
GNU Simple Authentication and Security Layer
Simple Authentication and Security Layer for the GNU system

for version 0.0.12, 10 January 2004

Simon Josefsson

This manual is last updated 10 January 2004 for version 0.0.12 of GNU SASL.
Copyright c© 2002, 2003, 2004 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being "Commercial Support", the Front-Cover texts being “A GNU Manual”,
and with the Back-Cover Texts being “You have freedom to copy and modify
this GNU Manual, like GNU software”. A copy of the license is included in the
section entitled "GNU Free Documentation License".

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 SASL Overview . 2
1.4 Supported Platforms . 3
1.5 Commercial Support . 4
1.6 Downloading and Installing . 4
1.7 Bug Reports . 5
1.8 Contributing . 6

2 Preparation . 7
2.1 Header . 7
2.2 Initialization . 7
2.3 Version Check . 8
2.4 Building the source . 8
2.5 Autoconf tests . 9

2.5.1 Autoconf test via ‘pkg-config’ . 9
2.5.2 Standalone Autoconf test using Libtool 9

3 Using the Library . 11

4 Mechanisms . 15
4.1 The EXTERNAL mechanism . 15
4.2 The ANONYMOUS mechanism . 15
4.3 The PLAIN mechanism . 16
4.4 The LOGIN mechanism . 18
4.5 The CRAM-MD5 mechanism . 19
4.6 The DIGEST-MD5 mechanism . 21
4.7 The NTLM mechanism . 24
4.8 The SECURID mechanism . 24
4.9 The GSSAPI mechanism . 26
4.10 The KERBEROS V5 mechanism . 28

5 Global Functions . 31

6 Callback Functions . 33

7 Session Functions . 42

8 Utilities . 44

ii

9 Old Functions . 47

10 Error Handling . 51
10.1 Error values . 51
10.2 Error strings . 54

11 Examples . 55
11.1 Example 1 . 55

12 Acknowledgements . 56

13 Invoking gsasl . 57

Appendix A Copying This Manual 60
A.1 GNU Free Documentation License . 60

A.1.1 ADDENDUM: How to use this License for your
documents . 66

Appendix B GNU GENERAL PUBLIC
LICENSE . 67

B.1 Preamble . 67
B.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 68
B.3 How to Apply These Terms to Your New Programs 72

Concept Index . 73

Function and Data Index . 74

Chapter 1: Introduction 1

1 Introduction

GNU SASL is an implementation of the Simple Authentication and Security Layer frame-
work and a few common SASL mechanisms. SASL is used by network servers (e.g., IMAP,
SMTP) to request authentication from clients, and in clients to authenticate against servers.

GNU SASL contains of a library (‘libgsasl’), a command line utility (‘gsasl’) to access
the library from the shell, and a manual. The library includes support for the framework
(with authentication functions and application data privacy and integrity functions) and at
least partial support for the CRAM-MD5, EXTERNAL, GSSAPI, ANONYMOUS, PLAIN,
SECURID, DIGEST-MD5, LOGIN, NTLM mechanisms.

The library is easily ported because it does not do network communication by itself,
but rather leaves it up to the calling application. The library is flexible with regards to
the authorization infrastructure used, as it utilizes callbacks into the application to decide
whether a user is authorized or not. GNU SASL has been ported to many Unix flavors.

GNU SASL is developed for the GNU/Linux system, but runs on over 20 platforms
including most major Unix platforms and Windows, and many kind of devices including
iPAQ handhelds and S/390 mainframes.

GNU SASL is licensed under the GNU General Public License.

1.1 Getting Started

This manual documents the ‘Libgsasl’ library programming interface. All functions and
data types provided by the library are explained.

The reader is assumed to possess basic familiarity with SASL and network programming
in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

‘Libgsasl’ might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License (see Appendix B [Copying], page 67).

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallell.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

Chapter 1: Introduction 2

It’s portable
It should work on all Unix like operating systems, including Windows. The
library itself should be portable to any C89 system, not even POSIX is required.

Note that the library do not implement any policy to decide whether a certain user is
“authenticated” or “authorized” or not. Rather, it uses callbacks back into the application
to answer these questions.

1.3 SASL Overview

This section describes SASL from a protocol point of view.
The Simple Authentication and Security Layer (SASL) is a method for adding authen-

tication support to connection-based protocols. A protocol includes a command for identi-
fying and authenticating a user to a server and for optionally negotiating a security layer
for subsequent protocol interactions.

The command has a required argument identifying a SASL mechanism. SASL mech-
anisms are named by strings, from 1 to 20 characters in length, consisting of upper-case
letters, digits, hyphens, and/or underscores.

If a server supports the requested mechanism, it initiates an authentication protocol
exchange. This consists of a series of server challenges and client responses that are specific
to the requested mechanism. The challenges and responses are defined by the mechanisms
as binary tokens of arbitrary length. The protocol’s profile then specifies how these binary
tokens are then encoded for transfer over the connection.

After receiving the authentication command or any client response, a server may issue a
challenge, indicate failure, or indicate completion. The protocol’s profile specifies how the
server indicates which of the above it is doing.

After receiving a challenge, a client may issue a response or abort the exchange. The
protocol’s profile specifies how the client indicates which of the above it is doing.

During the authentication protocol exchange, the mechanism performs authentication,
transmits an authorization identity (frequently known as a userid) from the client to server,
and negotiates the use of a mechanism-specific security layer. If the use of a security layer
is agreed upon, then the mechanism must also define or negotiate the maximum cipher-text
buffer size that each side is able to receive.

The transmitted authorization identity may be different than the identity in the client’s
authentication credentials. This permits agents such as proxy servers to authenticate us-
ing their own credentials, yet request the access privileges of the identity for which they
are proxying. With any mechanism, transmitting an authorization identity of the empty
string directs the server to derive an authorization identity from the client’s authentication
credentials.

If use of a security layer is negotiated, it is applied to all subsequent data sent over the
connection. The security layer takes effect immediately following the last response of the
authentication exchange for data sent by the client and the completion indication for data
sent by the server. Once the security layer is in effect, the protocol stream is processed by
the security layer into buffers of cipher-text. Each buffer is transferred over the connection
as a stream of octets prepended with a four octet field in network byte order that represents
the length of the following buffer. The length of the cipher-text buffer must be no larger
than the maximum size that was defined or negotiated by the other side.

Chapter 1: Introduction 3

1.4 Supported Platforms

Libgsasl has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

7. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

8. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

9. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

10. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

11. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

12. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

13. Microsoft Windows 2000 (Cygwin)
GCC 3.2, GNU make. i686-pc-cygwin.

14. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

Chapter 1: Introduction 4

16. SUN Solaris 2.9
Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.

17. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

18. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

19. FreeBSD 4.7
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-
freebsd4.7.

If you use Libgsasl on, or port Libgsasl to, a new platform please report it to the author.

1.5 Commercial Support

Commercial support is available for users of GNU SASL. The kind of support that can be
purchased may include:
• Implement new features. Such as a new SASL mechanism.
• Port Libgsasl to new platforms. This could include porting to an embedded platforms

that may need memory or size optimization.
• Integrating SASL as a security environment in your existing project.
• System design of components related to SASL.

If you are interested, please write to:
Simon Josefsson Datakonsult
Drottningholmsv. 70
112 42 Stockholm
Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU SASL and would like to be mentioned
here, contact the author (see Section 1.7 [Bug Reports], page 5).

1.6 Downloading and Installing

The package can be downloaded from several places, including:
http://josefsson.org/gsasl/releases/

The latest version is stored in a file, e.g., ‘gsasl-0.0.42.tar.gz’ where the ‘0.0.42’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

Chapter 1: Introduction 5

$ wget -q http://josefsson.org/gsasl/releases/gsasl-0.0.8.tar.gz
$ tar xfz gsasl-0.0.8.tar.gz
$ cd gsasl-0.0.8/
$./configure
...
$ make
...
$ make install
...

After that gsasl should be properly installed and ready for use.
A few configure options may be relevant, summarized in the table.

--disable-client
--disable-server

If your target system require a minimal implementation, you may wish to disable
the client or the server part of the code. This do not remove symbols from the
library, so if you attempt to call an application that uses server functions in a
libgsasl built with --disable-server, the function will return an error code.

--disable-anonymous
--disable-external
--disable-plain
--disable-login
--disable-securid
--disable-ntlm
--disable-cram-md5
--disable-digest-md5
--disable-gssapi
--disable-kerberos_v5

Disable individual mechanisms (see Chapter 4 [Mechanisms], page 15).

--without-stringprep
Disable internationalized string processing. Note that this will result in a SASL
library that is only compatible with RFC 2222.

For the complete list, refer to the output from configure --help.

1.7 Bug Reports

If you think you have found a bug in Libgsasl, please investigate it and report it.
• Please make sure that the bug is really in Libgsasl, and preferably also check that it

hasn’t already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

Chapter 1: Introduction 6

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gsasl@gnu.org’

1.8 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.7 [Bug
Reports], page 5). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-

defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.
• Return errors. No reason whatsoever should abort the execution of the library. Even

memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: Preparation 7

2 Preparation

To use ‘Libgsasl’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libgsasl’ may be
to look at the examples at the end of this manual (see Chapter 11 [Examples], page 55).

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘gsasl.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <gsasl.h>

The name space of ‘Libgsasl’ is gsasl_* for function names, Gsasl* for data types
and GSASL_* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

2.2 Initialization

‘Libgsasl’ must be initialized before it can be used. The library is initialized by calling
gsasl_init (see Chapter 5 [Global Functions], page 31). The resources allocated by the
initialization process can be released if the application no longer has a need to call ‘Libgsasl’
functions, this is done by calling gsasl_done.

In order to take advantage of the internationalisation features in ‘Libgsasl’, such as
translated error messages, the application must set the current locale using setlocale
before initializing ‘Libgsasl’.

