement into m black-box

y f x u,()– 0=

x∂
∂y

input/output

black-box relation

variables

black box
external code

Relation
Instance

RELATIONS

90

relations of the form

(21)

where each relation has all of the incident input variables but only one (1) output

variable, thus creating the dense sparsity pattern of Figure 16 (see also Figure 18).

FIGURE 15 Syntax for Black-box Relations

Lastly each expanded relation is made to point to a data structure that maintains

the information necessary to evaluate the residuals and gradients.

Black boxes tend to calculate all their outputs for a given set of input variables and

parameters. In addition the computation of these outputs and the associated

gradient matrix may be expensive (the solution process could be a complex

simulation for example). A solver however, might not require this information in

any sequence as each expanded relation is not treated specially. To ensure

efficiency of computation of these residuals and gradients at a consistent point by

a solver, a unique node stamp is associated with each blackbox_relation statement.

By checking the node stamp and the vector of input variables and parameters, the

black-box routine can determine whether to redo its calculations or simply to

return the appropriate elements of its solution vector or rows of its sensitivity

yi f x u,()– 0=

blackbox_relation : name : IDENTIFIER (input_args ;
 output_args
 (; data_args)*) ;

name : INDENTIFIER ([IDENTIFIER])*

qualified_name : name (. name)*

input_args : varlist : INPUT

output_args : varlist : OUTPUT

data_args : name : DATA

PROCEDURES

91

matrix.

FIGURE 16 Sparsity Pattern of Black-Box Relations when expanded

The process of making the ASCEND IV system aware of these black-box relations

is very similar to that used for glass-box relations but requires some additional

input information concerning the number of input and output variables and a

routine for initialization. The modified registration code is shown below.

FIGURE 17 Black-box relation registration protocol

4.4 PROCEDURES

As was previously discussed, the ASCEND language description allows

PROCEDURES to be bound to instances. These PROCEDURES may introduce no new

state to an instance but can be used for different configurations of state. For

example they are used extensively in setting degrees of freedom, scaling, giving

initial guesses and for setting values of parameters for an instance. The ASCEND

inputoutput
variables variables

bl
ac

k-
bo

x
re

la
ti

on
s

extern int
CreateUserFunction(CONST char *name,
 ExtEvalFunc *init,
 ExtEvalFunc **value,
 ExtEvalFunc **deriv,
 ExtEvalFunc **deriv2,
 unsigned long n_inputs,
 unsigned long n_outputs,
 char *help);

PROCEDURES

92

IV inheritance model is that of textual inclusion except for PROCEDUREs.

PROCEDUREs may be overwritten, with new procedures replacing any old

procedures of the same name.

In ASCEND III, in order to maintain a consistency of naming, while maintaining

the functionality of the old procedure, the statements in the old procedure had to

be manually copied. The introduction of the type access of procedures in ASCEND

IV, which is loosely based on the class access operators in C++, the :: syntax

allows reference to procedures by any type on the inheritance hierarchy of a

model. This is shown in the Example 22b. The result has been much cleaner and

condensed model descriptions.

EXAMPLE 22Type Access for Procedures

Consistent with the philosophy of an open environment, external routines may be

accessed from within an ASCEND IV procedure. The syntax is:

MODEL test1;

 x[1,2] IS_A generic_real;

INITIALIZATION
PROCEDURE clear;

 x[1,2].fixed := FALSE;
END clear;
PROCEDURE specify;

 x[1,2].fixed := TRUE;
END specify;

END test1;

MODEL test2 REFINES test1;

 z IS_A generic_real;

 x[1] + x[2]*z1 = 20.9;

INITIALIZATION
PROCEDURE clear;

 x[1,2].fixed := FALSE;
 z.fixed := FALSE;

END clear;

END test2;

MODEL test1;

 x[1,2] IS_A generic_real;

INITIALIZATION
PROCEDURE clear;

 x[1,2].fixed := FALSE;
END clear;
PROCEDURE specify;

 x[1,2].fixed := TRUE;
END specify;

END test1;

MODEL test2 REFINES test1;

 z IS_A generic_real;

 x[1] + x[2]*z1 = 20.9;

INITIALIZATION
PROCEDURE clear;

RUN test1 :: clear;
 z.fixed := FALSE;

END clear;

END test2;

(a) (b)

CODE GENERATION

93

The process of registration of external procedures is very similar to that for

external black-box and glass-box relations. Very little type checking is performed.

The semi-reserved SELF keyword is used to describe the object in which the

PROCEDURE definition was made. These external procedures have complete

access to the ASCEND data structures.

4.5 CODE GENERATION

In order to achieve high efficiency of function and gradient evaluation, a code

generation model was adopted: generate code in an intermediate language,

compile to machine code and then call that code to do all necessary evaluations. C

was the target language used in the code generation schemes described below.

In doing code generation from a high level modeling language such as ASCEND

there are a number of problems that need to be solved:

• how to generate the code efficiently, in particular the code necessary for (at
least) first derivative calculations.

• how to add the compiled generated code to the system.
• how to access the generated code while maintaining all the functionality of the

modeling language. In other words, an ASCEND model that uses externally
compiled code should behave no differently than one using interpreted code
with respect to name space and the operations of IS_REFINED_TO and
ARE_THE_SAME, as well as the execution of the initialization procedures.

• how to automate the process of code generation.

To solve these problems a code generation module was added to the system

which generates the code for function evaluations and generates the symbolic

external_procedure : EXTERNAL IDENTIFIER (list) ;

list : name (, name)*
 | SELF ,list

name : INDENTIFIER ([IDENTIFIER])*

CODE GENERATION

94

derivatives for all incident variables on a relation. One function is generated for

function evaluation and one for gradient evaluation for each relation in the

problem submitted to the code generation routines. The gradient routines return a

vector of derivatives for each variable that matches the ASCEND compiler’s

definition of a variable, whereas the function evaluation routines return a scalar

which represents the residual of the relation.

An efficient memory management routine was developed for generation of the

symbolic derivatives to eliminate the need to call upon the underlying operating

system to deal with the sub expression swell when doing symbolic derivatives.

This code also performs sub expression elimination and constant folding

wherever possible. The optimizations performed are conservative due to the loose

definition of a variable by the ASCEND III compiler. In ASCEND IV, these

optimizations may be much more aggressive due to the introduction of a

dedicated SOLVER_REAL instance type and a constant type.

The code is generated in a format that is fully compatible with the requirements of

the external glass-box relations discussed in Section 4.3.4.

In order to be able to use the generated code in a manner that is transparent to the

system, a new language construct called the PATCH3 was developed. Essentially

a PATCH is a fragment of valid ASCEND IV code which carries the following

information

• the original type specification of the model that was submitted for code gener-
ation.

• a collection of glassbox_relation statements where the optional_scope speci-
fier is given.

The ASCEND IV code fragment in Example 23a shows the original model

definition and a portion of the automatically generated PATCH file in

Example 23b. Considering the example, to create an instance of MODEL

test_flash but using the compiled code representation of relations, the PATCH file

3. The purpose of the PATCH is almost identical to the Unix utility of the same name.

CODE GENERATION

95

containing the definition for fast_flash should be read in and the instantiation

routines should be invoked with the patch option.

Internally, the following algorithm is used when compiling with the patch option:

• given the name of a PATCH, look up its original type definition. If it does not
exist then abort.

• perform a partial instantitation of the original type definition, creating all
instance structures but only creating stubs for the relations.

• process each glassbox_relation statement in the patch definition, using the
standard glass-box instantiation algorithm but using the optional_scope refer-
ence to locate and place the relations.

• process any other additional statements in the PATCH definition.
• finish up normal instantiation.

EXAMPLE 23 The PATCH

The other allowable statements in a PATCH definition include default assignment

MODEL VLE_flash(components : set OF symbol);
 (* other statements ommitted for clarity *)

FOR i IN components CREATE
 f_def[i]:

flash.f[i] = flash.Ftot * flash.y[i];
END;

END VLE_flash;

MODEL test_flash;

 components IS_A set OF symbol;
 components := [‘a’,’b’,’c’];
 flash IS_A VLE_flash(components);

END test_flash;

IMPORT fastflash_Init FROM libfastflash;

PATCH fast_flash FOR test_flash;

 f_def[‘a’]: fast_flash(f[‘a’], Ftot, y[‘a’]; 1) IN flash;
 f_def[‘b’]: fast_flash(f[‘b’], Ftot, y[‘b’]; 2) IN flash;
 f_def[‘c’]: fast_flash(f[‘c’], Ftot, y[‘c’]; 3) IN flash;

END fast_flash;

(a)

(b)

OTHER

96

statements which allows capture of the state of the instance at the time of code

generation. The processing time of a PATCH is lower compared to the semantic

analysis of the original type definition, because the processing time for a glass-box

relation is much lower than for token relations.

4.6 OTHER

In addition to the code generation format necessary to support the PATCH, a

number of different formats have been found to be of utility and are thus

incorporated into system. These include

• planar ASCEND: an ASCEND model which represents a flattening of the
ASCEND instance hierarchy.

• black-box C code: function and gradient evaluation routines, sparse matrix
incidence pattern, lower and upper bounds, scaling and an initial point. This
format accepts an specification of input and output variables as well as param-
eters. It is thought that the format of this generated code is an efficient repre-
sentation for sharing nonlinear test problems.

• a GAMS [BKM88] input file, used mainly for debugging the interface to opti-
mizes attached to the ASCEND IV system.

• a Mathematica [Wol88] input file, used extensively in checking the correctness
of the symbolic derivative code developed for many of the above code genera-
tion schemes.

APPENDIX

97

4.7 APPENDIX

4.7.1 RELATION TERM DATA STRUCTURES

struct RelationReal{
 double value;
 CONST dim_type *dimensions;
};

struct RelationVar {
 unsigned long varnum; /* index into the variable list */
};

struct RelationFunc {
 CONST struct Func *fptr;
 struct relation_term *left;
};

union TermUnion {
 long ivalue; /* integer value */
 struct RelationReal r; /* real value */
 struct RelationVar var; /* vars */
 struct RelationFunc func; /* funcs */
 struct UnaryOp { /* unary minus, plus -- used for infix only */
 struct relation_term *left;
 } uni;
 struct BinaryOp { /* binary, plus,minus,divide,times,power */
 struct relation_term *left;
 struct relation_term *right;
 } bin;
};

struct relation_term {
 enum Expr_enum t; /* type of term */
 union TermUnion u;
};

APPENDIX

98

4.7.2 NEW RELATION DATA STRUCTURE

struct TokenRelation {
 struct gl_list_t *lhs, *rhs; /* postfix */
 struct relation_term *lhs_term, *rhs_term; /* infix */
 REFCOUNT_T ref_count;
};

struct OpCodeRelation {
 int *lhs, *rhs; /* array of opcodes */
 int *args;
 int nargs;
 double *constants; /* array of reals */
 REFCOUNT_T ref_count;
};

struct GlassBoxRelation {
 struct ExternalFunc *efunc;
 int *args; /* an array of indexes into the varlist */
 int nargs;
 int index; /* the *external* index of this relation */
 REFCOUNT_T ref_count;
};

struct BlackBoxRelation {
 struct ExtCallNode *ext; /* external call info */
 int *args; /* an array of indexes into the varlist */
 int nargs;
 REFCOUNT_T ref_count;
};

union RelationUnion {
 struct TokenRelation token;
 struct OpCodeRelation opcode;
 struct GlassBoxRelation gbox;
 struct BlackBoxRelation bbox;
};

struct relation {
 union RelationUnion *u; /* intentionally a pointer */
 double residual;
 double multiplier;
 double nominal;
 struct gl_list_t *vars;
 dim_type *d;
 enum Expr_enum relop; /* type of constraint */
};

REFERENCES

99

4.7.3 EMBEDDED BLACK-BOX RELATION

FIGURE 18 Exploded View of Black-Box matrix

4.8 REFERENCES

[BKM88] A. Brooke, D. Kendrick, and A. Meeraus.GAMS - A user’s guide. Scientific
Press, 1988.

[WHMW79] A. W. Westerberg, H. P. Hutchinson, R. L. Motard, and P. Winter.Process
Flowsheeting. Cambridge University Press, 1979.

[Wol88] S. Wolfram.Mathematica, A System for Doing Mathematics by Computer.
Addison-Wesley Publishing, 1988.

REFERENCES

100

101

CHAPTER 5 LINEAR ALGEBRA

5.1 ABSTRACT

Some of the important aspects of solving large sparse linear systems of equations

of the form Ax = b are reviewed, in particular sparse matrix analysis. The

decomposition schemes often used to tackle these systems are also examined and

an attempt is made to explain the reasons for their inconsistent efficiency. A new

decomposition algorithm for sparse matrix analysis and factorization is presented

which seeks to overcome the difficulties. It is tested on problems with order up to

80,000 and over 390,000 nonzeros. The algorithms proposed can make many

existing LU factorization algorithms much faster, allowing them to be competitive

with the best algorithms available.

