
CONDITIONAL MODELING

Joseph James Zaher

November 1995

A Dissertation Submitted to the
Graduate School in Partial Ful�llment
of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

Carnegie Mellon University
Pittsburgh, Pennsylvania

Abstract

Conditional models exist where the de�ning equations di�er depending on where

the model solution lies. In this work, an equation-based approach is studied for

formulating, structurally analyzing, and solving this class of problems.

Formulation is achieved using a disjunctive statement where at least one set of

equations, among any number of alternatives, must be satis�ed at the solution. Each

set is associated with certain ranges in values of the model parameters and consists

of the same number of equations. Provision for models involving mixed di�erential

and algebraic equations is made.

A structural analysis is devised to ensure a well-posed formulation. A consistent

subset of the variable parameters of the model are sought to be considered indepen-

dent such that the solution for the remaining dependent variables may be computed

no matter which set of equations are ultimately used. Furthermore, a partitioning

pattern is devised in order to decompose the problem also without any knowledge of

the correct set of equations.

An optimization algorithm is �rst presented for equality constrained nonlinear

programs. It is based on applying a quasi-newton sequential quadratic programming

algorithm toward the minimization of the augmented Lagrangian. For conditional

models, the search space is broken up into search regions. The feasible region of

each search region is given by di�erent sets of equations. The solution of conditional

models is carried out whereby the choosing of which equations to solve and their

solving are done simultaneously.

Acknowledgements

This dissertation is the product of determination and dedication, both of which

are not inherent in human nature. They must be upheld with much hard work, and

in many instances, require the assistance of others with whom we may sometimes be

so lucky to come in contact.

I would like to �rst thank my advisor, Professor Arthur Westerberg, for recognizing

my ideas as an area of worthy research and giving me the con�dence to pursue them.

My thesis committee members, consisting of Professors Ignacio Grossmann, Dennis

Prieve, and James Garrett, have been instrumental in molding this thesis into a

both contributive and readable product. Research was made fun for me by all my

colleagues at school, including Peter Piela, George Serghiou, and Manuel Dufresne. I

am especially grateful for having worked with the creative mind of Dr. Piela. I will

not soon forget being a part of his ASCEND team as a user and later joining with

the developers Ben Allan and Kirk Abbott. Much of my inspiration comes from the

diligence of my dear friend, James Donley, who shall always be my best man. You

are the brother I never had.

My wife and friend of many years, Elizabeth, has been that important someone

who believes in me and, in turn, is someone in whom I believe as well. We feel that

by nurturing a person with love and understanding, that person can do great things

and this thesis, I hope, is simply one of them. Most of all, I am proud to be the �rst

person in the history of my family to obtain a doctoral degree and hope that there

will be more to follow. My immediate family has survived much loss through the

years and their strength has helped me greatly. I wish to dedicate this contribution

to the loving free-spirited memory of my sister Dianne.

Contents

1 Introduction 1

1.1 Functionality : 1
1.2 Applications : 2

1.2.1 Distillation : 2
1.2.2 Integration : 3
1.2.3 Piping : 5

1.3 Outline : 5

2 Formulation 8

2.1 Introduction : 8
2.2 Continuous and di�erentiable models : : : : : : : : : : : : : : : : : : 8
2.3 Conditional models : 10

2.3.1 Inequality constraints : 13
2.3.2 Binary variables : 16

2.4 Examples : 18
2.4.1 Phase equilibria : 18
2.4.2 Heat exchange : 26
2.4.3 Adiabatic compressible ow : : : : : : : : : : : : : : : : : : : 32

3 Structural Analysis 35

3.1 Introduction : 35
3.2 Continuous and di�erentiable models : : : : : : : : : : : : : : : : : : 35

3.2.1 Structural consistency : 36
3.2.2 Partitioning the variables : 40
3.2.3 Partitioning the equations : 44

3.3 Conditional models : 49
3.3.1 Search region consistency : 51
3.3.2 Search region partitioning : 53

3.4 Examples : 55
3.4.1 Phase equilibria : 55
3.4.2 Heat exchange : 56
3.4.3 Adiabatic compressible ow : : : : : : : : : : : : : : : : : : : 59

i

4 Solution 65

4.1 Introduction : 65
4.2 Continuous and di�erentiable models : : : : : : : : : : : : : : : : : : 65

4.2.1 Local Minima : 66
4.2.2 Augmented Lagrangian : 69
4.2.3 Limited memory quasi-Newton methods : : : : : : : : : : : : 72
4.2.4 Initialization : 73
4.2.5 Termination : 75
4.2.6 Search direction : 75
4.2.7 Iteration : 82

4.3 Conditional models : 84
4.3.1 Nondi�erentiable optimization : : : : : : : : : : : : : : : : : : 85
4.3.2 Boundary crossing : 86

4.4 Examples : 91
4.4.1 Phase equilibria : 91
4.4.2 Heat exchange : 92
4.4.3 Adiabatic compressible ow : : : : : : : : : : : : : : : : : : : 94

5 Contributions 98

5.1 Introduction : 98
5.2 Present : 98
5.3 Future : 106

ii

List of Figures

1.1 Distillation column operating curves : : : : : : : : : : : : : : : : : : 3
1.2 Phase transition on a distillation tray : : : : : : : : : : : : : : : : : : 3
1.3 Phase transition in a heat exchanger : : : : : : : : : : : : : : : : : : 4
1.4 Fluid ow transition : 5

2.1 Phase diagram for a benzene-ethanol-water mixture : : : : : : : : : : 23
2.2 Alternative heat exchanger temperature pro�les : : : : : : : : : : : : 30
2.3 Adiabatic compressible ow in a constant diameter pipe : : : : : : : : 33

3.1 Incidence matrix : 37
3.2 Output assignment : 40
3.3 Steward path : 42
3.4 Lower block triangular form : 50
3.5 Output assignment with vapor phase absent : : : : : : : : : : : : : : 56
3.6 Output assignment with organic phase absent : : : : : : : : : : : : : 57
3.7 Output assignment with aqueous phase absent : : : : : : : : : : : : : 57
3.8 Representative incidence and coupling : : : : : : : : : : : : : : : : : 58
3.9 Output assignment with no condensation : : : : : : : : : : : : : : : : 59
3.10 Output assignment with left side condensation : : : : : : : : : : : : : 60
3.11 Output assignment with left and right side condensation : : : : : : : 61
3.12 Representative incidence and coupling : : : : : : : : : : : : : : : : : 62
3.13 Analysis of the adiabatic compressible ow model : : : : : : : : : : : 64

4.1 Local versus global minima : 67
4.2 Derivation of the reduced Hessian : 77
4.3 Solution path : 84
4.4 Boundary crossing termination : 91
4.5 Solution path for the phase equilibria example : : : : : : : : : : : : : 93
4.6 Solution path for the heat exchange example : : : : : : : : : : : : : : 94
4.7 Optimal temperature pro�le : 95
4.8 Sensitivity analysis : 96
4.9 Solution path for the adiabatic compressible ow example : : : : : : 97

5.1 Thermodynamics library : 107
5.2 Integration library : 108

iii

Chapter 1

Introduction

1.1 Functionality

The modeling of chemical engineering processes will in general involve a set of param-

eters both variable and constant and a set of equations to provide a mapping from the

constants to the variables. In cases where there are more variables than equations, an

objective function may be used to determine optimal values for the excess variables

at the solution.

The functionality of a model is the dependence of the values of the variables at

the solution on the values of the constants. It is largely inuenced by the value types

of the parameters. All parameters of a model may be either real or integer. The

functionality of a model is discontinuous and nondi�erentiable with respect to the

integer constants. More interestingly, when integer variables exist, the functionality

becomes discontinuous and nondi�erentiable with respect to the real constants as well.

Furthermore, even though all of the variables may be real, the functionality may be

continuous yet nondi�erentiable with respect to the real constants if the equations

are conditional. In conditional modeling, the solution lies in one of a multitude of

di�erent states, each classi�ed by certain ranges in the values of the parameters and

characterized by a unique set of equations. It is transitions of the solution among

these states brought on by a continuous change in the values of the constants of

1

the model which introduces nondi�erentiable functionality. An example arising in

thermodynamics is the phenomenon of phase transition where, for di�erent values in

temperature of a closed system at �xed pressure and composition, one or more phases

may exist.

1.2 Applications

Conditional models arise in chemical engineering design mostly due to the phenom-

ena of phase and uid ow transition. There are also cases where conditional cost

functions are used in optimizing designs. As will be demonstrated, conditional models

may consist of both algebraic and di�erential equations.

1.2.1 Distillation

Distillation is a well understood unit operation whose parameters are of both the real

(e.g., the boilup and reux rates, reboiler and condenser duties, tray compositions)

and integer type (e.g., number of trays, the tray on which feed is introduced). When

the number of trays is a variable parameter, a mixed integer nonlinear formulation

must be used to ensure integer solution values. In observing the functionality of

distillation models having a known number of trays and a �xed feed tray location,

it is evident that an increase in purity demand of one of the products leads to an

increase in required reux. This in turn translates to a higher operating cost. In

Figure 1.1, this behavior is observed for di�erent feed tray locations. What can be

inferred is that for a given range in purity demands, there exists an optimal feed tray

location which will yield the lowest required reux. The functionality of distillation

models ought to include, therefore, transitions among feed tray locations brought on

by changes in purity demand.

One of the assumptions in solving a distillation model has been that the phases

2

Reflux

Purity

feed on
tray i

feed on
tray i-1

feed on
tray i+1

Figure 1.1: Distillation column operating curves

vapor-liquid vapor-liquid-liquid

OR

Figure 1.2: Phase transition on a distillation tray

existing on all trays be the same, namely one vapor phase and one liquid phase.

It is not uncommon, however, for distillation towers to contain two liquid phases

on one or more trays [9] [48]. The components may form two liquid phases under

certain conditions which may be met on some of the trays while the immiscibility may

disappear on other trays (Figure 1.2). Each tray should be modeled conditionally with

unknown phases at the solution. An example of a conditional ash model will be given

later.

1.2.2 Integration

Commonly in chemical engineering, the equations of a model may be both di�erential

and algebraic. When di�erential equations appear in a conditional model, care must

be taken during integration. It is possible that multiple transitions may occur within

the domain of integration by the state variables. Transitions within the solution pro�le

3

OR
Warm
liquid

Cold
liquid

Hot
vapor

Cool
vapor &
condensate

Warm
liquid

Cold
liquid

Hot
vapor

Cool
vapor

Figure 1.3: Phase transition in a heat exchanger

are classi�ed to be reversible or irreversible [3]. Reversible transitions are further

classi�ed to be symmetric or asymmetric. An example of an irreversible transition is

the dynamic modeling of the pressurization of a vessel �tted with a bursting disc. If

the �tting is initially intact and the integrated pressure pro�le increases fast enough

from some low initial pressure, there will exist a point in the time domain at which

a set value in the vessel pressure is reached causing the �tting to burst. At all future

times in the pro�le, the �tting will resume the burst state regardless of the vessel

pressure. If the �tting were a safety relief valve, reversibility would exist for, as

the pressure decreases below a reseat pressure, the valve is capable of resuming the

closed position. However, because the reseat pressure is often at some value lower

than the set value required to open the valve, this is termed an asymmetric reversible

transition.

Phase transition is reversible and symmetric because it occurs in a well mixed

system at the same temperature in either direction. This is of interest in modeling a

counter current heat exchanger like the one in Figure 1.3. A cold liquid is heated using

a hot vapor which may or may not condense within the shell of the heat exchanger.

The problem here is to determine not just if phase transition will occur but at what

position inside the heat exchanger it does occur in order to integrate the di�erential

heat transfer equation accurately. This example is investigated further later on.

4

ORORLaminar Turbulent Sonic

Figure 1.4: Fluid ow transition

1.2.3 Piping

Fluid ow transition in constant diameter pipes is another common instance where

conditional equations would be necessary (Figure 1.4). At very low ow rates, a

laminar type of ow is observed. As the ow rate is increased, a transition may be

observed as the ow type becomes turbulent. Even at very high ow rates, another

transition may be observed for compressible gases where the ow may become choked

due to the sonic barrier. This example is also discussed further later on.

1.3 Outline

What follows in this report are the results of this research. In all facets of model-

ing including formulation, structural analysis, and solution, discussion will be on the

comparison between continuous and di�erentiable models (nonlinear equality con-

strained programming) and conditional models. There exists much more similarity to

exploit between these classes of problems than when comparing conditional models

to mixed integer nonlinear programs predominantly because of the lack of continuous

functionality in problems involving integer variables.

In chapter 2, formulation is discussed. A set of notation is introduced �rst for

a continuous and di�erentiable model having only equality constraints and then for

a conditional model with a means of unambiguously specifying alternative sets of

equations. Associated with each set of equations must be a unique set of conditions.

Other alternative formulations which introduce nondi�erentiable functionality are dis-

5

cussed, namely those where inequality constraints are posed and those where integer

variables are incorporated. It is mentioned that although all inequality constrained

nonlinear programs can be posed as a conditional model, not all conditional models

can be formulated using inequality constraints. Furthermore, although all conditional

models can be written as a mixed integer nonlinear program, not all models involv-

ing integer variables can be written or solved using conditional modeling techniques.

This is to identify conditional modeling as only a subclass of discrete optimization.

Three examples are constructed for the bene�t of consistent illustration throughout

the remainder of the report, one in the area of phase equilibria, one involving heat

exchange, and one involving adiabatic compressible ow. The heat exchange exam-

ple is particularly interesting because it demonstrates how a mixed di�erential and

algebraic conditional model is discretized using a method developed in this work,

ensuring that transitions of the solution among states does not introduce error in the

integration.

In chapter 3, structural analysis is discussed. All formulations must be analyzed

structurally before solving. Criteria and algorithms for recognizing a well-posed prob-

lem are available for continuous and di�erentiable models and they are reviewed in this

chapter. A notion of structural consistency exists for the set of equality constraints in

a continuous and di�erentiable nonlinear program and is therefore applicable as well

to the individual sets of equations found in a conditional model. The analysis be-

comes more complicated when there are excess variables to be optimized along with

variables computed from the equations. The partitioning of the variables into the

two groups is not unique and for conditional models, it must be done carefully. An

extended notion of consistency for conditional models is de�ned in this work which

essentially deals with the �nding of a consistent partitioning of the variables which

agree structurally with any of the alternative sets of equations. Another interesting

discussion o�ered in this chapter is on the partitioning of the equations to decom-

pose large conditional models even in an optimization mode. Before now, equation

6

partitioning was only discussed in nonlinear equation solving where an equal number

of variables and equations leaves no degrees of freedom. All of the algorithms are

applied to the examples introduced in the �rst chapter and the results are displayed

graphically as will be explained later.

Chapter 4 deals directly with the development of a solution algorithm for condi-

tional models. First, conventional nonlinear programming techniques are reviewed in

detail to uncover areas of improvement. A solution algorithm for continuous and dif-

ferentiable models is presented because of the anticipation that, most of the time, the

solution path for a conditional model will visit a series of points where the functional-

ity is di�erentiable. It is only nondi�erentiable points, or points of transition, which

must be treated di�erently and are using a gradient analysis. Boundary crossing is the

algorithm developed in this work and presented in this chapter which allows solution

paths for conditional models to be directed across state transitions. The algorithm

is also shown to terminate at solutions which happen to lie at points of transition.

The speci�cs of the algorithm are demonstrated when applied to the three examples

which have been up to that point only structurally analyzed.

Chapter 5 gives a thorough summary of the contributions made in this research.

It is felt that prior to this work, problems belonging to the subclass of conditional

modeling had not been adequately identi�ed. As will be seen in this report, a frame-

work has been established to e�ciently characterize conditional modeling in the three

main areas of formulation, structural analysis, and solution, all of which are equally

capable of attracting continued research in the future.

7

Chapter 2

Formulation

2.1 Introduction

In this chapter, a foundation of notation is established. Generic representations of

the parameters of a model as well as the objective function and equations are o�ered

for reference throughout the remainder of this report.

2.2 Continuous and di�erentiable models

Conventional continuous and di�erentiable models consist of a set of continuous pa-

rameters of which n are variable and the rest speci�ed as constants. The variables

x appear in a set of m equality constraints g(x) = 0 with the constant parameters

already dissolved. At most, these equations can produce solution values for m vari-

ables. In cases where n exceeds m, an objective function f(x) is needed in order for

solution values for the remaining variables to be optimal.

8

min f(x) (2.1)

s:t: g(x) = 0

x 2 Rn

f : Rn
! R1

g : Rn
! Rm

The search space consists of all n-dimensional real vectors. The feasible region is

a subset of the search space, consisting of all points satisfying the equations. The

constraints are referred to as being consistent if and only if the feasible region is

nonempty. A solution will then be a member of the set of feasible points.

An example is taken from a widely used collection of test problems [23]. Problem

number 114 is used. As originally formulated, there are 8 inequality constraints and

only 3 equality constraints along with lower and upper bounds on all of the variables.

The reported solution, however, indicates only 4 of the inequality constraints and 2 of

the variable upper bounds are active at the solution. These can therefore be included

as equations.

9

min 5:04x1 + 0:035x2 + 10:0x3 + 3:36x5 � 0:063x4x7 (2.2)

s:t: 3x7 = 0:99x10 + 133:0

x9 + 0:1998x10 = 32:238

1:12x1 + 0:13167x1x8 = 0:00667x1x
2
8 + 0:99x4

57:425 + 1:098x8 + 0:325x6 = 0:038x28 + 0:99x7

1:22x4 = x1 + x5

98000x3 = x6(x4x9 + 1000x3)

x2 + x5 = x1x8

x5 = 2000

x7 = 95

As a result, with 10 variables and 9 equations, there is only 1 degree of freedom.

2.3 Conditional models

Conditional models, on the other hand, contain a means to formulate alternative

sets of m equations involving the common set of parameters. The equations within

each set must be locally de�ned and con�ned to some region of values of the model

parameters [58]. Such a region is referred to as a search region and is a subset

of the search space. A set of l logical conditions of the form b(x) � 0 is used to

associate the conditional equations to search regions. Each condition, which may or

may not be satis�ed, disects the search space into two neighboring search regions, each

characterized by either positive or negative values of its boundary expression bi(x),

where i is an element of the set of indices f1 : : : lg. Each search region is identi�ed by a

unique combination of boolean values for all of the conditions. This can accommodate

up to 2l di�erent search regions. A compact way of di�erentiating a search region

from other search regions is by using a set s where s � f1 : : : lg. The set s can be

used to contain the indices of all of the conditions which must be met (implying that

10

all of the remaining conditions must not be met) in order for the solution to reside

in a speci�c search region. To generate all of the possible combinations of boolean

values for the conditions, the power set P(f1 : : : lg) is used which contains all of the

possible subsets s, including the empty set ; and the set f1 : : : lg itself. For most

conditional models, though, it is physically not meaningful for the solution to lie in

some of the search regions. These search regions, therefore, can be removed from

the search space and no conditional equations need be associated with them. Let R,

where R � P(f1 : : : lg), be the set of all subsets s with which m conditional equations

are to be associated in the form rs(x) = 0. The statement that the solution reside in

only one of the search regions is formulated disjunctively.

min f(x) (2.3)

s:t:
_
s2R

8><
>:

bi(x) � 0; 8i2s
bi(x) < 0; 8i2f1:::lg�s
rs(x) = 0

9>=
>;

x 2 Rn

f : Rn
! R1

b : Rn
! Rl

rs : R
n
! Rm; 8s2R

The disjunctive constraints are consistent if there exists at least one search re-

gion whose equations yield a nonempty feasible region. Furthermore, continuity is

preserved if the feasible regions of all consistent search regions are aligned at search

region boundaries. It should be pointed out that, although similarities exist between

formulation (2.3) and that of disjunctive programming, there are important di�erences

as well [1] [45]. The boundary expressions which appear above are not necessarily

posed as disjunctive inequality constraints but rather are used to associate parameter

values with a correct set of equations. This is e�ciently done by de�ning a common

boundary expression which changes sign from one search region to another. In addi-

11

tion, continuity in the feasible region is not required in disjunctive programming and

is assumed in (2.3). Because of continuity, what has been looked at in this work is

the ability to preserve the constraints as equations instead of replacing them with in-

equality constraints along with nontrivially augmenting the objective function which

would be required if the model is to adhere to the theory which exists for disjunctive

programs.