In order to take advantage of the secure memory features in ‘Libgcrypt’, which subse-
quently makes sensitive key material used in ‘Libgsasl’ be allocated in secure memory, you
need to initialize secure memory in your application, and for some platforms even make your
application setuid root. See the libgcrypt documentation for more information. Example
code to initialize secure memory in your code:

#include <gcrypt.h>
...

int
main (int argc, char *argv[])
{
...

/* Check version of libgcrypt. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");

/* Allocate a pool of 16k secure memory. This also drops priviliges

Chapter 2: Preparation 8

on some systems. */
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);
...

If you do not do this, keying material will not be allocated in secure memory, which
for most application is not the biggest secure problem. Note that ‘Libgsasl’ has not been
audited to make sure it only ever stores passwords or keys in secure memory.

2.3 Version Check

It is often desirable to check that the version of ‘Libgsasl’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

[Function]const char * gsasl_check_version (const char * req_version)
req version: version string to compare with, or NULL
Check library version.
Return value: Check that the the version of the library is at minimum the one given
as a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned. It is a pretty good idea to run this function as
soon as possible, because it may also intializes some subsystems. In a multithreaded
environment if should be called before any more threads are created.

The normal way to use the function is to put something similar to the following early in
your main:

if (!gsasl_check_version (GSASL_VERSION))
{

printf ("gsasl_check_version failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

2.4 Building the source

If you want to compile a source file including the ‘gsasl.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libgsasl’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libgsasl. The following example shows how it can be used at the command line:

Chapter 2: Preparation 9

gcc -c foo.c ‘pkg-config libgsasl --cflags‘

Adding the output of ‘pkg-config libgsasl --cflags’ to the compilers command line
will ensure that the compiler can find the ‘gsasl.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
libgsasl can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libgsasl’ libarary (for instance, the ‘-lidn’ option).
The example shows how to link ‘foo.o’ with the ‘libgsasl’ library to a program foo.

gcc -o foo foo.o ‘pkg-config libgsasl --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config libgsasl --cflags --libs‘

2.5 Autoconf tests

If you work on a project that uses Autoconf (see 〈undefined〉 [top], page 〈undefined〉) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate Libgsasl into your Autoconf based package.
The preferred approach, is to use Libtool in your project, and use the normal Autoconf
header file and library tests.

2.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Libgsasl. The following illustrate this scenario.

AC_ARG_ENABLE(gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsal" != "no" ; then
PKG_CHECK_MODULES(GSASL, libgsasl >= 0.0.8,
[gsasl=yes],

[gsasl=no])
if test "$gsasl" != "yes" ; then
sal=no
AC_MSG_WARN([Cannot find GNU SASL, disabling])
else
gsasl=yes
AC_DEFINE(USE_GSASL, 1, [Define to 1 if you want GNU SASL.])
fi
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT($gsasl)

Chapter 2: Preparation 10

2.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see 〈undefined〉 [top], page 〈undefined〉), you can use the normal
Autoconf tests to find Libgsasl and rely on the Libtool dependency tracking to include the
proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(gsasl.h,
AC_CHECK_LIB(gsasl, gsasl_check_version,
[gsasl=yes AC_SUBST(GSASL_LIBS, -lgsasl)],
gsasl=no),
gsasl=no)
AC_ARG_ENABLE(gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsasl" != "no" ; then
AC_DEFINE(USE_SASL, 1, [Define to 1 if you want GNU SASL.])
else
AC_MSG_WARN([Cannot find GNU SASL, diabling])
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT($gsasl)

Chapter 3: Using the Library 11

3 Using the Library

After initialization of the library, the core part of the library is run within a loop until it has
finished. The library is handed input from the other protocol entity and results in output
which is to be sent to the other entity, or an error code. The library does not send data to
the server itself, but only return it in buffers. The main interface to the library uses binary
data, but since many common protocols uses Base 64 encoded data, a wrapper around the
main function is also provided.

The following pseudo code illustrates how the library is used in a simple client. All the
functions used are explained later on in this manual.

main()
{
Gsasl_ctx *ctx;
Gsasl_session_ctx *cctx;
char *input, output[BUFFERSIZE];
size_t output_len;
int rc;

rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
die(gsasl_strerror(rc));

/* XXX Set callbacks here */

/* Read supported SASL mechanism from server */
input = read_from_client();

/* Select a good mechanism */
mech = gsasl_client_suggest_mechanism (ctx, input);
if (mech == NULL)
die("Cannot find any commonly agreed SASL mechanism...");

/* Start to use it */
res = gsasl_client_start (ctx, mech, &cctx);
if (res != GSASL_OK)
die(gsasl_strerror (rc));

input = NULL;
do
{

/* Do one SASL step and unless we’re done, send the output to
server and read new data from server */

rc = gsasl_client_step_base64 (cctx, input, output, BUFFERSIZE);
if (rc != GSASL_NEEDS_MORE && rc != GSASL_OK)
break;

Chapter 3: Using the Library 12

write_to_server(output);

if (rc == GSASL_OK)
break;

input = read_from_server();
}

while (rc == GSASL_NEEDS_MORE);

if (rc != GSASL_OK)
die("Authentication failed... %s\n", gsasl_strerror(rc);

/* Client is now authenticated -- proceed with actual protocol... */

gsasl_client_finish (cctx);
gsasl_done (ctx);

}

Notice the XXX comment that said you should specify the callbacks to use there.
‘Libgsasl’ depend on callbacks to implement user interaction (in the client) and user val-
idation (in the server). If you don’t specify any callbacks, very few mechanisms will be
supported (like EXTERNAL that don’t need any additional information, see Section 4.1
[EXTERNAL], page 15). Since we are building a simple client, we define callbacks which are
used by several SASL mechanisms to get username and password. We start by defining the
function for querying the username, following the prototype for Gsasl_client_callback_
authentication_id for the LOGIN mechanism (see Section 4.4 [LOGIN], page 18) .

int
callback_username (Gsasl_session_ctx *ctx,

char *out,
size_t *outlen)

{
char username[BUFFERSIZE];

if (out == NULL)
*outlen = BUFFERSIZE;

else
{

fprintf(stdout, "Enter username: ");
fgets(username, BUFFERSIZE, stdin);
*outlen = strlen(BUFFERSIZE);

}

return GSASL_OK;
}

Chapter 3: Using the Library 13

As you can see, this is a simplistic function that reads a username from the user. The
callback for entering the password is similar and follows the Gsasl_client_callback_
password prototype:

int
callback_password (Gsasl_session_ctx *ctx,

char *out,
size_t *outlen)

{
char password[BUFFERSIZE];

if (out == NULL)
*outlen = BUFFERSIZE;

else
{

fprintf(stdout, "Enter password: ");
fgets(password, BUFFERSIZE, stdin);
*outlen = strlen(BUFFERSIZE);

}

return GSASL_OK;
}

In reality, the program should probably inhibit echo of the password to the terminal,
but that is left as an exercise for the reader.

Now having implemented the callbacks, we are ready to replace the XXX comment with
real code that set the callbacks (see Chapter 6 [Callback Functions], page 33). The following
does it.

gsasl_client_callback_authentication_id_set(ctx, callback_username);
gsasl_client_callback_authorization_id_set(ctx, callback_username);
gsasl_client_callback_password_set(ctx, callback_password);

Notice that we use the same callback for the authentication identity and the authorization
identity. In reality, this may be too simplistic, but will do for an example.

The simple client is now complete, and will be able to support SASL mechanisms such
as PLAIN and CRAM-MD5.

Implementing a server is very similar to the client, the only difference is that you use
gsasl_server_* functions instead of gsasl_client_* and instead of implementing Gsasl_
client_* callbacks implement some Gsasl_server_* callbacks. See each mechanism (see
Chapter 4 [Mechanisms], page 15) for details on which callbacks are required and their
prototype.

A note for server authors is in place, on the optional initial client output (discussed in
section 5.1 of RFC 2222). In a server looking similar to the code above, the first call to
gsasl_server_step_base64 would have a input set to NULL. The mechanisms interprete
this as your protocol do not support initial client output. If the protocol in which you
implement SASL supports initial client output, the first call to gsasl_server_step_base64
should include a real buffer with the initial client data.

Chapter 3: Using the Library 14

One note for client authors is in place. The code above aborts processing if ‘Libgsasl’
did not come out of the loop with a GSASL OK exit code. It is a mistake to not require
this, and instead only look at what the server is sending you. Even if the server said you
are authenticated, it does not always mean that the SASL mechanism is satisfied. This is
specifically true for SASL client mechanisms which perform server authentication. Thus, if
you only trust what the server replied instead of requireing a GSASL OK result, you may
open up for fake servers. Don’t shortcut the loop with a positive server response.

Chapter 4: Mechanisms 15

4 Mechanisms

Different SASL mechanisms have different requirements on the application using it. Some
simpler mechanisms, such as LOGIN and PLAIN, are straight forward to hook into exist-
ing authentication systems (such as ‘/etc/passwd’ via PAM). The client callback for these
mechanisms is easy to implement, the user is simply queried for the username and pass-
word. The server callbacks pass on the username and password into the policy deciding
authentication system (e.g. PAM).

Other mechanism like CRAM-MD5, DIGEST-MD5, and SRP uses hashed passwords.
The client callback are the same as for PLAIN and LOGIN. However, the server do not
receive the plaintext password via the network but rather a hash of it. Existing policy
deciding systems like PAM cannot handle this, so the server callback for these mechanisms
are more complicated.

Further mechanisms like GSSAPI (Kerberos 5) assume a specific authentication sys-
tem. In theory this means that ‘Libgsasl’ would not need to interact with the application,
but rather call this specific authentication system directly. However, some callbacks are
supported anyway, to modify the behaviour of how the specific authentication system is
used.