5.2 INTRODUCTION

At the base of most numerical techniques is the solution of a linear system of

equations of the form Ax = b. For many systems the matrix A is a sparse real nxn

matrix and may or may not possess desirable properties such as structural and

INTRODUCTION

102

numerical symmetry, positive definiteness, or diagonal dominance. Often this

linear system of equations has to be solved with a different matrix A (structurally

and numerically), and for different right hand sides b. The cost of solving these

linear systems in many cases dominates the cost of solving the problem in which

they are embedded. This cost tends to grow at least quadratically with n.

Using the model of Duff et al, [DER89], solving a system of linear equations may

be broken down into analyze, factor, and solve phases. The discussion here will be

limited to the direct methods for solving linear systems rather than the iterative

techniques, as this work seeks to address general problems which may not have

any of the desirable properties that make the latter class of solution techniques

applicable. It is well known that at the end of a solution of a system of linear

equations by direct methods that multiple right hand sides (possibly transposed)

may then be solved with minimal additional work. This is not true of the iterative

techniques. In addition, only systems where the matrix A is an nxn real

unsymmetric matrix will be considered.

In the analyze phase, the matrix A is normally first subjected to a maximal

transversal algorithm [DER89] which seeks to find a zero free diagonal. If a

maximal matching (otherwise known as an output assignment) cannot be found,

then the matrix A is structurally singular. A sparsity preserving reordering (SPR)

is normally applied to the matrix A. Some schemes employ the SPR dynamically

while factoring the matrix, while others employ an a priori SPR and some form of

pivoting to maintain numerical stability during factorization. Among the popular

reordering schemes are nested dissection [Geo73], minimum degree [GL80], P4

[HR72], SPK1 [SW84a], and the HP series of reorderings [LM77]. The Markowitz

criteria, originally developed in 1957, and its variants are popular dynamic

reordering schemes. Duff et al, [DER89] gives a detailed explanation of the

Markowitz scheme.

Most of these SPRs have a complexity of at least , where n is the order of

the matrix and is the number of nonzeros. The complexity of maximal matching

O nτ()

τ

INTRODUCTION

103

algorithms is also although an algorithm has been presented by Hopcroft

[HK73] which has somewhat better complexity. The multiplier for the SPRs is

significantly greater than that for the maximal matching algorithms. Some

analyze implementations subject the matrix to a block lower triangular permutation

(BLT permutation), which will find any irreducible blocks which may be present

in the matrix. The complexity of the block lower triangular permutation is

, once a zero free diagonal has been obtained.

The factor phase then proceeds using some variant of Gaussian elimination. The

popular variants include LU factorization, row-wise Gaussian elimination and

the Rank Implicit schemes of Stadtherr et al, [SW84b]. The frontal and multi-

frontal methods which were originally developed for diagonal or banded systems

are being actively explored by a number of workers, [MS95] [CS95] [DD93], and

the references contained therein. Some form of pivoting is used by most of the

schemes to maintain numerical stability while factoring; this is a straight forward

exercise in some methods and very difficult in others.

Once the lower and upper triangular factors have been found, the solution vector

x may be obtained by a forward substitution and backward elimination against a

right hand side vector b. For example, if LU factorization is used to factor the

matrix A, then Equation 25 through Equation 27may used to solve for the solution

vector x.

(24)

(25)

(26)

(27)

The cost of solving a single right hand side b is proportional to the number of

nonzeros in the LU factors. In practice this cost is significantly less than the

analyze and factor phases. If, however, multiple right hand sides need to be

solved, the cost may be non-trivial. Alvarado et al [ATE91] examine techniques

O nτ()

O n() O τ()+

A LU=

LUx b=

Ly b=

Ux y=

INTRODUCTION

104

for fast forward and backward substitution.

For most systems, the very expensive phases are the analyze and factor phases.

The need to perform pivoting for numerical stability when dealing with general

unsymmetric sparse matrices makes it difficult to put a tight a priori bound on the

cost of the factorization. The ma28 manual [Duf77] empirically found that it

required operations, where is the number of nonzeros in the factored

matrix to do a factorization.

Decomposition techniques have been proposed in the literature to attempt to

break the at least barrier associated with analysis and factorization.The

results have been mixed, with most proponents of decomposition resorting to the

apology:

Decomposition techniques, though often times slower than dealing with the problem
as a whole, are necessary when the problem size becomes large enough.

In addition, some of the decomposition schemes are not necessarily numerically

stable [DER89].

Given this preamble, the rest of this chapter is organized as follows:

• The key components of analyzing and factoring a sparse matrix are discussed.
This includes desirable matrix forms, sparsity preserving reorderings and piv-
oting for numerical stability.

• The decomposition schemes used in the literature are examined with the pur-
pose of understanding why they give inconsistent behavior.

• A new analyze and factor algorithm is presented, which also uses decomposi-
tion but attempts to avoid the problems associated with other decomposition
schemes. This algorithm is then tested on a number of large matrices and
using a number of sparse linear algebra packages.

It will be shown that, where the new algorithm can be exploited, much lower

reordering times and better reorderings are obtained with a consequent reduction

in fill, operation count and factorization times. Finally other research issues in

large scale linear algebra are discussed.

O τ2
n⁄ 

 
τ

O nτ()

SPARSE MATRIX ANALYSIS

105

5.3 SPARSE MATRIX ANALYSIS

5.3.1 BLOCK LOWER TRIANGULAR FORMS

In solving a set of linear equations of the form Ax = b, it is well known that

significant savings in computations can be made if the matrix A can be permuted

to block lower triangular form (BLT).

(28)

A matrix with order n, which can be represented in this form with n > 1, is said to

be reducible. Each diagonal submatrix Bii will be irreducible. The advantage of

using block lower triangular forms is that only the diagonal submatrices need to

be factored. Indeed, if a system of nonlinear equations , is to be

solved and a block lower triangular form may be found from the sparse Jacobian

matrix of the nonlinear system, then a Newton scheme need only be applied to

irreducible blocks with n > 1. Functions with one unknown variable may be

directly solved by some numerical root finding technique or symbolically.

Very fast algorithms exist for obtaining a block lower triangular form, provided

that a maximum transversal exists. These include in the algorithms of Sargent and

Westerberg [SW64] and Tarjan [Tar72]. The complexity has been shown to be

.

If the reducibility of the system is defined as where

PAQ

B11

B21 B22

˙ ˙

BN1 BN2

˙

BNN

=

f x() 0 x ℜn∈,=

O n() O τ()+

γ

SPARSE MATRIX ANALYSIS

106

(29)

(30)

a measure of the coupling of a linear system may be obtained. Arguably, it is this

metric which determines the work involved in solving a linear system Ax = b,

rather than n or . is bounded between 0 and 1, with higher values indicating

greater coupling. The following data is extracted from a number of sources and

gives an idea of the reducibility of different matrices.

The matrices and the reducibility data for group A were obtained from [DR93].

The B matrices and data were obtained from [TV96]. The C group of matrices

were obtained from models developed within the ASCEND system.

Table 5: Matrix Reducibility

Case n Bmax

A.2 541 541 1.0 4285

A.10 1176 1174 1.0 18552

A.16 2021 1500 0.742 7353

A.19 4929 4578 0.93 33185

B.1 37837 25351 0.67 412302

B.2 77214 46328 0.60 633720

B.3 176642 93620 0.53 986792

B.4 396213 63394 0.16 3276552

C.1 (isom a) 33083 19995 0.61 105102

C.2 (isom b) 33083 21 6.35x10-4 105102

C.3 (4cols a) 14388 2977 0.207 46321

C.4 (4cols b) 14388 12104 0.841 46396

γ
Bmax

n
-------------=

Bmax max

i

order Bii()()=

τ γ

γ τ

SPARSE MATRIX ANALYSIS

107

The results for matrices isom.a and isom.b are especially remarkable as for a single

change in the specification of the problem (the degrees of freedom were swapped

around thus converting what was an initial value problem into a boundary value

problem) the size of the largest block increased from 21 to 19995. In the context of

chemical engineering problems, it is thought that will tend towards 1, as plants

become more coupled through heat integration.

5.3.2 SPARSITY PRESERVING REORDERINGS

Sparsity preserving reorderings (SPR) are used, either for minimizing fill in, or to

confine fill in, when factoring a sparse matrix. The SPR algorithms are applied to

the matrix either a priori or dynamically during factorization. The Markowitz

criterion is a dynamic reordering scheme. Some of the a priori techniques that

have been developed are:

• One-way dissection and nested dissection with has roots in finite-element sub-
structuring, [Geo73]. This is related to tearing which will be discussed in some
detail later.

• minimum degree and its multilevel variants.
• P4 and P5.
• SPK1 [SW84a], [Woo82].
• The HP series of reorderings.

A detailed discussion of sparsity preserving reordering algorithms will not be

attempted here, and the above references as well as Chapter 7 of the excellent text

by Duff et al, [DER89] should be consulted. It suffices to mention that sparse

matrix reorderings fall into the class of NP-complete problems, thus the

reordering algorithms are heuristic. The complexity of reordering varies with the

different algorithms but has been found to be typically . For large matrices

these reorderings becomes very expensive, while often failing to yield desirable

results.

The SPK1 algorithm as described by Wood in his thesis is presented in the

Appendix for completeness. It is representative of the other SPRs which have

been successful when applied to small unsymmetric matrices. The important

γ

O nτ()

SPARSE MATRIX ANALYSIS

108

point to note about the algorithm is the use of column and row counts in decision

making, particularly in the tie breaking criteria used in step 4. For large matrices

with a lot of natural structure and repeated structures, there will be many rows

and columns with identical row and column counts; any incidence count tie

breaking rules then quickly fail.

In addition, most SPR algorithms have some greedy element (as a global

optimization is prohibitively expensive). Greedy heuristics along with failure of

tie breaking rules very quickly lead to bad decisions which propagate and lead to

poor reorderings. Empirically it has been observed that the best the upperbound

on problem size for SPRs such as SPK1 may be as low as 900 to 1200 rows.

Stadtherr and Wood [SW84a] give detailed comparisons of several reordering

techniques applied to unsymmetric matrices. They report that their BLOKS

algorithm (one motivated by chemical engineering problem structures) which

restricts reordering to particular regions of the matrix, consistently gave the

lowest reordering times. The reordering times for SPK1 for a few problems are

shown in Table 6. These times are considered to be prohibitive.

The Markowitz criteria has also been observed to give very long run times on

large matrices [DR93]. ma28 uses a Markowitz search whereas the second

generation code ma48 uses a Zlatev type search [DR93].

5.3.3 PIVOTING FOR NUMERICAL STABILITY

During a LU factorization, it is almost always necessary to perform some form of

pivoting to maintain numerical stability. If a zero or near zero diagonal element is

encountered at any stage of the LU factorization algorithm, it is necessary to

Table 6: Reordering Times

n nnz Time (sec)

4Cols 12456 44800 20.89

10Cols 31140 115830 119.98

Isom_30K 19995 105102 27.73

SPARSE MATRIX ANALYSIS

109

exchange that element with an element of larger value. In the limit of full pivoting,

at each step, the largest element in the remaining submatrix would be chosen and

permuted to become the new pivot. In partial pivoting, the largest element in each

row (or column) is chosen as the new pivot. Pivoting, full or partial, can be an

expensive process. In the case of full pivoting the entire remaining submatrix

would need to be searched for the largest element. This process would have to be

repeated for every step of the factorization. In addition, the desirable structures

created from an a priori sparsity preserving reordering may be destroyed by

pivoting. To offset these difficulties threshold pivoting is normally employed.

Threshold pivoting is a relaxation of partial pivoting that requires at every step

the following relationship be satisfied:

(31)

where u is a suitable value in the range . If then the partial

pivoting criteria as shown below is obtained:

(32)

Equation 31 essentially states that a pivot is sought which is at least some fraction,

of the largest element to the right of the diagonal in the current row. If the current

diagonal element does not satisfy this criterion, then a column swap must be

performed to place an element which does satisfy this criteria in the diagonal

position. A value of is used by many workers.

5.3.4 TEARING

The solution of problems by tearing is an approach by which part of the given

problem is torn away, so that the remaining subproblems can be analyzed

independently [Haj80]. Most workers who have employed tearing have pushed

this concept further; they solve the now independent subproblems and then

akk
k

u akj
k≥ j∀ j k>, ,

0 u< 1≤ u 1=

akk
k

akj
k≥ j∀ j k>, ,

u 0.1=

SPARSE MATRIX ANALYSIS

110

attempt to combine their solutions with the torn-away part in order to obtain the

solution for the overall problem. The literature on tearing (or decomposition) is

essentially divided into work concerned with how to best tear a problem so that it

possesses certain desirable properties and work concerned with solving a

problem which has been torn. A detailed discussion of the former is presented in

Chapter 6.

Tearing is also known by the name diakoptics in the electrical engineering

literature and was apparently first introduced by Kron in 1951 [Kro63]. It is a

widely used technique in chemical engineering practice where it has been applied

to solving flowsheets in a sequential modular manner [WHMW79]. Sequential

modular solving amounts to tearing at the nonlinear level of the problem. Hajj

claims that tearing and partitioning are essentially identical operations and that

tearing is just a special form of partitioning a problem. The benefits of tearing are

potentially large. The reasons often cited are:

• the smaller subproblems can help to break the and worse behavior
associated with many systems by making n small.

• the size of the problem, even with sparse matrix techniques, requires that the
problem be decomposed to accommodate limited computing resources.