When the number of logical conditions, l, is zero, only one search region is cre-

ated using s = ; and formulation (2.3) reduces to that of (2.1) since no boundary

expressions exist. Otherwise, it is true that often a large number of equations are

found to be common to some if not all of the search regions. Those common to all

search regions are said to be globally de�ned because they must hold for all values of

the parameters just as the equality constraints of (2.1) do. It is therefore convenient

to include unconditional equations outside of the disjunction.

Formulation (2.3) enables the modeling of nonsmooth functions such as the com-

mon absolute value function. In this case, the domain of the argument of the absolute

value function is divided into positive and negative values. For positive values, the

value of the function is simply the value of the argument whereas for negative values,

the value of the function is the negative of the value of the argument. Using the

variables x1 and x2 and some objective function f(x1; x2), a simple conditional model

where x2 is constrained to be equal to the absolute value of x1 can be constructed

with two search regions, each having a feasible region. In this small example, it is easy

to con�rm continuity by noticing that the point (0; 0) lies in both feasible regions.

min f(x1; x2) (2.4)

s:t:

(
x1 � 0
x2 = x1

)_(
x1 < 0
x2 = �x1

)

12

2.3.1 Inequality constraints

Another common way of introducing nondi�erentiable functionality to a model is by

incorporating inequality constraints. With l inequality constraints added to (2.1), the

more general model formulation is created.

min f(x) (2.5)

s:t: g(x) = 0

h(x) � 0

x 2 Rn

f : Rn
! R1

g : Rn
! Rm

h : Rn
! Rl

This is �rst recognized as a special case of formulation (2.3) where the num-

ber of search regions (i.e., the cardinality of R) is one, namely the one denoted by

s = f1 : : : lg and the notation rs(x) and b(x) are more generically replaced by g(x)

and h(x) respectively. Thus the inequality constraints can be thought of as logical

conditions for which only one combination of boolean values is allowed at the solution.

For that reason, the solution may frequently be found at a point on the search region

boundary where at least one of the conditions has a boundary expression equal to

zero. Those inequalities for which this is true are referred to as being active at the

solution. The set of active constraints could change if the model were to be solved

again using di�erent values for the constants, hence the nondi�erentiable functional-

ity. With inequality constrained nonlinear programs, techniques are available which

can determine if the solution resides away from the boundary of the search region or

not while solving. The active-set strategy is based on the idea that, if the correct

active set were known for the solution, then the solution could be computed from

13

reformulating the inequality constraints which are known to be active at the solution

as equations and discarding those which are expected to be inactive [17].

When there are more than one search region, as is normally the case with condi-

tional models, the solution is permitted to reside on either side of some boundaries.

In this case, the logical conditions can no longer be used as inequality constraints.

Instead, the conditional equations involved in the disjunction need to be replaced

by a strategic combination of inequality constraints [8]. This can only be done in

the special case where the alternative sets of m equations are able to be broken up

into m independent decisions of single equation alternatives. Furthermore, the single

equation alternatives must be of the same form with a common variable isolated on

the left hand side. As a result, only disjunctions which e�ectively swap right hand

side expressions are handled. This has direct application to modeling with constraints

involving the nonsmooth maximum and minimum operators which can each be con-

structed through the superimposition of multiple inequalities. For each operator, at

least one of the inequality constraints must be active at the solution as required by

the disjunction that one of the arguments be chosen. This can be enforced by min-

imizing an objective consisting of a sum of weighted terms involving the left hand

side variables. If an objective function already exists in the conditional model, then,

as illustrated next, augmentation with the weighted terms is necessary. Choosing

su�ciently high values for the weights is di�cult.

To re-formulate (2.4) as an inequality constrained nonlinear program, another

parameter ! must be introduced which is treated like a constant. It will be used in

augmenting the objective function. To generate the correct inequality constraints,

an equivalence is made between stating that x2 is equal to the absolute value of x1

and that x2 is equal to the maximum of x1 and �x1. For values of ! beyond some

threshold value, x2 will be forced equal to either x1 or �x1.

14

min f(x1; x2) + !x2 (2.6)

s:t: x2 � x1

x2 � �x1

Although not all conditional models can be expressed this way, it will be shown

that all nonlinear programs like (2.5) which involve inequality constraints can be re-

formulated as a conditional model. The main assumption in doing so is that the

solution to (2.5) can be alternatively found by solving the equations corresponding to

the Kuhn-Tucker necessary conditions [4]. This assumption has convexity property

implications on nonlinear programs and will be discussed later. It su�ces to say that

some nonlinear programs can be adequately transformed to feasibility problems where

the equations which must be satis�ed at an optimum point are solved. The derivation

is shown using the notation of (2.5) and by introducing a vector of multipliers, �, for

the equality constraints and a vector of multipliers, �, for the inequality constraints.

A necessary condition for optimality is

rxf(x) +rxg(x)�+rxh(x)� = 0 (2.7)

The additional stipulations on � are that they must be less than or equal to zero and

complementary to the inequality constraint expressions h(x) which must be greater

than or equal to zero. Complementarity means that for any index i in the set of

inequality constraints f1 : : : lg, the product �ihi(x) must be zero.

When the objective function f(x) is quadratic and the constraint expressions g(x)

and h(x) are linear in the variables x, the problem can be reduced to the familiar

linear complementarity form [12] [29]. By taking advantage of the linearity, the

complementarity reduces to determining for each of a set of pairs of variables, which,

if not both, is to be set to zero at the solution. Here, though, the task is to determine

15

for each index i 2 f1 : : : lg whether �i is zero and hi(x) is positive or �i is negative

and hi(x) is zero. This is recognized as a disjunctive statement. What is needed is

a common boundary expression to act as a de�nitive indicator which will associate

the solution with the correct choice. Mathematically, the choices of the disjunction

can be identi�ed by the sign of the expression �i+ hi(x). At the solution, it must be

positive when �i is set to zero and negative otherwise.

(
�i + hi(x) � 0
�i = 0

)_(
�i + hi(x) < 0
hi(x) = 0

)
(2.8)

As a result, the optimization problem (2.5) is transformed to the conditional model

consisting of the equality constraints of (2.5) and (2.7) along with a disjunctive state-

ment which accounts for all combinations of choices of the disjunctions (2.8).

2.3.2 Binary variables

The determination of the state at which the solution resides can also be considered a

discrete decision. To imbed the decision making process into the formulation, binary

variables are needed, one for each condition. A solution value of 0 for a binary variable

implies that the corresponding condition is not met and a solution value of 1 for the

binary variable implies that the condition is met.

Taking the example (2.4) introduced above, a binary variable y is included along

with a necessary constant M whose value must be chosen large enough so as to not

a�ect the solution. Then the conditions and the conditional equations can all be

written as inequality constraints involving y and M .

16

min f(x1; x2) (2.9)

s:t: x1 � �M(1� y)

x1 �My

x2 � x1 � �M(1� y)

x2 � x1 � M(1� y)

x2 + x1 � �My

x2 + x1 �My

Techniques have been developed to solve mixed integer nonlinear programs rig-

orously using a two-phase strategy [19]. The sequence of search regions to visit in

searching for the correct state is given by successive solutions of a mixed integer linear

subproblem solved by branch and bound methods while each nonlinear subproblem

attempts to �nd a solution con�ned to each visited search region using conventional

nonlinear programming techniques. More recently, disjunctive programming tech-

niques have been successfully developed to enhance convergence and avoid the need

to introduce M [5] [46]. The di�culty with formulation (2.9) is that during a branch

and bound search, combinations of values for the binary variables are not necessar-

ily associated with the correct set of equations. Disjunctive programming helps to

tighten the formulation by using boolean variables which are treated special at solu-

tion time. By exploiting continuity, the association of parameter values to equations

is enforced more easily in this work through the use of a set of boundary expressions.

Termination of solving the mixed integer nonlinear program involves �nding the

search region and the point in that search region where the objective function is min-

imized. By not exploiting continuity, the solution algorithm will typically jump from

one search region to another which is remote from it. For highly nonlinear condi-

tional models, jumps to remote search regions may result in the poor initialization of

some of the nonlinear subproblems. Furthermore, the nonlinear subproblems insist on

17

converging the equations of what might be an incorrect search region. This method

employs a highly mathematical approach which remains as a rigorous general purpose

algorithm designed for problems where discrete decision making cannot be avoided.

2.4 Examples

To better demonstrate how disjunctive formulations are constructed, three examples

are used which will be referenced throughout the remainder of this report. The �rst

two are based on phase transition, the �rst consisting of purely algebraic equations

while the second illustrates the e�ect of di�erential equations. The last example is

based on uid ow transition from turbulent or plug ow to choked or sonic ow.

2.4.1 Phase equilibria

In the application of distillation, Figure 1.2 was included to introduce the phenomenon

of phase transition which can drastically change the separation. In order to model

equilibrium on each tray of a distillation column correctly, an ability to determine

the phases present as well as the distribution of the components among the existing

phases needs to be �rst developed. This is then incorporated in a conditional model

for each tray of the distillation column where phase transition is anticipated.

The isothermal ash problem has attracted much research [20] [32] [33] [34] [38].

It is recognized in classical thermodynamics that a closed system, if given su�cient

time to equilibrate, will reside at a state at which the total Gibbs free energy is

minimized. For a system at a �xed temperature, T , pressure, P , and composition, z,

over the set of components, C, this may result in the formation of multiple phases, F ,

with each phase having a nonnegative molar amount, �j; j 2 F , relative to the total

number of moles in the system, and composition yj; j 2 F . Phase j does not exist

if its corresponding mole fraction �j is zero. Regardless of the phase separation, a

18

material balance for the closed system requires that the sum of the number of moles

of a component over all of the existing phases must be the same as the total number

of moles of the component in the system. For any component i in some phase j,

the partial molar Gibbs free energy, G
j

i (T; P;y
j), will in general be a function of the

temperature, pressure, and the mole fractions of all components in phase j. The

solution of the following dimensionless nonlinear optimization program will therefore

dictate the phase distribution to be expected for a speci�ed temperature and pressure.

min
1

RT

X
j2F

X
i2C

�jy
j
iG

j

i (T; P;y
j) (2.10)

s:t:
X
j2F

�jy
j
i = zi; 8i2C

X
i2C

y
j
i = 1; 8j2F

�j � 0; 8j2F

Problem (2.10) is recognized as being in the form of (2.5). In an attempt to reduce

(2.10) to a feasibility problem, the necessary conditions for optimality to supplement

the constraints in (2.10) must be derived by introducing constraint multipliers. The

variables �i are introduced for the material balance of each component i. The vari-

ables �j are introduced for the normalization of component mole fractions in each

phase j. For the inequality constraints, the variables �j are introduced to enforce

nonnegativity on the fractions of each phase j. With the addition of these variables,

the procedure explained in transforming problem (2.5) is applied to supplement the

equations of problem (2.10) with the following set of constraints.

(
�j + �j � 0
�j = 0

)_(
�j + �j < 0
�j = 0

)
; 8j2F (2.11)

�j(
G
j

i (T; P;y
j)

RT
+

1

RT

X
k2C

y
j
k

@G
j

k(T; P;y
j)

@y
j
i

+ �i) + �j = 0; 8i2C ; 8j2F (2.12)

19

X
i2C

y
j
i (
G
j

i (T; P;y
j)

RT
+ �i) + �j = 0; 8j2F (2.13)

The summation term in (2.12) evaluates to 1 when the component mole fractions

of each phase are treated as independent variables. Unlike in the derivation of the

Gibbs-Duhem equation, the dependency among the component mole fractions of each

phase that they must be normalized has been instead incorporated as a constraint

on the feasible region. To further simplify, the complementarity condition of (2.11)

must be analyzed. It is interesting to �nd the result that for each phase j, either �j is

zero, implying that the phase exists, or �j is zero, implying that the phase vanishes.

Either way, their sum makes an adequate transition indicator.

For all existing phases j, the variable �j will be zero, �j will be more than zero

and equation (2.12) can be rearranged.

G
j

i (T; P;y
j)

RT
+ �i = �

�j + �j

�j
; 8i2C (2.14)

Relation (2.14) dictates that the expression on the left hand side is the same for all

components i in phase j. In equation (2.13), this allows the expression to be factored

out of the summation and, since the mole fractions of each phase are constrained to

add to one, it is concluded that

G
j

i (T; P;y
j)

RT
+ �i = ��j; 8i2C (2.15)

which is currently zero. Equation (2.15) amounts to expressing equilibrium among

all of the existing phases since for each component i, the partial molar Gibbs energy

will be equated to the same value, ��iRT , among all of the existing phases. It is

further concluded from (2.14) that �j will be ��j for all existing phases j.

For all absent phases j, there is a di�erent reasoning. This time, the variable �j

will be zero and �j will be less than zero. It is readily seen from equation (2.12) that

�j will be zero, suggesting that the expression �j+�j, which is evidently zero under all

conditions, can be eliminated. However, with most of the information multiplied by

20

zero, there is no further conclusion to be drawn as to a unique solution. One solution

is given by (2.15) which is now nonzero and also satis�es (2.13). As a result, a means

now exists to compute the �ctitious compositions of the nonexistent phases. This is

crucial in providing continuity in the solution across boundaries. Problem (2.10) is

now posed as a feasibility problem similar to how phase equilibrium calculations are

done conventionally. The di�erence here is that, through the additional variables �j,

the phases present at equilibrium need not be known a priori.

(
�j + �j � 0
�j = 0

)_(
�j + �j < 0
�j = 0

)
; 8j2F (2.16)

G
j

i (T; P;y
j)

RT
+ �i + �j = 0; 8i2C ; 8j2FX

j2F

�jy
j
i = zi; 8i2C

X
i2C

y
j
i = 1; 8j2F

In order to eliminate the introduced variables �i and �
j, further analysis is needed.

It is known that solution values of �j for all nonexistent phases will be strictly negative.

That being the case, by inspection of the equilibrium constraints in problem (2.16),

if �j were to be increased to zero as it is for all existing phases, what must result in

order to keep the equations satis�ed is that all G
j

i (T; P;y
j) values of the nonexisting

phases will be reduced. In order to accomplish this, the component mole fractions

will be reduced because the partial molar Gibbs energy, expressed as

G
j

i (T; P;y
j) = G

j
i (T; P) +RT ln(yji) +G

Ej

i (T; P;yj) (2.17)

where Gj
i (T; P) is the Gibbs energy of pure component i in phase j and G

Ej

i (T; P;yj)

is the partial molar excess Gibbs energy, is an increasing function of composition.

Therefore, instead of being normalized, the component mole fractions will be forced

21

to satisfy the condition X
i2C

y
j
i < 1 (2.18)

This is precisely the result of Michelsen's phase stability analysis [32] [34]. In the

process, the variable �j is no longer needed since it can be set to zero at the solution

under all conditions. However, a new boundary expression will need to replace �j+�j.

To mimic the property that �j used to be less than zero for all nonexisting phases, the

expression
X
i2C

y
j
i �1 is used as its replacement. Finally, in expressing equilibrium now

among all phases, existent or not, it is typical to choose some reference phase r 2 F .

This enables the elimination of the unwanted computation of �i by subtracting away

some of the equations. Problem (2.16) is presented again in compact form.

8>><
>>:

X
i2C

y
j
i + �j � 1X

i2C

y
j
i = 1

9>>=
>>;
_8<
:
X
i2C

y
j
i + �j < 1

�j = 0

9=
; ; 8j2F (2.19)

G
j

i (T; P;y
j) = G

r

i (T; P;y
r); 8i2C ; 8j2F�frgX

j2F

�jy
j
i = zi; 8i2C

The equilibrium constraints of (2.19) can be written in alternative forms such

as through the familiar use of fugacity coe�cients which are further expressed as

products of contributing factors such as activity coe�cients. Although this is very

common in procedural modeling, it has been the experience of this work that, in an

equation based modeling environment, expressions involving terms consisting of the

product of many variables is not desireable because of the severe nonlinearities that

are introduced. Excess and residual properties have the advantage of being added to

ideal properties which may preserve the degree of nonlinearity.

Formulation (2.19) is applied to a ternary system involving benzene, ethanol, and

water (C = fB;E;Wg). At most, three phases are expected to exist simultaneously,

22

V = vapor
A = aqueous

O = organic
100

80

20

40

60

VAO

V

A O

VA

AO

VO

Temperature (C)

0.0 0.2 0.4 0.6 0.8

Mole fraction benzene

Figure 2.1: Phase diagram for a benzene-ethanol-water mixture

an aqueous liquid phase, an organic liquid phase, and a vapor phase (F = fA;O; V g).

The problem will be to solve for the complete thermodynamic state of the system at

a �xed temperature T and pressure P , determining in the process which of the three

phases are present. With three potential phases, there are three logical conditions

which give rise to eight possible states. However, one state in which all phases are

absent is physically unrealizeable and the search region corresponding to that com-

bination can be removed from the problem. Thus there are only seven di�erent

possibilities in the phase distribution. Pham and Doherty report qualitatively the

data shown in Figure 2.1 which was reproduced with a �xed ethanol concentration

of �fteen mole percent and at a pressure of one atmosphere [38]. The seven search

regions are identi�ed as areas on the phase diagram.

The vapor phase is modeled as an ideal gas mixture. There is no partial molar

excess contribution to the partial molar Gibbs energy of the components in the vapor

23

phase and as a result, (2.17) becomes

G
V

i (T; P;y
V) = GV

i (T; P) +RT ln(yVi) (2.20)

The liquid mixtures are modeled as regular solutions in order to estimate the partial

molar excess quantities which, for this system of components, are expected to be

largely di�erent from zero.

G
A

i (T; P;y
A) = GA

i (T; P) +RT ln(yAi) +G
EA

i (T; P;yA) (2.21)

G
O

i (T; P;y
O) = GO

i (T; P) +RT ln(yOi) +G
EO

i (T; P;yO) (2.22)

The liquid pure components are modeled as incompressible liquids with constant mo-

lar densities �i and saturation pressures P sat
i (T) which behave as a function of tem-

perature as given by Reid et. al. [47]. The free energies are derived by condensation

from the ideal gas state via isothermal expansion and compression.

GA
i (T; P) = GV

i (T; P) +RT ln(
P sat
i (T)

P
) +

P � P sat
i (T)

�i
(2.23)

GO
i (T; P) = GV

i (T; P) +RT ln(
P sat
i (T)

P
) +

P � P sat
i (T)

�i
(2.24)

The term involving �i in equation (2.23) and (2.24) is better known as the Poynting

contribution and is often left out because of its relatively small inuence on the free

energy calculation. By choosing phase V as the reference phase and substituting

functionality for the liquid saturation pressures and partial molar excess energies, the

equilibrium relations are simpli�ed and, as a result, the problem is formulated below.

In order to more clearly illustrate the formulation for this example, only 3 search

regions are listed, namely those where exactly one phase is absent. The speci�cations

of temperature and pressure can always be designed for this example to make sure

the solution lies in one of these search regions. These search regions correspond to

the designated areas V A, V O, and AO in Figure 2.1.