Special mechanisms like EXTERNAL and ANONYMOUS are entirely dependent on
callbacks.

4.1 The EXTERNAL mechanism

The EXTERNAL mechanism is used to authenticate a user to SASL when SASL is used in
an environment which has already authenticated the user. It is often used within TLS or
IPSEC protected channels.

This mechanism is only enabled in the server if you implement the callback below and
set them in the library (see Chapter 6 [Callback Functions], page 33). It is always enabled
in the client as there are no client callbacks.

[Prototype]int (*Gsasl_server_callback_external) (Gsasl session ctx *
ctx)

ctx: libgsasl handle.
Type of callback function the application implements. It should return GSASL_OK
if user is authenticated by out of band means, otherwise GSASL_AUTHENTICATION_
ERROR.

4.2 The ANONYMOUS mechanism

The ANONYMOUS mechanism is used to “authenticate” clients to anonymous services; or
rather just indicate that the client wishes to use the service anonymously. The client sends
a token, usually her email address.

This mechanism is only enabled in the client and server if you implement the respectively
callbacks below and set them in the library (see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_anonymous) (Gsasl session ctx *
ctx, char * out, size t * outlen)

ctx: libgsasl handle.

Chapter 4: Mechanisms 16

out: output array with client token.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with some input from the user and set the output array length, and return
GSASL_OK, or fail with an error code.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_anonymous) (Gsasl session ctx *
ctx, const char * token)

ctx: libgsasl handle.

ctx: output array with client token.

ctx: on input the maximum size of the output array, on output contains the actual
size of the output array. If OUT is

Type of callback function the application implements. It should return GSASL_OK
if user should be permitted anonymous access, otherwise GSASL_AUTHENTICATION_
ERROR.

4.3 The PLAIN mechanism

The PLAIN mechanism uses username (authentication identity and authorization identity)
and password to authenticate users. Two ways of validating the user is provided, either by
having the SASL mechanism retrieve the raw password from the application and perform the
validation internally, or by calling the application with authentication identity, authorization
identity and password and let it decide. If both the validating and the retrieving callbacks
are specified by the application, the validating one will be used.

This mechanism is only enabled in the client and server if you implement the respectively
callbacks below and set them in the library (see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with authorization identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

Chapter 4: Mechanisms 17

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authentication identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with password.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_validate) (Gsasl session ctx * ctx,
char * authorization_id, char * authentication_id, char * password)

ctx: libgsasl handle.
authorization id: input array with authorization identity.
authentication id: input array with authentication identity.
password: input array with password.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.
authentication id: input array with authentication identity.
authorization id: input array with authorization identity, or NULL.

Chapter 4: Mechanisms 18

realm: input array with realm of user, or NULL.
key : output array with key for authentication identity.
keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.
Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

4.4 The LOGIN mechanism

The LOGIN mechanism uses username (authorization identity only) and password to au-
thenticate users. Two ways of validating the user is provided, either by having the SASL
mechanism retrieve the raw password from the application and perform the validation in-
ternally, or by calling the application with authorization identity and password and let it
decide. If both the validating and the retrieving callbacks are specified by the application,
the validating one will be used.

This mechanism is only enabled in the client and server if you implement the respectively
callbacks below and set them in the library (see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authorization identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with password.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,

Chapter 4: Mechanisms 19

or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_validate) (Gsasl session ctx * ctx,
char * authorization_id, char * authentication_id, char * password)

ctx: libgsasl handle.
authorization id: input array with authorization identity.
authentication id: input array with authentication identity.
password: input array with password.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.
authentication id: input array with authentication identity.
authorization id: input array with authorization identity, or NULL.
realm: input array with realm of user, or NULL.
key : output array with key for authentication identity.
keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.
Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

4.5 The CRAM-MD5 mechanism

The CRAM-MD5 mechanism uses username (authorization identity only) and password to
authenticate users. Only a hashed password is transfered, which means that you cannot
use normal policy deciding authentication systems such as PAM which do not support
extraction of passwords. Two ways of validating the user is provided, either by having the
SASL mechanism retrieve the raw password from the application and perform the validation
internally, or by calling the application with the CRAM-MD5 challenge and response and let
it decide. If both the validating and the retrieving callbacks are specified by the application,
the validating one will be used.

Chapter 4: Mechanisms 20

While not documented in the original CRAM-MD5 specification, this implementation
normalizes the username and the authorization identity using the Unicode 3.2 NFKC form
according to the proposed update of CRAM-MD5.

This mechanism is only enabled in the client and server if you implement the respectively
callbacks below and set them in the library (see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with authorization identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with password.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.

authentication id: input array with authentication identity.

authorization id: input array with authorization identity, or NULL.

realm: input array with realm of user, or NULL.

key : output array with key for authentication identity.

keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.

Chapter 4: Mechanisms 21

Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_cram_md5) (Gsasl session ctx * ctx,
char * username, char * challenge, char * response)

ctx: libgsasl handle.
username: input array with username.
challenge: input array with CRAM-MD5 challenge.
response: input array with CRAM-MD5 response.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.

4.6 The DIGEST-MD5 mechanism

The DIGEST-MD5 mechanism is based on the same cryptographic operation as CRAM-
MD5 but supports more features, such as an authorization identity (proxy authentication)
and cryptographic protection of data. Like CRAM-MD5, only a hashed password is trans-
fered, which means that you cannot use e.g. PAM as a backend since it does not support
extraction of passwords. Two ways of validating the user is provided, either by having the
SASL mechanism retrieve the raw password from the application and perform the valida-
tion internally, or by having the SASL mechanism retrieve a hashed version of the secret.
The advantage of using the latter method is that you do not need to store plain text user
passwords on the server, but rather a one-way hash of the username, realm and password.
Still, this one-way hash of the secret should be handled the same way as a clear text pass-
word. The advantage is that if someone steals the one-way hash she cannot immediately
read users’ password. If both the callbacks are specified by the application, the one which
retrieve the secret hash will be used.

While not documented in the original DIGEST-MD5 specification, this implementation
normalizes the username and the authentication identity using the Unicode 3.2 NFKC form
according to the proposed update of DIGEST-MD5.

This mechanism is only enabled in the client and server if you implement the respectively
callbacks below and set them in the library (see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authentication identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Chapter 4: Mechanisms 22

Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with authorization identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with password.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_service) (Gsasl session ctx * ctx,
char * service, size t * servicelen, char * hostname, size t *
hostnamelen, char * servicename, size t * servicenamelen)

ctx: libgsasl handle.

service: output array with name of service.

servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.

hostname: output array with hostname of server.

Chapter 4: Mechanisms 23

hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.
servicename: output array with generic name of server in case of replication
(DIGEST-MD5 only).
servicenamelen: on input the maximum size of the servicename output array, on
output contains the actual size of the servicename output array.
Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”)
on the server, hostname of server (usually canoncial DNS hostname) and optionally
generic service name of server in case of replication (e.g. “mail.example.org” when the
hostname is “mx42.example.org”, see the RFC 2831 for more information). It should
return GSASL OK, or an error such as GSASL AUTHENTICATION ERROR if it
fails.
If SERVICE, HOSTNAME or SERVICENAME is NULL, the function should only
populate SERVICELEN, HOSTNAMELEN or SERVICENAMELEN with the output
length of the respective field, and return GSASL OK. This usage may be used by the
caller to allocate the proper buffer size. Furthermore, SERVICENAMELEN may also
be NULL, indicating that the mechanism is not interested in this field.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.
authentication id: input array with authentication identity.
authorization id: input array with authorization identity, or NULL.
realm: input array with realm of user, or NULL.
key : output array with key for authentication identity.
keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.
Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_digest_md5) (Gsasl session ctx *
ctx, char * username, char * realm, char * secrethash)

ctx: libgsasl handle.
username: input array with authentication identity of user.
realm: input array with realm of user.
secrethash: output array that should contain hash of username, realm and password
as described for the DIGEST-MD5 mechanism.

Chapter 4: Mechanisms 24

Type of callback function the application implements. It should retrieve the secret
hash for the given user in given realm and return GSASL OK, or an error such as
GSASL AUTHENTICATION ERROR if it fails. The secrethash buffer is guaranteed
to have size for the fixed length MD5 hash.

4.7 The NTLM mechanism

The NTLM mechanism uses username (authorization identity only) and password to au-
thenticate users. Only the client side is implemented. This mechanism is only enabled in
the client if you implement the callbacks below and set them in the library (see Chapter 6
[Callback Functions], page 33).

Note: Libntlm uses assert in some places, it may thus crash your client if it is given
bad input.

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authorization identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with password.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

4.8 The SECURID mechanism

The SECURID mechanism uses authentication and authorization identity and a passcode
from a hardware token to authenticate users. This mechanism is only enabled in the client

Chapter 4: Mechanisms 25

and server if you implement the respectively callbacks below and set them in the library
(see Chapter 6 [Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with authentication identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with authorization identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_passcode) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with passcode.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with passcode of user and set the output array length, and return GSASL_OK,
or fail with an error code.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

Chapter 4: Mechanisms 26

[Prototype]int (*Gsasl_server_callback_validate) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * passcode,
char * pin, char * suggestpin, size t * suggestpinlen)

ctx: libgsasl handle.
authorization id: input array with authorization identity.
authentication id: input array with authentication identity.
passcode: input array with passcode.
pin: input array with new pin (this may be NULL).
suggestpin: output array with new suggested PIN.
suggestpinlen: on input the maximum size of the output array, on output contains
the actual size of the output array.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.
Two SECURID specific error codes also exists. The function can re-
turn GSASL SECURID SERVER NEED ADDITIONAL PASSCODE to
request that the client generate a new passcode. It can also return
GSASL SECURID SERVER NEED NEW PIN to request that the client generate
a new PIN. If the server wishes to suggest a new PIN it can populate the
SUGGESTPIN field.
If SUGGESTPIN is NULL, the function should only populate the output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

4.9 The GSSAPI mechanism

The GSSAPI mechanism uses a framework similar to SASL for authenticating the user.
While GSSAPI can be implemented using many techniques, libgsasl currently links with
GSS, Heimdal or MIT Kerberos and is limited to Kerberos 5 only. The GSSAPI client
mechanism assumes the user acquired credentials (kerberos tickets) before it is invoked
(it will fail if this has not been done). The client need (via callbacks) the name of the
service and the name of the user. The server needs the name of the service and a function
that authorizes a user. This mechanism is only enabled in the client and server if you
implement the respectively callbacks below and set them in the library (see Chapter 6
[Callback Functions], page 33).