• having the problem decomposed allows for parallel processing of the sub-
problems.

• latency can be exploited; this is peculiar to time-analysis of electrical circuits,
where the slowly changing subproblems need not be re-analyzed at each time
step.

Many approaches have been used in the literature to obtain different structures

from tearing. These include performing tearing so as to obtain a bordered block

diagonal (BBD) problem, where there are many small blocks of even size and a

narrow border. The resulting matrix is then factored using block factorization

schemes such as the F1, F2, or F3 factorization schemes of George, [Geo74], [Haj80],

[Ior90]. Other workers have performed tearing recursively, obtaining multiple

nested borders. This results in a recursive bordered block diagonal (RBBD) matrix

[Vla85,] [NNA90], [NNA91], [Mor89]. The problem is then solved using a

recursive block factorization scheme.

O n
2

 
 

SPARSE MATRIX ANALYSIS

111

All of these techniques depend upon the formation of the Schur complement and

so they require that the border (or borders in the case of the RBBD schemes) be

kept narrow and the diagonal blocks nonsingular. A notable exception is the

balance bordered decomposition scheme of Zecevic and Siljak [ZS94], whose

algorithm is designed for parallel processing only. They thus seek a single border

which is of the same size as each of the diagonal blocks.

The success of the above techniques has been mixed. Vlach reports higher fill than

without tearing. Asai et al. report much lower fill. Almost all workers find that

there is an increase in factorization time when using single processors, and most

FIGURE 19 Bordered Block Diagonal and Recursive Bordered Block Diago-
nal Matrices.

resort to the apology of decomposition given on page 104. Another open question is

the issue of the numeric stability of block factorization schemes as aptly raised by

Duff et al. [DER89], as well as the applicability of the algorithms to large

unsymmetric matrices. The matrices tested in the literature reviewed in this

section are of relatively low order and often structurally and numerically

symmetric.

5.3.5 BLOCK FACTORIZATION

The mixed results of decomposition schemes are puzzling. In this section an

attempt is made to explain why these schemes do not perform uniformly, in

particular why block factorization schemes based on the formation of the Schur

A21 A22

A12

0A11

0

A22

A33

A21 A22

A12

0

0

SPARSE MATRIX ANALYSIS

112

complement fail. George, describes the F1, F2 and F3 factorization schemes as

follows:

F1 factorization

(33)

F2 factorization

(34)

F3 factorization

(35)

Consider the F2 factorization. The following systems of linear equations need to

be solved:

(36)

(37)

If the region A11 is very reducible (see Figure 19), then each of the diagonal blocks

may be factored separately. If multiple processors are available, then these may

A11 A12

A21 A22

L11

L21 L22

U11 U12

U22

=

A11 A12

A21 A22

A11

A21 A22

I U12

I
=

A11 A12

A21 A22

I

L̃21 I

A11 A12

Ã22

=

A11U12 A12=

A22 A21U12+ A22=

NEW ALGORITHMS

113

done in parallel. This makes block factorization an attractive approach. However,

factorization of A11 is not necessarily numerical stable. Implicit in the factoring of

A11 is the inability to perform pivoting in the border columns A12. It is then

possible for the matrix A11 to be numerically singular whereas the overall

problem is nonsingular. This problem is accentuated with the RBBD schemes due

to the presence of multiple borders, in which pivots may not be selected.

The matrix needs to be formed (implicitly or otherwise) as well as the Schur

complement . Now during factorization will become denser than A. If the

order of is low, dense code may be used to factor it. If the order is high, then

sparse code must be used. However, with up to an order of magnitude greater

density, the reordering of will be very expensive. If it is not reordered then it

could fill in completely. The RBBD schemes control the size of any given border,

thus offsetting the above dilemma, but require significantly more complicated

data structures to manage nested borders.

5.4 NEW ALGORITHMS

5.4.1 MOTIVATION

In the previous sections the analyze, factor and solve models were explained. It is

clear that the analyze and factor phases are the most expensive. A number of

observations have been made about these processes, motivating the development

of the algorithms which will be presented.

• Sparsity preserving reorderings (SPR) are expensive. For large matrices the
analyze time can be significantly greater than the factorization time because of
the or worse complexity.

• SPR are based on heuristics. In particular most of these algorithms employ
row and column counts in their decision making process. They also depend on
tie breaking rules. For large problems, or problems with a lot of structure, the
tie breaking rules quickly fail. Bad decisions are made which then propagate
throughout the rest of the reordering.

These factors lead to two (2) main results: slow reorderings and bad reorderings.

U12

A22 A22

A22

A22

O nτ()

NEW ALGORITHMS

114

Bad reorderings lead to much greater fill, resulting in increased memory for

factorization, much higher operation count, longer factorization times and,

perhaps worst of all, poor solution residuals resulting from numerical round-off

and bad pivot selection.

Additionally, the following conjecture is made: The cost of factoring an irreducible

matrix A should be only nominally more expensive than that of factoring a matrix

bordered block diagonal matrix A’, where the region A11 is highly reducible.

5.4.2 STATEMENT OF ALGORITHM

Given the above observations and the difficulties associated with block

factorization the following simple algorithm was developed which uses as input

an irreducible matrix A.

1. Attempt to output assign the matrix A using a maximal transversal algorithm.
If a maximal transversal cannot be found, quit; the matrix is structurally sin-
gular.

2. Find a set of tear variables and/or connection equations by some suitable tech-
nique, such that, when these columns/rows are removed from the matrix A,
the resulting submatrix A11 is highly reducible.

3. For each variable in the tear set, perform a symmetric permutation of the vari-
able and its matching row to the lower right hand corner of the matrix. This
will create a border corresponding to A12, A21 and A22.

4. Using a suitable algorithm find independent diagonal blocks within A11. If
any of the induced blocks are above a predetermined size nmax, denote this
region as A and goto 2. The choice of algorithm will result in a recursively bor-
dered block lower triangular (RBBLT) matrix or a recursively bordered block diagonal
(RBBD) matrix.

5. Reorder each resulting induced block using a sparsity preserving reordering
algorithm.

6. Perform a LU factorization on the entire matrix, using a modified threshold pivot-
ing strategy.

7. stop.

There are number of features of the algorithm which require explanation. If a

matrix A is irreducible and the order n is large, then any attempt to reorder the

entire matrix will be confronted with the difficulties described in the discussion of

NEW ALGORITHMS

115

sparsity preserving reorderings (SPR). If, however, the SPR can be restricted to

certain regions of the matrix which are below some threshold size nmax known to

give good reorderings, then these difficulties may be overcome.

The algorithm described attempts to find these regions to which reordering may

be restricted, by inducing separability of the matrix A. This is done in Step 2 by

removal of certain rows and their matching columns leaving the induced region

A11 reducible. The matchings are a product of the output assignment done in

Step 1, which is necessary to establish the structural rank of the problem.

Choosing the rows and columns that are to be removed is a tearing problem.

Algorithms for choosing such rows and columns will be presented in detail in

Chapter 6.

Step 3 involves finding independent diagonal subblocks. The purpose of this step

is two-fold. Firstly, by requiring that the induced subblocks of A11 (such as A11,

A22 and A33 in Figure 19) be disjoint, then any reordering applied to one block

will not affect the reordering of another block. Secondly, it establishes whether

any such block is above the threshold nmax; if so then the algorithm may be

applied recursively to these blocks. This step allows some flexibility in the

algorithm that may be used to find the independent blocks. If a block lower

triangular permutation (BLT) algorithm as described in a previous section is used,

a recursive bordered block lower triangular (RBBLT) or an approximately

recursive bordered block bordered (RBBD) matrix will be obtained. If a

partitioning algorithm as described by Sangiovanni-Vincentelli et al. [SVLK77] is

used at this phase, a RBBD matrix will be obtained. The independent diagonal

submatrices found by a BLT algorithm will be irreducible.

NEW ALGORITHMS

116

FIGURE 20 A recursively bordered block lower triangular matrix

The independence of the induced blocks may allow reorderings to be done in

parallel, if multiple processors are available. In addition, different SPRs may be

applied to different blocks.

Reordering times will be faster. If it is assumed that after the removal of a set of

rows and their matching columns m blocks of equal size are induced, then a very

simplistic analysis of the reordering time gives

(38)

which is an m-fold reduction over the undecomposed scheme.

These benefits are not without their cost; the border(s) A21 and A12 that are

created by the removal of the rows/columns and their matching columns/rows

respectively are not reordered. In principle the region(s) A22 should be reordered

if there are any superdiagonal elements. The above steps make up the analysis

phase of the problem.

In the factorization phase the entire matrix is factored. The threshold pivoting

criteria for maintaining numerically stability is modified to take into account the

presence of multiple nested borders. At any stage of the factorization the column

with the lowest index l (the column nearest to the diagonal) that satisfies the

threshold pivoting criteria in Equation 31 is chosen as the new pivot. This ensures

that structures developed during the analysis phase are disturbed as little as

A21 A22

A12

0

m O
n
m
---- τ

m
----⋅ 

 ⋅ 1
m
---- O nτ()⋅=

NUMERICAL EXPERIMENTS

117

possible. Since pivoting is always allowed, the algorithm presented is no less

numerically stable than regular sparse LU factorization. The block factorization

schemes have no such guarantees. More elaborate pivoting schemes were

considered, such as on the fly column-splitting which changes the matrix order, in

order to preserve the structures found in the analysis phase. The difference in

performance on the problems tested was negligible.

5.5 NUMERICAL EXPERIMENTS

5.5.1 TEST PROCEDURE

The algorithm presented in the previous section was tested on a number of

matrices, primarily derived from chemical engineering problems. The

classification and source of the matrices is given in the following table. For each

matrix the source of the matrix, its order and number of entries, as well as a brief

description is given. The very extensive test suite from the Harwell-Boeing

collection [DGL92] could not be exploited as information required to assist the

tearing selection is not available. In the following chapter a proposal is made for a

new matrix format for communicating matrices and for an augmented

application programming interface (API) necessary to allow efficient LU

factorization.

Table 7: Test Matrices

Case Identifier n Description

1 Isom_30K 19995 105102 5.256 1.000 Rigorous boundary value formu-
lation of a pentane isomerization
reaction with 200 time steps. 4
reacting species in 8 components.

2 4Cols 12456 44800 3.720 0.945 4 Mass balance distillation col-
umns with 9 components. 30 trays
per column, with the last column
bottoms recycled to the first col-
umn.

3 10Cols 31140 115830 3.720 0.947 As in 2, but with 10 columns.

τ ρ γ

NUMERICAL EXPERIMENTS

118

All of the test matrices except rdist3a and lhr04 were obtained from models

developed in the ASCEND system. Information to assist tearing for the rdist3a

and lhr04 matrices was not available.

5.5.2 CODES

In order to test the algorithms proposed, five (5) direct (rather than iterative)

sparse matrix solvers were used. These are rankikw, LU1SOL, ma28, ma48 and

umfpack1.0. A brief description of the codes tested is given in the next few

sections.

5.5.2.1 rankikw

rankikw is an implementation of the RANKI factorization algorithm which is

part of the ASCEND system and is based on the work by Stadtherr and Wood

a. 3 large blocks, the largest of order 20316

4 BiqEquil 8986 54389 6.046 0.440 Rigorous distillation column with
30 trays, and 9 components.

5 PPP 14698 64023 4.356 0.558 Rigorous distillation column (pro-
pylene splitter) with 164 trays and
3 components.

6 Wood7 6858 33776 4.925 0.512 Complex hydrocarbon flowsheet
using rigorous thermodynamics,
based on example 7 in [Woo82].

7 Wood8 17509 132081 7.543 0.518 Complex hydrocarbon flowsheet
using rigorous thermodynamics
and 15 components. Based on
example 8 in [Woo82].

8 Ethyl60 59080 294293 4.981 0.343a Simplified model of ethylene
plant.

9 Ethyl80 79554 398163 5.004 0.631 As in 8 but with more stages and
different degrees of freedom.

10 rdist3a 2398 61896 25.812 1.000 Reactive distillation column from
J. Mallya [1994]

11 lhr04 4101 80755 19.19 0.861 Light hydrocarbon recovery pro-
cess from J. Mallya [1994]

Table 7: Test Matrices

Case Identifier n Descriptionτ ρ γ

NUMERICAL EXPERIMENTS

119

[SW84b]. The underlying sparse data structures were coded by Karl Westerberg,

Joseph Zaher and Benjamin Allan. The reordering algorithm is the SPK1

algorithm of Stadtherr and Wood as implemented in the ASCEND system.

Development continues on this code.

5.5.2.2 LU1SOL

LU1SOL is a very efficient implementation of a rowwise Gaussian elimination

coded by Stadtherr and Wood. This code does not save the LU factors but solves

immediately for the solution vector x. It was developed in 1984. For the tests, the

factorization code was culled from the spar2pas package and fed with a SPK1

reordered matrix from the rankikw driver.

5.5.2.3 ma28

ma28 [Duf77] is a very popular code from the Harwell Subroutine Library and

uses standard Gaussian elimination with pivoting controlled by the Markowitz

criteria. Pivots must satisfy a threshold pivot requirement. The number of rows to

be searched in establishing the Markowitz counts can be limited by a parameter

NSRCH. This code has many options and only the defaults were used except for

the NSRCH parameter. The default value for NRSCH is 32678. The factorization

time for this code should be compared with the total reorder and factorization for

the rankikw and LU1SOL codes because of the Markowitz based pivoting. This

code has provision to do a fast factorization, in which the pivot sequences from a

previous factorization is used.