24

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

X
i2C

yAi + �A � 1X
i2C

yOi + �O � 1X
i2C

yVi + �V < 1X
i2C

yAi = 1X
i2C

yOi = 1

�V = 0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

_

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

X
i2C

yAi + �A � 1X
i2C

yOi + �O < 1X
i2C

yVi + �V � 1X
i2C

yAi = 1

�O = 0X
i2C

yVi = 1

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

_

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

X
i2C

yAi + �A < 1X
i2C

yOi + �O � 1X
i2C

yVi + �V � 1

�A = 0X
i2C

yOi = 1X
i2C

yVi = 1

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(2.25)

ln(
yVi P

yAi P
c
i

) =
1

T

X
j2C

(Aij �
1

2

X
k2C

Ajky
A
k)y

A
j +

T c
i

T

X
k2f1:::4g

Bik(1�
T

T c
i

)ck ; 8i2C

ln(
yVi P

yOi P
c
i

) =
1

T

X
j2C

(Aij �
1

2

X
k2C

Ajky
O
k)y

O
j +

T c
i

T

X
k2f1:::4g

Bik(1�
T

T c
i

)ck ; 8i2C

�AyAi + �OyOi + �V yVi = zi; 8i2C

The following data are applicable for the benzene-ethanol-water system [38] [47].

A =

2
64

0:0fKg 576:3fKg 1074:5fKg
576:3fKg 0:0fKg 351:8fKg
1074:5fKg 351:8fKg 0:0fKg

3
75

B =

2
64 �6:98273 1:33213 �2:62863 �3:33399
�8:51838 0:34163 �5:73683 8:32581
�7:76451 1:45838 �2:77580 �1:23303

3
75

c =
h
1:0 1:5 3:0 6:0

iT
Tc =

h
562:2fKg 516:2fKg 647:4fKg

iT
Pc =

h
48:3fatmg 63:0fatmg 217:6fatmg

iT

The additional constant parameters for problem (2.25) for which speci�cations are

required are T , P , and z. This leaves alternative sets of (jCj + 1)jF j equations in a

consistent set of (jCj + 1)jF j variables. Among all the phases, it is not clear based

on the speci�cations which phase will disappear. It should be noted that formulation

25

(2.10) is known to exhibit many local minima when two or more of the candidate

phases are liquid. This is because the same functionality is used in estimating the

partial molar excess free energy of all liquid phases [57]. In the vapor-liquid-liquid

equilibrium problem described above, it is often di�cult to avoid obtaining the trivial

solution where, for two liquid phases present at equilibrium, the compositions are

identical. Proper initialization can help to obtain the desired solution where both

liquid phases may exist with di�erent compositions.

2.4.2 Heat exchange

In Figure 1.3, it was mentioned that a di�culty exists in integrating conditional

models having di�erential equations. The main di�culty is preserving rigor when

the integrated variable is nonsmooth. To accomplish this, the domain of integration

must be partitioned into �nite elements in such a way that transition of the integrated

variables between states does not occur internal to any element. This is because the

numerical methods for integrating across an element assume smoothness by using

gradient evaluations at only a �nite number of points in the element. Therefore,

should transition occur within the domain of integration, the elements will almost

surely need to be adjusted in width to accommodate. For cases where the initial

conditions of all of the integrated variables are given, tailored algorithms are o�ered

which integrate cautiously, adjusting the advancement as transitions become detected

[3]. This has direct applications to solving processes which involve discrete events

taking place at certain points in time. What is more interesting is formulating and

solving models where both initial and �nal conditions are speci�ed for the integrating

variables. In this case, no e�cient tailored algorithm can be devised to determine if

and where transition takes place.

A general method for integrating conditional models having di�erential equations

is to discretize the di�erential equations �rst and treat the problem as a conditional

26

model with only algebraic equations as originally posed in (2.3). To accomplish this, a

relay method is introduced. The name emerges from the observation that the point in

the domain of integration at the solution where transition occurs will get continuously

passed along, as a baton in a relay race, from one element to another by successive

contractions and expansions of the individual elements, similar to a compression wave

moving along a spring, if driven by a continuous change in the values of the model

constants. Switching stations at which the analogous baton transfer occurs must �rst

be positioned. This can be best demonstrated using the heat exchanger example

introduced in Figure 1.3.

At any given position within a heat exchanger, a di�erential amount of heat

from a hot stream, owing through the shell, is transfered to a cold stream, owing

countercurrently through the tubes, across a di�erential amount of area per unit

time. When integrated over each �nite element, the net amount of heat transfered

will enforce a change in the enthalpies of the two owing streams and therefore result

in temperature changes as well. Integration across the elements is typically carried out

using a quadrature method which applies a common propagation formula to predict

changes in the heat transfer rate [11]. Propagation is carried out assuming a smooth

pro�le for the heat transfer rate throughout the element which can be accurately

described by a polynomial. In this example, the trapezoidal rule is used. Di�culty

arises when the temperature change of one of the streams is enough to cause phase

change as phase change creates a nonsmooth pro�le for the heat transfer rate. In that

case, it is expected that the integration will be more accurate if the element were able

to be broken up into two subelements at precisely the point where phase change �rst

occurs.

In this example, three �nite elements are chosen with one switching station but

the formulation can be generalized for more. To outline the three elements, four

positions referenced by the indices f0 : : : 3g are used. The domain of integration is

27

transformed to the dimensionless variable � which varies from zero to one so that

the di�erential area can be expressed as Ad� where A is the total heat transfer area

in the heat exchanger. To model countercurrent heat exchange and utilize all of the

heat transfer area, the cold stream is introduced at position �0 = 0 while the hot

stream is introduced at position �3 = 1. The placement of �1 and �2 will depend

on phase change. The molar ows of the hot and cold streams are given by Fh and

Fc respectively. There is negligible loss of pressure in both streams and the same

pressure P , set to 1fatmg, is used. The instantaneous heat transfer rate is Q. Due to

possible shell-side condensation, a variable heat transfer coe�cient is used to relate

dQ=dA to the local temperature driving force. The presence of mist and subsequently

condensation droplets on the shell side of the tube walls will have a sharply increasing

e�ect on the heat transfer coe�cient [10]. It is adequate to express the heat transfer

coe�cient as a linear function of �, the fraction of the hot stream which is condensed.

The composition of the condensation droplets, x, and the composition of the vapor,

y, are related to each other by phase equilibria and to the overall stream composition,

z, via a material balance involving �. The set of components C consists of butane,

pentane, and hexane (C = fB;P;Hg). The additional thermal properties for the hot

stream include temperature Th and molar enthalpy Hh. The cold stream is made up

entirely of water and is expected not to undergo phase change throughout the length

of the heat exchanger. The parameters needed at all positions for the cooling water

are the temperature Tc and the molar enthalpy Hc. For reference, the molar enthalpy

of both streams is set to zero at a temperature of 540fRg.

The di�culty with this model is that, in addition to solving for the temperature

pro�le, the dimensions of the �nite elements are to be solved for as well simultaneously.

This is done by solving for the placement of the interior evaluation positions �1 and �2

such that at least one of them locates the point of condensation should condensation

occur internally while the other resides at the switching station, positioned at the

midpoint of the domain. It is assumed that the hot stream entering the shell side is

28

superheated. Therefore, there are three alternatives of interest. Either condensation

does not occur, condensation appears somewhere between the outlet of the shell

side and the switching station, or it �rst appears somewhere between the switching

station and the inlet of the shell side. With continuous heat transfer occurring down

the length of the heat exchanger, the alternative that condensation appear in the inlet

side of the switching station and disappear in the outlet side of the switching station

is not physically meaningful. The temperature pro�les are assumed to be monotone.

By applying the conditions developed for phase equilibria at the outlet of the shell

side and at the switching station, the presence of condensate in each of the three

elements can be deduced.

The �rst alternative is that not enough heat is drawn from the hot stream to cause

condensation. In this case, the hot stream will be in the vapor state throughout the

heat exchanger and the leftmost element (bordered by �0 and �1) will collapse by

setting �1 to �0 since the other two elements, separated by position �2 = 0:5, are

su�cient to integrate accurately. This is shown in Figure 2.2a. If more heat were

transfered to cause condensation, the point at which it occurs may be located to the

left of the switching station. In this case, while keeping �2 �xed at the switching

station, �1 is sent to go fetch the point of condensation. The result is that condensate

will exist in the hot stream within the leftmost element only. This is shown in Figure

2.2b. If still more heat is transfered, the condensation point may be isolated to the

right of the switching station in which case �1 and �2 switch roles. Here, pure vapor

will exist in the hot stream within the rightmost element only. This is shown in Figure

2.2c. For this example, 500000fBTU=hourg are to be removed from a 600fRg para�n

stream. There exists a refrigeration unit whose operating cost is assumed to increase

quadratically with increasing cooling duty. An optimal design for a water cooler is

sought to be used upstream of the existing refrigeration unit so that its annualized

installed cost along with its operating cost still results in a bene�cial reduction in the

operating cost of the existing unit [14].

29

(a)

(b)

(c)

Temperature

hot

cold

η
0.0 0.5 1.0

Temperature

Temperature

hot

hot

cold

cold

0.0 0.5 1.0

0.0 0.5 1.0

η

η

Figure 2.2: Alternative heat exchanger temperature pro�les

30

min 0:238

A

1:0fft2g

!0:65

+
0:0013Fc
1:0f lbmole

hour
g
+ 17:0

1�

Fc(H
3
c �H0

c)

500000fBTU
hour

g

!2

(2.26)

s:t:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

X
i2C

x0i + �0 < 1X
i2C

x2i + �1 < 1

�1 = �0

�0 = 0
�2 = 0:5
�1 = 0

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

_

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

X
i2C

x0i + �0 � 1X
i2C

x2i + �1 < 1X
i2C

x0i = 1X
i2C

x1i = 1

�2 = 0:5
�1 = 0

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

_

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

X
i2C

x0i + �0 � 1X
i2C

x2i + �1 � 1X
i2C

x0i = 1X
i2C

x1i = 1

�1 = 0:5X
i2C

x2i = 1

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

�2 = 0

�3 = 0

�jx
j
i + (1� �j)yji = zi; 8i2C ; 8j2f0:::3g

ln(
y
j
iP

x
j
iP

c
i

) =
T c
i

T
j
h

X
k2f1:::4g

Bik(1�
T
j
h

T c
i

)ck ; 8i2C ; 8j2f0:::3g

dQ

d�

j

= 20

(
BTU

hr ft2R

)
(1 + 10�j)A(T j

h � T j
c); 8j2f0:::3g

Fh(H
j+1

h �H
j
h) = Fc(H

j+1
c �Hj

c); 8j2f0:::2g

Fc(H
j+1
c �Hj

c) =
1

2
(
dQ

d�

j

+
dQ

d�

j+1

)(�j+1
� �j); 8j2f0:::2g

Hj
c = 9720

�
BTU

lbmole

�
T j
c

540fRg
� 1

!
; 8j2f0:::3g

H
j
h =

X
i2C

2
4zi X

k2f1:::4g

Dik

0
@ T

j
h

540fRg

!k
� 1

1
A� �jx

j
iH

vap
i

3
5 ; 8j2f0:::3g

The following data is applicable for the para�n mixture [47].

31

B =

2
64
�6:88709 1:15157 �1:99873 �3:13003
�7:28936 1:53679 �3:08367 �1:02456
�7:46765 1:44211 �3:28222 �2:50941

3
75

D =

2
6664

1224
n

BTU
lbmole

o
6410

n
BTU
lbmole

o
�429

n
BTU
lbmole

o
�2

n
BTU
lbmole

o
�468

n
BTU

lbmole

o
9428

n
BTU

lbmole

o
�998

n
BTU

lbmole

o
46
n

BTU

lbmole

o
�569

n
BTU
lbmole

o
11260

n
BTU
lbmole

o
�1207

n
BTU
lbmole

o
57
n

BTU
lbmole

o
3
7775

c =
h
1:0 1:5 3:0 6:0

iT
Tc =

h
765:4fRg 845:3fRg 913:3fRg

iT
Pc =

h
37:5fatmg 33:3fatmg 29:3fatmg

iT
Hvap =

h
9634

n
BTU
lbmole

o
11088

n
BTU
lbmole

o
12413

n
BTU
lbmole

o iT

To summarize, formulation (2.26) consists of 3 alternative sets of 48 equations of

which at least 44 equations are common among all of the sets. With speci�cation

of z, T 3
h , T

0
c , Fh, �

0, �3, and P , there are 50 variables which leaves two degrees of

freedom. A common choice for the decision variables with which to optimize are A

and Fc.

2.4.3 Adiabatic compressible ow

As pointed out in Figure 1.4, uid ow transition occurs in some conditional models.

One such model is constructed here where the laminar state is avoided. It describes

the ow of a compressible gas in an adiabatic frictional circular pipe of constant

diameter. The parameters of the model are the initial and �nal Mach numbers Mi

and Mf , the initial and �nal temperatures Ti and Tf , the initial and �nal pressures

Pi and Pf , the discharge pressure Pd, the pipe diameter and length, D and L, and

the molar ow rate F . Other quantities include the molecular weight mw, the heat

capacity ratio , the universal gas constant R, and fanning friction factor f . The gas

is to be delivered from a well at a pressure of Pi and a temperature of Ti through a

32

F

Pi

Pd

1=Mf

1 2

3

L D

P
f

Figure 2.3: Adiabatic compressible ow in a constant diameter pipe

pipe yet to be installed to a reservoir at a pressure of Pd.

Nonsmooth functionality occurs due to possible transition to sonic ow at the

outlet when investigating designs of varying diameters. This is shown more clearly

in Figure 2.3. Starting at point 1 and gradually increasing the diameter size, the

ow will be observed to increase while the pressure, Pf , just inside the end of the

pipe remains equal to the discharge pressure, Pd. Point 2 will eventually be reached

where the velocity of the uid exiting the pipe is equal to that of sound in the uid

at the exiting conditions. Any attempt to further increase the diameter will follow

along the path toward point 3 where Pf will be forced to be higher than Pd, yielding

shock waves which are produced by the sudden isothermal and irreversible drop in

pressure. In formulating this model, the condition Pd � Pf � Mf � 1 can indicate if

the ow is sonic or not based on the above information. Below critical ow, no shock

waves are produced (Pd = Pf), the outlet Mach number Mf will be less than one,

and the condition will be met. During sonic ow, however, Pd < Pf , the outlet Mach

number Mf will be equal to one, and the condition will be violated. The equations

for an ideal gas are derived to govern the behavior described above [31]. The problem

is to design the pipe to maximize the pro�t obtained by subtracting the annualized

33

installed cost of the pipe from the value of the gas produced. The same solution can

be found by minimizing the negative of the pro�t.

min 0:425

D

1:0fcmg

!2:5
L

1:0fmg

!
�

mwF

1:0fg
s
g

(2.27)

s:t:

(
Pd � Pf �Mf � 1
Pd = Pf

)_(
Pd � Pf < Mf � 1
Mf = 1

)

FRTi

Pi
=
�D2Mi

4

s
RTi

mw

FRTf

Pf
=
�D2Mf

4

s
RTf

mw

Tf

Ti
=

1 + �1
2
M2

i

1 + �1
2
M2

f

1

M2
i

�
1

M2
f

�
4fL

D
=
 + 1

2
ln

M2

f (1 +
�1
2
M2

i)

M2
i (1 +

�1
2
M2

f)

!

Problem (2.27) consists of 2 sets of 5 equations of which 4 equations are common.

Using methane gas, speci�cations include mw = 16fg=gmoleg and = 1:292. For the

pipe, a length of L = 100fmg and f = 0:01 are chosen. Finally, the inlet conditions

Ti = 300fKg and Pi = 10fatmg as well as the discharge pressure Pd = 5fatmg are

known. This leaves 6 variables, one of which (D, for example) can be selected as a

decision variable for the optimization.

34

Chapter 3

Structural Analysis

3.1 Introduction

Prior to solving, a model formulation is analyzed to determine if it is well-posed. Tech-

niques are available which may detect if any structural inconsistencies exist among

the equations which in turn indicates a likely empty feasible region. These techniques

are based on the idea that models are sparse. In other words, all equations are likely

to involve only a few of the variables. The subset of variables appearing in an equa-

tion are called incident variables. Although each variable may appear in more than

one equation, most equations are expected to have di�erent incident sets. Structural

analysis of the equations is the process of exploiting model sparsity.

3.2 Continuous and di�erentiable models

An incidence matrix o�ers an e�ective medium with which the sparsity of (2.1) is

exploited [60]. The elements of the vector, or enumerated set, of variables, x, each

have a speci�c index from the set f1 : : : ng and the elements of the vector of equation

residuals, g(x), each have a speci�c index from the set f1 : : :mg. A matrix I is

constructed with n columns and m rows so that initially each column can refer to

the variable of the same index and each row can refer to the equation residual of the

35

same index. A sparse incidence pattern is then created by deleting all elements Iij for

which @gi(x)=@xj = 0; 8x2Rn and inserting all others. This condition that the partial

derivative vanishes everywhere is simply a mathematical statement that variable xj

does not contribute to the evaluation of residual gi(x). An algorithm to generate the

incidence pattern can be more clearly stated in a stepwise procedure.

Algorithm 1 Constructing an incidence matrix

1 for each i 2 f1 : : :mg
2 for each j 2 f1 : : : ng
3 if (@gi(x)=@xj = 0; 8x2Rn)
4 delete Iij
5 else

6 insert Iij

The nested loops of lines 1 and 2 visit all positions of the matrix elements so that

the condition of line 3 can determine whether or not an element should be placed. To

illustrate, an incidence matrix is constructed for problem (2.2). The formulation as

written produces the incidence pattern given in Figure 3.1. The equations are indexed

in the order in which they are listed in the formulation and the indices appear to the

left of their corresponding rows. The variable names appear above their respective

columns. As will be shown next, by rearranging the variables among the columns in

a systematic manner, tests for conditions of a well-posed model are conducted.

3.2.1 Structural consistency

One of the requirements for a well-posed model is that it not be over-speci�ed. This

requires m � n. However, this is only a necessary condition and not a su�cient one.

Even in situations where the number of variables exceeds the number of equations,

there may exist a subset of equations which exceed in number the combined variables

on which they are incident. All those equations which if removed from the subset

36

x102x 7x5x1x 3x 4x 6
x 8x 9

x

1

2

3

4

5

6

7

8

9

Figure 3.1: Incidence matrix

would restore the proper speci�cation are referred to as being structurally singular

or inconsistent. This suggests that with the equations not removed, no matter what

values are used for the variables, the Jacobian matrix, rxg(x)
T , will have numeri-

cally singular rows. Numerical singularity may be encountered even with well-posed

systems so it should be noted that structural consistency is only a necessary condition

for numerical consistency, not a su�cient one.

Structural singularities are detected by performing an output assignment. This is

the process of assigning each equation to one of its incident variables. The structural

rank, which will be computed using the quantity rank, is the largest number of

equations which can be assigned such that no two equations are assigned to the same

variable. If rank = m, the equations are structurally nonsingular. An algorithm

for conducting an output assignment, and, at the same time, testing for structural

singularity, employs a depth-�rst search and is described using the incidence matrix

[15] [62]. Initially, rank is set to m. Starting with the �rst row, all of the variables are

initially unassigned so any one of the variables incident on the equation of the �rst

row can be assigned to it. This is done by moving the chosen variable over to the �rst

37

column so that this �rst assignment starts the forming of a diagonal. As the algorithm

proceeds to the next row, the number of unassigned variables is decremented and

the diagonal is extended. Eventually, a row may be encountered where all of the

incident variables of the associated equation have been already assigned to some of

the equations of the previous rows. In this case, it must be investigated to see if any

of these previously assigned equations have incident variables which are currently

available for assignment. If not, the investigation must be continued recursively

before concluding that an assignment simply cannot be made. In this case, the

equation of the current row is structurally singular and is moved to the last row

before decrementing rank so that it will not be visited again.

This algorithm is stated more clearly by �rst declaring a recursive call-by-reference

integer function assign whose task is to assign an equation to one of its incident vari-

ables. An implementation of such a function is presented by Karl Westerberg [62].