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authentication identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return

Chapter 4: Mechanisms 27

GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_service) (Gsasl session ctx * ctx,
char * service, size t * servicelen, char * hostname, size t *
hostnamelen, char * servicename, size t * servicenamelen)

ctx: libgsasl handle.
service: output array with name of service.
servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.
hostname: output array with hostname of server.
hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.
servicename: output array with generic name of server in case of replication
(DIGEST-MD5 only).
servicenamelen: on input the maximum size of the servicename output array, on
output contains the actual size of the servicename output array.
Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”)
on the server, hostname of server (usually canoncial DNS hostname) and optionally
generic service name of server in case of replication (e.g. “mail.example.org” when the
hostname is “mx42.example.org”, see the RFC 2831 for more information). It should
return GSASL OK, or an error such as GSASL AUTHENTICATION ERROR if it
fails.
If SERVICE, HOSTNAME or SERVICENAME is NULL, the function should only
populate SERVICELEN, HOSTNAMELEN or SERVICENAMELEN with the output
length of the respective field, and return GSASL OK. This usage may be used by the
caller to allocate the proper buffer size. Furthermore, SERVICENAMELEN may also
be NULL, indicating that the mechanism is not interested in this field.

[Prototype]int (*Gsasl_server_callback_service) (Gsasl session ctx * ctx,
char * service, size t * servicelen, char * hostname, size t *
hostnamelen)

ctx: libgsasl handle.
service: output array with name of service.
servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.
hostname: output array with hostname of server.
hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.
Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”) the

Chapter 4: Mechanisms 28

server provides and hostname of server (usually canoncial DNS hostname). It should
return GSASL OK, or an error such as GSASL AUTHENTICATION ERROR if it
fails.

If SERVICE or HOSTNAME is NULL, the function should only populate SERVICE-
LEN or HOSTNAMELEN with the output length of the respective field, and return
GSASL OK. This usage may be used by the caller to allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_gssapi) (Gsasl session ctx * ctx,
char * clientname, char * authentication_id)

ctx: libgsasl handle.

clientname: input array with GSSAPI client name.

authentication id: input array with authentication identity.

Type of callback function the application implements. It should return GSASL OK
if and only if the GSSAPI user is authorized to log on as the given authentication id.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used. This callback is usually implemented in the
application as a call to krb5 kuserok(), such as:

int
callback_gssapi (Gsasl_session_ctx *ctx,
char *clientname,
char *authentication_id)
{
int rc = GSASL_AUTHENTICATION_ERROR;

krb5_principal p;
krb5_context kcontext;

krb5_init_context (&kcontext);

if (krb5_parse_name (kcontext, clientname, &p) != 0)
return -1;

if (krb5_kuserok (kcontext, p, authentication_id))
rc = GSASL_OK;

krb5_free_principal (kcontext, p);

return rc;
}

4.10 The KERBEROS V5 mechanism

The KERBEROS V5 is an experimental mechanism, the protocol specification is available
on the GNU SASL homepage. It can operate in three modes, non-infrastructure mode,
infrastructure mode and proxied infrastructure mode. Currently only non-infrastructure
mode is supported.

In the non-infrastructure mode, it works as a superset of most features provided by
PLAIN, CRAM-MD5, DIGEST-MD5 and GSSAPI while at the same time building on

Chapter 4: Mechanisms 29

what is believed to be proven technology (the RFC 1510 network security system). The
non-infrastructure mode is chosen when the Gsasl client callback authorization id callback
prototype is implemented by the application. In non-infrastructure mode, the client must
specify (via callbacks) the name of the user, and optionally the server name and realm. The
server must be able to retrieve passwords given the name of the user.

In the infrastructure mode (proxied or otherwise), it allows clients and servers to au-
thenticate via SASL in an RFC 1510 environment, using a trusted third party, a “Key
Distribution Central”. In the normal mode, clients aquire tickets out of band and then
invokes a one roundtrip AP-REQ and AP-REP exchange. In the proxied mode, which can
be used by clients without IP addresses or without connectivity to the KDC (e.g., when
the KDC is IPv4 and the client is IPV6-only), the client uses the server to proxy ticket re-
quests and finishes with the AP-REQ/AP-REP exchange. In infrastructure mode (proxied
or otherwise), the client nor server need to implement any callbacks (this will likely change
later, to allow a server to authorize users, similar to the GSSAPI callback).

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authentication identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authorization identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

Chapter 4: Mechanisms 30

out: output array with password.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.
authentication id: input array with authentication identity.
authorization id: input array with authorization identity, or NULL.
realm: input array with realm of user, or NULL.
key : output array with key for authentication identity.
keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.
Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

Chapter 5: Global Functions 31

5 Global Functions

[Function]int gsasl_init (Gsasl ** ctx)
ctx: pointer to libgsasl handle.
This functions initializes libgsasl. The handle pointed to by ctx is valid for use with
other libgsasl functions iff this function is successful.
Return value: GSASL OK iff successful, otherwise GSASL MALLOC ERROR.

[Function]void gsasl_done (Gsasl * ctx)
ctx: libgsasl handle.
This function destroys a libgsasl handle. The handle must not be used with other
libgsasl functions after this call.

[Function]int gsasl_client_mechlist (Gsasl * ctx, char ** out)
ctx: libgsasl handle.
out: newly allocated output character array.
Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl client. out is allocated by this function, and it is
the responsibility of caller to deallocate it.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_server_mechlist (Gsasl * ctx, char ** out)
ctx: libgsasl handle.
out: newly allocated output character array.
Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl server. out is allocated by this function, and it is
the responsibility of caller to deallocate it.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_client_support_p (Gsasl * ctx, const char * name)
ctx: libgsasl handle.
name: name of SASL mechanism.
Return value: Returns 1 if the libgsasl client supports the named mechanism, other-
wise 0.

[Function]int gsasl_server_support_p (Gsasl * ctx, const char * name)
ctx: libgsasl handle.
name: name of SASL mechanism.
Return value: Returns 1 if the libgsasl server supports the named mechanism, other-
wise 0.

[Function]const char * gsasl_client_suggest_mechanism (Gsasl * ctx,
const char * mechlist)

ctx: libgsasl handle.
mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).

Chapter 5: Global Functions 32

Return value: Returns name of "best" SASL mechanism supported by the libgsasl
client which is present in the input string.

[Function]const char * gsasl_server_suggest_mechanism (Gsasl * ctx,
const char * mechlist)

ctx: libgsasl handle.
mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).
Return value: Returns name of "best" SASL mechanism supported by the libgsasl
server which is present in the input string.

Chapter 6: Callback Functions 33

6 Callback Functions

[Function]Gsasl * gsasl_ctx_get (Gsasl session * sctx)
sctx: libgsasl session handle

Return value: Returns the libgsasl handle given a libgsasl session handle.

[Function]void gsasl_application_data_set (Gsasl * ctx, void * appdata)
ctx: libgsasl handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl handle. The application data can be
later (for instance, inside a callback) be retrieved by calling gsasl_application_
data_get(). It is normally used by the application to maintain state between the
main program and the callback.

[Function]void * gsasl_application_data_get (Gsasl * ctx)
ctx: libgsasl handle.

Retrieve application specific data from libgsasl handle. The application data is set
using gsasl_appdata_set(). It is normally used by the application to maintain state
between the main program and the callback.

Return value: Returns the application specific data, or NULL.

[Function]void gsasl_appinfo_set (Gsasl session * sctx, void * appdata)
sctx: libgsasl session handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl session handle. The application data can
be later (for instance, inside a callback) be retrieved by calling gsasl_application_
session_data_get(). It is normally used by the application to maintain state be-
tween the main program and the callback.

[Function]void * gsasl_appinfo_get (Gsasl session * sctx)
sctx: libgsasl client handle.

Retrieve application specific data from libgsasl session handle. The application data
is set using gsasl_application_session_data_set(). It is normally used by the
application to maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

[Function]void gsasl_server_callback_validate_set (Gsasl * ctx,
Gsasl server callback validate cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_validate_get().

Chapter 6: Callback Functions 34

[Function]Gsasl_server_callback_validate
gsasl_server_callback_validate_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
validate_set().

[Function]void gsasl_server_callback_retrieve_set (Gsasl * ctx,
Gsasl server callback retrieve cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is authenticated
using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_retrieve_get().

[Function]Gsasl_server_callback_retrieve
gsasl_server_callback_retrieve_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
retrieve_set().

[Function]void gsasl_server_callback_cram_md5_set (Gsasl * ctx,
Gsasl server callback cram md5 cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is authenticated
using CRAM-MD5 challenge and response. The function can be later retrieved using
gsasl_server_callback_cram_md5_get().

[Function]Gsasl_server_callback_cram_md5
gsasl_server_callback_cram_md5_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
cram_md5_set().