5.5.2.4 ma48

ma48 [DR93] was designed to replace ma28. It uses columnwise Gaussian

elimination with capability to switch to dense code at the later stages of

factorization. It is fundamentally different from ma28 in having distinct analyze

and factor phases. Like ma28, this code has many options inclusive of a NRSCH

parameter. The default for NRSCH in ma48 is 3. A fast factorization mode is

provided.

NUMERICAL EXPERIMENTS

120

5.5.2.5 umfpack1.0

umfpack1.0 is the newest of the codes tested, being developed in 1995. It is uses

an unsymmetric multi-frontal code algorithm developed and implemented by

Davis and Duff [DD93]. It uses only dense kernels and uses a dynamic Markowitz

search for pivot selection, and the search may be limited with an NSRCH

parameter as in the case of ma28. The default is 4. It does not use an a priori

reordering. Like ma28, it has a fast factorization mode. The times for this code are

directly comparable with the ma28 code.

The rankikw code is implemented in the C language and can make full use of the

dynamic memory allocation features of the language. In addition this code uses

element pooling so as not to have to make expensive calls on the operating system

for memory. The other codes are implemented in FORTRAN. ma28, ma48 and

LU1SOL had their memory allocated from the C based rankikw driver.

umfpack1.0 was called with its own FORTRAN driver. All of the codes were

provided with as much memory as recommended by their documentation and

then some, in most cases an order of magnitude higher.

For LU1SOL and rankikw, two (2) sets of numbers are reported. The first is the

data for these codes using the standard reordering and factorization schemes. The

second set are the best times for these codes obtained using the new tearing and

reordering (TEAR_DROP) algorithm. A value of 1000 or 2000 for nmax was used for

the TEAR_DROP algorithm. For ma28 and ma48 three (3) sets of raw data are

reported. These correspond to values for NSRCH of 4, 10 and 1000 respectively.

During preliminary runs with ma28 using the default NSRCH parameter of

32678, the run times were horrendously long. It was then decided to investigate

the effect of the NSRCH parameter on the ma28 and ma48 codes. However, for

the data summaries, only the data for a NSRCH of 4 is given.

The timing results are cpu times in seconds obtained on a HP9000/715 with a

maximum available memory of 256 MB. Wherever available the following

information is reported:

NUMERICAL EXPERIMENTS

121

• reordering time (cpu seconds).
• factoring time (cpu seconds).
• the number of elements in the factored matrix.
• operation count.

5.5.3 TEST RESULTS

In comparing the results, the eventual application of the codes is important. In the

context of solving an nxn system of nonlinear equations using Newtons method

or some variant, it is well known that approximately 7 to 10 Newton iterations are

normally required for solution when starting from a good initial point. From an

excellent initial point (as in slightly perturbed systems, which occurs during

numerical integration), convergence can be achieved in as few as 2 - 3 Newton

iterations. For the former case the cost of a SPR can be amortized over the 7 - 10

steps. Due to the significant changes in data over a small number of iterations, it is

unlikely that a pivot sequence can be used between factorizations. For this

problem class, codes that use only dynamic pivoting such as ma28 and

umfpack1.0 are less attractive. In the case of sequential numerical integration

with many iterations, (it is not uncommon to have hundreds of iterations, with

slowly changing data), the cost of reordering may be negligible compared to the

total factorization time. The slowly changing nature of data also suggests that a

pivot sequence may safely be reused (with appropriate safeguards), which favors

a code that has these capabilities. The detailed results are given in Section 5.7.2.

NUMERICAL EXPERIMENTS

122

In Table 8 the performance of the LU1SOL code with the standard SPK1

reordering and the TEAR_DROP algorithm is shown. The TEAR_DROP drop times

include all the time taken for tearing and reordering. In all cases the analyze and

factor times are faster with the TEAR_DROP algorithm, in some instances by an

order of magnitude. The number of fills and the operation counts are also always

lower.

Similar results are obtained for the rankikw code (see Table 9). However, the

improvement in factorization times was not as significant nor as consistent as the

LU1SOL code. This is largely due to an expensive relabelling operation intrinsic

to the RANKI algorithm.

Table 8: Normal Reorder vs. TEAR_DROP

LU1SOL & SPK1 LU1SOL & TEAR_DROP

reorder factor total reorder factor total

Isom_30K 27.73 16.35 44.08 5.29 0.87 6.16

4Cols 20.89 22.39 43.28 2.53 2.93 5.46

10Cols 119.98 114.78 234.76 9.81 7.27 17.08

BigEquil 1.9 4.7 6.60 0.46 0.49 0.95

PPP 10.27 0.41 10.68 1.9 0.38 2.28

Wood7 1.5 0.24 1.74 0.42 0.18 0.60

Wood8 13.38 26.47 39.85 2.34 4.36 6.70

Ethyl60 50.67 13.22 63.89 8.78 2.31 11.09

Ethyl80 204.94 32.35 237.29 15.49 3.95 19.44

NUMERICAL EXPERIMENTS

123

In Table 10, a comparison is made among the analyze and factor times for the five

codes tested. In this table the total analyze and factor times are reported. For the

codes which have a distinct analyze phase (rankikw, LU1SOL and ma48) the

analyze time is provided in parentheses. A direct comparison of the codes is not

intended but perhaps inevitable. ma48 is the fastest of the codes for both a one-off

factorization and as a linear algebra code to be used as a subproblem in solving a

nonlinear system of equations. The LU1SOL code using the TEAR_DROP analyze is

the second fastest code using the same criteria. Ignoring the rankikw code, all

codes are within a factor of 4 of the fastest code.

One conclusion that may be drawn is that the TEAR_DROP algorithm, when

applied to a code that can take advantage of better a priori reorderings (such as

rankikw and LU1SOL) can make that code competitive with state of the art

codes.

Table 9: Normal Reorder vs. TEAR_DROP

rankikw & SPK1 rankikw & TEAR_DROP

analyze factor total analyze factor total

Isom_30K 27.73 37.55 65.28 5.45 40.61 46.06

4Cols 20.89 14.51 35.40 2.53 9.57 12.10

10Cols 119.98 96.03 216.01 9.81 51.8 61.61

BigEquil 1.9 6.60 8.50 0.49 2.76 3.25

PPP 10.27 10.87 21.14 1.89 7.73 9.62

Wood7 1.51 1.16 2.67 0.31 1.10 1.41

Wood8 13.07 38.8 51.87 2.34 13.4 15.74

Ethyl60 50.67 55.15 105.82 7.14 53.37 60.51

Ethyl80 206.52 386.19 529.71 15.65 270.68 286.33

NUMERICAL EXPERIMENTS

124

Another comparison that is worthwhile is the performance of a code that uses

traditional sparse matrix technology (LU1SOL) versus a code that uses multi-

frontal techniques. The argument for multi-frontal schemes is their ability to make

use of dense kernels and to avoid the indirect addressing associated with

traditional sparse codes [DD93], [ZMDS]. It is claimed by the proponents of

multi-frontal schemes that it is this indirect addressing that results in the poor

performance of traditional sparse codes. The comparable performance of

LU1SOL with good reorderings against umfpack1.0 suggests that the ill effects of

indirect addressing may be severely overestimated (at least on workstations with

similar architecture to the HP9000/715)

Hajj, [Haj80] defines tearing as an approach by which part of the given problem is torn

away so that the remaining subproblems can be analyzed independently. It is then

a. the numbers in parentheses are the a priori analyze times where applicable.
b. ma28 with NSRCH = 10, actually had a lower factorization time.

Table 10: Analyze and Factor Time summarya

ra
n

k
ik

w
 &

T
E

A
R

_D
R

O
P

L
U

1S
O

L
 &

T
E

A
R

_D
R

O
P

m
a2

8
N

SR
C

H
 =

 4

m
a4

8
N

SR
C

H
 =

 4

u
m

fp
ac

k
1.

0

Isom_30K (5.45) 46.06 (5.45) 6.16 4.56 (1.32) 1.67 2.64

4Cols (2.91) 12.48 (2.53) 5.46 6.47 (6.28) 8.24 5.97

10Cols (9.81) 61.61 (9.81) 17.08 18.85b (22.65) 29.49 18.35

BigEquil (0.49) 3.25 (0.46) 0.95 0.88 (0.39) 0.54 1.59

PPP (1.89) 9.62 (1.90) 2.28 1.42 (0.45) 0.59 2.08

Wood7 (0.31) 1.41 (0.42) 0.60 0.29 (0.25) 0.34 1.10

Wood8 (2.34) 15.74 (2.34) 6.70 3.44 (2.79) 3.62 5.03

Ethyl60 (7.14) 60.51 (8.78) 11.09 5.69 (2.52) 3.22 7.47

Ethyl80 (15.65) 286.3 (15.49) 19.44 N/A (4.24) 5.25 9.87

NUMERICAL EXPERIMENTS

125

obvious that, by restricting analysis to a few rows via the NSRCH parameter, the

Markowitz based codes are practicing implicit tearing. A simple interpretation of a

restricted Markowitz scheme is that the matrix is divided into m independent

parts, where m = n/NSRCH. The saving in analysis time is then that given by

Equation 38. The simple heuristic of restricting searches to a few row or columns

has been very successful on the problems tested. However, very inconsistent

results can sometimes be obtained, as shown for the lhr04 and rdist3a matrices

(see Table 11)

A surprising result is the much higher fill that is incurred with the a priori

reordering schemes using the SPK1 reordering algorithm as compared to the

dynamic1 reordering schemes (see Table 12). This same trend is observed when

comparing operation counts. This suggests that the SPK1 algorithm may not be as

efficient as originally thought, even when restricted to reordering blocks of size

nmax. A definite extension of this work is re-examination of the above results with

different reordering algorithms. This could include the minimum degree

algorithm and even a static version of the Markowitz criteria; the reordering

algorithm would assume that no numerical pivoting would take place and, at any

1. ma28, ma48 and umfpack1.0 use dynamic reordering.

Table 11: Effect of NSRCH on ma48

lhr04 rdist3a

NRSCH analyze factor total analyze factor total

4 35.38 20.99 56.37 53.07 33.66 86.73

10 33.49 18.49 51.98 49.54 26.63 75.84

40 29.14 15.73 44.87 15.86 38.53 54.39

70 24.43 15.5 39.93 21.68 31.14 52.82

100 15.72 31.48 47.2 14.25 33.77 48.02

1000 62.27 7.12 69.39 62.24 20.38 82.58

NUMERICAL EXPERIMENTS

126

given stage of the reordering, should be made to operate on a region with some

maximum size nmax which would need to be determined.

In fact, a major potential area of research lies in total re-evaluation of the sparsity

preserving reordering technology. A careful examination of the work by Stadtherr

and Wood [SW84a] shows that some of the reordering schemes developed were

not tested because of their prohibitively long execution times. If, however, the cost

of reordering can be controlled by restricting it to certain regions of a matrix, as is

done in this work, then more sophisticated reordering schemes may be examined.

The potential then exists for research into an entire class of reordering algorithms

where each algorithm aggressively seeks to minimize operation counts but which

should never be invoked on submatrices above a threshold size.

Table 12: Nonzeros in Factors

rankikw &
TEAR_DROP

LU1SOL &
TEAR_DROP

ma28 ma48 umfpack1.0

Isom_30K 1.95e5 3.08e5 1.08e5 2.36e5 1.23e5

4Cols 4.04e5 6.00e5 9.67e4 3.23e5 3.68e5

10Cols 1.07e6 1.43e6 2.48e5 8.67e5 1.05e6

BigEquil 1.07e5 1.45e5 3.30e4 7.23e4 8.81e4

PPP 1.40e5 1.24e5 4.50e4 8.85e4 9.10e4

Wood7 6.53e4 7.82e4 6.76e4 4.85e4 5.78e4

Wood8 4.00e5 5.04e5 9.89e4 2.70e5 3.42e5

Ethyl60 1.06e6 9.08e5 2.61e5 4.35e5 4.11e5

Ethyl80 1.76e6 1.04e6 N/A 6.14e5 5.32e5

DISCUSSION

127

5.6 DISCUSSION

The difficulties with the current approaches to solution of large unsymmetric

sparse systems of linear equations have been highlighted. Arguments have been

presented that attempt to explain why the block factorization schemes have not

been uniformly successful for the solution of these problems. An analyze/factor

algorithm which uses decomposition only at the analysis phase was presented.

The algorithm is simple and has been driven by some observations about the

irreducibility of sparse matrixes. By temporarily inducing separability in the

problem through tearing, sparse matrix reorderings can be applied to much

smaller regions. This results in much better overall reorderings, much lower

reordering times, and a reduction in fill, operation counts and factorization times.

Numerical stability is preserved as the technique does not attempt to use block

factorization schemes. The algorithm is competitive with current state of the art

codes.

Perhaps the most important conclusion of this work is tearing (implicit or explicit)

must be done when dealing with large scale problems. This tearing can be very

effectively and safely done at the analysis phase, rather than at the factorization

phase of sparse linear algebra.