The function takes, as arguments, the row i where the equation to assign currently

resides, a set range of columns in which to search for a variable available for assign-

ment, and a set V of rows which have been previously visited. It is assumed that

all of the equations situated in rows f1 : : : (i� 1)g have already been assigned. The

function will return the column where the variable available for assignment was ulti-

mately found. The incidence matrix I is assumed to have been prepared as prescribed

above. It is also convenient to assume that the matrix is accessible from within the

function along with its dimensions m and n.

Algorithm 2 Function to assign an equation to a variable

1 integer function assign(i; range; V)
2 for each j 2 range

3 if (Iij exists)
4 exchange variables of columns i and j

5 return j

6 set V = V _ fig

7 for each j 2 f1 : : : ng � range

38

8 if ((Iij exists) AND (j 62 V))
9 set k = assign(j; range; V)
10 if k 6= 0
11 exchange variables of columns i and k

12 return k

13 return 0

Lines 2 through 5 check for the possibility that an incident variable, which is not

yet assigned to another equation, exists for the equation in question. In this case, the

column where it was found is returned to the caller of the function to notify that a

successful assignment has been made. If line 6 is reached, the current row must be

added to the set of visited rows V so that it doesn't get visited again. Then lines 8

through 12 search among the previously assigned rows for one whose equation could

be reassigned to any of the variables located in range. If line 13 is reached, the

search has been exhausted and a 0 is returned to inform the caller that the equation

in question is structurally singular. It is important to set V to the empty set prior

to calling the function with a new equation. To output assign as many equations as

possible, the following loop is executed, as proposed by Karl Westerberg[62].

Algorithm 3 Achieving an output assignment

1 set i = 1
2 set rank = m

3 while (i � rank)
4 set V = ;

5 set range = fi : : : ng

6 if (assign(i; range; V) 6= 0)
7 set i = i + 1
8 else

9 exchange equations of rows i and rank

10 set rank = rank � 1

If, at the end of the loop, rank < m, then the equations residing in rows f(rank+

1) : : :mg are causing structural singularities in the model. Furthermore, as an added

feature, at the time an equation is concluded to be singular, the set V will contain

39

x10 2x7x5x1x3x4x6
x8x9

x

1

2

3

4

5

6

7

8

9

Figure 3.2: Output assignment

all the rows whose equations contribute to the structural dependency, as it is also

sometimes called. Essentially, this means that the singularity will be resolved if

either the singular equation or in fact any one of the equations residing at the rows

of V were removed from the formulation. It is good practice to present all of them to

the user for con�rmation of the formulation error. It is assumed hereafter, then, that

formulations have full structural rank since a means of correcting rank de�ciency now

exists.

The algorithm described above is applied to the incidence matrix of Figure 3.1

and the columns end up being rearranged to the order shown in Figure 3.2. The

diagonal formed gives a plausible assignment, and it is concluded that the model is

structurally consistent.

3.2.2 Partitioning the variables

When a structurally consistent output assignment is achieved, the variables are ef-

fectively partitioned into 2 groups. Those variables which are assigned make up m

40

dependent or state variables y while those left unassigned (in the case m < n) make

up independent or decision variables z. The independent variables are equal in num-

ber to the degrees of freedom. Incidentally, when inequality constraints are imposed,

the degrees of freedom in the solution are not known since it cannot be guaranteed

which constraints will be active at the solution. Nevertheless, the active set strategy

can adjust the number of degrees of freedom as solution progress is made.

The partitioning of the variables is not unique. Furthermore, among the depen-

dent variables of a given partition, the assignment of variables to equations is not

unique. This con�rms that the Jacobian can be inverted using di�erent pivot se-

quences, the preferred choice being the sequence which achieves a desired balance

between preserving sparsity and avoiding ill-conditioning in the inverse. This is a lin-

ear analysis issue and will be addressed later. As far as partitioning the variables, the

largest number of partitions is obtained when all variables are incident upon all equa-

tions. In this case, there are Cn
m = n!=(m!(n�m)!) combinations of n variables taken

m at a time and for each combination, there are Pm
m = m! permutations for assigning

the equations among the dependent variables. Fortunately, though, model sparsity

reduces the number of possible combinations and permutations of the variables and,

as a result, some combinations of variables are restricted from being independent.

With multiple choices for the decision variables available, it is expected that some

choices may serve to enhance convergence when solving better than others. Some

arguments for this include sparsity and linearity. The �rst issue suggests that it

is preferable to select decision variables in such a way that the assigned region of

the matrix is as sparse as possible so that working with the Jacobian while solving

will involve less work. However, from a convergence point of view, it might also be

preferable to select decision variables in such a way that the equations are as linear

as possible in the assigned variables so that it will be easier to maintain feasibility

during solution. Without a truly de�nitive criterion to select the best choice, the

41

x10 2x
7x5x

1x3x4x6
x8x9

x

1

2

3

4

5

6

7

8

9

Figure 3.3: Steward path

ability to at least generate all choices and present them to the user is important. All

selections of decision variables can be generated from an initial partition through the

use of eligibility analysis. The initial partition is obtained from �nding an output

assignment. To generate another partition, some of the variables y are determined if

they are eligible to be made independent in exchange for one of the variables z without

altering the structural rank of the equations. This is accomplished by following all

Steward paths, as they are called, stemming from the current decision variables and

marking all state variables encountered along the paths as being eligible [60].

In the output assignment of Figure 3.2, x2 is found to be an eligible indepen-

dent variable placed in the end column outside of the assigned region. Variable x2

is incident only in the equation in row 7. To �nd other possible choices for the in-

dependent variable, variable x2 will need to be assigned to this equation. If row 7 is

to be assigned to the last column, then the variable of column 7 (x1) will need to be

unassigned. Therefore, x1 is an eligible variable. It is noticed that x1 also appears in

the equation of row 5. It is therefore further possible to re-assign equation residual

42

g5(x) to x1 and unassign x4, thereby making x4 an eligible candidate as well. Variable

x4 is also shared by g6(x) which is currently assigned to x3. Since x3 does not appear

in any other equation, the path terminates and other branches which were bypassed

along the way are traversed to see if other variable destinations exist. The path just

described is shown in Figure 3.3 and is one of many Steward paths which can be made.

All of the Steward paths are essentially branches of a directed graph originating from

the currently unassigned variables and terminating at some of the assigned variables.

An algorithm for traversing all possible Steward paths and, in the process, gathering

all eligible variables encountered along the way can best be written as a recursive

function. Similar to how the function assign described above has the capability of

recursively searching all existing paths to �nd a variable available for assignment, the

function needed here must recursively exhaust all existing paths in order to gather

the variables eligible for unassignment. A function eligible is created in this work

which takes, as arguments, a column j, where a variable which is currently known to

be eligible resides, and a set E, which is used to store the indices of eligible variables

as they are found. A more lengthy nonrecursive version of the algorithm is presented

by Piela [39].

Algorithm 4 Function to collect all eligible dependent variables from one

known independent variable

1 function eligible(j; E)
2 set E = E _ findex of variable in column jg

3 for each i 2 f1 : : :mg
4 if ((Iij exists) AND (index of variable in column i 62 E))
5 eligible(i; E)

With a partition to start with, the set E is initialized to the empty set. The

indices of the variables which are initially unassigned can immediately be added to

E. But a more thorough approach would be to call the function eligible on the

columns of each of these unassigned variables. Taking one variable at a time, in line

43

2, the index of the variable is sure to be a member of E. Then line 3 starts a loop

over all equations in which the variable also appears because the function can then

be called with the variables to which these equations are assigned, assuming that

their indices have not already been added to E. As a result, by calling the function

in a loop over all columns outside the assigned region, not only will the indices of

independent variables be added to E but so will the index of any dependent variable

which can be reached from them.

Algorithm 5 Generating all eligible variables

1 set E = ;

2 for each j 2 f(m+ 1) : : : ng
3 eligible(j; E)

For the example (2.2), function eligible need only be called once with x2 as the

arbitrary independent variable. Upon returning, the complete set of eligible vari-

ables for this problem corresponding to the indices of E is fx1; x2; x3; x4; x6; x8g. It is

interesting to point out that no matter which of these variables was used as the inde-

pendent variable for the initial output assignment, the function eligible will generate

the same set E.

3.2.3 Partitioning the equations

Because of sparsity, it will often be found among the equations, at least in instances

where m = n, that a subset of some small number of equations can be solved for

an equally small number of variables. With the solution values of these variables

achieved, another subset may also be found in the remaining equations. This process

is continued until no more subsets exist and results in a decomposition of the original

problem into partitions which can be individually solved in some precedence order

[60]. This is again e�ciently accomplished through manipulation of the incidence

44

matrix. This time, the equations will be rearranged among the rows as well in order

to transform the matrix into lower block triangular form. When in this form, the

region of the matrix above and to the right of the blocks, which are positioned along

the diagonal, is empty. As a result, the equations and variables within each block

make up each partition.

As described above, partitioning has been for the most part applied to systems

of equations with no degrees of freedom or at least with no objective function. Al-

gorithms used for block triangularizing the incidence matrix, therefore, are based on

square systems [55] [60] [62]. Without an objective function, if arbitrary values for

the decision variables z, if any, were speci�ed, the equations along with the variables

y make up a structurally nonsingular system. The system of size m is then typically

decoupled if sparsity allows. If optimization is desired, however, the decoupling must

be lessened in order to account for the fact that solution values for the decision vari-

ables are to be computed from the optimal evaluation of an objective function. One

way to look at this problem is to imagine the existence of n�m additional equations

which, if added to the existing ones, would produce a structurally nonsingular system

of size n. Then, if solved, this enlarged system should yield the correct solution val-

ues for all of the variables and therefore be subject to the same decoupling described

above if sparsity allows. The structure of these imaginary equations is investigated.

An equation which is assigned to one of its incident variables will often have other

incident variables as well. One way to interpret the signi�cance of this is that the

assigned variable can be computed by the equation only if values for the other incident

variables are provided. Often, though, values for the other incident variables are not

available and, instead, they rely on the information of other equations. Coupling is

achieved when at least one of the other incident variables relies on information from

another equation which ultimately requires values for the assigned variable.

45

The currently independent variables are unassigned. It can be the duty of the

imaginary equations to compute them. This indicates that these equations must at

least involve the independent variables so that they can be assigned to each other.

By the argument above, these equations will also require information, at least enough

information with which to evaluate the objective function, so that optimal values for

the independent variables can be computed. This further indicates that the variables

incident on the objective function must make up the other incident variables in the

imaginary equations.

A procedure is now devised to prepare all model structures for decoupling. First,

the previously output assigned incidence matrix is supplemented with n � m rows.

In these rows, elements are placed in the unassigned columns. If this is done, the

output assignment, as given by the current diagonal of the matrix, will extend down

to the last row and column. In addition, elements are placed in all other columns

of the rows corresponding to variables which are incident on the objective function

f(x). To the resulting n� n sparse output assigned incidence matrix, a conventional

algorithm to search for possible decoupling is applied.

By having the added rows all share the same incidence pattern, they will be

coupled in the same partition. Furthermore, this partition will end up being the

only one with degrees of freedom so the optimization problem will sometimes be

signi�cantly reduced while many smaller partitions are created for which the task

is to simply search for feasibility only. The degree of coupling will strongly depend

on the choice of decision variables. This is because no assumption is made as to

the form of the objective function. If the objective is separable in the sense that it

consists of the sum of two or more terms with di�erent incidence, for example, then it

may be possible to break up the calculation of the decision variables across multiple

partitions, each of which having the duty of optimizing part of the objective. This

is not considered here and, instead, the burden is increased on the user to select the

46

variables wisely during the eligibility analysis. It is envisioned that, by having as

many as possible of the variables incident on the objective function also serve as the

decision variables, decoupling will be maximized.

An e�cient algorithm for partitioning square systems of equations is now needed.

It must involve searching for couplings which may exist among the equations. Analysis

of an equation involves a depth �rst search requiring �rst the analysis of all other

equations which are assigned to compute values for the incident variables of the

equation. A recursive function analyze is created to do that. What is presented here

is a modi�cation of Karl Westerberg's original algorithm which was tailored for use

with a speci�c sparse matrix representation [62]. It takes as arguments a row i, a range

of unvisited rows bounded inclusively by the indices low and high, and a row vector

link which identi�es coupling among the equations. During the course of analysis, the

rows are broken up into three groups. Those in the range f1 : : : (low� 1)g house the

equations which have already been placed into partitioned blocks so far and the same

range of columns contain the variables ordered so that this area of the matrix will be

in lower block triangular form. The rows in f(high+1) : : : ng contain equations which

are currently on a stack for later revisiting because the completion of their analysis

is pending the completion of the analysis of the equation in row i. For those rows

corresponding to the stack, entries in the vector link are updated to keep track of

the coupling among the equations on the stack. Essentially, an entry linki for some

row i will indicate the deepest row on the stack below row i whose equation to which

the equation of row i is coupled. This implies also that the equations of all rows in

between i and linki are also coupled.

Algorithm 6 Function to analyze an equation for coupling

1 function analyze(i; low; high; link)
2 exchange equations of rows i and high

3 exchange variables of columns i and high

4 set i = high

47

5 set high = high� 1
6 set linki = i

7 set j = n

8 while (j � low)
9 if (Iij exists)
10 if (j > high)
11 for each k 2 fi : : : (j � 1)g
12 if linkj > linkk
13 set linkk = linkj
14 set j = high

15 else

16 analyze(j; low; high; link)
17 else

18 set j = j � 1
19 if (linki = i)
20 while (high < i)
21 set high = high+ 1
22 exchange equations of rows low and high

23 exchange variables of columns low and high

24 set low = low + 1
25 return

26 return

Lines 2 through 5 push the equation found at row i onto the stack. The index i is

then reset to the equation's new row. The equation is initially assumed to be coupled

with itself so linki is set to i. If, at the end of the analysis, the value is observed to

be di�erent, then the equation is concluded to be coupled with another one which is

currently on the stack. Lines 7 through 18 describe a reverse loop over all incident

variables for the equation which have yet to be placed in a partition. The equations

to which these variables are assigned are classi�ed according to their location. For all

of the equations currently on the stack (those residing in rows f(high+1) : : : ng), the

vector link is adjusted to keep track of the coupling and the loop is continued outside

the stack. On the other hand, for all equations which reside in rows flow : : : highg, a

necessary recursive analysis is performed. If, after the analysis of all relevant incident

variables for an equation is complete, the condition of line 19 still indicates that the

equation links back to itself, then a block is formed including all equations found in

48

rows f(high+1) : : : ig and all variables to which they are output assigned. The block

is removed from the stack and deposited immediately after the most recent addition

to an accumulated list of blocks along the diagonal. Initially, low is set to 1 and high

is set to n. All equations can then initially be found in the set of unvisited rows

flow : : : highg. The algorithm terminates when there are no more unvisited rows, as

prescribed by Karl Westerberg [62].

Algorithm 7 Partitioning the equations

1 set low = 1
2 set high = n

3 while (low � high)
4 set i = low

5 analyze(i; low; high; link)

For problem (2.2), only 1 row is needed to square the incidence matrix. The

variable partitioning achieved in Figure 3.2 is used. Row 10 is given an incidence

in column 10, thereby output assigning the last row to variable x2. In addition,

elements are created in the columns corresponding to variables x1, x3, x4, x5, and

x7, all of which appear in the objective function. The extended problem appears in

Figure 3.4a. The index 10� is used to indicate the added equation structure. The

partitioning algorithm is then applied and the lower block triangular result is shown

in Figure 3.4b. There are 5 partitions which result. The �rst 4 blocks are singletons

because they each involve solving 1 equation for 1 unknown. This leaves the last

block requiring optimization of 6 variables subject to 5 constraints.

3.3 Conditional models

Sparsity in conditional models can be exploited with some restrictions. Among the

alternative search regions, the sparsity is expected to change. This implies that some

combinations of variables which can successfully make up the independent variables

49

x10 2x
7x 5x 1x3x4x 6

x 8x9
x

1

2

3

4

5

6

7

8

9

(b)

10*

x10 2x7x5x1x3x4x6
x8x9

x

1

2

3

4

5

6

7

8

9

(a)

10*

Figure 3.4: Lower block triangular form

50

for one search region may not be suitable for other search regions. In addition,

isolation of a subset of variables from the other variables which may be successfully

achieved through block partitioning of the equations of one search region may not be

possible using the equations of another.

3.3.1 Search region consistency

A necessary condition for structural consistency with conditional models is that each

of the alternative sets of equations are structurally consistent as prescribed above.

However, this still does not guarantee that a consistent partitioning of the variables

will exist such that output assignment of all of the equations in each search region

can be completed using only the dependent variables. Search region consistency is

assessed by con�rming the existence of at least one such partitioning of the variables.

To �nd a set of decision variables which are consistent with all search regions, each of

the alternative sets of equations are �rst arbitrarily output assigned using all variables.

For each output assignment, there is a partitioning of the variables which leads to

generating a set of variables which are eligible to be independent, provided there are

degrees of freedom. It may be that the alternative sets of eligible variables among

the search regions will be di�erent although some variables will be common to all

sets. Since the correct set of equations needed to �nd the solution is not known, only

those eligible variables which are common are safely regarded as being eligible to form

a consistent set of choices for a decision variable. By selecting one, the number of

decision variables left to �nd is reduced by one and the process is repeated using the

remaining variables. Search region consistency is achieved only if a sequence is found

which allows an eligible variable to be selected for each degree of freedom.

A function consistent is presented in this work to perform the task of �nding one

set of consistent decision variables. As described below, it takes, as a single argu-

ment, a column p. The equations are all assumed to have been tested for structural

51

consistency so what will be done many times in this function is assigning equations to

variables without checking whether or not there was success in doing so. The index

p is expected to take on values upon input in the range fm : : : ng. If p = m, then

no checking need be done as far as �nding a consistent set of independent variables

because there are no degrees of freedom. If however, p > m, lines 3 through 5 are

responsible for initially adding all variable indices to the set of eligibles E. Then,

each search region is visited, the incidence pattern is altered, new output assignments

are made, and new sets of eligible variables e are computed. The set E is adjusted

during each search region visit so that it will end up as the intersection of all sets e.

Finally, in line 20, a loop over all eligible variables is commenced in search for one

that can be removed from the problem while preserving consistency. To test each

choice, the variable is moved to column p, p is then decremented, and the function is

called recursively. If the loop terminates before �nding a working set of independent

variables, then search region inconsistency is concluded.

Algorithm 8 Function to �nd a consistent set of independent variables

1 boolean function consistent(p)
2 if (p = m) return TRUE
3 set E = ;

4 for each j 2 f1 : : : pg
5 set E = E _ findex of variable in column jg

6 for each s 2 R

7 for each i 2 f1 : : :mg
8 for each j 2 f1 : : : pg
9 if (@rsi(x)=@xj = 0; 8x2Rn)
10 delete Iij
11 else

12 insert Iij
13 set V = ;

14 set range = fi : : : pg

15 assign(i; range; V)
16 set e = ;

17 for each j 2 f(m+ 1) : : : pg
18 eligible(j; e)
19 set E = E ^ e

52

20 for each j 2 E

21 exchange xj with variable in column p

22 set p = p� 1
23 if (consistent(p))
24 return TRUE
25 set p = p+ 1
26 return FALSE

3.3.2 Search region partitioning

If all of the equations were dependent on all of the logical conditions, partitioning

would not be possible. This is because without knowing the correct set of equations

which describe the solution, decoupling cannot be performed. However, many of the

equations will be unconditional or at least dependent on only some of the conditions.

This is the reason why many of the same equations appear in more than one search

region. Rather than attempt to incorrectly decouple the wrong set of equations, a

representative incidence matrix is needed.

Consider de�ning l binary functions y(x) such that yi(x) = 1 if bi(x) � 0 and

yi(x) = 0 otherwise. Then the feasible region of the conditional model can be written

using all of the alternative sets of equations.