[Function]void gsasl_server_callback_digest_md5_set (Gsasl * ctx,
Gsasl server callback digest md5 cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for retrieving the secret hash of
the username, realm and password for use in the DIGEST-MD5 mechanism. The
function can be later retrieved using gsasl_server_callback_digest_md5_get().

[Function]Gsasl_server_callback_digest_md5
gsasl_server_callback_digest_md5_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Return the callback earlier set by calling gsasl_server_callback_
digest_md5_set().

Chapter 6: Callback Functions 35

[Function]void gsasl_server_callback_external_set (Gsasl * ctx,
Gsasl server callback external cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is authenticated
out of band. The function can be later retrieved using gsasl_server_callback_
external_get().

[Function]Gsasl_server_callback_external
gsasl_server_callback_external_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
external_set().

[Function]void gsasl_server_callback_anonymous_set (Gsasl * ctx,
Gsasl server callback anonymous cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is permit-
ted anonymous access. The function can be later retrieved using gsasl_server_
callback_anonymous_get().

[Function]Gsasl_server_callback_anonymous
gsasl_server_callback_anonymous_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
anonymous_set().

[Function]void gsasl_server_callback_realm_set (Gsasl * ctx,
Gsasl server callback realm cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to know which realm it serves. The
realm is used by the user to determine which username and password to use. The
function can be later retrieved using gsasl_server_callback_realm_get().

[Function]Gsasl_server_callback_realm
gsasl_server_callback_realm_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
realm_set().

[Function]void gsasl_server_callback_qop_set (Gsasl * ctx,
Gsasl server callback qop cb)

ctx: libgsasl handle.
cb: callback function

Chapter 6: Callback Functions 36

Specify the callback function to use in the server to know which quality of protection
it accepts. The quality of protection eventually used is selected by the client though.
It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_qop_get().

[Function]Gsasl_server_callback_qop gsasl_server_callback_qop_get
(Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
qop_set().

[Function]void gsasl_server_callback_maxbuf_set (Gsasl * ctx,
Gsasl server callback maxbuf cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server to inform the client of the largest
buffer the server is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_server_callback_
maxbuf_get().

[Function]Gsasl_server_callback_maxbuf
gsasl_server_callback_maxbuf_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
maxbuf_set().

[Function]void gsasl_server_callback_cipher_set (Gsasl * ctx,
Gsasl server callback cipher cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server to inform the client of the cipher
suites supported. The DES and 3DES ciphers must be supported for interoperability.
It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_cipher_get().

[Function]Gsasl_server_callback_cipher
gsasl_server_callback_cipher_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
cipher_set().

[Function]void gsasl_server_callback_securid_set (Gsasl * ctx,
Gsasl server callback securid cb)

ctx: libgsasl handle.

cb: callback function

Chapter 6: Callback Functions 37

Specify the callback function to use in the server for validating a user via the
SECURID mechanism. The function should return GSASL OK if user authenticated
successfully, GSASL SECURID SERVER NEED ADDITIONAL PASSCODE if
it wants another passcode, GSASL SECURID SERVER NEED NEW PIN
if it wants a PIN change, or an error. When (and only when)
GSASL SECURID SERVER NEED NEW PIN is returned, suggestpin can
be populated with a PIN code the server suggests, and suggestpinlen set to the
length of the PIN. The function can be later retrieved using gsasl_server_
callback_securid_get().

[Function]Gsasl_server_callback_securid
gsasl_server_callback_securid_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
securid_set().

[Function]void gsasl_server_callback_gssapi_set (Gsasl * ctx,
Gsasl server callback gssapi cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server for checking if a GSSAPI user
is authorized for username (by, e.g., calling krb5_userok()). The function should
return GSASL OK if the user should be permitted access, or an error code such
as GSASL AUTHENTICATION ERROR on failure. The function can be later re-
trieved using gsasl_server_callback_gssapi_get().

[Function]Gsasl_server_callback_gssapi
gsasl_server_callback_gssapi_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
gssapi_set().

[Function]void gsasl_server_callback_service_set (Gsasl * ctx,
Gsasl server callback service cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server to set the name of the service.
The service buffer should be a registered GSSAPI host-based service name, hostname
the name of the server. The function can be later retrieved using gsasl_server_
callback_service_get().

[Function]Gsasl_server_callback_service
gsasl_server_callback_service_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
service_set().

Chapter 6: Callback Functions 38

[Function]void gsasl_client_callback_authentication_id_set (Gsasl *
ctx, Gsasl client callback authentication id cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the authentication identity. The
function can be later retrieved using gsasl_client_callback_authentication_id_
get().

[Function]Gsasl_client_callback_authentication_id
gsasl_client_callback_authentication_id_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
authentication_id_set().

[Function]void gsasl_client_callback_authorization_id_set (Gsasl * ctx,
Gsasl client callback authorization id cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the authorization identity.
The function can be later retrieved using gsasl_client_callback_authorization_
id_get().

[Function]Gsasl_client_callback_authorization_id
gsasl_client_callback_authorization_id_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
authorization_id_set().

[Function]void gsasl_client_callback_password_set (Gsasl * ctx,
Gsasl client callback password cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the password. The function
can be later retrieved using gsasl_client_callback_password_get().

[Function]Gsasl_client_callback_password
gsasl_client_callback_password_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
password_set().

[Function]void gsasl_client_callback_passcode_set (Gsasl * ctx,
Gsasl client callback passcode cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the passcode. The function
can be later retrieved using gsasl_client_callback_passcode_get().

Chapter 6: Callback Functions 39

[Function]Gsasl_client_callback_passcode
gsasl_client_callback_passcode_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
passcode_set().

[Function]void gsasl_client_callback_pin_set (Gsasl * ctx,
Gsasl client callback pin cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to chose a new pin, possibly suggested
by the server, for the SECURID mechanism. This is not normally invoked, but only
when the server requests it. The function can be later retrieved using gsasl_client_
callback_pin_get().

[Function]Gsasl_client_callback_pin gsasl_client_callback_pin_get
(Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
pin_set().

[Function]void gsasl_client_callback_service_set (Gsasl * ctx,
Gsasl client callback service cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to set the name of the service. The
service buffer should be a registered GSSAPI host-based service name, hostname the
name of the server. Servicename is used by DIGEST-MD5 and should be the name
of generic server in case of a replicated service. The function can be later retrieved
using gsasl_client_callback_service_get().

[Function]Gsasl_client_callback_service
gsasl_client_callback_service_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
service_set().

[Function]void gsasl_client_callback_anonymous_set (Gsasl * ctx,
Gsasl client callback anonymous cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to set the anonymous token, which
usually is the users email address. The function can be later retrieved using gsasl_
client_callback_anonymous_get().

Chapter 6: Callback Functions 40

[Function]Gsasl_client_callback_anonymous
gsasl_client_callback_anonymous_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
anonymous_set().

[Function]void gsasl_client_callback_qop_set (Gsasl * ctx,
Gsasl client callback qop cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to determine the qop to use after
looking at what the server offered. The function can be later retrieved using gsasl_
client_callback_qop_get().

[Function]Gsasl_client_callback_qop gsasl_client_callback_qop_get
(Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
qop_set().

[Function]void gsasl_client_callback_maxbuf_set (Gsasl * ctx,
Gsasl client callback maxbuf cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to inform the server of the largest
buffer the client is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_client_callback_
maxbuf_get().

[Function]Gsasl_client_callback_maxbuf
gsasl_client_callback_maxbuf_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
maxbuf_set().

[Function]void gsasl_client_callback_realm_set (Gsasl * ctx,
Gsasl client callback realm cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to know which realm it belongs to.
The realm is used by the server to determine which username and password to use.
The function can be later retrieved using gsasl_client_callback_realm_get().

[Function]Gsasl_client_callback_realm
gsasl_client_callback_realm_get (Gsasl * ctx)

ctx: libgsasl handle.

Chapter 6: Callback Functions 41

Return value: Returns the callback earlier set by calling gsasl_client_callback_
realm_set().

Chapter 7: Session Functions 42

7 Session Functions

[Function]int gsasl_client_start (Gsasl * ctx, const char * mech,
Gsasl session ** sctx)

ctx: libgsasl handle.
mech: name of SASL mechanism.
sctx: pointer to client handle.
This functions initiates a client SASL authentication. This function must be called
before any other gsasl client *() function is called.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_server_start (Gsasl * ctx, const char * mech,
Gsasl session ** sctx)

ctx: libgsasl handle.
mech: name of SASL mechanism.
sctx: pointer to server handle.
This functions initiates a server SASL authentication. This function must be called
before any other gsasl server *() function is called.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_step (Gsasl session * sctx, const char * input, size t
input_len, char ** output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: newly allocated output byte array.
output len: pointer to output variable with size of output byte array.
Perform one step of SASL authentication. This reads data from the other end (from
input and input_len), processes it (potentially invoking callbacks to the application),
and writes data to server (into newly allocated variable output and output_len that
indicate the length of output).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL OK or GSASL NEEDS MORE. If this function return
GSASL OK or GSASL NEEDS MORE, however, the output buffer is allocated
by this function, and it is the responsibility of caller to deallocate it by calling free
(output).
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.

[Function]int gsasl_step64 (Gsasl session * sctx, const char * b64input, char
** b64output)

sctx: libgsasl client handle.
b64input: input base64 encoded byte array.
b64output: newly allocated output base64 encoded byte array.

Chapter 7: Session Functions 43

This is a simple wrapper around gsasl_step() that base64 decodes the input and
base64 encodes the output.
The contents of the b64output buffer is unspecified if this functions returns any-
thing other than GSASL OK or GSASL NEEDS MORE. If this function return
GSASL OK or GSASL NEEDS MORE, however, the b64output buffer is allocated
by this function, and it is the responsibility of caller to deallocate it by calling free
(b64output).
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.