5.7 APPENDIX

5.7.1 SPK1 ALGORITHM

The algorithm described below is the SPK1 sparsity preserving reordering

algorithm as described by Wood in his thesis, [Woo82]. It involves two auxiliary

routines, forward and backward triangularization, which were not presented in

that work but which may be found in [SW84a]. They are included here for

completeness.

To forward triangularize

APPENDIX

128

1. Search for a row with a row count of one. Remove that row and the column in
which the one nonzero occurs and put it in the first open position in the reor-
dered matrix. If all row counts are greater than one then go to 3.

2. Adjust the row counts to account for the removal of the column in step 1.
Return to 1.

3. End.

To backward triangularize

1. Search for a column with a column count of one. Remove that column and the
row in which the one nonzero occurs and put it in the last open position in the
reordered matrix. If all column counts are greater than one then go to 3.

2. Adjust the column counts to account for the removal of the row in step 1.
Return to 1.

3. End.

To reorder

1. Forward triangularize, backward triangularize.
2. Partition matrix, put irreducible blocks on block stack.
3. Process first block on stack, if no more blocks go to 8.
4. Select a spike and put it in the spike stack.

- The spike is selected from a row with minimum row count, ties are broken by
summing the column counts of the columns that intersect with rows of mini-
mum row count; the row with the largest sum is selected.

- The column with the smallest column count in the row selected is assigned to
that row as the next pivot; the remaining columns in the row are placed in
decreasing order of their column counts on the spike stack.

5. Forward triangularize
- if a row with no nonzeros is found, assign it to the latest spike column entry
on the stack, pop the spike column from the stack; if the row is the last row in
the block go to 7.

6. Go to 4.
7. Pop block from the block stack and go to 3.
8. End.

APPENDIX

129

5.7.2 TEST RESULTS

The following tables provide the raw data obtained from the comparisons of the

various sparse linear algebra packages.

APPENDIX

130

Table 13: Isom_30K

n = 19995 Analyze Factor Total # Ops nnz(F)

rankikw 27.73 37.55 65.28 18.07e6 2.517e6

rankikw & TEAR_DROP 5.45 40.61 46.06 5.91e5 1.952e5

LU1SOL 27.73 16.35 44.08 48.56e6 2.60e6

LU1SOL & TEAR_DROP 5.29 0.87 6.16 2.20e6 3.083e5

ma28 4 4.56 4.56 1.250e5 1.084e5

ma28 10 4.57 4.57 1.226e5 1.084e5

ma28 1000 9.89 9.89 1.189e5 1.081e5

ma48 4 1.32 0.35 1.67 2.329e5 2.359e5

ma4810 1.53 0.35 1.88 2.329e5 2.359e5

ma48 1000 40.4 0.36 40.76 2.344e5 2.363e5

umfpack1.0 2.64 2.64 2.57e5 1.235e5

Table 14: 4Cols

n = 12456 Analyze Factor Total # Ops nnz(F)

rankikw 20.89 14.51 35.4 10.36e6 8.498e5

rankikw & TEAR_DROP 2.91 9.57 12.48 3.96e6 4.039e5

LU1SOL 20.89 22.39 43.28 66.14e6 1.703e5

LU1SOL & TEAR_DROP 2.53 2.93 5.46 9.363e6 6.000e4

ma28 4 6.47 6.47 4.420e6 9.670e4

ma28 10 9.82 9.82 8.162e6 1.066e5

ma28 1000 22.72 22.72 5.622e6 1.010e5

ma48 4 6.28 1.96 8.24 17.58e6 3.234e5

ma4810 5.85 1.75 7.60 18.233e6 3.234e5

ma48 1000 49.9 1.20 51.1 19.239e6 2.731e5

umfpack1.0 5.97 5.97 27.3e6 3.675e5

APPENDIX

131

a. The fastest time was attributed to LU1SOL based on reporting the times for
NSRCH = 4.

Table 15: 10Cols

n = 31140 Analyze Factor Total # Ops nnz(F)

rankikw 119.98 96.03 216.01 82.23e6 2.9328e6

rankikw & TEAR_DROP 9.81 51.8 61.61 11.41e6 1.0651e6

LU1SOL 119.98 114.78 234.76 313.9e6 5.787e6

LU1SOL & TEAR_DROP 9.81 7.27 17.08 22.70e6 1.430e6

ma28 4 18.85 18.85 13.432e6 2.489e5

ma28 10 14.14 14.14a 9.198e6 2.378e5

ma28 1000 71.96 71.96 6.338e6 2.225e5

ma48 4 22.65 6.84 29.49 53.848e6 8.667e5

ma4810 25.17 6.62 31.79 42.909e6 8.778e5

ma48 1000 186.12 6.74 192.86 81.426e6 8.760e5

umfpack1.0 18.35 18.35 90.0e6 1.050e6

Table 16: BiqEquil

n = 8986 Analyze Factor Total # Ops nnz(F)

rankikw 1.9 6.6 8.5 8.960e6 3.485e5

rankikw & TEAR_DROP 0.49 2.76 3.25 1.474e6 1.068e5

LU1SOL 1.9 4.7 6.60 13.64e6 3.452e5

LU1SOL & TEAR_DROP 0.46 0.49 0.95 1.599e6 1.447e5

ma28 4 0.88 0.88 5.121e5 3.298e4

ma28 10 1.01 1.01 5.447e5 3.372e4

ma28 1000 2.70 2.70 2.161e5 3.050e4

ma48 4 0.39 0.15 0.54 7.205e5 7.231e4

ma4810 0.51 0.17 0.68 1.106e6 7.761e4

ma48 1000 11.33 0.13 11.46 4.944e5 6.826e4

umfpack1.0 1.59 1.59 7.71e5 8.8069e4

APPENDIX

132

Table 17: PPP

n = 14698 Analyze Factor Total # Ops nnz(F)

rankikw 10.28 10.87 21.15 1.650e6 3.332e5

rankikw & TEAR_DROP 1.89 7.73 9.62 5.970e5 1.397e5

LU1SOL 10.27 0.41 10.68 8.000e5 1.104e5

LU1SOL & TEAR_DROP 1.9 0.38 2.28 4.820e5 1.243e5

ma28 4 1.42 1.42 9.291e4 4.502e4

ma28 10 1.48 1.48 9.242e4 4.509e4

ma28 1000 13.0 13.0 7.807e4 4.326e4

ma48 4 0.45 0.14 0.60 1.330e5 8.845e4

ma4810 0.56 0.15 0.71 1.298e5 8.838e4

ma48 1000 20.5 0.14 20.64 1.252e5 8.879e4

umfpack1.0 2.08 2.08 2.300e5 9.103e4

Table 18: Wood7

n = 6858 Analyze Factor Total # Ops nnz(F)

rankikw 1.51 1.16 2.67 5.520e5 7.275e4

rankikw & TEAR_DROP 0.31 1.10 1.41 4.410e5 6.527e4

LU1SOL 1.5 0.24 1.74 5.190e5 7.822e4

LU1SOL & TEAR_DROP 0.42 0.18 0.60 4.450e5 6.762e4

ma28 4 0.29 0.29 6.957e4 2.133e4

ma28 10 0.34 0.34 7.041e4 2.122e4

ma28 1000 1.30 1.30 6.072e4 2.096e4

ma48 4 0.25 0.09 0.34 1.671e5 4.855e4

ma4810 0.29 0.08 0.37 1.781e5 4.849e4

ma48 1000 8.96 0.08 9.04 1.375e5 4.731e4

umfpack1.0 1.10 1.10 3.680e6 5.784e4

APPENDIX

133

Table 19: Wood8

n = 17509 Analyze Factor Total # Ops nnz(F)

rankikw 13.07 38.8 51.87 5.340e7 1.249e6

rankikw & TEAR_DROP 2.34 13.4 15.74 8.900e6 3.996e5

LU1SOL 13.38 26.47 39.85 7.360e7 9.488e5

LU1SOL & TEAR_DROP 2.34 4.36 6.70 1.300e6 5.041e5

ma28 4 3.17 3.17 1.976e6 9.892e4

ma28 10 3.44 3.44 1.981e6 9.998e4

ma28 1000 15.63 15.63 1.747e6 9.385e4

ma48 4 2.79 0.83 3.62 6.736e6 2.699e5

ma4810 2.59 0.82 3.41 7.240e6 2.643e5

ma48 1000 43.38 1.06 44.44 12.417e6 2.813e5

umfpack1.0 5.03 5.03 1.600e7 3.416e5

Table 20: Ethyl60

n = 59080 Analyze Factor Total # Ops nnz(F)

rankikw 50.67 55.15 105.82 20.89e6 2.210e6

rankikw & TEAR_DROP 7.14 53.37 60.51 8.88e6 1.061e6

LU1SOL 50.67 13.22 63.89 34.00e6 1.743e6

LU1SOL & TEAR_DROP 8.78 2.31 11.09 6.03e6 9.075e5

ma28 4 5.96 5.96 1.321e6 2.614e5

ma28 10 6.13 6.13 1.195e6 2.589e5

ma28 1000 59.99 59.99 9.481e5 2.420e5

ma48 4 2.52 0.70 3.22 7.223e5 4.354e5

ma4810 3.00 0.69 3.69 7.256e5 4.353e5

ma48 1000 87.96 0.75 88.71 7.197e5 4.383e5

umfpack1.0 7.47 7.47 1.50e06 4.113e5

APPENDIX

134

a. N/A - no solution possible, apparently due to internal limitations of the code.

Table 21: Ethyl80

n = 79554 Analyze Factor Total # Ops nnz(F)

rankikw 206.52 386.19 598.18 87.98e6 7.647e6

rankikw & TEAR_DROP 15.65 270.68 286.33 11.70e6 1.756e6

LU1SOL 204.94 32.35 237.29 70.30e6 4.446e6

LU1SOL & TEAR_DROP 15.49 3.95 19.44 8.550e6 1.043e6

ma28 4 N/Aa

ma28 10

ma28 1000

ma48 4 4.24 1.01 5.25 1.055e6 6.136e5

ma4810 4.85 1.02 5.87 1.066e6 6.136e5

ma48 1000 134.74 1.10 135.84 1.026e6 6.146e5

umfpack1.0 9.87 2.080e6 5.312e5

REFERENCES

135

5.8 REFERENCES

[ATE91] F. L. Alvarado, W. F. Tinney, and M. K. Enns. Sparsity in large-scale net-
work computation. In C. T. Leonde, editor,Advances in Electric Power and
Energy Conversion System Dynamics and Control - Part 1, volume 41 of
Control and Dynamic Systems, pages 207–272. Academic Press, 1991.

[CS95] J. V. Camarda and M. A. Stadtherr. Frontal solvers for process simulation -
local row ordering strategies. AIChE Fall Meeting, Miami, November 1995.

[DD93] T. A Davis and I. S. Duff. An unsymmetric multifrontal method for sparse
LU factorization. Technical Report TR-93-018, Computer and Information
Sciences Department, University of Florida, Gainesville, Florida, March
1993.

[DER89] I. S. Duff, A. M Erisman, and J. K. Reid.Direct Methods for Sparse Matri-
ces. Oxford University Press, 1989.

[DGL92] I. S. Duff, R. G. Grimes, and J. G. Lewis. User’s guide for the Harwell-Boe-
ing sparse matrix collection, release I. Technical report, Rutherford Appleton
Laboratory, October 1992.

[DR93] I. S. Duff and J. K. Reid. MA48, a fortran code for direct solution of sparse
unsymmetric linear systems of equations. Technical report, Rutherford Ap-
pleton Laboratory, October 1993.

[Duf77] I. S. Duff. MA28 - a set of fortran subroutines for sparse unsymmetric linear
equations. Report r8730, AERE, HMSO, London, 1977.

[Geo73] A. George. Nested dissection of a regular finite-element mesh.SIAM J. Nu-
mer. Anal., 10:345–363, 1973.

[Geo74] A. George. On block elimination for sparse linear systems.SIAM J. Numer.
Anal., 11(3):585–603, June 1974.

[GL80] A. George and W. H. Liu. A fast implementation of the minimum degree al-
gorithm using quotient graphs.ACM Transactions on Mathematical Soft-
ware, 6:337–358, 1980.

[Haj80] I. N. Hajj. Sparsity considerations in network solution by tearing.IEEE
Transactions on Circuits and Systems, CAS-27(5):357–366, May 1980.

[HK73] J. E. Hopcroft and R. M. Karp. An nsup5/2 algorithm for maximum match-
ings in bipartite graphs.SIAM J. Computing, 2:225–231, 1973.

[HR72] E. Hellerman and D. C. Rarick. The partitioned preassigned pivot procedure
(p4). In D. J. Rose and R. A. Willoughby, editors,Sparse matrices and their
applications, pages 67–76. Plenum Press, New York, 1972.

[Ior90] M. Iordache. On the analysis of large-scale circuits.Bulletin Scientific Elec-
trical Engineering, 52(2):71–80, 1990.

REFERENCES

136

[Kro63] G. Kron.The Piecewise Solution of Large Scale Systems. London, England:
MacDonald, 1963.