X
s2R

rs(x)
Y
i2s

yi(x)
Y

i2f1:::lg�s

(1� yi(x)) = 0 (3.1)

This suggests that the representative incidence of the m alternative equations should

at least involve the union over all incidence patterns of the equations in each search

region. In order to output values for its assigned variable, each conditional equation

requires other equations to compute values for its other incident variables as well as

for the variables incident on the boundary expressions of the conditions on which it

is dependent. This further suggests that additional incidences be placed accordingly

to ensure that no variable included in the boundary expression of a condition be

53

partitioned after a block containing an equation which depends on the condition.

Algorithm 9 Creating a representative incidence pattern

1 for each i 2 f1 : : :mg
2 for each j 2 f1 : : : ng
3 delete Iij
4 for each s 2 R

5 for each j 2 f1 : : : ng
6 if NOT (@rsi(x)=@xj = 0; 8x2Rn)
7 insert Iij
8 for each k 2 f1 : : : lg
9 if equation rsi(x) = 0 depends on condition k

10 for each j 2 f1 : : : ng
11 if NOT (@bk(x)=@xj = 0; 8x2Rn)
12 insert Iij
13 set V = ;

14 set range = fi : : :mg

15 assign(i; range; V)
16 for each i 2 f(m+ 1) : : : ng
17 for each j 2 f1 : : :mg
18 if (@f(x)=@xj = 0; 8x2Rn)
19 delete Iij
20 else

21 insert Iij
22 for each j 2 f(m+ 1) : : : ng
23 insert Iij

A loop over all rows is commenced in line 1. Immediately, the row is cleared of any

incidence. It will be accumulating incidence from various equations as di�erent search

regions are visited. It may also be �lled with incidences of some boundary expressions.

When �lling incidences in the row is completed, it is then output assigned by executing

the statements in lines 13 through 15. It is again assumed that output assigning will

proceed without di�culty because tests were previously done to ensure it. It is also

worth pointing out that more incidences exist in this representative pattern than does

exist in any one search region pattern. In fact, the output assignments of all search

regions have been merged so legal output assignment of the representative pattern

is guaranteed. It is also necessary because of the assumptions of the decoupling

54

algorithm in treating variables as inputs and outputs for the equations. Finally, the

representative pattern achieved can be augmented with n�m rows having incidence

of z and incidence of the objective function as done earlier so that the decoupling

algorithm will look at conditional optimization problems as well. This is done by

executing the loop of line 16. To the resulting incidence pattern, the algorithm

presented above which attempts to decouple the equations is applied.

3.4 Examples

Structural analysis is applied to each of the examples introduced earlier. Since the

phase equilibria example has no degrees of freedom, search region consistency is easily

veri�ed by con�rming structural consistency among each alternative set of equations.

The heat exchange problem has two degrees of freedom. A working pair is needed

for the decision variables. The adiabatic compressible ow example has one degree of

freedom. Therefore, what will be demonstrated is how the intersection of the sets of

eligible variables computed from the equations describing the two ow conditions will

yield proper choices for the decision variable in optimizing the conditional model.

3.4.1 Phase equilibria

No matter which phase is absent, the equation sets are all structurally nonsingular.

Figure 3.5 indicates an output assignment for the variables if the vapor phase is

absent at the solution. Figures 3.6 and 3.7 give slightly di�erent orderings for the

variables when the organic and aqueous phase vanish respectively. With no degrees

of freedom, it is easily concluded that the model is search region consistent. Phase

equilibria models are often highly coupled. What is interesting here is how decoupling

can exist in each individual search region (consider the singleton �V = 0 of the �rst

search region) but when the partitioning patterns are merged, the decoupling goes

55

yA
B

yA
E

yV
W

yO
B

yO
E

yO
W

yV
ByV

E
yA
WΦA ΦOΦV

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.5: Output assignment with vapor phase absent

away as indicated in Figure 3.8.

3.4.2 Heat exchange

This example becomes more interesting than the �rst because it introduces two de-

grees of freedom. Assuming the equation sets are all structurally consistent, search

region consistency must be investigated. Output assignments are successfully con-

ducted, con�rming structural consistency, for each search region as shown in Figures

3.9, 3.10, and 3.11 where the variable names and equation numbers have been om-

mitted for clarity. The sets of indices of eligible variables computed from each output

assignment are intersected to form the set of allowable decision variables8>><
>>:

x0B; x
0
P ; x

0
H ; y

0
B; y

0
P ; y

0
H ;

T 1
c ; T

2
c ; T

3
c ; T

0
h ; H

1
c ; H

2
c ; H

3
c ; H

0
h;

dQ

d�

0
; dQ
d�

1
; dQ
d�

2
; dQ
d�

3
; Fc; A

9>>=
>>; (3.2)

Since it is not empty, search region inconsistency cannot be concluded. The model

appears to be consistent. Intuitive choices for the decision variables are the total heat

56

yA
B

yA
E

yV
W

yO
B

yO
E

yO
W

yV
B

yV
E

yA
WΦAΦO ΦV

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.6: Output assignment with organic phase absent

yA
B

yA
E

yV
W

yO
B

yO
E

yO
WyV

B
yV
E

yA
WΦA ΦO ΦV

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.7: Output assignment with aqueous phase absent

57

12

yA
B

yA
E

yV
W

yO
B

yO
E

yO
W yV

B
yV
E

yA
W ΦAΦOΦV

1

2

3

4

5

6

7

8

9

10

11

Figure 3.8: Representative incidence and coupling

transfer area A and the cooling water ow rate Fc. They are noticed to be members

of the set above. However, this does not suggest that they as a pair can be used

as decision variables. What is dictated by an eligibility analysis, when conducted as

many times as there are degrees of freedom, is that choosing one of the set of eligible

variables as a decision variable will not create structural singularities. Choosing more

than one at a time is a risk. In this example, however, it turns out that if A were

selected, the set of eligible variables for the remaining degree of freedom includes Fc.

Using these intuitive choices for the decision variables, a representative incidence

is created and reordered in search of any possible partitioning among the equations.

As a result, Figure 3.12 shows there being 8 blocks. The �rst 7 are considered

trivial because they involve at most only 2 equations in 2 unknowns. In fact, the

solution of each singleton block involves no iteration. The �rst block, for example,

involves computingH0
c from the speci�ed parameter T 0

c using the given linear enthalpy

expression for the cooling water. The majority of the model, however, remains coupled

58

Figure 3.9: Output assignment with no condensation

and must be solved iteratively. The rows marked 49� and 50� are �lled with the

required incidence for binding.

3.4.3 Adiabatic compressible ow

With one degree of freedom, this model can be concluded as to its search region

consistency simply by �nding a variable which is common to the set of eligibles for

each search region. For the case of plug ow, the output assignment is achieved and

59

Figure 3.10: Output assignment with left side condensation

60

Figure 3.11: Output assignment with left and right side condensation

61

49*
50*

Figure 3.12: Representative incidence and coupling

62

is given in Figure 3.13a. The eligible variables in this search region were found to

consist of F , Mi, Mf , Tf , and D. On the other hand, a di�erent output assignment

is obtained for sonic ow conditions as is shown in Figure 3.13b. Here, the eligible

variables are found to be Pf , F , Mi, D, and Tf . Taking the intersection of these two

sets,

fF;Mi;Mf ; Tf ; Dg ^ fPf ; F;Mi; D; Tfg (3.3)

it is concluded that the model is search region consistent and that without knowing

in which search region the solution will lie, it is safe to limit the choice of decision

variables among F , Mi, Tf , and D. Choosing D as the decision variable, the repre-

sentative incidence shown in Figure 3.13c is created and reordered as per the equation

partitioning algorithm. The analysis dictates that the model cannot be decoupled.

63

M
i

M
f TfDFPf

1

2

3

4

5

(a)

M
i

M
f TfDF Pf

1

2

3

4

5

M
i

M
fTfD F Pf

1

2

3

4

5

6*(c)

(b)

Figure 3.13: Analysis of the adiabatic compressible ow model

64

Chapter 4

Solution

4.1 Introduction

In this chapter, algorithms are developed to solve problems of the formulation types

presented earlier after they have been structurally analyzed. Optimization theory

has been very well de�ned for continuous and di�erentiable models as well as those

involving inequality constraints [4] [16] [17] [37] [44] [49]. The theory will be briey

reviewed in order to provide an understanding of the material as the applicability is

extended to conditional models.

4.2 Continuous and di�erentiable models

For unconstrained nonlinear programs, the sequential quadratic programming algo-

rithm involves selecting initial values for the variables and iteratively minimizing a

quadratic approximation to the objective function until a point which su�ciently min-

imizes the unapproximated objective is achieved. The di�culty with solving problems

of the form (2.1) is ensuring that the equations are satis�ed at the solution as well.

Another common technique, known as the generalized reduced gradient method, en-

forces feasibility at the beginning of every iteration [53]. This is thought to involve

more computation in arriving at a solution than should be necessary which is one of

65

the reasons why the infeasible path sequential quadratic method was preferably used

in this work.

4.2.1 Local Minima

To any optimization problem, there may be multiple local minima within the feasible

region. In such cases, �nding the global minimum is a very di�cult problem and is

not in the scope of this work. Much theory exists, however, in classifying local minima

and can readily be used in developing a solution algorithm. When a local minimum is

found, there should be termination of the algorithm. This implies that the obtained

solution is the only or at least the global minimum. At the local minimum, there

exists multipliers, �, for the equations such that

rxf(x) +rxg(x)� = 0 (4.1)

To con�rm that the solution is indeed a minimum and not a maximum or saddle

point, the curvature of the objective function must be positive de�nite along all

directions tangent to the feasible region at the solution point. The multipliers can

be divided into positive and negative groups. The Kuhn-Tucker theorem states that

if the objective function is pseudoconvex and furthermore if the residual functions

are quasiconvex for all equations whose multiplier is positive and quasiconcave for all

equations whose multiplier is negative, then the local minimum is indeed global [4].

The reverse need not be true, however, which implies that the Kuhn-Tucker theorem

for globality is not a necessary condition [37]. This is best demonstrated with the

following simple problems. In Figure 4.1a, the contours along with the feasible region

are shown for the problem

66

(a)

(b)

(c)

y

x

y = x 2

y = x 2

y = x 2

y

x

y

x

Figure 4.1: Local versus global minima

67

min 2x2 + (y � 1)2 (4.2)

s:t: y = x2

The solution is at x = 0 and y = 0. The multiplier for the single constraint is

� = 2. The objective is convex while the residual y�x2 is quasiconcave. Although the

multiplier is positive, it is still observed that the solution is in fact a global minimum.

In Figure 4.1b, the objective is modi�ed.

min x2 + 2(y � 1)2 (4.3)

s:t: y = x2

A solution exists near x = 0:866 and y = 0:750. At this point, the multiplier is

� = 1 which is still positive and therefore no conclusion can be drawn. In fact, the

plot suggests there is another local minimum at x = �0:866 and y = 0:750. Finally,

Figure 4.1c is constructed.

min x2 + (y + 1)2 (4.4)

s:t: y = x2

The solution here is at x = 0 and y = 0 with a multiplier of � = �2. Based on the

theorem and as suggested by the plot, this is in fact a global minimum. In conclusion,

more often than not, there does exist a single minimum point which is sought.

68

4.2.2 Augmented Lagrangian

As was mentioned above, a di�culty with the sequential quadratic programming

algorithm for solving equality constrained nonlinear programs is ensuring both feasi-

bility and optimality in the solution. One method which has received much attention

involves constructing an exact penalty function whose unconstrained minimum will

satisfy the feasibility and optimality conditions of the original problem. The La-

grangian function de�ned by

L(x;�) = f(x) + g(x)T� (4.5)

has the property that its stationary condition satis�es (4.1) and that its Hessian

matrix, represented by r2
xxL(x;�) (which in other texts, may also be used to signify

the Laplacian), is positive de�nite at least only along the subspace tangent to the

feasible region at a local minimum point. This is the su�cient curvature requirement

for optimality. But since successive quadratic programming employs an infeasible

path searching algorithm, positive de�niteness is required in all directions so that

the algorithm can arrive at an unconstrained minimum from anywhere, not just from

paths con�ned to the feasible region. A function that could augment the Lagrangian

should have zero curvature along directions in the tangent subspace and positive

curvature elsewhere. A function commonly used for augmentation is g(x)Tg(x)=2.

Its Hessian along the feasible region, rxg(x)rxg(x)
T , has strictly positive curvature

in all nonzero directions d not satisfyingrxg(x)
Td = 0 and zero curvature otherwise.

dT
rxg(x)rxg(x)

Td � 0 (4.6)

Such a function, multiplied by an appropriately large parameter �, can be added to

the Lagrangian and the augmented Lagrangian

�(x;�) = f(x) + g(x)T�+
�

2
g(x)Tg(x) (4.7)

will have a minimum at the desired solution when the appropriate values for the

multipliers are known and a su�ciently large penalty parameter � is used in order

69

to make the Hessian, r2
xx�(x;�), arbitrarily positive de�nite. This di�erentiable

function has global descent properties when the local minimum of the original problem

is unique and can be used to generate search directions at each iteration as well as

enforce descent during line search.

Conventionally, the sequential quadratic programming algorithm involves the so-

lution of a quadratic program at each iteration to generate a search direction. The

quadratic objective is typically based on the Hessian of the Lagrangian [2] [7] [43]

[42]. For most industry problems, too many calculations are required to compute the

matrix exactly. For these cases, the family of quasi-Newton methods were developed

which accumulate, at each iteration, a positive de�nite approximation of the Hessian

of the Lagrangian at the solution [13]. This reduces the convergence rate which is nor-

mally quadratic to what is termed superlinear. Along the search direction obtained,

line search is employed which is the process of adjusting the distance traveled in order

to ensure adequate decrease in an exact penalty function like the one introduced by

Powell [43]. Others have demonstrated that Powell's nondi�erentiable exact penalty

function can be replaced by the augmented Lagrangian function above [28] [50].

One of the discrepancies neglected is the fact that the Hessian of the Lagrangian

is not expected to be necessarily positive de�nite at the solution, as explained above.

In order to circumvent the problem of applying a quasi-Newton positive de�nite

approximation algorithm to a possibly inde�nite matrix, the Hessian is deliberately

modi�ed. Powell introduces a technique which modi�es the curvature information

only at points where the positive de�niteness of the Hessian is jeopardized [43] [42].

This is widely used throughout the literature. Recently, there have been attempts

at computing the Hessian matrix analytically [2] [7]. In this case, Gershgorin eigen

value analysis is applied to modify the diagonal elements of the matrix until positive

de�niteness is achieved.

70

Another discrepancy which also still exists is the fact that the function which is

ultimately approximated quadratically in order to generate a search direction and

the function used during line search are not the same. In this work, it is felt that

the augmented Lagrangian function would be more appropriate for approximating

quadratically in a neighborhood around the solution and also serve as a merit function

for line search. One author sharing the same feeling is Tapia [54]. The Lagrangian

by itself is known to produce a saddle at the solution for most problems. If this is so,

positive curvature can always be achieved by adjusting the penalty parameter � rather

than by distorting the space via ad hoc Hessian alteration. One of the advantages of

using the augmented Lagrangian during line search over the nondi�erentiable exact

penalty function is that the Maratos e�ect is avoided [17]. The Maratos e�ect is a

phenomenon observed when line search causes travel distances to be exceedingly small

due to emphasis of feasibility over optimality and as a result superlinear convergence

is impeded.

The convergence rate can be impeded using the augmented Lagrangian function as

well because solution values for the multipliers are not known. At each iteration, esti-

mates are made for the multipliers in a way that they converge to the solution values

along with the variables. The line search function during each iteration is therefore

dependent on how accurate the current estimates of the multipliers are. The gener-

alization of methods which update the multipliers in an alternating fashion with the

variables are called multiplier methods [22] [37] [49]. The common multiplier method

updates the multipliers using a linear update formula even though the variables are

updated superlinearly. As a result, the superlinear convergence rate is reduced. It

is envisioned, then, that by combining the augmented Lagrangian of the multiplier

method with the superlinear convergence characteristics of the sequential quadratic

programming algorithm, a more e�cient algorithm can be de�ned. In summary, one

of the contributions of this work is to develop a quasi-Newton sequential quadratic

programming algorithm based on the minimization of the augmented Lagrangian.

71

4.2.3 Limited memory quasi-Newton methods

Quasi-Newton methods provide a means of estimating the Hessian of the augmented

Lagrangian at the solution. The popular BFGS method for updating the estimate in-

volves secant information formed from evaluations of the gradient, rx�(x;�), at two

points which di�er in the values for the variables x but not for the multipliers �. The

algorithm operates on a dense matrix of n2 elements. For problems involving many

variables, this becomes too memory intensive. Modi�ed optimization algorithms have

been developed which attempt to store only the curvature in the decision variables

tangent to the feasible region which amounts to a reduced Hessian of order equal to

the degrees of freedom [27]. This is only accurate with a feasible path algorithm. The

trouble with applying this update algorithm to sequential quadratic programming is

that much of the important curvature information needed for superlinear convergence

is lost.

The BFGS method allows an estimate from one iteration to be updated to the

next through the use of two vectors, u and v, and two scalars, �u and �v. Letting H

denote the most recent estimate of the Hessian and the vector d denote the change

in the variable values for the next iteration, the BFGS method involves computing

u = Hd, v = rx�(x+ d;�) � rx�(x;�), �u = �uTd and �v = v Td so that a

better estimate of the Hessian is obtained by the formula

H(H+
uuT

�u
+
vv T

�v
(4.8)

At the �rst iteration, the Hessian is typically initialized to the familiar positive de�nite

identity matrix.

To avoid allocation of a full n � n matrix, the limited memory BFGS method is

used in this work [6] [26]. It is based on the premise that, for large problems, the

total number of iterations needed to converge will be far less than the number of

variables being solved. In these instances, it is bene�cial then to accumulate storage

72

of the update vectors u and v and the scalars �u and �v at each iteration rather

than the actual matrix. If needed, the Hessian can always be reproduced at some

iteration by combining the history of update information computed during previous

iterations. The amount of history is controlled using a set Q which accumulates all of

the iteration indices whose recorded update information is to be used in generating

a current estimate of the Hessian via the relationship

H = I+
X
i2Q

"
(ui)(ui)T

�iu
+
(vi)(vi)T

�iv

#
(4.9)

But, in fact, the Hessian matrix by itself is never needed. Instead, as will be shown,

intermediate vectors are computed during the solution algorithm as a product between

the Hessian matrix and other vectors. Considering some vector d, for example, the

formula for computing the vector Hd is obtained by postmultiplying relation (4.9)

by d.

Hd = d+
X
i2Q

"
(ui)(ui)Td

�iu
+
(vi)(vi)Td

�iv

#
(4.10)

An additional feature of the limited memory BFGS method is that a limit can be

set on how much update information is to be stored in case the number of iterations

becomes exceedingly large. In this case, an upper bound is placed on the cardinality

of Q and when the bound is reached, new data replaces the oldest data stored.

4.2.4 Initialization

To start the solution algorithm, a vector of initial values a for the variables is sup-

plied. So that the system can be appropriately scaled, a vector of nominal values n

which are an order of magnitude estimation of the solution values for the variables is

supplied as well. A tolerance � must be provided which is used to detect convergence.

The multipliers, �, are initialized to zero, the penalty parameter, �, is set to one, the

iteration counter k = 0, and the set Q = ;. The objective function and all equation

residuals, f(a) and g(a), along with their derivatives, rxf(a) and rxg(a) are evalu-

ated at the point corresponding to these variable values. In order to scale the system,

73

two diagonal matrices, Dx and Dg for variable and equation scaling respectively, and

a scalar Df for the objective function are introduced. The variable scaling matrix,

Dx, is generated by simply having the nominal values, which were provided, make up

the matrix diagonal.

Dx =
X

j2f1:::ng

njeje
T
j (4.11)

The vector ej 2 Rn has the property that all of its elements are zero except element

j which is one. The scaling factors for the equations are next obtained in such a

way that, when they are applied to the Jacobian, the elements will end up not being

much less than one and numerical ill-conditioning may be avoided. This involves

computing the norm of the gradients with respect to the scaled variables of each

equation residual.