[Function]void gsasl_finish (Gsasl session * sctx)
sctx: libgsasl session handle.
Destroy a libgsasl client or server handle. The handle must not be used with other
libgsasl functions after this call.

[Function]int gsasl_encode (Gsasl session * sctx, const char * input, size t
input_len, char * output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.
Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.

[Function]int gsasl_decode (Gsasl session * sctx, const char * input, size t
input_len, char * output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.
Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.

Chapter 8: Utilities 44

8 Utilities

[Function]char * gsasl_stringprep_nfkc (const char * in, ssize t len)
in: a UTF-8 encoded string.

len: length of str, in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

Return value: Return a newly allocated string, that is the NFKC normalized form of
str, o NULL on error.

[Function]char * gsasl_stringprep_saslprep (const char * in, int *
stringprep_rc)

in: input ASCII or UTF-8 string with data to prepare according to SASLprep.

stringprep rc: pointer to output variable with stringprep error code, or NULL to
indicate that you don’t care about it.

Process a Unicode string for comparison, according to the "SASLprep" stringprep
profile. This function is intended to be used by Simple Authentication and Security
Layer (SASL) mechanisms (such as PLAIN, CRAM-MD5, and DIGEST-MD5) as well
as other protocols exchanging user names and/or passwords.

Return value: Return a newly allocated string that is the "SASLprep" processed
form of the input string, or NULL on error, in which case stringprep_rc contain
the stringprep library error code.

[Function]char * gsasl_stringprep_trace (const char * in, int *
stringprep_rc)

in: input ASCII or UTF-8 string with data to prepare according to "trace".

stringprep rc: pointer to output variable with stringprep error code, or NULL to
indicate that you don’t care about it.

Process a Unicode string for use as trace information, according to the "trace" string-
prep profile. The profile is designed for use with the SASL ANONYMOUS Mecha-
nism.

Return value: Return a newly allocated string that is the "trace" processed form
of the input string, or NULL on error, in which case stringprep_rc contain the
stringprep library error code.

Chapter 8: Utilities 45

[Function]int gsasl_base64_encode (char const * src, size t srclength, char *
target, size t targsize)

src: input byte array
srclength: size of input byte array
target: output byte array
targsize: size of output byte array
Encode data as base64. Converts characters, three at a time, starting at src into four
base64 characters in the target area until the entire input buffer is encoded.
Return value: Returns the number of data bytes stored at the target, or -1 on error.

[Function]int gsasl_base64_decode (char const * src, char * target, size t
targsize)

src: input byte array
target: output byte array
targsize: size of output byte array
Decode Base64 data. Skips all whitespace anywhere. Converts characters, four at
a time, starting at (or after) src from Base64 numbers into three 8 bit bytes in the
target area.
Return value: Returns the number of data bytes stored at the target, or -1 on error.

[Function]int gsasl_md5pwd_get_password (const char * filename, const char
* username, char * key, size t * keylen)

filename: filename of file containing passwords.
username: username string.
key : output character array.
keylen: input maximum size of output character array, on output contains actual
length of output array.
Retrieve password for user from specified file. To find out how large the output array
must be, call this function with out=NULL.
The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as username\tpassword. This function removes \r and \n at the end of lines
before processing.
Return value: Return GSASL OK if output buffer contains the password,
GSASL AUTHENTICATION ERROR if the user could not be found, or other error
code.

[Function]int gsasl_randomize (int strong, char * data, size t datalen)
strong : 0 iff operation should not block, non-0 for very strong randomness.
data: output array to be filled with random data.
datalen: size of output array.
Store cryptographically random data of given size in the provided buffer.
Return value: Returns GSASL OK iff successful.

Chapter 8: Utilities 46

[Function]int gsasl_md5 (const char * in, size t inlen, char *
out[MD5_DIGEST_SIZE])

in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns GSASL OK iff successful.

[Function]int gsasl_hmac_md5 (const char * key, size t keylen, const char * in,
size t inlen, char * outhash[MD5_DIGEST_SIZE])

key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-MD5. The outhash buffer must be
deallocated by the caller.
Return value: Returns GSASL OK iff successful.

Chapter 9: Old Functions 47

9 Old Functions

As GNU SASL is still under heavy development, some API functions have been found to
be less useful. Those old API functions will be supported during a transition period. Refer
to the NEWS file to find out since when a function has been deprecated.

[Function]int gsasl_client_listmech (Gsasl ctx * ctx, char * out, size t *
outlen)

ctx: libgsasl handle.
out: output character array.
outlen: input maximum size of output character array, on output contains actual
length of output array.
Write SASL names, separated by space, of mechanisms supported by the libgsasl
client to the output array. To find out how large the output array must be, call this
function with out=NULL.
Note that this function is obsolete and may be removed in the future.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_server_listmech (Gsasl ctx * ctx, char * out, size t *
outlen)

ctx: libgsasl handle.
out: output character array.
outlen: input maximum size of output character array, on output contains actual
length of output array.
Write SASL names, separated by space, of mechanisms supported by the libgsasl
server to the output array. To find out how large the output array must be, call this
function with out=NULL.
Note that this function is obsolete and may be removed in the future.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_client_step (Gsasl session ctx * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl client handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Perform one step of SASL authentication in client. This reads data from server
(specified with input and input len), processes it (potentially invoking callbacks to
the application), and writes data to server (into variables output and output len).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL NEEDS MORE.
Note that this function is obsolete and may be removed in the future.
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.

Chapter 9: Old Functions 48

[Function]int gsasl_server_step (Gsasl session ctx * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl server handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Perform one step of SASL authentication in server. This reads data from client
(specified with input and input len), processes it (potentially invoking callbacks to
the application), and writes data to client (into variables output and output len).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL NEEDS MORE.
Note that this function is obsolete and may be removed in the future.
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.

[Function]int gsasl_client_step_base64 (Gsasl session ctx * sctx, const char
* b64input, char * b64output, size t b64output_len)

sctx: libgsasl client handle.
b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output len: size of output base64 encoded byte array.
This is a simple wrapper around gsasl_client_step() that base64 decodes the input
and base64 encodes the output.
Note that this function is obsolete and may be removed in the future.
Return value: See gsasl_client_step().

[Function]int gsasl_server_step_base64 (Gsasl session ctx * sctx, const char
* b64input, char * b64output, size t b64output_len)

sctx: libgsasl server handle.
b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output len: size of output base64 encoded byte array.
This is a simple wrapper around gsasl_server_step() that base64 decodes the input
and base64 encodes the output.
Note that this function is obsolete and may be removed in the future.
Return value: See gsasl_server_step().

[Function]void gsasl_client_finish (Gsasl session ctx * sctx)
sctx: libgsasl client handle.
Destroy a libgsasl client handle. The handle must not be used with other libgsasl
functions after this call.
Note that this function is obsolete and may be removed in the future.

Chapter 9: Old Functions 49

[Function]void gsasl_server_finish (Gsasl session ctx * sctx)
sctx: libgsasl server handle.

Destroy a libgsasl server handle. The handle must not be used with other libgsasl
functions after this call.

Note that this function is obsolete and may be removed in the future.

[Function]Gsasl_ctx * gsasl_client_ctx_get (Gsasl session ctx * sctx)
sctx: libgsasl client handle

Note that this function is obsolete and may be removed in the future.

Return value: Returns the libgsasl handle given a libgsasl client handle.

[Function]void gsasl_client_application_data_set (Gsasl session ctx *
sctx, void * application_data)

sctx: libgsasl client handle.

application data: opaque pointer to application specific data.

Store application specific data in the libgsasl client handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_client_
application_data_get(). It is normally used by the application to maintain state
between the main program and the callback.

Note that this function is obsolete and may be removed in the future.

[Function]void * gsasl_client_application_data_get (Gsasl session ctx *
sctx)

sctx: libgsasl client handle.

Retrieve application specific data from libgsasl client handle. The application data
is set using gsasl_client_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.

Note that this function is obsolete and may be removed in the future.

Return value: Returns the application specific data, or NULL.

[Function]Gsasl_ctx * gsasl_server_ctx_get (Gsasl session ctx * sctx)
sctx: libgsasl server handle

Note that this function is obsolete and may be removed in the future.

Return value: Returns the libgsasl handle given a libgsasl server handle.

[Function]void gsasl_server_application_data_set (Gsasl session ctx *
sctx, void * application_data)

sctx: libgsasl server handle.

application data: opaque pointer to application specific data.

Store application specific data in the libgsasl server handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_server_
application_data_get(). It is normally used by the application to maintain state
between the main program and the callback.

Note that this function is obsolete and may be removed in the future.

Chapter 9: Old Functions 50

[Function]void * gsasl_server_application_data_get (Gsasl session ctx *
sctx)

sctx: libgsasl server handle.
Retrieve application specific data from libgsasl server handle. The application data
is set using gsasl_server_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.
Note that this function is obsolete and may be removed in the future.
Return value: Returns the application specific data, or NULL.

Chapter 10: Error Handling 51

10 Error Handling

Most functions in ‘Libgsasl’ are returning an error if they fail. For this reason, the applica-
tion should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

10.1 Error values

Errors are returned as an int. Except for the OK case an application should always use the
constants instead of their numeric value. Applications are encouraged to use the constants
even for OK as it improves readability. Possible values are:

GSASL_OK This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

GSASL_NEEDS_MORE
SASL mechanisms needs more data

GSASL_UNKNOWN_MECHANISM
Unknown SASL mechanism

GSASL_MECHANISM_CALLED_TOO_MANY_TIMES
SASL mechanism called too many times

GSASL_TOO_SMALL_BUFFER
SASL function need larger buffer (internal error)

GSASL_FOPEN_ERROR
Could not open file in SASL library

GSASL_FCLOSE_ERROR
Could not close file in SASL library

GSASL_MALLOC_ERROR
Memory allocation error in SASL library

GSASL_BASE64_ERROR
Base 64 coding error in SASL library

GSASL_GCRYPT_ERROR
Gcrypt error in SASL library

GSASL_GSSAPI_RELEASE_BUFFER_ERROR
GSSAPI library could not deallocate memory in gss release buffer() in SASL
library. This is a serious internal error.