[LM77] T. D. Lin and R. S. H. Mah. Hierarchical partition - a new optimal pivoting
algorithm.Mathematical Programming, 12:260–278, 1977.

[Mor89] S. Moriyama. Large scale circuit simulation.Transactions of the IEICE,
E72(12):1326–1335, December 1989.

[MS95] J. U. Mallya and M. A. Stadtherr. A new multifrontal solver for process sim-
ulation on parallel/vector supercomputers. AIChE Fall Meeting, Miami, No-
vember 1995.

[NNA90] M. Nishigaki, T. Nobuyuki, and H. Asai. Hierarchical decomposition for cir-
cuit simulation by direct method.Transactions of the IEICE, E73(12):1948–
1956, December 1990.

[NNA91] M. Nishigaki, T. Nobuyuki, and H. Asai. Availability of hierarchical node
tearing for mos circuits.Transactions of the IEICE (Japan), J74A(8):1176–
9, August 1991. in Japanese.

[SVLK77] A. Sangiovanni-Vincentelli and Chen Li-Kuan. An efficient heuristic cluster
algorithm for tearing large-scale networks.IEEE Trans. Circuits and Sys-
tems, CAS-24(12):709–717, December 1977.

[SW64] R. W. H. Sargent and A. W. Westerberg. Speed-up in chemical engineering
design.Trans. Inst. Chem. Engrgs., 42:190–197, 1964.

[SW84a] M. A. Stadtherr and E. S. Wood. Sparse matrix methods for equation-based
chemical process flowsheeting I, reordering phase.Computers and Chemical
Engineering, 8(1):9–18, 1984.

[SW84b] M. A. Stadtherr and E. S. Wood. Sparse matrix methods for equation-based
chemical process flowsheeting II, numerical phase.Computers and Chemical
Engineering, 8(1):19–33, 1984.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms.SIAM J. Com-
puting, 1:146–160, 1972.

[TV96] I. B. Tjoa and D. K. Varvarezos. Significance of problem structure in chem-
ical process optimization strategies.SIAM Journal of Numerical Analysis,
1996. to appear.

[Vla85] M. Vlach. LU decomposition and forward and backward substitution of re-
cursively bordered block diagonal matrices.IEEE Proceedings, 132
Pt.G(1):24–31, February 1985.

[WHMW79] A. W. Westerberg, H. P. Hutchinson, R. L. Motard, and P. Winter.Process
Flowsheeting. Cambridge University Press, 1979.

[Woo82] E. S. Wood.Two-Pass Strategies of Sparse Matrix Computations In Chemi-
cal Process Flowsheeting Problems. PhD thesis, University of Illinois at Ur-
bana-Champaign, January 1982.

[ZMDS] S. E. Zitney, J. Mallya, T.A. Davis, and M. A. Stadtherr. Multifrontal tech-

REFERENCES

137

niques for chemical process simulation on supercomputers.

[ZS94] A. I. Zecevic and D. D. Siljak. Balanced decompositions of sparse systems
for multilevel parallel processing.IEEE Trans. Circuits and Systems, I: Fun-
damental Theory and Applications, 41(3):220–232, March 1994.

REFERENCES

138

139

CHAPTER 6 TEARING
ALGORITHMS

6.1 ABSTRACT

New algorithms are presented to partition a sparse matrix that improve matrix

reorderings and subsequent factorizations. These algorithms make use of a model

hierarchy in the form of an ASCEND instance DAG but may be applied to any

system of equations grouped hierarchically. The complexity of the partitioning

algorithm is shown to be . The algorithm is tested on

a number of a large matrices and is shown to give faster reorderings that give

much lower fill, much reduced operation count and faster factorizations.

6.2 INTRODUCTION

Graph partitioning is an important problem that has extensive applications in

many domains. These include matrix reordering, VLSI design and task

scheduling [KK95c]. The problem of partitioning means different things for

n()log O n() O τ()+()⋅

INTRODUCTION

140

different domains. For example, the solution of a sparse system of linear

equations Ax = b by parallel iterative methods requires the ability to do fast

matrix-vector multiplies. To do this quickly requires consideration of minimizing

communication between processors and is a graph partitioning problem

associated with the matrix A. For chemical engineering flowsheeting problems

using the sequential modular method of solution, the problem is to partition the

network graph associated with the flowsheeting units, such that a calculational

sequence can be determined.

For workers in parallel computing [KK95c], the graph partitioning problem is

often defined as

partition the graph into p roughly equal parts, such that the number of edges
connecting vertices in different parts is minimized.

Zecevic et al. [ZS94] consider the partitioning of a graph associated with a sparse

matrix A so as to obtain a Bordered Block Diagonal (BBD) structure, as this is

considered to be a desirable matrix structure for factorization. They mention that

a number of algorithms based on diverse concepts, ranging from node clustering

and tearing to various forms of graph dissection, have been employed to achieve

these forms. For workers in sequential modular solution techniques, a block

lower triangular (BLT) form is desirable. Though the multitude of meanings, the

graph partitioning problem may be defined most generally as

finding a good set of vertices and edges so that when they are removed from the graph
a new graph is obtained that possesses properties which are better than the original
graph

It is established that the search for a good or best set of edges and vertices makes

the graph partitioning problem NP-complete. For this work it is necessary to

define the properties that are sought from a partitioned graph.

In Chapter 5 it was argued that, for efficient solution of a linear system of

equations Ax = b, it was sometimes advantageous to put the system in a BLT

form first. It was also argued that within the non-triangular diagonal blocks

TREES AND DAGS

141

arising from this form, that a BBD form is desirable. This work then seeks a graph

partitioning algorithm which will

take an irreducible matrix (or fully connected graph) and partition it such that
a BBD form results where there are no induced blocks that are greater than
some threshold size nmax, while not making the border too large.

Though this requirement may sound very similar to what most workers desire

from a BBD form, it is different in the following way. A full factorization of the

resulting matrix will be done and not a block factorization. The partitioning is

primarily to find regions of a sparse matrix where good reorderings can be

obtained. As such there is not the fairly stringent requirement of keeping the

border as narrow as possible. This is consistent with the work presented in

Chapter 5.

The rest of this chapter is organized as follows:

• a discussion of the different structures that arise from a structured modeling
language.

• a presentation of the new hierarchical partitioning and reordering algorithms
(TEAR_DROP) and a discussion of their complexity and performance.

• a comparison of the similarities and differences to previous work.
• numerical results.

Finally a discussion is done of the possible extensions and the implications that

the algorithm might have on the application programming interface (API) for

sparse matrix packages.

6.3 TREES AND DAGS

6.3.1 BACKGROUND

Trees are very common structures. A directed acyclic graph (DAG) is a

specialization of a tree. Many problems are naturally represented hierarchically,

i.e., as trees. This yields a notion of precedence or, as in the case of structured

modeling, a part-whole notion. The ASCEND modeling language supports this

TREES AND DAGS

142

part-whole notion through its MODEL construct. The ASCEND language also

supports the notion of aliasing through its ARE_THE_SAME construct. This results

in a situation where an instance of a model or atom has more than one parent. An

instance of an ASCEND model is then a DAG, where each model constitutes a

supernode. The term supernode and model will be used interchangeably.

.

FIGURE 21 Trees and Directed Acyclic Graphs (DAGs)

Within each ASCEND model new variables and equations may be introduced. At

the same time it is possible to introduce new relations in a model without

introducing any new variables; the variables in the subtree of a model are visible

to the model and are said to be within its scope. Relations (rows) can belong to

only one model, but variables (columns) may be shared between models. Because

the tree is directed a model lower down the tree (towards the leaves) cannot refer

to the variables introduced in models above it. The variables and relations

introduced in the model will later become the columns and rows of a sparse

matrix.

There are a number of different ways of traversing trees and DAGs. DAGs require

special treatment to ensure that a node is not visited more than once. Of the

infinite ways of traversing a tree, there are a number of structured traversals.

These include breadth first and depth first. This may be combined with bottom up

and top down traversals.

a Tree a DAG

TREES AND DAGS

143

FIGURE 22 A model tree and its associated sparse matrix traversed Depth-
First, Bottom-Up

Different traversal of trees give rise to different numbering of the nodes as shown

in Figure 22 and Figure 23. If the relations and variables associated with the

models in a tree or dag are numbered while numbering the models, different

natural sparsity patterns will be obtained. It is these natural sparsity patterns that

may be exploited to motivate different partitioning algorithms. In the figures

shown, the numbered areas represent regions of the matrix where elements can

potentially occur. The unnumbered areas represent regions where elements can

never occur.

FIGURE 23 A model tree and its associated sparse matrix traversed
Breadth-First, Bottom-Up

The situation is similar for ASCEND DAGs but becomes complicated by the

aliasing of variables; the prediction of the location of the nonzero elements is not

as well defined as with trees. This will affect the efficiency of some partitioning

8

3

1 2

7

4 5 6

Depth First - Bottom Up

1

2
3

4
5

6

7
8

8

6

1 2

7

3 4 5

Breadth First - Bottom Up

3
4

5

6
7

8

levels

1

2

3

1

2

TREES AND DAGS

144

algorithms.

6.3.2 PARTITIONING

By visualizing the different natural sparse structures that are obtained from

different traversal sequences, it is possible to arrive at algorithms that will yield

BBD or RBBD (recursive bordered block diagonal) structures.

• Using depth first traversals, select groups of models and cluster up the tree or
divide down the tree.

• Using breadth first traversals, cleave groups of models while working down
the tree (from root to leaves).

The reason why the desired structures are obtained is explained through the

following small example.

FIGURE 24 An incidence matrix and its corresponding tree.

The matrix in shown in Figure 24a represents the natural sparsity pattern

obtained from a depth-first numbering of a model tree (Figure 24b). Both x and X

represent incidence, while X represents the particular column assigned to the

given row. If the matrix were to be divided into upper and lower halves

5

3

1 2

4

rows 1,2,3 row 4

row 5

rows 6,7

row 8

 (a)

1 2 3 4 5 6 7 8

1 X x x x

2 x X x x

3 x x X x

4 X x

5 X x

6 X x

7 x X

8 x X x

(b)

TREES AND DAGS

145

(partitions) such that rows 1 - 4, are in the first half and rows 5 - 8 are in the second

half, an examination of the incidence pattern shows that columns 1, 4 and 6 share

variables between the two partitions, (the shared variables are shown

underlined). If these columns are then removed, along with their matching rows,

(1, 5 and 8) then the 2 partitions will become disjoined. This is shown in Figure 25.

In this trivial example, the region A11 is fortuitously decoupled. If it were not,

then the process would be repeated, with the rows 2, 3 and 4 forming one

partition and the rows 6 and 7 forming another partition.

FIGURE 25 The partitioned matrix

Algorithms for performing these partitionings are described in the next section.

2 3 5 7 8 1 4 6

2 X x x x

3 x X x x

4 X x

6 X x

7 x X

1 x x X x

5 X x

8 x x X

A11

ALGORITHMS

146

6.4 ALGORITHMS

6.4.1 DEPTH-FIRST PARTITIONING

The algorithm that will be described uses a bisection of a model DAG. It operates

on DAG that has had it supernodes numbered in a depth-first bottom-up manner,

and at completion will provide a matrix which is in BBD form. The basic

algorithm will first be described. The modifications necessary to obtain a RBBD

matrix will then be described. The data structures required to achieve efficiency

will then be examined. The algorithm is called TEAR_DROP.1

6.4.2 PARTITIONING FOR A BBD MATRIX

1. Visit the model dag with a depth-first bottom-up traversal numbering the
models, relations and variables, and assembling a model list, a relations list
and a variable list. Create an empty master list in which to store pointers for
the tear variables.

2. Construct the sparse matrix associated with the relation and variable list.
3. Output assign the matrix; if a maximum transversal cannot be obtained, quit;

the matrix is structurally singular.
4. Choose a cutoff size nmax.
5. Perform a block lower triangular permutation of the region A.
6. For each diagonal block k,

1. If blocksize(k) < nmax continue.
2. Bisect the block at a model boundary, such that the number of rows in
the first set of models is almost equal to those in the second set of models.
Each set of rows constitutes a partition. Label the rows in the first partition.
The models that contain these rows are now active.
3. Find all columns in the block that intersect both partitions. These become
the tear columns. Move these columns and their matching rows out to the
lower right hand corner of the block, to create a border A12, A21, and A22,
and a main region A11.
4. Add the tear columns to the master tear list and update the count of tears
found.
5. Reset the active models, and their relation counts. Reset the relation par-
tition counters. Set A = A11. goto 5.

7. quit.

This completes the partitioning phase. To reorder the matrix, assemble all the sub

1. TEAR_DROP for tearing, decomposition, reordering and partitioning.

ALGORITHMS

147

regions A22 into a single border A22 and perform a block lower triangular

permutation of the resulting region A11. The region A11 will now contain blocks

which are guaranteed to be less than order 2nmax unless a model existed which

was greater than size nmax. Reorder A11 using an appropriate sparsity preserving

reordering. If there are super-diagonal elements in the region A22, then reorder

this region as well.

Steps 1 - 3 constitute an initialization step and setting up some data structures to

ensure efficient processing. The only step in this phase which incurs an additional

cost over a basic reordering routine is the labelling of the relations with the index

of the model to which they belong and initializing some counters. This additional

cost is then .