Dg =
X

i2f1:::mg

kDT
xrxgi(a)keie

T
i (4.12)

In its usage here, the vector ei 2 Rm has the same properties as described above.

Finally, the scaling factor for the objective function is also computed as the norm of

its gradient with respect to the scaled variables.

Df = kDT
xrxf(a)k (4.13)

These three scaling factors are applied throughout the algorithm to keep the compu-

tations well-conditioned. They are applied �rst to the information evaluated at the

initial point.

f(a)(D�1
f f(a) (4.14)

rxf(a)(DT
xrxf(a)D

�1
f (4.15)

g(a)(D�1
g g(a) (4.16)

rxg(a)(DT
xrxg(a)D

�1
g (4.17)

With the above su�cient information, the algorithm is started.

74

4.2.5 Termination

A local minimum can be detected by testing for stationarity in the augmented La-

grangian. The gradient of the augmented Lagrangian is computed by

rx�(a;�) = rxf(a) +rxg(a)(�+ �g(a)) (4.18)

If krx�(a;�)k � �, then the algorithm is terminated. It is noticed that a measure

of infeasibility is incorporated in the gradient so it is hoped that stationarity implies

feasibility. It is always safe, though, to claim convergence only after checking for

feasibility �rst when the algorithm terminates. There may exist instances where the

augmented Lagrangian becomes stationary at an infeasible point.

4.2.6 Search direction

If the norm of the gradient of the augmented Lagrangian is not small enough for ter-

mination, the gradient is linearized (using the current approximation to the Hessian)

in both the variables and the multipliers and set to zero in order to generate super-

linear updates. In sequential quadratic programming, this is equivalent to solving the

following quadratic subproblem for �, the superlinear update for the variables.

min [rxf(a) + �rxg(a)g(a)]
T
� +

1

2
�
TH� (4.19)

s:t: g(a) +rxg(a)
T
� = 0

The multipliers corresponding to the solution of (4.19) provide a superlinear up-

date for the multipliers � of the original problem. The variable partitioning of x into

y and z, which is accomplished during a structural analysis, is used here for solving

the quadratic subproblem. The equivalent system of linear equations resulting from

75

zeroing the linearization of the gradient are shown in Figure 4.2a. When solved, it

produces values for the vector � and a new estimate for the multipliers �.

Solving the linear system of Figure 4.2a numerically is not practical because the

full dense Hessian matrix is not available. Instead, the linear system is �rst partially

pivoted symbolically in an e�ort to reduce the system down to order equal to the

degrees of freedom. Figure 4.2b shows the e�ect of one pivot and the result after

another pivot is shown in Figure 4.2c. What results in the middle of the matrix after

elimination is what is called the reduced Hessian and is of order (n�m)� (n�m).

The right hand side of this reduced system is also shown. Thus, without any loss of

curvature information from the original linear system, this reduced system (enclosed

in parenthesis in Figure 4.2c) is solved for the components of � corresponding to the

variables z. Back calculation for the remaining quantities is then done.

Another common practice of reducing the system via decomposition is to introduce

two vectors py of length m and pz of length n � m. A matrix Y 2 Rn�m and a

matrix Z 2 Rn�(n�m) are also de�ned so that � = Ypy+Zpz [17] [51] [56]. The only

requirements on the matrices for the decomposition to be useful are thatrxg(a)
T
Y is

nonsingular and rxg(a)
T
Z = 0. In other words, the columns of Z span the null space

of the Jacobian. An additional optional restriction on the matrices are that they be

orthogonal to each other or that Y TZ = 0 [17] [56]. Sparsity issues with large models

have led to a decline in popularity with orthogonal decomposition. The coordinate

based decomposition, as it has been called, is gaining attention recently due to the

signi�cant calculation savings that are obtained [6] [27] [51]. With coordinate based

decomposition, the matrices are de�ned as follows [51].

Z =
h
�rzg(a)ryg(a)

�1
I
iT

(4.20)

Y =
h
I 0

iT
(4.21)

Because Z spans the null space or tangent space of the Jacobian, the reduced Hes-

76

(a)

Hyy Hyz

Hzy Hzz

g()a
∆
y

g()a
∆
z

0 λ

ηy

ηz =

g()a
∆
y

T g()a
∆
z

T

∆
y- ()af ρ g()a

∆
y g()a-

∆
z ρ()af g()a

∆
z

g()a- -

g()a-

(b)

0

0

0g()a
∆
y

T

Hyz
- Hyy g()a

∆
y

-T g()a
∆
z

T

g()a
∆
y

-T g()a
∆
z

T
HzyHzz-

g()a
∆
z

T

g()a
∆
y

g()a
∆
z

λ

ηy

ηz =

g()a-

∆
y- ()af ρ g()a

∆
y

g()a- + Hyy g()a
∆
y

-Tg()a

∆
z ρ()af g()a

∆
z

g()a- - g()a
∆
y

-T
Hzy+ g()a

0

0

0g()a
∆
y

T

H yz
- H yy

g()a
∆
y

-T
g()a

∆
z

T

g()a
∆
z

T

g()a
∆
y

λ

ηy

ηz =

(c)

H yz
g()a

∆
z

g()a
∆
y

-1
-

g()a
∆
y

-T
g()a

∆
z

THzy-Hzz

+

H yy
g()a

∆
y

-T
g()a

∆
z

T
g()a

∆
z

g()a
∆
y

-1

0

g()a-

∆
y- ()af ρ g()a

∆
y g()a- + Hyy

g()a
∆
y

-Tg()a

∆
z ()af- H yy

g()a
∆
y

-T
g()ag()a

∆
z

g()a
∆
y

-1
-

g()a
∆
y

-T
Hzy

+ g()a g()a
∆
z

g()a
∆
y

-1∆
y ()af+

Figure 4.2: Derivation of the reduced Hessian

77

sian is given by the expression ZTHZ. When the de�nition for Z given above is

substituted, it is signi�cant to �nd that the reduced Hessian derived in Figure 4.2c

is obtained. The linear system is now more concisely written in compact form using

these new vectors and matrices.

rxg(a)
T
Ypy = �g(a) (4.22)

ZTHZ = ZTZ+
X
i2Q

"
(ZTui)(ZTui)T

�iu
+
(ZTvi)(ZTvi)T

�iv

#
(4.23)

HYpy = Ypy +
X
i2Q

"
(ui)(ui)TYpy

�iu
+
(vi)(vi)TYpy

�iv

#
(4.24)

ZTHZpz = �ZT (rxf(a) +HYpy) (4.25)

� = Ypy + Zpz (4.26)

H� = � +
X
i2Q

"
(ui)(ui)T�

�iu
+
(vi)(vi)T�

�iv

#
(4.27)

Y T
rxg(a)� = �Y T (rxf(a) + �rxg(a)g(a) +H�) (4.28)

Before solving equations (4.22)-(4.28), the matricesY and Z will need to be computed.

The matrix Y is known and so are the last n�m rows of Z. To get the �rst m rows

of Z (or in other words, Y TZ), the matrix rxg(a)
T
Y is �rst factorized into lower

and upper triangular matrices L and U using sparse matrix techniques [62]. With

the factors obtained, the following linear system is solved for each column of Y TZ.

rxg(a)
T
YY TZ = �rzg(a)

T (4.29)

With the factorization completed and the matrices Y and Z known, equation (4.22)

is solved using the L and U factors to obtain py. Next the reduced Hessian is derived

from the current estimate of the Hessian using formula (4.23). The computation of

(4.24) must be carried out to compute HYpy using all of the saved update vectors.

This allows solution of the reduced space equations (4.25) to get values for pz. But the

reduced Hessian is symmetric so a special technique for solving these n�m equations

involves the Cholesky factorization of the reduced Hessian. Essentially, the Cholesky

78

factorization di�ers from the factorization referred to above in that it seeks a single

lower triangular matrix which when multiplied by its transpose, gives the reduced

Hessian. Enough information is now known to generate the variable update vector

� using (4.26). In order to solve for the multipliers, the vector H� is needed and is

computed using the update vectors as shown in (4.27). Finally, by using the L and

U factors again, the multipliers are now updated by solving (4.28).

Using these new values for the multipliers, the augmented Lagrangian is approxi-

mated quadratically in the variables to generate a search direction d.

min �(a;�) +rx�(a;�)
Td+

1

2
dTHd (4.30)

As would be expected, the solution to the unconstrained minimization is given by �.

However, the approximation may be poor so that the augmented Lagrangian com-

puted from function evaluations of the objective and equation residuals may increase

at the new point when � is applied. This is where line search is traditionally em-

ployed. To enforce descent in the augmented Lagrangian, the length of � is adjusted

during line search by successively shortening it until it is found that updating the

variables over a fraction of the original distance of � leads to adequate decrease in

the evaluation of the augmented Lagrangian.

Although distances are adjusted, line search restricts the search direction from

changing. Levenberg and Marquadt were among the earliest to show that, at least

with least squares problems, step reductions should be considered as constraints to

impose on (4.30), the minimization of the quadratic approximation, thereby generat-

ing a new direction in the process [18] [25] [30] [35]. In fact, in the limit that step

reductions get exceedingly small, the direction tends to that of steepest descent at

the current point. A vector is introduced to contain the steepest descent direction.

It is simply the negative of the gradient which has already been computed by recog-

nizing the equivalence = H�. Limiting the search directions to lie in the subspace

spanned by the two vectors, � and , is a common technique for reducing the work

79

involved in resolving (4.30) subject to a reduced step length constraint, as has been

seen with systems of nonlinear equations [41] [59]. Powell's hybrid method was later

extended to optimization [21]. In this work, the Westerberg and Director method

was chosen to be made applicable to optimization. Two quantities �� and � act as

coe�cients of the two normalized directions which will give the direction of the step

d. To control step length, the quantity M is adjusted. M can also be considered as

what is called a trust region radius. The quadratic program to be solved for the step

vector d under varying speci�cations for M is

min �
Td+

1

2
dTHd (4.31)

s:t: d = M(��
�

k�k
+ �

kk
)

dTd = M2

The optimality conditions for (4.31) are derived and simpli�ed with the introduc-

tion of an additional parameter �.

2
6664
� T+�� T�

� T�

 T+�� T

k�kkk

 T+�� T

k�kkk
 TH+� T

 T

3
7775
"
��
�

#
=

2
6664
� T

Mk�k

 T

Mkk

3
7775 (4.32)

�2
� + 2���

�
T

k�kkk
+ �2

 = 1 (4.33)

In constructing the matrix of (4.32), the additional vector, H, is needed and is

computed in the familiar form

H = +
X
i2Q

"
(ui)(ui)T

�iu
+
(vi)(vi)T

�iv

#
(4.34)

Solution values for �� and � are obtained by guessing on � to solve the trivial 2� 2

system (4.32) so that the solution, when used to compute the residual in (4.33),

provides a means of adjusting � in a trial and error fashion. When M = k�k, the

80

solution is � = 0, �� = 1, and � = 0 thereby yielding a step vector d = �. On the

contrary, as M approaches 0, the solution will approach � =1, �� = 0, and � = 1.

A modi�ed line search is conducted as follows. First, the value of the augmented

Lagrangian is computed at the current point.

�(a;�) = f(a) + g(a)T�+
�

2
g(a)Tg(a) (4.35)

In order to preserve superlinear convergence as much as possible, an initial choice of

M = k�k is made to obtain d. The step is applied to the variable values by generating

a vector x = a+Dxd. The objective function and equation residuals are all evaluated

at the new point and then scaled as above.

f(x)(D�1
f f(x) (4.36)

g(x)(D�1
g g(x) (4.37)

Before accepting the new point, the augmented Lagrangian must be computed and

compared with that evaluated at the old point in order to ensure descent.

�(x;�) = f(x) + g(x)T�+
�

2
g(x)Tg(x) (4.38)

If �(x;�) � �(a;�), then the trust region radius must be reduced and a new step

vector computed. Based on these evaluations as well as on the known gradient at the

old point, a quadratic interpolation is generated and minimized to produce a formula

for resetting M .

M (
M

2

Mkk

Mkk+ �(x;�)� �(a;�)

!
(4.39)

This new M is used to generate another step vector and the process is repeated until

descent is achieved. In some instances, the quadratic interpolation may be inaccurate

in which case the factor in the above equation may cause M to take on very small

values. This has the detrimental e�ect of inhibiting progress. Typically, an upper

bound on the reduction in M is set at about 90 percent in order to remedy the

situation.

81

4.2.7 Iteration

With a new point accepted, the gradients are now evaluated and scaled.

rxf(x)(DT
xrxf(x)D

�1
f (4.40)

rxg(x)(DT
xrxg(x)D

�1
g (4.41)

The Hessian must be updated as well. First, the update vector uk = Hd is computed

by taking advantage of previously calculated quantities.

uk = M(��

k�k
+ �

H

kk
) (4.42)

The other update vector is broken up into parts vL and vA.

vL = rxf(x) +rxg(x)��rxf(a)�rxg(a)� (4.43)

vA = rxg(x)g(x)�rxg(a)g(a) (4.44)

In order keep H positive de�nite, the parameter � is adjusted here if necessary so

that the new set of update vectors are consistent with Powell's popular criterion for

positive de�niteness [43].

� = MAX(�;
0:01(uk)Td� (vL)

Td

(vA)Td
) (4.45)

Although Powell recommends 0.2 for use with his mechanism of altering the Hessian,

a less demanding value of 0.01 is used here. It is noted that (4.45) is a mechanism

for only increasing values for � when needed. There is always a danger of numerical

ill-conditioning when � becomes excessively large. It is felt in this work that scaling

is important in this respect. Scaling o�ers a means of attempting to equalize the

contributions of all three terms of the augmented Lagrangian. In doing so, threshold

values for � for achieving positive de�niteness may remain in an accessible range. A

more thorough approach to adjusting � entails re-evaluating all vectors uk;vk; 8k2Q

in order to reect the change. This, however, would require not only much additional

82

work but also additional storage of the vectors d, vL, and vA at each iteration. At

least for problems involving nonlinear constraints, mechanism (4.45) is su�cient for

adjusting � along an infeasible solution path. With linear constraints, feasibility

will be reached earlier than optimality and vA will be zero making formula (4.45)

dangerous. But, in such a case, the Lagrangian itself is su�ciently positive de�nite

at a local minimum and a preset speci�cation of � = 0 should su�ce. Finally, the

remaining update vector is computed to be vk = vL + �vA along with the scalars

�ku = �(uk)Td and �kv = (vk)Td which will always be strictly negative and positive,

respectively. To record the new information, the index k is added to the set Q

(Q (Q _ fkg). This marks the end of an iteration. Before beginning the next

iteration, the vector a is set to x and the index k is incremented by one. The

algorithm then proceeds above to check for convergence which marks the beginning

of all iterations.

Problem (2.2) is used here once again to demonstrate the optimization algorithm.

From the previously performed structural analysis, the variable x2 was found to be

an eligible independent variable and the problem was found to decompose into 5

separable blocks. The �rst four are trivially solved to give solution values x7 = 95,

x10 = 153:535, x5 = 2000, and x9 = 1:56164. The remaining subproblem requires

initialization. The initial values as suggested by Hock and Schittkowski are used [23].

These values are then rounded up to the nearest power of 10 to form a set of nominal

values suitable for scaling the variables. The solution path traversed by the algorithm

using a tolerance of 10�7 is tabulated in Figure 4.3. The initial point is infeasible

and so are the points of all iterations except the last. At two distinct points along

the solution path, the parameter � is adjusted to keep the reduced Hessian (which is

scalar) su�ciently positive. In advancing at each iteration, no modi�ed line search

was needed. The minimum value of �1768:81 obtained in the objective function

agrees with that reported in the literature.

83

0

1

2

3

4

5

6

7

8

9

Iteration

12000.0

15818.6

2x

1745.00

1698.09

1x

110.0000

3x

3048.00

4x

89.2000

90.1154

6
x

8.0000

10.4933

8x

57.6659

ρ

1.0000

3031.2354.1027

1726.18 12168.9 95.7775 3054.24 92.8371 8.2060 1.0158 247.0210

3061.80 93.149892.0678 7.99511735.40 11876.7 1.0158 237.4030

6.37103059.70 93.052689.8242 8.06311732.84 11972.1 1.0158

1.43722971.76 89.460118.5923 10.46971625.55 15277.2 1.0158

1697.28 15713.3 51.5075 3030.56 90.1698 10.4348 1.0158 1.6512

1698.02 15813.9 54.1323 3031.17 90.1172 10.4910 1.1248 11.7412

1698.08 15816.6 54.1099 3031.21 90.1164 10.4922 1.1248 8.6051

1698.08 15817.0 54.1085 3031.21 90.1162 10.4924 1.1248 1.6434

1.1248 1.6439

TZ HZ

Figure 4.3: Solution path

4.3 Conditional models

In conditional models, the equations of each search region form a continuous and

di�erentiable augmented Lagrangian. Each augmented Lagrangian is assumed to be

convex provided the penalty parameter � used by all of them is large enough. If

the solution to the conditional model is unique, then what is envisioned is that the

equations of all but one search region will give rise to an augmented Lagrangian

function which has no minimum internal to the search region in which it is de�ned.

This implies that if conventional nonlinear programming techniques were used at

some initial point internal to the correct search region, then the solution would be

found. If, on the other hand, the initial point was placed inside an incorrect search

region, in a �nite number of iterations, one of the search region boundaries will be

encountered. At a search region boundary, the only requirement for continuity in

the model functionality is that the feasible region is continuous. The augmented

Lagrangian functions of the equations of either side of a search region boundary need

not be continuous and neither their gradients as well. This amounts to the existence of

cli�s and valleys in the minimizing surface made up of a composite of all augmented

84

Lagrangians. The di�culty is then allowing solution progress to penetrate search

region boundaries. With a mixed integer formulation, search region boundaries are

jumped rather than crossed as mentioned earlier because continuity in the feasible

region is not assumed nor required. This sometimes leads to the advantage of requiring

only very few search regions to be visited before �nding the solution.

4.3.1 Nondi�erentiable optimization

Nondi�erentiable optimization has been studied extensively where only the objective

function was considered to contain nonsmooth functionality [24] [52] [64]. Much

research has been aimed at the elaboration of algorithms such as the subgradient

method for solving rather general classes of problems which do not assume in advance

the knowledge of the speci�c structure of the minimized function, but require only the

evaluation of the function and its gradients (or their analogues in the nondi�erentiable

case) at any given point. As a result, very slow algorithms have been developed

(usually with a linear rate of convergence) in anticipation of a point where the function

is nondi�erentiable. The advantage that at almost all of the points in the feasible

region the minimizing function will be di�erentiable, though, is lost.

In conditional modeling, all of the points where the functionality is nondi�eren-

tiable have been characterized by boundary hyper-planes as dictated by the physics

of the model. This allows a more exact subgradient method to be employed, and,

by further exploiting the continuous functionality, boundary crossing may take place.

For all points not residing on boundary hyper-planes, superlinear convergence can be

obtained.

85

4.3.2 Boundary crossing

Without di�erentiability, an analogue of the steepest descent vector on search region

boundaries is derived from subgradient analysis, and this direction can be used to

advance the solution progress into the correct search region. Once o� of the bound-

aries, the superlinearly converging algorithm resumes using the possibly new set of

equations. Assuming convexity in the individual augmented Lagrangian functions,

cycling, which is the situation where a loop of connected search regions are visited

continually, may be prevented by performing a gradient analysis. In addition, a gra-

dient analysis can terminate the solution path at a point on a boundary if a local

minimum to the augmented Lagrangians cannot be found internal to any of the search

regions.