GSASL_GSSAPI_IMPORT_NAME_ERROR
GSSAPI library could not understand a peer name in gss import name() in
SASL library. This may be due to incorrect user supplied data.

Chapter 10: Error Handling 52

GSASL_GSSAPI_INIT_SEC_CONTEXT_ERROR
GSSAPI error in client while negotiating security context in
gss init sec context() in SASL library. This is most likely due insuf-
ficient credentials or malicious interactions.

GSASL_GSSAPI_ACCEPT_SEC_CONTEXT_ERROR
GSSAPI error in server while negotiating security context in
gss init sec context() in SASL library. This is most likely due insuf-
ficient credentials or malicious interactions.

GSASL_GSSAPI_UNWRAP_ERROR
GSSAPI error while decrypting or decoding data in gss unwrap() in SASL
library. This is most likely due to data corruption.

GSASL_GSSAPI_WRAP_ERROR
GSSAPI error while encrypting or encoding data in gss wrap() in SASL library.

GSASL_GSSAPI_ACQUIRE_CRED_ERROR
GSSAPI error acquiring credentials in gss acquire cred() in SASL library.
This is most likely due to not having the proper Kerberos key available in
/etc/krb5.keytab on the server.

GSASL_GSSAPI_DISPLAY_NAME_ERROR
GSSAPI error creating a display name denoting the client in gss display name()
in SASL library. This is probably because the client suplied bad data.

GSASL_GSSAPI_UNSUPPORTED_PROTECTION_ERROR
Other entity requested integrity or confidentiality protection in GSSAPI mech-
anism but this is currently not implemented.

GSASL_NEED_CLIENT_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl client callback anonymous() callback (applica-
tion error)

GSASL_NEED_CLIENT_PASSWORD_CALLBACK
SASL mechanism needs gsasl client callback password() callback (application
error)

GSASL_NEED_CLIENT_PASSCODE_CALLBACK
SASL mechanism needs gsasl client callback passcode() callback (application
error)

GSASL_NEED_CLIENT_PIN_CALLBACK
SASL mechanism needs gsasl client callback pin() callback (application error)

GSASL_NEED_CLIENT_AUTHORIZATION_ID_CALLBACK
SASL mechanism needs gsasl client callback authorization id() callback (ap-
plication error)

GSASL_NEED_CLIENT_AUTHENTICATION_ID_CALLBACK
SASL mechanism needs gsasl client callback authentication id() callback (ap-
plication error)

Chapter 10: Error Handling 53

GSASL_NEED_CLIENT_SERVICE_CALLBACK
SASL mechanism needs gsasl client callback service() callback (application er-
ror)

GSASL_NEED_SERVER_VALIDATE_CALLBACK
SASL mechanism needs gsasl server callback validate() callback (application
error)

GSASL_NEED_SERVER_CRAM_MD5_CALLBACK
SASL mechanism needs gsasl server callback cram md5() callback (application
error)

GSASL_NEED_SERVER_DIGEST_MD5_CALLBACK
SASL mechanism needs gsasl server callback digest md5() callback (applica-
tion error)

GSASL_NEED_SERVER_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl server callback anonymous() callback (applica-
tion error)

GSASL_NEED_SERVER_EXTERNAL_CALLBACK
SASL mechanism needs gsasl server callback external() callback (application
error)

GSASL_NEED_SERVER_REALM_CALLBACK
SASL mechanism needs gsasl server callback realm() callback (application er-
ror)

GSASL_NEED_SERVER_SECURID_CALLBACK
SASL mechanism needs gsasl server callback securid() callback (application er-
ror)

GSASL_NEED_SERVER_SERVICE_CALLBACK
SASL mechanism needs gsasl server callback service() callback (application er-
ror)

GSASL_NEED_SERVER_GSSAPI_CALLBACK
SASL mechanism needs gsasl server callback gssapi() callback (application er-
ror)

GSASL_NEED_SERVER_RETRIEVE_CALLBACK
SASL mechanism needs gsasl server callback retrieve() callback (application
error)

GSASL_MECHANISM_PARSE_ERROR
SASL mechanism could not parse input

GSASL_AUTHENTICATION_ERROR
Error authentication user

GSASL_CANNOT_GET_CTX
Cannot get internal library handle (library error)

GSASL_INTEGRITY_ERROR
Integrity error in application payload

Chapter 10: Error Handling 54

GSASL_NO_MORE_REALMS
No more realms available (non-fatal)

GSASL_NO_CLIENT_CODE
Client-side functionality not available in library (application error)

GSASL_NO_SERVER_CODE
Server-side functionality not available in library (application error)

GSASL_INVALID_HANDLE
The provided library handle was invalid (application error)

10.2 Error strings

[Function]const char * gsasl_strerror (int err)
err: libgsasl error code
Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the error value err. This string can be used to output a
diagnostic message to the user.

Chapter 11: Examples 55

11 Examples

This chapter contains example code which illustrate how ‘Libgsasl’ can be used when writing
your own application.

11.1 Example 1

This is the minimal program which uses ‘Libgsasl’ (including internationalization features)
without doing anything.

#include <locale.h>
#include <stdio.h>
#include <gsasl.h>

/* Build using the following command:
* gcc -o foo foo.c ‘libgsasl-config --cflags --libs‘
*/

int
main (int argc, char *argv[])
{
Gsasl_ctx *ctx;
int res;

setlocale (LC_ALL, "");

if (gsasl_check_version(GSASL_VERSION) == NULL)
{

fprintf(stderr, "Libgsasl is %s expected %s\n",
gsasl_check_version(NULL), GSASL_VERSION);
return 1;

}

res = gsasl_init (&ctx);
if (res != GSASL_OK)
{

fprintf(stderr, "Cannot initialize libgsasl: %s\n",
gsasl_strerror(res));
return 1;

}

/* Do things here ... */

gsasl_done(ctx);

return 0;
}

Chapter 12: Acknowledgements 56

12 Acknowledgements

The makefiles, manuals, etc borrowed much from Libgcrypt written by Werner Koch.
Cryptographic functions for some SASL mechanisms uses Libgcrypt by Werner Koch et

al. The NTLM mechanism uses Libntlm by Grant Edwards et al, using code from Samba
written by Andrew Tridgell, and now maintained by Simon Josefsson. The KERBEROS V5
mechanism uses Shishi by Simon Josefsson. The GSSAPI mechanism uses a GSS-API
implementation, such as GSSLib by Simon Josefsson.

This manual borrows text from the SASL specification.

Chapter 13: Invoking gsasl 57

13 Invoking gsasl

Name

GNU SASL (gsasl) – Command line interface to libgsasl.

Description

gsasl is the main program of GNU SASL.

This section only lists the commands and options available.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Commands

gsasl recognizes these commands:

-c, --client Act as client.
--client-mechanisms Write name of supported client mechanisms

separated by space to stdout.
-s, --server Act as server.

--server-mechanisms Write name of supported server mechanisms
separated by space to stdout.

Network Options

Normally the SASL negotiation is performed on the terminal, with reading from stdin and
writing to stdout. It is also possible to perform the negotiation with a server over a TCP
network connection.

--connect=HOSTNAME[:SERVICE]
Connect to TCP server and negotiate on stream
instead of stdin/stdout. SERVICE is the protocol
service, or an integer denoting the port, and
defaults to 143 (imap) if not specified. Also sets
the --hostname default.

Chapter 13: Invoking gsasl 58

Miscellaneous Options:

These parameters affect overall behaviour.

-d, --application-data After authentication, read data from stdin and run
it through the mechanism’s security layer and
print it base64 encoded to stdout. The default is
to terminate after authentication.

--imap Use a IMAP-like logon procedure (client only).
Also sets the --service default to "imap".

-m, --mechanism=STRING Mechanism to use.
--no-client-first Disallow client to send data first (client only).

SASL Mechanism Options

These options modify the behaviour of the callbacks (see Chapter 6 [Callback Functions],
page 33) in the library. The default is the query the user on the terminal.

-a, --authentication-id=STRING Identity of credential owner.
--disable-cleartext-validate

Disable cleartext validate hook, forcing server to
prompt for password.

--enable-cram-md5-validate Validate CRAM-MD5 challenge and response
interactively.

--hostname=STRING Set the name of the server with the requested
service.

-n, --anonymous-token=STRING Token for anonymous authentication, usually
mail address (ANONYMOUS only).

-p, --password=STRING Password for authentication (insecure for
non-testing purposes).

--passcode=NUMBER Passcode for authentication (SECURID only).
--quality-of-protection=<auth | auth-int | auth-conf>

How application payload will be protected. "auth"
means no protection, "auth-int" means integrity
protection, "auth-conf" means integrity and
confidentialiy protection. Currently only used by
DIGEST-MD5, where the default is "auth-conf".

-r, --realm=STRING Realm (may be given more than once iff server).
Defaults to hostname.

--service=STRING Set the requested service name (should be a
registered GSSAPI host based service name).

--service-name=STRING Set the generic server name in case of a
replicated server (DIGEST-MD5 only).

-x, --maxbuf=NUMBER Indicate maximum buffer size (DIGEST-MD5 only).
-z, --authorization-id=STRING Identity to request service for.

Chapter 13: Invoking gsasl 59

Other Options

These are some standard parameters.
-q, --quiet, --silent Don’t produce any diagnostic output.
-v, --verbose Produce verbose output.