FIGURE 26 Basic Data Structures

The output assignment step which must be done in any case to establish the

structural rank of the problem (by establishing a zero free diagonal) is not charged

to the algorithm.

Step 4 requires the choice of an nmax, which is the maximum blocksize that the

algorithm should allow. This is heuristic and will depend upon the sparsity

preserving reordering that will eventually be applied to the induced blocks.

Step 5 is part of the main recursive loop and is used to find all fully connected

components of the remaining matrix. The block lower triangular permutation, if

done by Tarjan’s algorithm is , provided that a structurally zero free

O n()

struct slv_model {
 int local; /* the count of local relations */
 int active; /* flag to tell if active in block */
 struct gl_list_t *relations;/* list of relations */
};

struct slv_relation {
 int model; /* the container model */
 int partition; /* the partition of the relation */
};

O n() O τ()+

ALGORITHMS

148

diagonal exists. The other steps of the algorithm do maintain a zero free diagonal

by ensuring that only symmetric permutations are performed. As it is being

called recursively, each time with a submatrix which is at worst case, half the size

of the preceding matrix, the cost is

(39)

which is . A bound on the number of bisections, k, will be

established in the next sections.

Step 6.2 is the heart of the routine and does the bisectioning. It uses the routines

mark_relations_in_block and accumulate_counts.

6.4.2.1 mark_relations_in_block

1. Given a square region of the matrix, set markers high = -1, low = infinity.
2. For each row in the block,

1. Find its original row index.
2. Obtain the model index k associated with the original row, and set the
active flag of model k to TRUE. Increment the count of local relations in
model k.
3. Set high = max(high,k).
4. Set low = min(low,k).

3. quit.

This procedure tells which models are active in the block, sets up the count of

relations that are active (some may have already been partitioned out), and

establishes an upper and lower bound on where to do processing of the model

tree. This step is crucial, for otherwise a search would have to be made of the

entire model tree. As the blocks become smaller there will be fewer and fewer

models in a given block, and thus one can use the markers high and low to avoid

wasted searching as well be shown momentarily.

O n() O τ()+() 2 O
n
2
--- 

  O
τ
2
--- 

 + 
  4 O

n
4
--- 

  O
τ
4
--- 

 + 
  …+ + + +

2
m

O
n

2
m

 
  O

τ

2
m

 
 +

 
 

O n() O τ()+

ALGORITHMS

149

If high = low at the end of this stage, then a block has been found that cannot be

torn by this algorithm because the philosophy that tearing should not take place

within model boundaries is respected. This happens in the case where a model

exists whose size is greater than nmax such that all the rows in the block belong to

the single model. Any graph partitioning algorithm [KK95c], [HL93] could then

be applied to tear this oversize model.

6.4.2.2 accumulate_counts

This routine uses the values of high and low, obtained from

mark_relations_in_block.

1. Set stop = -1; set accum = 0.
2. If low = high, unmark the models and continue with the next block or invoke a

non-hierarchical partitioning algorithm.
3. For each model k, ,

1. If model k is not active, continue.
2. accum = accum + models.count;
3. Mark all relations for model k as being in partition 1.
4. If accum < nmax continue, else stop = k; break.

4. quit.

This completes the bisectioning phase. A bound on the complexity of this phase

may be established by considering the following:

It takes log k steps to partition a graph G into k parts using bisection [KK95a], thus

this loop will be called at most log k times where k may be estimated as n/nmax.The

cost of determining whether a model is active is . The cost of the loop then is

dominated by labelling the relations of which there may be at most n, (and

decreasing by half with each partitioning), requiring on average n/2 labellings,

leading to complexity for this code.

Step 6.3 requires finding the columns that intersect more than 1 partition and

requires at worst case examining every element of the matrix and is hence .

Step 6.4 simply involves resetting the counts of the active models and their

associated relations and hence runs in .

low k high≤ ≤

O 1()

O n()

O τ()

O n()

ALGORITHMS

150

The overall complexity of the partitioning phase of the TEAR_DROP algorithm is

then

(40)

6.4.3 PARTITIONING FOR A RBBD MATRIX

Another algorithm, which is very similar to the basic TEAR_DROP algorithm, is one

which provides an RBBD structure. In the reordering step of the TEAR_DROP

algorithm, a single border is constructed by symmetrically permuting all the tear

columns and their matching variables to the lower right hand corner of the

matrix. The region A11 is then subjected to a final block lower triangular

permutation and each nontrivial diagonal block is reordered. If, however, the

partitioning and reordering steps are combined, i.e., each time an induced block

falls below its threshold size nmax, it is immediately reordered, then an RBBD

structure will be obtained. In this case Step 6.4 of the basic TEAR_DROP algorithm

is omitted.

FIGURE 27 Standard Reorder versus TEAR_DROP algorithm

Figure 27 shows a typical reordering when using the RBBD TEAR_DROP

algorithm. The matrix in this example was the 4Cols matrix described in Chapter

5.

n()log O n() O τ()+()⋅

Structural Analysis

incidence

Relations x 103

3Variables x 10

-12.00

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Structural Analysis

incidence

Relations x 103

3Variables x 10

-12.00

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

ALGORITHMS

151

6.4.4 BREADTH-FIRST ALGORITHMS

A potentially very simple algorithm for obtaining a BBD structure is based on

breadth first traversals of a tree. In Figure 28 (a) for example, if all the relations in

model 8 are removed, then the problem breaks into 2 disjoint parts, containing

models 6, 1 and 2 and models 7, 4 and 5 respectively. Repeating the process would

yield the situation as shown in Figure 28 (c).

FIGURE 28 Breadth-First Cleaving

A prototypical algorithm would then be

1. Visit the model DAG with a breadth-first bottom-up traversal numbering the
models, relations and variables, and assembling a model list, a relations list
and a variable list.

2. Construct the sparse matrix associated with the relation and variable list.
3. Output assign the matrix; if a maximum transversal cannot be obtained, quit;

the matrix is structurally singular.
4. Set A11 = A.
5. Select the model with highest index and find all rows belonging to the model.

Find the matching columns for these rows.
6. Symmetrically permute these rows and their columns to the lower right hand

corner of the matrix to form a border. Update the region A11.
7. Perform a block lower triangular permutation of the region A11.
8. Foreach induced block larger than nmax goto 5.
9. quit.

The reordering phase would then reorder the resulting non-trivial diagonal

blocks using a suitable sparsity preserving reordering algorithm.

This breadth-first algorithm was not fully investigated, as it can fail if the model

3
4

5

6
7

8

1

2
3

4

5

6
7

1

2
3

4

5

1

2

(a) (b) (c)

ALGORITHMS

152

tree is really a DAG, which is the most common situation with the ASCEND

system. This is illustrated in the figure below, where models 1 and 3 have more

than one parent, and significant cleaving would be required to decouple the

problem.

FIGURE 29 Breath-First cleaving of a DAG

6.4.5 CHEMICAL ENGINEERING FLOWSHEETS

Chemical engineering plants are often designed using flowsheets. A flowsheet is a

flat representation of the connectivity of the units in the plant. In this form

flowsheets may be thought of as being a simple 2 level hierarchy; all the

connection streams comprise level 1 and the units comprise level 2. The

sequential modular approach to solving flowsheeting problems involves

choosing a set of tear streams that, when they are removed, yield an acyclic

calculational sequence. Values are guessed for the tear streams, the flowsheet is

solved in the calculational sequence found, resulting in new values for the

guessed streams and possibly some sensitivity information. The guessed values

are updated using some criterion and the process is repeated until the guessed

values are within some acceptable bound of their computed values.

The question of choosing the tear streams is a graph partitioning problem and has

been studied extensively by a number of workers [BM72], [UG75]. A feature of

this problem is that a minimal set of tear streams is desirable, as it reduces the

8

6

2

7

3 4 5

Breadth First - Bottom Up

4

5

6

8

levels

1

2

3

1

2

1 4

3 3

7 7

ALGORITHMS

153

number of streams that must be iterated upon to solve the original problem.

FIGURE 30 Simple recycle flowsheet.

For example in Figure 30 (assuming that there are no computational controllers

present), tearing any one of the streams 1 through 4 will allow a calculational

sequence to be found. An equation based solution strategy does not require a

minimal set of tear streams, and indeed need not be concerned with the notion of

a stream. Consistent with the earlier discussion is the need to find a set of rows

and columns that will allow the problem to be decomposed temporarily for

reordering.

If the problem is considered to be a 2 level hierarchy, the resulting structure

would be as shown in Figure 31.

FIGURE 31 Pseudo 2 Level Hierarchy

The TEAR_DROP algorithm would find all the connections in exactly one bisection.

However, this would most likely lead to very large and very small induced

Mixer Reactor

Flash

Splitter

feed 1 2

3

4

Mixer SplitterReactor Flash

Connections (1,2,3,4) Mixer

Reactor

Splitter

Flash

Connections (1,2,3,4)

RELATED WORK

154

blocks, as some units such as a splitter have very few internal variables. The

internal variables of a unit are variables that are not shared by any other unit. A

breadth-first algorithm based on the algorithm outline presented, should perform

well on this class of problems. It should be noted that in the early stages of this

work an algorithm which used explicit labelling of the connection equations was

developed. The results were very encouraging and led to the development of the

TEAR_DROP algorithm, which is much more general in scope.

6.5 RELATED WORK

The notion of hierarchical partitioning or tearing is not new. What sets this work

apart from the techniques of other workers is its generality and its domain

independence. This work has features of Asai and Tanaka, [NNA90], who

considered the use of a simulation input language to create an RBBD matrix.

They considered only electrical engineering problems and had a structured 4 level

hierarchy involving very specific circuit components at each level of the hierarchy.

They also required the user labelling of input and output flags on each circuit

element; nodes with both flags labelled would become tear nodes. They provide

theoretical estimates of the number of fill but only tested the scheme on problems

with a small number of variables.

Stadtherr and Wood, [SW84] developed their BLOKS algorithm for chemical

engineering flowsheeting matrices. It may be considered as an implicit tearing

scheme (see Section 5.5.3). It has similarity to the algorithms presented here in

that it restricts reordering to certain regions of the matrix, but without explicit

removal of rows or columns of the matrix. In BLOKS these regions are those

associated with the flowsheeting units. The algorithm does not try to ensure

irreducibility of each region, nor does it require regions to be disjoint (column

wise). Reordering must then be restricted to row reordering only, or the potential

disturbance of the reorderings of an already processed unit must be accepted.

RELATED WORK

155

Recently, Tjoa and Varvarezos [TV96] suggested that by restricting the dynamic

Markowitz reordering to the rows and columns which define the units of

chemical engineering flowsheeting matrices may lower the over fill in.

Unfortunately they do not provide details of their algorithm nor details of its

performance.

Lin and Mah, [LM77] presented a hierarchical partitioning algorithm (or rather a

sequence of them), which selects a spike row and spike column, deletes them, and

checks for the reducibility of the remaining system. The process is repeated until

the remaining system is lower triangular. They report very good fill in properties,

though note that the running time of the algorithm was very expensive. This has

been confirmed by others including Duff [DER89] and Wood [Woo82]. None of

these workers provide a bound on the cost of their algorithms.

Duff [DER89] Chapter 8 looks at reordering sparse matrices to special forms. He

mentions that some of these special forms are designed not necessarily to

minimize fill but to contain fill to certain regions of the matrix. He comments that

‘although this often results in more fill-in, it is not necessarily the case, since the local

strategies do not minimize the fill-in globally’. Among the algorithms reviewed by

Duff is nested dissection [Geo73]. The central concept of nested dissection is the

removal of a set of nodes from the graph of a symmetric matrix that leaves the

resulting graph in 2 or more disconnected parts. The parts are then further

divided by the removal of sets of nodes, with the dissection nested to any depth.

Previously George had proposed a single level dissection, which creates a 2 level

tree, very analogous to the pseudo-hierarchy that may be created from

flowsheeting problems. Duff in his review comments that the ‘... fundamental

reason for the success of the nested dissection is (that) it is truly a global ordering in the

sense that decisions made at the very first stage take the entire matrix into account.’ The

TEAR_DROP algorithm is thus very similar to nested dissection from the point of

view of global decision making but has different objectives for doing its tearing.

Additionally, no assumptions about symmetry are necessary. One of the

difficulties with nested dissection is the question of what nodes should be

NUMERICAL RESULTS

156

removed in the initial dissection. Although automatic algorithms have been

proposed for finding these initial nodes, this writer argues that this nested

dissection is being applied to the wrong problem; it should be applied to the

original model of the problem where these questions can be answered using the

most information available. Application of TEAR_DROP to any hierarchical

representation of a problem makes this node selection question trivial. The work

of Bjørstad [Bjø95], in finite element substructuring runs very close to the

philosophy of this work. In yet another interpretation, the TEAR_DROP algorithm

may be thought of as employing a heavy clique matching (HCM) in the graph

growing stage of Karypis and Kumars [KK95b] graph partitioning algorithm.

Finally this author while concurring with Duff and Reid that ‘we need to rethink our

sparse matrix algorithms’, thinks that it may be more important to ‘rethink our

modeling practices’.