In solving continuous and di�erentiable models, the steepest descent direction at

some point with values a for the variables and � for the multipliers was mentioned

to be opposite that of the gradient of the augmented Lagrangian at the point. This

is true only at all nonstationary points where the gradient does not vanish. In fact,

a vector d with a direction of steepest descent is a vector which solves the following

subproblem.

min rx�(a;�)
Td (4.46)

s:t: dTd � 1

When a descent direction exists at �(a;�), the solution vector d will have the

same direction as �rx�(a;�) but will be of unit length. If, however, a is a local

minimizer of �(x;�), any direction will yield the same minimal value of zero in the

directional derivative. In summary, the steepest descent for a di�erentiable function

86

is that direction which yields a minimum in the directional derivative.

In solving conditional models, multiple augmented Lagrangians exist at search re-

gion boundaries. Also, the multipliers will be di�erent at the same point depending on

which equations are used. Ignoring for now the fact that each augmented Lagrangian

will have di�erent values, the focus is on the gradients. All of these gradients can

be used in any convex combination to yield an in�nite number of what are called

subgradients. These subgradients can be thought of as normals of supporting hyper-

planes. For all points not on a boundary, only one supporting hyper-plane exists for

the di�erentiable augmented Lagrangian, namely the one whose normal is given by

the gradient. At search region boundaries, many directional derivatives exist for some

direction d as given by using the gradients of all of the neighboring search regions.

The directional derivative, in this situation, is de�ned to be the one generated with

largest value. The analogy of the intersection of two inclined planes is useful here.

Considering some point along the valley in the roof of a house, for example, the ex-

pression for the directional derivative along direction d changes depending on which

side of the valley d points. The normals of the two inclined planes on either side of

the valley are, by analogy, similar to the gradients of the augmented Lagrangian on

either side of a search region boundary.

The directional derivative and, subsequently, the direction of steepest descent will

now be derived at search region boundaries. The augmented Lagrangians of each

search region s at some point a are referenced as �s(a;�s) with the multipliers also

being dependent on which equations are used.

�s(a;�s) = f(a) + rs(a)
T
�s +

�

2
rs(a)

T rs(a) (4.47)

At the beginning of the gradient analysis, the multipliers are computed so as to zero

the components of the gradient of the Lagrangian corresponding to the dependent

variables y.

�s = �ryrs(x)
�1
ryf(x) (4.48)

87

In doing so, the components of the gradient of the Lagrangian corresponding to the

independent variables z when these values of the multipliers are used will make up

the reduced gradient or what are sometimes referred to as constrained derivatives.

These are then added to the gradient of the augmented term to produce the gradient

of the augmented Lagrangian for each neighboring search region. Taking a point that

resides on all of the boundary hyper-planes, the directional derivative will be given

by the discrete maximum over s 2 R of all search region directional derivatives. The

minimum of this directional derivative over various directions constitutes the steepest

descent.

min

max rx�s(a;�s)

Td

s:t: s 2 R

!

s:t: dTd � 1

(4.49)

This is recognized as a mini-max problem which is convex, but it has a nonlinear

inequality constraint. Because of convexity, the dual problem can be derived to yield

the same solution and is seen to be a quadratic program whose solution is easier to

understand.

First, the convex problem is re-formulated by introducing a variable �.

min �

s:t: � � rx�s(a;�s)
Td; 8s2R

dTd � 1
(4.50)

For this problem, the Lagrangian is constructed by introducing a set of nonnegative

multipliers � and �.

L = � +
X
s2R

(rx�s(a;�s)
Td� �)�s + (dTd� 1)� (4.51)

The terms are separable in the variables � and d over which the Lagrangian is mini-

mized in order to construct the proper objective function for the dual problem. First,

a relevant portion of the Lagrangian is minimized over �.

min �(1�
X
s2R

�s) (4.52)

88

In order for the primal problem to be feasible, the dual problem must be bounded.

Therefore, to avoid an inde�nite solution, the constraints on � are that they must

be greater than or equal to zero and add to 1 which results in the minimal value

for this portion of the Lagrangian to be zero. Proceeding to minimize the remainder

of the Lagrangian over the variables d, the complementarity condition of � must be

investigated. The constraints relating d to the multipliers

X
s2R

rx�s(a;�s)�s + 2�d = 0 (4.53)

indicate that when � is zero, so is the value of the Lagrangian. Normally, though,

� exceeds zero and when the direction d obtained is substituted in the Lagrangian,

negative values result. It follows, then, that the dual involves maximizing the minimal

value in the Lagrangian (minimizing its negative) over the variables � subject to their

necessary constraints.

min k
X
s2R

rx�s(a;�s)�sk
2 (4.54)

s:t:
X
s2R

�s = 1

�s � 0; 8s2R

In this case, termination is detected if a minimum of zero is obtained in (4.54)

which occurs if all of the gradients cannot be con�ned to one side of a half-plane.

Otherwise, the linear combination coe�cients �s which sum to one are used to gener-

ate the direction of steepest ascent, along the negative of which movement away from

the boundaries should be made. That search region which is immediately entered by

traveling along this direction becomes the current search region and the superlinear

convergence algorithm resumes using the equations of this new search region. To

demonstrate termination, an example is generated which can be seen graphically to

have an optimal solution exist on a boundary plane.

89

min x21 + x22 (4.55)

s:t:

(
x2 � x1
2x1 + x2 = 3

)_(
x2 < x1
x1 + 2x2 = 3

)

The nonsmooth feasible region along with the contours of the objective function

are shown in Figure 4.4. The solution is seen to be the point with values x1 = 1

and x2 = 1. This point lies on the boundary of both search regions. In order to

recognize it as a local solution point, the boundary crossing algorithm is demonstrated

to terminate at this point.

Because it is on the boundary, the gradient analysis must be employed. Because

of continuity of the feasible region at the search region boundary, the gradient of

the augmented term vanishes when using the equations of either side and it su�ces

to be concerned only with the gradients of the Lagrangian (or, in fact, the reduced

gradients) during the analysis. This indicates that the termination criterion is in-

dependent on the value of �. The multipliers are computed for each search region

using the di�erent equations. The variables are partitioned into dependent (x1) and

independent (x2) variables. The multiplier for the search region where the condition

x2 � x1 is met is calculated to be -1 while that for the other search region is calculated

to be -2. The corresponding constrained derivatives with respect to the independent

variable x2 are 1 and -2 respectively for the two search regions. Since these are in

opposite direction, the solution to (4.54) when these reduced gradients are used is a

zero steepest descent direction indicating termination of the algorithm. The reader

may note the equivalence of this solution with that of

90

2x x+1 2= 3

2x x+1 2= 3

x1

x2

Figure 4.4: Boundary crossing termination

min x21 + x22 (4.56)

s:t: x1 + 2x2 � 3

2x1 + x2 � 3

4.4 Examples

All of the examples discussed in this report were solved using the algorithm prescribed

above. The numerical results are given below along with a discussion about the

performance of the algorithm on each example.

4.4.1 Phase equilibria

For this example, speci�cations of T = 340fKg and P = 1fatmg are made. The

overall composition is set at zB = 0:50, zE = 0:15, and zW = 0:35. An initial point

is strategically chosen in the remaining variables to lie on all of the boundary planes

91

which is one of many points neighboring all search regions. For the aqueous phase,

a concentration of 2% benzene, 3% ethanol, and 95% water is assumed while for

the organic phase, a concentration of 95% benzene, 3% ethanol, and 2% water is

assumed. The vapor phase composition is initialized to be the same as the overall

composition and the phase fractions of all phases is initialized to zero. At this initial

point, all of the conditional equations are satis�ed and therefore will not contribute

to the gradient of the augmented Lagrangian in any of the search regions because

there are no degrees of freedom and no objective function and the multipliers for all

equations in this model are zero. Thus it is up to the residuals and their gradients

of the unconditional equations to determine in which direction the iteration should

continue. After computing the negative gradient of the augmented term using the

unconditional equations, the direction suggests to increase the phase amounts of all

phases by roughly the same amount. However, with regard to the composition vari-

ables, the direction indicates an increase in the mole fractions of all components in

the aqueous and organic phases but a decrease in the mole fractions of all of the

components in the vapor phase. As a result, the direction extends from the initial

point toward the interior of search region AO. The solution path then begins using

the equations of this search region with the premise that the vapor phase will not be

present at the solution. The path traversed by the algorithm is shown in Figure 4.5.

A solution consistent with search region AO was found. At the speci�ed temperature

and pressure, the aqueous phase is found to consist of 69% water while the organic

phase consists of 81% benzene.

4.4.2 Heat exchange

To initiate solution of the heat exchange example, a feasible point was �rst generated

using conservatively small values of A = 250fft2g and Fc = 250flbmole=hourg for

the independent variables. This starts the algorithm o� with a temperature pro�le

92

0

1

2

3

4

5

6

Iteration
Σ

i C
y A
i

Σ
i C

y O
i Σ

i C
yV
i ΦA ΦO ΦV

0.0000 0.0000 0.00001.0000 1.0000 1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.9030 4.5699 0.4301 0.0000

0.9212 0.5456 0.4544 0.0000

0.9563 0.4542 0.5458 0.0000

0.9808 0.4421 0.5579 0.0000

0.9807 0.4427 0.5573 0.0000

1.0000 1.0000 0.9807 0.4427 0.5573 0.0000

Figure 4.5: Solution path for the phase equilibria example

consisting of no condensation. Using the equations of this initial search region, the

algorithm is carried out in Figure 4.6. At iteration 5, a boundary which neighbors the

search region allowing condensation to occur near the outlet of the hot side of the heat

exchanger is crossed. The last step vector is adjusted so as to lie on the boundary in

order to conduct a gradient analysis. Since only one of the boundaries is encountered,

only two gradients representing the two neighboring search regions are needed. They

are used in a convex combination to generate a steepest descent vector which directs

itself from the current point into the new search region not yet visited by the solution

path. It is suggested that the solution is likely to be found by continuing onto the

other side of the boundary. The equations to allow condensation near the outlet of the

hot side of the heat exchanger are then incorporated and the solution path continues

slowly but steadily. In this work, the Hessian matrix is re-initialized to the identity

matrix when a boundary is crossed since it is not obvious that continuing to update

the Hessian developed from another search region will improve convergence. In the

remaining iterations of Figure 4.6, the variable �1 grows to track the movement of

the new condensation point. The optimal value of the objective function achieved is

15:501 and the corresponding temperature pro�le is shown in Figure 4.7. A sensitivity

analysis was also performed on this example to observe the behavior of the objective

function in a local neighborhood of the feasible region around the optimal solution.

93

0

1

3

4

5

Iteration
Σ

i C i
x 0

Φ0 η1 Fc A

0.9584

TZ HZ

0.0000 0.0000 250.00 250.00

0.9544 0.0000 0.0000 275.27 228.80

2 0.9578 0.0000 0.0000 441.18 166.66

[6.3601, −2.9359, −2.9359, 5.2016]

[1.2187, 0.5592, 0.5592, 3.5734]

[0.6761, 0.4050, 0.4050, 7.6304]

0.9614 0.0000 0.0000 426.46 198.99 [0.8809, −0.0225, −0.0225, 5.4091]

0.9675 0.0000 0.0000 477.68 202.28 [0.2582, −0.3510, −0.3510, 5.9880]

0.0000 0.0000 607.83 213.01 [0.2288, −0.5982, −0.5982, 6.1331]1.0000

1.000015 0.0001 0.0010 672.89 213.21 [0.1079, 1.8790, 1.8790, 228.7360]

20 1.0000

1.0000

1.0000

1.0000

1.0000

0.0137 0.2400 1049.99 269.31 [1.8175, −8.8203, −8.8203, 43.8733]

25 0.0366 0.3904 1401.47 357.09 [0.3407, −0.7645, −0.7645, 3.0426]

30 0.0427 0.4233 1179.39 396.06 [0.1195, −0.2233, −0.2233, 1.6262]

35

36

0.0383

0.0383

0.3888

0.3888

1104.13

1104.13

379.12

379.12

[0.0525, −0.0926, −0.0926, 1.0375]

[0.0530, −0.1006, −0.1006, 1.1537]

Figure 4.6: Solution path for the heat exchange example

The plot of data shown in Figure 4.8 con�rms the obtained solution as being an

optimal one.

4.4.3 Adiabatic compressible ow

This model is initialized to be in the plug ow state by using the values shown in

the �rst row of Figure 4.9. At iteration 5, the outlet Mach number reaches 1 and a

subsequent gradient analysis dictates to continue onto the other side of the boundary.

From there, it is observed that Pf in fact rises above the discharge pressure thereby

causing the shock waves which are associated with sonic ow. An optimal diameter

of 8:6fcmg is obtained with a minimal objective value of �1281:46.

94

Temperature (R)

540

550

560

570

580

590

600

0.0 0.2 0.4 0.6 0.8 1.0

hot

cold

η

Figure 4.7: Optimal temperature pro�le

95

Flow (lbmole/hour)

Area (square feet)

Objective

1104

379

Figure 4.8: Sensitivity analysis

96

0

1

2

3

4

5

Iteration M
f M

i
P
f

T
f F D Z HZTρ

0.5000 5.0000 300.00 0.5000 200.00 5.0000 1.0000 11.5061

0.6617 5.0000 294.73 0.5370 50.10 3.0150 1.0000 324.7510

0.7711 5.0000 284.02 0.4467 41.00 2.6451 1.0000 4.2682

0.8630 5.0000 279.01 0.4561 37.78 2.4114 1.0000 3.3564

0.9056 5.0000 276.58 0.4695 47.73 2.6856 16.0167 0.3572

1.0000 5.0000 271.62 0.5428 105.02 3.9798 16.0167 0.4993

10 0.9949 5.7084 283.77 0.5860 467.22 7.0324 16.0167 0.5658

15

20

21

1.0000 5.9189 276.33 0.6171 626.74 8.4303 16.0167 0.9485

1.0000 5.9537 276.48 0.6202 662.01 8.6345 16.0167 0.5213

1.0000 5.9537 276.48 0.6202 662.01 8.6345 16.0167 0.5140

Figure 4.9: Solution path for the adiabatic compressible ow example

97

Chapter 5

Contributions

5.1 Introduction

In this chapter, a summary of what are believed to be signi�cant contributions in

many aspects of conditional modeling and in equation-based modeling in general

is presented. Also, contributions which are only nearly completed at present and

are expected to be �nished in the near future will also be discussed. It should be

noted that all theoretical contributions are completed and only some implementation

contributions remain.

5.2 Present

A formulation has been presented which is believed to unambigously declare what

must be true at the solution of a conditional model. It is hoped that the notation of

(2.3) can be used in future references to the subject in an e�ort to standardize contin-

ued work. For the most part, conditional models were always believed to be instances

of discrete or discontinuous and nondi�erentiable modeling. In this work, it has been

successfully shown that there does exist a special class of problems conforming to a

conditional model where, although the functionality may lose di�erentiability, conti-

nuity is preserved. Furthermore, this distinction has been exploited here in developing

98

techniques for structurally analyzing and solving conditional models.

Structural analysis is seldom discussed in the literature as an intermediate step

between formulating and solving equation-based models. Consistency is usually as-

sumed. But in practice, it is very di�cult to set up large models of equations without

mistakingly introducing some structural inconsistencies. This is one of the main

arguments utilized in the development of the ASCEND (Advanced System for Com-

putations in ENgineering Design) modeling environment [40] [61]. The ideas discussed

here for structurally analyzing continuous and di�erentiable models are implemented

as tools within the ASCEND environment with which users can query about formu-

lation errors. It is felt that more e�cient algorithms for carrying out consistency

checks are o�ered in this work. Much of the research conducted here has been in

parallel with that of the continuing development of ASCEND and so many of the

ideas developed are and have been used to update and introduce new tools.

During the course of conducting research in the area of conditional modeling, no

reference to the structural analysis of this class of problems has been found throughout

the literature. The extent of nondi�erentiable modeling has always been limited to

that which can adequately be described using inequality constraints. The burden has

been on the active set strategy for deciding the binding constraints. A methodology

to ensure consistency in conditional models has been presented in this report. The

signi�cance of this contribution is that tools can now be provided in ASCEND which

can aid users to query about conditional models as well as conventional ones. The

algorithms provided in this report are readily reproduced by the interested reader

who may wish to implement and test them.

A signi�cant contribution of this research has been made in the area of nonlinear

programming. A thorough review of existing theory on the subject was given earlier

in this report and at least 2 troubling discrepancies surfaced. With this knowledge, an

99

elegant solution algorithm has evolved through the consistent use of the augmented

Lagrangian which is applicable to programs with and without degrees of freedom

with little or no change in e�ciency. Scaling is also seldom discussed in optimization

literature because formulations are assumed to be well-scaled. A �nding in this work

is that scaling has dramatic inuence on the performance of a solution algorithm. It is

felt that the scaling technique described in this report is very e�ective, in practice, for

eliminating ill-conditioning. With proper selection of nominal values for the variables,

the scaled Jacobian is expected to have all of its elements of order unity. It is readily

automated and allows the user to formulate freely without regard to scaling and yet

the user still has control in the scaling process by providing the nominal values for

the variables at solution time. The termination criterion used in this work is again

consistent with simply �nding a stationary point in the augmented Lagrangian. This

has the advantage of also indicating infeasibility. The elegance of having a single

termination criterion for reaching a solution of a constrained nonlinear program is

attractive.

With regard to zeroing the linearization of the gradient of the augmented La-

grangian in order to generate superlinear updates, it is signi�cant to mention that in

the process of using reduced space techniques, no information is lost. Through mod-

ern software engineering, full information can be used in the sequential programming

algorithm even with relatively large models. It has typically been thought prior to

this research that some approximations were needed so that some quantities could be

neglected when projecting the system into the reduced space. When information is

lost, the convergence of some decomposition techniques for reducing the space such as

orthogonal decomposition prove to be less sensitive to the error introduced than the

coordinate based decomposition. Without any approximation, however, it should not

matter which decomposition method is used. Decomposition should be treated sim-

ply as a means of e�ciently solving for the superlinear updates without ever having

to construct and factorize the full Hessian matrix. With that in mind, the coordinate

100

based method is chosen in this work.

Another discrepancy found in conventional nonlinear programming was the fact

that line search was constrained to a �xed search direction whereas in nonlinear

equation solving, it is well known that alternative descent directions should be used

when being forced to consider reduced step lengths. The method of Westerberg and

Director has already been successfully used to globalize newton's method for equation

solving in ASCEND [59]. The applicability of the method has been extended to

nonlinear optimization. Finally, a method of updating the penalty parameter for the

augmented Lagrangian is introduced. No other reference to doing this dynamically

from iteration to iteration has been found.

An initial version of the solution algorithm described above has been successfully

implemented in the software package SLV based in the C programming language [63].

SLV was �rst developed as an e�cient equation solving engine for ASCEND. One of

the accomplishments of this work was supplementing SLV with the ability to perform

nonlinear optimization. The version of the solution algorithm currently implemented

successfully optimizes moderately sized models including a mixed di�erential and

algebraic optimal control problem which was discretized and formulated as an equality

constrained nonlinear program involving a little over 700 constraints. The algorithm

required just under 25 iterations before �nding a solution. Also implemented within

the most current version of ASCEND is another widely used optimization software

package MINOS [36]. It was found that MINOS failed to reach an optimal solution

for this model.

The limited memory BFGS method has been implemented in SLV by taking ad-

vantage of linked list structures in C which allow easy accumulation and removal of

update information as solution progress is made. Recently, much improvement has

been made to the linear equation solver utilized by SLV. The operators o�ered with

101

the sparse matrix data type were investigated when timing pro�les were reported

for solving the linearizations of large ASCEND models. It was found that primitive

operations such as row and column traversal could be more e�ciently implemented

and, when they were, at least an order of magnitude reduction in the timing pro-

�les were obtained. In addition, the existing pivoting algorithm was found to be

developed primarily with preserving sparsity (i.e., prevent �ll-in during matrix fac-

torization) in mind and failed to accurately solve linear systems which are only slightly

ill-conditioned. A bi-partial pivoting algorithm (as it was referred to by co-workers)

was implemented which expands the inuence of a pre-existing pivot tolerance pa-

rameter. The pivot tolerance parameter dictates the minimum allowed in the ratio of

how large in magnitude the element chosen for pivoting during matrix factorization

is relative to the largest magnitude of the elements available for pivoting. Commonly,

as in Gauss elimination, the search for alternative pivots when the pivot tolerance

criterion is not satis�ed is limited to either the current row or current column. Essen-

tially, a contribution which proves to be extremely e�ective in solving linear systems

which are even very ill-conditioned is to conduct the search for pivot candidates both

row-wise and column-wise. With a pivot tolerance near 1, the linear solver is practi-

cally immune to ill-conditioning. As soon as it was developed, the bi-partial pivoting

algorithm was ported over to ASCEND and is now widely used.