-?, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Appendix A: Copying This Manual 60

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix A: Copying This Manual 61

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Appendix A: Copying This Manual 62

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,

Appendix A: Copying This Manual 63

create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

Appendix A: Copying This Manual 64

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or

Appendix A: Copying This Manual 65

distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 66

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix B: GNU GENERAL PUBLIC LICENSE 67

Appendix B GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix B: GNU GENERAL PUBLIC LICENSE 68

B.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Appendix B: GNU GENERAL PUBLIC LICENSE 69

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Appendix B: GNU GENERAL PUBLIC LICENSE 70

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Appendix B: GNU GENERAL PUBLIC LICENSE 71

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix B: GNU GENERAL PUBLIC LICENSE 72

B.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Appendix B: Concept Index 73

Concept Index

A
AIX . 3
Autoconf tests . 9

C
Callbacks . 33
command line . 57
Compiling your application . 8
Configure tests . 9
Contributing . 6

D
Debian . 3
Deprecated functions . 47
Download . 4

E
Error Handling . 51
Examples . 55

F
FDL, GNU Free Documentation License 60
FreeBSD . 4

G
GPL, General Public License 67

H
Hacking . 6
HP-UX . 3

I
Installation . 4
invoking gsasl . 57
IRIX . 3

M
Mandrake . 3

N
NetBSD . 4

O
Obsolete functions . 47
OpenBSD . 4

R
RedHat . 3
RedHat Advanced Server . 3
Reporting Bugs . 5

S
SASL sessions . 42
Solaris . 3, 4
SuSE . 3
SuSE Linux . 3

T
Tru64 . 3

W
Windows . 3

Appendix B: Function and Data Index 74

Appendix B: Function and Data Index 75

Function and Data Index

(
(*Gsasl_client_callback_anonymous) 15
(*Gsasl_client_callback_authentication_id)

. 17, 21, 25, 26, 29
(*Gsasl_client_callback_authorization_id)

. 16, 18, 20, 22, 24, 25, 29
(*Gsasl_client_callback_passcode) 25
(*Gsasl_client_callback_password) 17, 18,

20, 22, 24, 29
(*Gsasl_client_callback_service) 22, 27
(*Gsasl_server_callback_anonymous) 16
(*Gsasl_server_callback_cram_md5) 21
(*Gsasl_server_callback_digest_md5) 23
(*Gsasl_server_callback_external) 15
(*Gsasl_server_callback_gssapi) 28
(*Gsasl_server_callback_retrieve) 17, 19,

20, 23, 30
(*Gsasl_server_callback_service) 27
(*Gsasl_server_callback_validate) . . 17, 19, 26

G
gsasl . 57
gsasl_appinfo_get . 33
gsasl_appinfo_set . 33
gsasl_application_data_get 33
gsasl_application_data_set 33
gsasl_base64_decode . 45
gsasl_base64_encode . 45
gsasl_check_version . 8
gsasl_client_application_data_get 49
gsasl_client_application_data_set 49
gsasl_client_callback_anonymous_get 40
gsasl_client_callback_anonymous_set 39
gsasl_client_callback_authentication_id_get

. 38
gsasl_client_callback_authentication_id_set

. 38
gsasl_client_callback_authorization_id_get

. 38
gsasl_client_callback_authorization_id_set

. 38
gsasl_client_callback_maxbuf_get 40
gsasl_client_callback_maxbuf_set 40
gsasl_client_callback_passcode_get 39
gsasl_client_callback_passcode_set 38
gsasl_client_callback_password_get 38
gsasl_client_callback_password_set 38
gsasl_client_callback_pin_get 39
gsasl_client_callback_pin_set 39
gsasl_client_callback_qop_get 40
gsasl_client_callback_qop_set 40
gsasl_client_callback_realm_get 40
gsasl_client_callback_realm_set 40
gsasl_client_callback_service_get 39
gsasl_client_callback_service_set 39
gsasl_client_ctx_get . 49
gsasl_client_finish . 48
gsasl_client_listmech . 47

gsasl_client_mechlist . 31
gsasl_client_start . 42
gsasl_client_step . 47
gsasl_client_step_base64 48
gsasl_client_suggest_mechanism 31
gsasl_client_support_p . 31
gsasl_ctx_get . 33
gsasl_decode . 43
gsasl_done . 31
gsasl_encode . 43
gsasl_finish . 43
gsasl_hmac_md5 . 46
gsasl_init . 31
gsasl_md5 . 46
gsasl_md5pwd_get_password 45
gsasl_randomize . 45
gsasl_server_application_data_get 50
gsasl_server_application_data_set 49
gsasl_server_callback_anonymous_get 35
gsasl_server_callback_anonymous_set 35
gsasl_server_callback_cipher_get 36
gsasl_server_callback_cipher_set 36
gsasl_server_callback_cram_md5_get 34
gsasl_server_callback_cram_md5_set 34
gsasl_server_callback_digest_md5_get 34
gsasl_server_callback_digest_md5_set 34
gsasl_server_callback_external_get 35
gsasl_server_callback_external_set 35
gsasl_server_callback_gssapi_get 37
gsasl_server_callback_gssapi_set 37
gsasl_server_callback_maxbuf_get 36
gsasl_server_callback_maxbuf_set 36
gsasl_server_callback_qop_get 36
gsasl_server_callback_qop_set 35
gsasl_server_callback_realm_get 35
gsasl_server_callback_realm_set 35
gsasl_server_callback_retrieve_get 34
gsasl_server_callback_retrieve_set 34
gsasl_server_callback_securid_get 37
gsasl_server_callback_securid_set 36
gsasl_server_callback_service_get 37
gsasl_server_callback_service_set 37
gsasl_server_callback_validate_get 34
gsasl_server_callback_validate_set 33
gsasl_server_ctx_get . 49
gsasl_server_finish . 49
gsasl_server_listmech . 47
gsasl_server_mechlist . 31
gsasl_server_start . 42
gsasl_server_step . 48
gsasl_server_step_base64 48
gsasl_server_suggest_mechanism 32
gsasl_server_support_p . 31
gsasl_step . 42
gsasl_step64 . 42
gsasl_strerror . 54
gsasl_stringprep_nfkc . 44
gsasl_stringprep_saslprep 44
gsasl_stringprep_trace . 44

iii

Short Contents

1 Introduction. 1

2 Preparation . 7

3 Using the Library . 11

4 Mechanisms . 15

5 Global Functions . 31

6 Callback Functions . 33

7 Session Functions . 42

8 Utilities . 44

9 Old Functions . 47

10 Error Handling . 51

11 Examples . 55

12 Acknowledgements . 56

13 Invoking gsasl . 57

A Copying This Manual . 60

B GNU GENERAL PUBLIC LICENSE. 67

Concept Index . 73

Function and Data Index . 74

iv

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 SASL Overview . 2
1.4 Supported Platforms . 3
1.5 Commercial Support . 4
1.6 Downloading and Installing . 4
1.7 Bug Reports . 5
1.8 Contributing . 6

2 Preparation . 7
2.1 Header . 7
2.2 Initialization . 7
2.3 Version Check . 8
2.4 Building the source . 8
2.5 Autoconf tests . 9

2.5.1 Autoconf test via ‘pkg-config’ . 9
2.5.2 Standalone Autoconf test using Libtool 9

3 Using the Library . 11

4 Mechanisms . 15
4.1 The EXTERNAL mechanism . 15
4.2 The ANONYMOUS mechanism . 15
4.3 The PLAIN mechanism . 16
4.4 The LOGIN mechanism . 18
4.5 The CRAM-MD5 mechanism . 19
4.6 The DIGEST-MD5 mechanism . 21
4.7 The NTLM mechanism . 24
4.8 The SECURID mechanism . 24
4.9 The GSSAPI mechanism . 26
4.10 The KERBEROS V5 mechanism . 28

5 Global Functions . 31

6 Callback Functions . 33

7 Session Functions . 42

8 Utilities . 44

v

9 Old Functions . 47

10 Error Handling . 51
10.1 Error values . 51
10.2 Error strings . 54

11 Examples . 55
11.1 Example 1 . 55

12 Acknowledgements . 56

13 Invoking gsasl . 57

Appendix A Copying This Manual 60
A.1 GNU Free Documentation License . 60

A.1.1 ADDENDUM: How to use this License for your
documents . 66

Appendix B GNU GENERAL PUBLIC
LICENSE . 67

B.1 Preamble . 67
B.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 68
B.3 How to Apply These Terms to Your New Programs 72

Concept Index . 73

Function and Data Index . 74

	Introduction
	Getting Started
	Features
	SASL Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool

	Using the Library
	Mechanisms
	The EXTERNAL mechanism
	The ANONYMOUS mechanism
	The PLAIN mechanism
	The LOGIN mechanism
	The CRAM-MD5 mechanism
	The DIGEST-MD5 mechanism
	The NTLM mechanism
	The SECURID mechanism
	The GSSAPI mechanism
	The KERBEROS_V5 mechanism

	Global Functions
	Callback Functions
	Session Functions
	Utilities
	Old Functions
	Error Handling
	Error values
	Error strings

	Examples
	Example 1

	Acknowledgements
	Invoking gsasl
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Concept Index
	Function and Data Index
	Introduction
	Getting Started
	Features
	SASL Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool
	Using the Library
	Mechanisms
	The EXTERNAL mechanism
	The ANONYMOUS mechanism
	The PLAIN mechanism
	The LOGIN mechanism
	The CRAM-MD5 mechanism
	The DIGEST-MD5 mechanism
	The NTLM mechanism
	The SECURID mechanism
	The GSSAPI mechanism
	The KERBEROS_V5 mechanism
	Global Functions
	Callback Functions
	Session Functions
	Utilities
	Old Functions
	Error Handling
	Error values
	Error strings
	Examples
	Example 1
	Acknowledgements

	Invoking gsasl

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Concept Index
	Function and Data Index