6.6 NUMERICAL RESULTS

In Chapter 5, the performance of a number of different sparse codes that make use

of better a priori reorderings was examined. In those tests the TEAR_DROP

algorithm used in conjunction with the SPK1 reordering was seen to perform

well. In this section, some more details concerning the performance of the

TEAR_DROP algorithm itself are given.

The scope of these tests is limited. In particular, only one sparsity preserving

reordering (SPR) was used. The results here are best interpreted as the basis for

determining reasonable values nmax for one solver/SPR combination. They can

also be used to evaluate in more detail the reduction in reordering times

presented in Chapter 5. The data reported there were the total partitioning and

reordering times, and the breakdown is presented in the following tables. The

partitioning times can be used to evaluate the claimed complexity of the

TEAR_DROP algorithm.

NUMERICAL RESULTS

157

The LU1SOL solver was used for all the tests wherever factorization times are

reported. The test matrices used were those presented in Chapter 5. For each

matrix tested the following information is provided

• the partitioning time with TEAR_DROP.
• the total partitioning and reordering (SPK1) time.
• the number of induced blocks (equal to the number of reorderings done).
• the size of the largest induced block.
• the number of tear columns found.
• the factorization time.

Table 22: Statistics with RBBD TEAR_DROP

Matrix and
order/# models

nmax
Partition

Time

Total
Partition

and
Reorder

of
induced
blocks

Largest
induced

block

Number
of Tears

Factor
Time

Isom_30K

19995/14201 1000 4.97 5.22 356 995 2592 0.85

2000 4.56 5.33 346 1995 2532 0.86

infinity 0 27.73 0 19995 0 16.45

4Cols

12456/1482 1000 1.66 2.49 22 993 1330 2.85

2000 0.87 2.86 9 1997 364 3.08

infinity 0 20.42 0 11770 0 22.82

10Cols

31140/3702 1000 7.48 10.03 53 998 3081 7.33

2000 4.26 9.44 26 1965 1040 7.62

infinity 0 118.62 0 29496 0 115.55

BigEquil

8986/2545 1000 0.27 0.48 17 855 479 0.52

2000 0.19 0.65 9 1788 302 0.93

infinity 0 1.91 0 3961 0 4.72

PPP

14698/5780 1000 1.17 1.90 44 986 323 0.35

DISCUSSION

158

6.7 DISCUSSION

A number of new algorithms for partitioning a sparse matrix have been

presented. These algorithms exploit the structures inherent in a hierarchical

representation of a model. One of these algorithms, TEAR_DROP, which is based on

recursive bisectioning was described in some detail and the complexity of

 was proved. On the problems tested this algorithm

was seen to be reasonably fast, while providing significant improvements in the

2000 0.64 2.21 16 1992 111 0.38

infinity 0 10.27 0 8201 0 0.41

Wood7

6858/2284 1000 0.16 0.38 37 891 144 0.19

2000 0.11 0.54 21 1677 57 0.19

infinity 0 1.50 0 3508 0 0.24

Wood8

17509/4444 1000 1.49 2.17 19 948 1017 6.51

2000 1.09 2.42 16 1876 744 4.36

infinity 0 13.51 0 9087 0 26.47

Ethyl_60

59080/31907 1000 6.90 8.44 434 995 1872 2.31

2000 3.86 7.0 358 1998 1272 2.92

infinity 0 50.67 0 20316 0 13.22

Ethyl_80

79554/44800 1000 20.76 22.84 631 997 3000 3.96

2000 11.66 15.99 563 1966 2164 3.94

infinity 0 204.94 0 50172 0 32.34

Table 22: Statistics with RBBD TEAR_DROP

Matrix and
order/# models

nmax
Partition

Time

Total
Partition

and
Reorder

of
induced
blocks

Largest
induced

block

Number
of Tears

Factor
Time

n()log O n() O τ()+()⋅

DISCUSSION

159

overall solution efficiency for the LU1SOL code. These results should extend to

any code that can take advantage of better a priori reorderings.

There are a number of possible extensions to the work that has been presented. In

particular, the breadth first algorithms based on node cleaving should be

investigated further. As mentioned previously, sparse matrix reorderings other

than SPK1 should be investigated. It is expected that other reordering algorithms

will have different optimal values for nmax. A value of 1000 was found to be

satisfactory throughout this work.

The implementations of the reordering algorithms and block lower triangular

permutation algorithms used in this study are by no means optimal. For nmax =

1000, an average of 83% of the analysis time is spent in the partitioning algorithm

with the balance being spent in the reordering algorithm. The implementation of

the block lower triangular permutation code needs to be re-examined. Similarly,

the implementation of the reordering algorithms need to be re-thought in the

context of being called many times on problems no greater than twice the nmax

value.

The algorithm presented is naturally parallelizable. Each induced block may be

submitted to a different processor on multi-processor architectures because they

are disjoint; tearing and reordering the left partition is independent of the right

partition.

The output assignment algorithm is a potential bottleneck to large scale linear

algebra. It’s complexity is and has to be done at the moment over the

entire problem. Although in practice it does not normally exhibit its worst case

behavior, Ben Allan (private communication) has found a number of random

matrices of moderate order, with row counts that are a multiple of 3, that result in

very long run times for the code output assignment code, mc21a. It is of interest to

see whether an algorithm based on bottom up clustering of a model dag could not

be used to break the n2 effect inherit in this algorithm. Equally as interesting is the

question ‘are some matchings better than others?’. Since a maximal matching is not

O nτ()

APPENDIX

160

unique, the effect of the matching on the eventual performance of the tearing and

reordering algorithms is an open question.

The TEAR_DROP algorithm does not try to be minimal in the number of tears.

Intuitively there should be a limit on how much tearing can be accommodated

before inferior factorization results are seen. A slight modification to the

algorithm (in the tearing step) can be used to put a limit on how many tears will

be allowed at each partitioning stage. This was implemented with a limit that no

more than 10% of the size of any given block may be torn. The limit was only

reached with a matrix called petro16K. The use of such a limit also changes the

complexity bound of the algorithm.

The TEAR_DROP algorithm performed poorly on the petro16K matrix. This matrix

is a chemical engineering flowsheeting matrix and is planar. The rows and

columns corresponding to the flowsheeting units was known as well as the

connection equations. As predicted in Section 6.4.5, the TEAR_DROP algorithm

found all the connections in the first bisection, which resulted in the problem

being overtorn; the subsequent factorization was worse than the untorn problem.

Finally the efficiency of the algorithms presented needs to be examined on a much

wider class of problems.

6.8 APPENDIX

6.8.1 MATRIX FORMATS

 In order to make use of use of the hierarchical structure of a system, it is

necessary to be able to communicate this information to a sparse matrix package

or to a preprocessor to such a package. Most sparse matrix packages require that

their data be presented in some defined way. Of the many sparse matrix formats

that have developed (Saad [Saa94] describes 15 different formats), two popular

ones have emerged and have become defacto standards. These are the Harwell-

APPENDIX

161

Boeing format [DGL92], and the SMMS format [Alv83].

The algorithms presented here require a model-row file which, apart from the

statistics of the problem (the number of super-nodes or models and the number of

rows), has a list of model-row tuples. This implicitly assumes that the information

was collected in a bottom-up depth first manner. However, for general

communication of a problem the traversal scheme from which this indexing was

derived has to be given explicitly. The connectivity information of the supernodes

should be provided and a graph format not unlike that used in the Metis [KK95b]

system or the dot package, [Kou93] should be used. An example is seen in

Figure 32. The grammar is simple; each line represents a node index and the index

of its children. Leaf nodes are stated implicitly.

FIGURE 32 Model connectivity information

Thus if the following information is communicated, any other queries can be

derived (for example a model-column relationship can be had from a knowledge

of the sparse matrix pattern and model-row information).

• sparse matrix row, column information and numeric values in some format
(Compressed Row or Triplet format for example).

• supernode graph connectivity.
• traversal order, DF/BF, BU/TD.
• supernode-row file tuples.

digraph {
 3 -> 1,2;
 7 -> 4,5,6;
 8 -> 3,7;
}

8

3

1 2

7

4 5 6

Depth First - Bottom Up

REFERENCES

162

6.9 REFERENCES

[Alv83] F. L. Alvarado. The sparse matrix manipulation system, May 1983.

[Bjø95] P. Bjørstad. Large scale direct solution of finite element equations. volume
ILAY workshop on Direct Methods. CERFACS, September 1995.

[BM72] R. W. Barkley and R. L. Motard. Decomposition of nets.Chem. Eng. J.,
3(265), 1972.

[DER89] I. S. Duff, A. M Erisman, and J. K. Reid.Direct Methods for Sparse Matri-
ces. Oxford University Press, 1989.

[DGL92] I. S. Duff, R. G. Grimes, and J. G. Lewis. User’s guide for the Harwell-Boe-
ing sparse matrix collection, release I. Technical report, Rutherford Appleton
Laboratory, October 1992.

[Geo73] A. George. Nested dissection of a regular finite-element mesh.SIAM J. Nu-
mer. Anal., 10:345–363, 1973.

[HL93] B. Hendrickson and R. Leland. The chaco users guide, version 1.0. Technical
Report SAND93-1301, Sandia National Laboratories, 1993.

[KK95a] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report 95-035, University of Minnesota,
Department of Computer Science, June 1995.

[KK95b] G. Karypis and V. Kumar. Metis, Unstructured graph partitioning and sparse
matrix ordering system, version 2.0. Technical report, University of Minne-
sota, Department of Computer Science, August 1995.

[KK95c] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular
graphs. Technical Report 95-064, University of Minnesota, Department of
Computer Science, August 1995.

[Kou93] E. Koutsofios.Drawing graphs with dot; dot User’s Manual. AT&T Bell
Laboratories, Murray Hill NJ, October 1993.

[LM77] T. D. Lin and R. S. H. Mah. Hierarchical partition - a new optimal pivoting
algorithm.Mathematical Programming, 12:260–278, 1977.

[NNA90] M. Nishigaki, T. Nobuyuki, and H. Asai. Hierarchical decomposition for cir-
cuit simulation by direct method.Transactions of the IEICE, E73(12):1948–
1956, December 1990.

[Saa94] Y. Saad.SPARSKIT: a basic tool kit for sparse matrix computations. Univer-
sity of Minnesota, June 1994.

[SW84] M. A. Stadtherr and E. S. Wood. Sparse matrix methods for equation-based
chemical process flowsheeting I, reordering phase.Computers and Chemical
Engineering, 8(1):9–18, 1984.

REFERENCES

163

[TV96] I. B. Tjoa and D. K. Varvarezos. Significance of problem structure in chem-
ical process optimization strategies.SIAM Journal of Numerical Analysis,
1996. to appear.

[UG75] R. S. Updadhye and E. A. Grens. Selection of decompositions for process
simulation.AIChE J., 21(136), 1975.

[Woo82] E. S. Wood.Two-Pass Strategies of Sparse Matrix Computations In Chemi-
cal Process Flowsheeting Problems. PhD thesis, University of Illinois at Ur-
bana-Champaign, January 1982.

[ZS94] A. I. Zecevic and D. D. Siljak. Balanced decompositions of sparse systems
for multilevel parallel processing.IEEE Trans. Circuits and Systems, I: Fun-
damental Theory and Applications, 41(3):220–232, March 1994.

REFERENCES

164

165

CHAPTER 7 CONCLUSIONS

This thesis has examined the issues associated with Very Large Scale Modeling

(VLSM). The hypothesis that a dedicated environment is necessary for efficiently

conducting large scale modeling has been proved.

The fundamental features of a VLSM environment have been presented. A

language, ASCEND IV, to support such an environment has been proposed and a

prototype language and environment, ASCEND IV.alpha, has been implemented.

In addition, algorithms that exploit the structures associated with large scale

problems have been developed which can improve the linear algebra

computations associated with solving systems of equations. Throughout this

report the important results of this work have been summarized and directions

for future work have been suggested.

The results of this work suggest that it will take 200 seconds to create a problem

with 100,000 variables and that it will require 150 MB of memory for

representation. 40 seconds will be required to do a function and gradient

166

evaluation and that an unsymmetric matrix factorization of the sparse Jacobian

matrix associated with the problem will require less than 10 seconds. In less than

20 minutes it will be possible to instantiate and to solve a square nonlinear system

with 100,000 variables from scratch.1

However, modeling is a much more complicated process than solving well

understood problems. The VLSM environment proposed and presented in this

work satisfies the needs of exploratory and evolutionary design. In so doing, a

modeler can efficiently conduct his or her modeling task from conceptual design

through final design. With appropriate provisions for sharing of data through

persistent representations, the entire design process involving many modelers

may be accommodated.

Perhaps the greatest impediment to very large scale modeling is the post analysis

of the results of the modeling exercise: what does one do with a vector of 250,000

values? This question is not unrelated to the information hiding and information

filtering issues raised in Chapter 3 and the need for modeling support tools

discussed in Chapter 2. Unfortunately, this work, though recognizing these

problems has done very little to alleviate them.

Finally, the algorithms and assumptions used in this work should be sufficient for

problems with up to 1,000,000 variables. The next natural goal of 10 million

variables, or ultra large scale modeling, will build upon the experiences of this work

and the work of others who are looking at design in the large.

1. assuming 10 Newton iterations.