With regard to solving conditional models, a new boundary crossing algorithm

is presented. Prior to this research, the techniques of subgradient optimization have

only been applied to models where only the objective function is known to be nondif-

ferentiable. In this work, the theory is outlined allowing the ideas to be extended to

conditional models. Boundary crossing has been found to exist in some software im-

plementations (SPEEDUP, for example) but it is executed without theoretical back-

ing. What has been contributed here is an algorithm that is shown to terminate and

prevent cycling.

102

In addition to the above considerations of formulation, structural analysis, and

solution, much research has been conducted on model interfacing. To make SLV by

itself more readily available to engineers, a language has been designed. An equation

parser is implemented, allowing users to freely express equations and introduce mean-

ingful variable names. The equations are stored essentially as a tree of unary, binary,

and operand tokens so that they can be evaluated and di�erentiated numerically with-

out approximation. The language has been designed to aid in model construction.

It retrieves model descriptions from an input �le where constants, variables, equa-

tions, and an objective function are speci�ed. Conditions are imposed on some of

the equations using an IF construct and multiple conditions are grouped using AND.

The description for the conditional phase equilibrium model is given below.

MODEL

PARAMETERS

yAB := 0.02, yAE := 0.03, yAW := 0.95,
yOB := 0.95, yOE := 0.03, yOW := 0.02,
yVB := 0.50, yVE := 0.15, yVW := 0.35,
�A := 0.0, �O := 0.0, �V := 0.0;

BOUNDARIES

aqueous: yAB + yAE + yAW + �A � 1.0,
organic: yOB + yOE + yOW + �O � 1.0,
vapor: yVB + yVE + yVW + �V � 1.0;

EQUATIONS

IF aqueous yAB + yAE + yAW = 1.0,
IF NOT aqueous �A = 0.0,
IF organic yOB + yOE + yOW = 1.0,
IF NOT organic �O = 0.0,
IF vapor yVB + yVE + yVW = 1.0,
IF NOT vapor �V = 0.0,
yVB = 0.652*yAB*

exp(1.695*(1-yAB)*y
A
E + 3.16*(1-yAB)*y

A
W - 1.035*yAE*y

A
W),

yVE = 0.610*yAE*
exp(1.695*yAB*(1-y

A
E) - 3.16*y

A
B*y

A
W + 1.035*(1-yAE)*y

A
W),

yVW = 0.267*yAB*
exp(-1.695*yAB*y

A
E + 3.16*yAB*(1-y

A
W) + 1.035*yAE*(1-y

A
W)),

103

yVB = 0.652*yOB*
exp(1.695*(1-yOB)*y

O
E + 3.16*(1-yOB)*y

O
W - 1.035*yOE*y

O
W),

yVE = 0.610*yOE*
exp(1.695*yOB*(1-y

O
E) - 3.16*y

O
B*y

O
W + 1.035*(1-yOE)*y

O
W),

yVW = 0.267*yOB*
exp(-1.695*yOB*y

O
E + 3.16*yOB*(1-y

O
W) + 1.035*yOE*(1-y

O
W)),

�A*yAB + �O*yOB + �V *yVB = 0.50,
�A*yAE + �O*yOE + �V *yVE = 0.15,
�A*yAW + �O*yOW + �V *yVW = 0.35;

END

The language is adequate for small to moderately sized models. For the construc-

tion of larger models, the ASCEND environment is preferable. In fact, the motivation

for all research in this work stems from the desire to help in the advancement of AS-

CEND. The ASCEND system consists of a language to aid in model construction, an

interface to aid in model management, and a solver to aid in model solution. SLV

was chosen as the primary solver for the ASCEND system.

To further demonstrate the robustness of SLV, two additional examples are used.

The model below has the characteristic of a quadratic program and therefore should

be solved exactly in a �nite number of iterations using the algorithm proposed in

chapter 4.

MODEL

PARAMETERS

x0, x1, x2, x3,
x4, x5, x6, x7;

OBJECTIVE Minimize
x0*x0 + x1*x1 + x6*x6 + x7*x7;

EQUATIONS

x0 - x2 = 1.0,
-x1 + x3 = -1.0,
x2 - x4 = 1.0,
-x3 + x5 = -1.0,

104

x4 - x6 = 1.0,
-x5 + x7 = -1.0;

END

The above formulation converges exactly after 3 iterations starting with an initial

value of 1.0 for all variables and using x6 and x7 as the decision variables. A minimal

value of 9 is achieved in the objective using solution values x6 = �1:5 and x7 = �1:5.

Another more di�cult formulation exhibits 4 degrees of freedom.

MODEL

PARAMETERS

c11, c12, c21, c22, c23,
c31, c32, u1, u21, u22, u3,
q1, q2, q3;

OBJECTIVE Minimize
q1 + q2 + q3;

EQUATIONS

sqr(c11) + sqr(c12) = 1.0,
u21 = c11 - c12 + 2*u1,
5*sqr(c21) + 2*sqr(c21 + u21) + 0.8*u21 +

sqr(c21 + c23) = 8.0,
u1 = c21 - c22 + u21 - 3*u22,
u3 = 2*c22 - c23 - u21 + u22,
c31 + u3 + 0.5 = 0.0,
u22 = c31 + 2.5*c32 - 4*u3,
q1 = sqr(sqr(u1 - 1)) + 5*sqr(c11 + c12 - 2),
q2 = 2*sqr(c21 - 2) + sqr(c22) + 3*sqr(c23) +

4*sqr(u21) + sqr(u22),
q3 = sqr(c31 + 1) + sqr(u3 - 1) + 2.5*sqr(c32);

END

This model converges in 14 iterations using u1, u21, u22, and u3 as the independent

variables and starting with an inital value of 1.0 for all variables. A minimal value of

105

6:1008 is achieved using solution values u1 = 0:1729, u21 = 0:0286, u22 = 0:3313, and

u3 = 0:0050.

Much contribution has been made toward the development of model libraries [66].

Graphical representations of the ASCEND language were devised to pictorialize model

libraries, making it easier to construct and to convey to other users [65]. The two most

signi�cant libraries which have received overwhelming attention and have proved use-

fulness in numerous applications are the thermodynamics and integration libraries.

At least the thermodynamics library has enabled the modeling of nonideal rigorous

distillation which otherwise had not been done in ASCEND. In developing the ther-

modynamics library, many variable types were needed of speci�c dimensionality such

as molar energy and temperature. There is the danger of writing a dimensionally

inconsistent thermodynamic equation. For that reason, ASCEND stores dimension-

ality with all real quantities used in modeling. With some thought, a new tool was

provided in ASCEND which can scan all the equations of any model for dimensional

consistency and report any errors. This was found to be extremely useful because

many times when convergence is not achieved while solving a model, an unwanted

dimensional inconsistency in an equation is often the culprit. The integration library

provides assistance in discretizing di�erential and algebraic models in ASCEND. The

model structure of the libraries is pictorialized in Figures 5.1 and 5.2. The interested

reader is referred to the technical report in which they are �rst introduced for more

information [66].

5.3 Future

As was mentioned above, an initial version of a nonlinear optimization algorithm

has been implemented and is currently used in ASCEND. Recent advancements in

the research have led the solution algorithm described in this report to be detailed

106

pure
component

vapor
component

ideal
vapor
component

liquid
component

ideal
liquid
component

Pitzer
component

Rackett
component

vapor
mixture

mixpure

homogeneous
mixture

mixpure

heterogeneous
mixture

mix
mix

mixture

mixpure

liquid
mixture

mixpure

ideal vapor
mixture

mixpure

ideal liquid
mixture

mixpure

UNIFAC
mixture

mixpure

Pitzer
mixture

mix
mix

equilibrium
mixture

thermodynamic
properties

Figure 5.1: Thermodynamics library

107

derivatives

propagation

eval

integration

step

simpsons

eval

orthogonal
collocation

eval

Runge Kutta

eval

Figure 5.2: Integration library

108

as it is now after the initial implementation was completed. It is expected that

when the initial version is updated to account for new knowledge, the solver will be

signi�cantly more robust. It is also mentioned that the boundary crossing algorithm

for solving conditional models has not yet been implemented. The examples solved in

this report were done by hand when investigating boundary crossing and by computer

when nonlinear optimization resumed internal to the search regions.

With the setting up and solving of conditional models outlined in this work,

future contributions will be to supplement the ASCEND language with the ability

to associate conditions with some equations so that large conditional models can

be constructed. Currently, there exists a skeleton data structure to store conditional

information about equations in the form of a CASE statement similar to how it is used

in the Pascal programming language. Its functionality, however, remained dormant

because until now, an unambiguous formulation and solution procedure was lacking.

109

Bibliography

[1] E. Balas. Disjunctive programming. In P. L. Hammer, E. L. Johnson, and B. H.
Korte, editors, Discrete Optimization II. North-Holland, 1979.

[2] M. C. Bartholomew-Biggs and M. de F. G. Hernandez. Using the kkt matrix
in an augmented lagrangian sqp method for sparse constrained optimization.
Journal of Optimization Theory and Applications, 85:201{220, 1995.

[3] P. I. Barton. The Modeling and Simulation of Combined Discrete and Continuous

Processes. PhD thesis, Imperial College of Science, Technology and Medicine,
1992.

[4] M. S. Bazaraa and C. M. Shetty. Nonlinear Programming, Theory and Algo-

rithms. John Wiley, 1979.

[5] N. Beaumont. An algorithm for disjunctive programs. European Journal of

Operational Research, 48:362{371, 1990.

[6] T. J. Berna, M. H. Locke, and A. W. Westerberg. A new approach to optimiza-
tion of chemical processes. AIChE Journal, 26:37{43, 1980.

[7] J. T. Betts and P. D. Frank. A sparse nonlinear optimization algorithm. Journal
of Optimization Theory and Applications, 82:519{540, 1994.

[8] L. G. Bullard and L. T. Biegler. Iterated linear programming strategies for
non-smooth simulation: a penalty based method for vapor-liquid equilibrium
applications. Computers and Chemical Engineering, 17:95{109, 1993.

[9] B. P. Cairns and I. A. Furzer. Multicomponent three-phase azeotropic distilla-
tion. 3. modern thermodynamic models and multiple solutions. Ind. Eng. Chem.
Res., 29:1383{1395, 1990.

[10] V. P. Carey. Liquid-Vapor Phase-Change Phenomena: An Introduction to the

Thermophysics of Vaporization and Condensation Processes in Heat Transfer

Equipment. Hemisphere Publishing Corporation, 1992.

[11] B. Carnahan, H. A. Luther, and J. O. Wilkes. Applied Numerical Methods. John
Wiley, 1969.

110

[12] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical
programming. Linear Algebra and Its Applications, 1:103{125, 1968.

[13] J. R. Jr. Dennis and J. J. Mor�e. Quasi-newton methods, motivation and theory.
SIAM Rev., 19:46{89, 1977.

[14] J. M. Douglas. Conceptual Design of Chemical Processes. McGraw-Hill Book
Company, 1988.

[15] I. S. Du�. On algorithms for obtaining maximum transversal. ACM Trans. Math.

Software, 7:315{330, 1981.

[16] R. Fletcher. Practical Methods of Optimization. John Wiley, 1987.

[17] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Constrained nonlinear
programming. Technical Report SOL 87-13, Systems Optimization Laboratory,
Stanford University, December 1987.

[18] S. M. Goldfeld, R. E. Quandt, and H. F. Trotter. Maximization by quadratic
hillclimbing. Econometrica, 34:541{551, 1966.

[19] I. E. Grossman. Minlp optimization strategies and algorithms for process syn-
thesis. In The 3rd International Conference of Foundations of Computer-Aided

Process Design, Snowmass Village, July 1989.

[20] R. Guatam and W. D. Seider. Computation of phase and chemical equilibrium:
Part ii. phase splitting. AIChE Journal, 25:999{1006, 1979.

[21] S. P. Han. A hybrid method for nonlinear programming. In O. L. Mangasarian,
R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 3. Academic
Press, Inc., 1978.

[22] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization

Theory and Applications, 4:303{320, 1969.

[23] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes.
In M. Beckmann and H. P. K�unzi, editors, Lecture Notes in Economics and

Mathematical Systems, Volume 187. Springer-Verlag, 1981.

[24] C. Lemarechal. Nondi�erentiable optimization. In G. L. Nemhauser, editor,
Handbook in OR and MS, Vol. 1. Elsevier Publishers B. V., North Holland,
1989.

[25] K. Levenberg. A method for the solution of certain nonlinear problems in least
squares. Q. Appl. Math., 2:164{168, 1944.

[26] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Technical Report NAM 03, Department of Electrical Engineering
and Computer Science, Northwestern University, 1988.

111

[27] M. H. Locke, A. W. Westerberg, and R. H. Edahl. An improved successive
quadratic programming optimization algorithm for engineering design problems.
AIChE Journal, 29:871{874, 1983.

[28] S. Lucidi. Recursive quadratic programming algorithm that uses an exact aug-
mented lagrangian function. Journal of Optimization Theory and Applications,
67:227{245, 1990.

[29] O. L. Mangasarian. Solution of symmetric linear complementarity problems by
iterative methods. Journal of Optimization Theory and Applications, 22:465{485,
1977.

[30] D. W. Marquadt. An algorithm for least-squares estimation of non-linear pa-
rameters. SIAM Journal, 11:431{441, 1963.

[31] W. L. McCabe and J. C. Smith. Unit Operations of Chemical Engineering.
McGraw-Hill Book Company, 1985.

[32] M. L. Michelsen. The isothermal ash problem. part i. stability. Fluid Phase

Equilibria, 9:1{19, 1982.

[33] M. L. Michelsen. The isothermal ash problem. part ii. phase-split calculation.
Fluid Phase Equilibria, 9:21{40, 1982.

[34] M. L. Michelsen. Calculation of multiphase equilibrium. Computers and Chem-

ical Engineering, 18:545{550, 1994.

[35] J. J. Mor�e. The levenberg-marquadt algorithm: Implementation and theory. In
G. A. Watson, editor, The Dundee Conference on Numerical Analysis. Springer-
Verlag, Berlin, 1978.

[36] B. A. Murtaugh and M. A. Saunders. Minos 5.1 user's guide. Technical Report
SOL 83-20R, Systems Optimization Laboratory, Stanford University, January
1987.

[37] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design, Modeling and

Computation. Cambridge University Press, 1988.

[38] H. N. Pham and M. F. Doherty. Design and synthesis of heterogeneous azeotropic
distillations - i. heterogeneous phase diagrams. Chemical Engineering Science,
45:1823{1836, 1990.

[39] P. C. Piela. ASCEND: An Object-Oriented Computer Environment for Modeling

and Analysis. PhD thesis, Carnegie Mellon University, 1989.

[40] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. Ascend: An
object-oriented computer environment for modeling and analysis: The modeling
language. Computers and Chemical Engineering, 15(1):53{72, 1991.

112

[41] M. J. D. Powell. A hydbrid method for nonlinear equations. In P. Rabinowitz, ed-
itor, Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach,
1970.

[42] M. J. D. Powell. The convergence of variable metric methods for nonlinearly
constrained optimization calculations. In O. L. Mangasarian, R. R. Meyer, and
S. M. Robinson, editors, Nonlinear Programming 3. Academic Press, Inc., 1978.

[43] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calcu-
lations. In G. A. Watson, editor, The Dundee Conference on Numerical Analysis.
Springer-Verlag, Berlin, 1978.

[44] M. J. D. Powell. Methods for nonlinear constraints in optimization calculations.
In A. Iserles and M. J. D. Powell, editors, The State of the Art in Numerical

Analysis. Oxford University Press, New York, 1987.

[45] R. Raman. Integration of Logic and Heuristic Knowledge in Discrete Optimiza-

tion Techniques for Process Systems. PhD thesis, Carnegie Mellon University,
1993.

[46] R. Raman. Modelling and computational techniques for logic based integer pro-
gramming. Computers and Chemical Engineering, 18:563{578, 1994.

[47] R. C. Reid, J. M. Prausnitz, and B. E. Poling. The Properties of Gases and

Liquids, 4th edition. McGraw-Hill Book Company, 1987.

[48] B. A. Ross and W. D. Seider. Simulation of three-phase distillation towers.
Computers and Chemical Engineering, 5:7{20, 1980.

[49] L. E. Scales. Introduction to Nonlinear Optimization. Springer-Verlag, New York,
1985.

[50] K. Schittkowski. The nonlinear programming method of wilson, han, and powell
with an augmented lagrangian type line search function. Numerische Mathe-

matik, 38:83{114, 1981.

[51] C. Schmid. Reduced Hessian Successive Quadratic Programming for Large-Scale

Process Optimization. PhD thesis, Carnegie Mellon University, 1994.

[52] N. Z. Shor. Minimization Methods for Nondi�erentiable Functions. Springer-
Verlag, Berlin, 1985.

[53] S. Smith and L. Lasdon. Solving large sparse nonlinear programs using grg.
ORSA Journal on Computing, 4:2{14, 1992.

[54] R. A. Tapia. Quasi-newton methods for equality constrained optimization:
Equivalence of existing methods and a new implementation. In O. L. Man-
gasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 3.
Academic Press, Inc., 1978.

113

[55] R. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Comput.,
1:146{160, 1972.

[56] S. Vasantharajan and L. T. Biegler. Large-scale decomposition for successive
quadratic programming. Computers and Chemical Engineering, 12(11):1087{
1101, 1988.

[57] S. M. Walas. Phase Equilibria in Chemical Engineering. Butterworth Publishers,
1985.

[58] A. W. Westerberg and D. R. Benjamin. Thoughts on a future equation-oriented
owsheeting system. Computers and Chemical Engineering, 9(5):517{526, 1985.

[59] A. W. Westerberg and S. W. Director. A modi�ed least squares algorithm for
solving sparse nxn sets of nonlinear equations. Computers and Chemical Engi-

neering, 2(2):77{81, 1978.

[60] A. W. Westerberg, H. P. Hutchinson, R. L. Motard, and P. Winter. Process

Flowsheeting. Cambridge University Press, 1979.

[61] A. W. Westerberg, P. C. Piela, R. D. McKelvey, and T. G. Epperly. The ascend
modeling environment and its implications. In The 4th International Process

Systems Engineering Symposium, Ottawa, July 1991.

[62] K. M. Westerberg. Development of software for solving systems of linear equa-
tions. Technical Report EDRC 05-35-89, Engineering Design Research Center,
Carnegie Mellon University, 1989.

[63] K. M. Westerberg. Development of software for solving systems of nonlinear
equations. Technical Report EDRC 05-36-89, Engineering Design Research Cen-
ter, Carnegie Mellon University, 1989.

[64] P. Wolfe. A method of conjugate subgradients for minimizing nondi�erentiable
functions. Mathematical Programming Study, 3:145{173, 1975.

[65] J. J. Zaher. Graphical representations of the ascend modeling language. In 12th

Annual ChEGSA Symposium, Carnegie Mellon University, Pittsburgh, October
1990.

[66] J. J. Zaher. Developing reusable model libraries in the ascend modeling environ-
ment. Technical Report EDRC 06-18-91, Engineering Design Research Center,
Carnegie Mellon University, July 1991.

114

