GNU Hyperbole Manual

The Everyday Hypertextual Information Manager

EXAMPLE.kotl - =] x

File

B B X

F 1. The Knutlinerlis a part of the Hyperbole information management system.
2. The Koutliner produces hierarchically structured files consisting of...
2a. A cell is an element of the ocutline which has its own display label...
2b. Idstamps support the creation of hyperlinks to cells which are...
Features implemented include:
3a. Full on screen editing (just like a Macintosh). Click to type in a...
3b. Advanced outline processing
Full auto-numbering im Augment (1la2) or...
By default, the Koutliner separates labels from...
{C-j} adds a new cell as a sibling following the...
{C-c C-k} kills the current cell and its...
Tree Demotion and Promotion: Trees may be demoted or...
{M-q} or {M-j} refills a paragraph within a...
In addition to normal Emacs movement commands, ...
Tree Movement and Copying: Entire ocutline trees can be moved or...
TERAMPLE. ko¥1 2]ns" " fop L1
*If your <(Info-directory-list)> or <(Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about <(keyboard macros)=. Can't remember a Hyperbole
Check out the Hyperbole Manual <{glossary)=.

s

term?

Here is a ={keyboard macro)= button.
first Emacs Lisp function that follows it, e.g. (hbut:report). You can SEED
that a button label can consist of a number of words, up to a set <=(maximum

Edit

3b1.
3b2.
3b3.
3b4.
3b5.
3b6.
3b7.
3p8.

length)=.
+

Next:

+

Bob Weiner

Rolo Menu, lo
fHere is an example of a simple rolo file. The date at the end is
automatically added by the role system whenever a new record is added.

Label Separators:
Cell and Tree Deletion:

Cell and Tree Filling:

T ket Fill Narrow)

Hyperbole Koutline Text Help

)Undo &8 % % Q

It displays documentation for the

<Last-Name=,

PERSONAL ROLO

W<klo rk#= F<Fax#=

*

<js@hiho.com> W788-555-2001 F78B-321-1492

Chief Ether Maintainer, HiHo Industries

This manual is for GNU Hyperbole (Edition 6.0.2, Published August 9, 2016).
Copyright (©) 1989-2016 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation.

GNU Hyperbole sofware is distributed under the terms of the GNU General
Public License version 3 or later, as published by the Free Software Foundation,
Inc.

GNU Hyperbole is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY, without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details in the file, “COPYING”,
within the Hyperbole package directory.

Published by the Free Software Foundation, Inc.

Author: Bob Weiner
E-mail: <hyperbole-users@gnu.org> (This is a mail list).
Web: www.gnu.org/software/hyperbole

The body of the manual was written in Emacs and laid out using the GNU Texinfo markup
language.

Short Contents

GNU Hyperboleo 1
1 Introduction.......... 2
2 Buttons e 7
3 Smart Keys ... 22
A MeNUS. .« vttt e 29
5 HyControl 33
6 Koutliner...... 36
7 HyRolo. ... oo 48
8 Window Configurations. 54
9 Developing with Hyperbole. 56
A GlosSary « oo 62
B Setup ... e 69
C Global Key Bindings 75
D Koutliner Keys.o 7
E Smart Key Reference.......... ... L. 85
F Suggestion or Bug Reporting 107
G Questions and ANSWersttt 108
H Future Work. 110
I Referenceso 112
Key Indext e 114
Function, Variable and FileIndex 117

Table of Contents

GNU Hyperbole..................... 1
1 Introduction...................... 2
1.1 Manual Overviewt 2
1.2 Motivation ... 3

1.3 Hyperbole Overviewo 3
1.4 Mail Lists ..o 6

2 Buttons............. ... 7
2.1 Explicit Buttons....... ..o i 8
2.2 Global Buttonsouuiiii 8
2.3 Implicit Buttons.o 9
24 Button Files.o 13
2.5 AcCtion TyPes. .ot 13
2.6 Button Type Precedence......... il 17
2.7 Utilizing Explicit Buttons 17
2.7 1 Creation.ouiiii i 17
2.7.1.1 Creation Via Action Key Drags...................... 17

2.7.1.2 Creation Via Menus ..., 18

2.7.2 Renamingc.oooiuiiiiiii i 19

2.7.3 Deletion 19

2.7.4 Modification.........ovviiiiiiiiii i 19

2.7.5 Location........coouiiiiiiii i 19

2.7.6 Buttonsin Mail 20

2.7.7 Buttonsin News....... .o, 21

3 Smart Keys........... ... 22
3.1 Smart Key Bindings. ... 22
3.2 Smart Key Operations.........c.ooueiiiiiiiiiiiiiiiiiiann.. 22
3.3 Smart Key Modeline. ... 25
3.4 Smart Key Thing Selection, 26
3.5 Smart Key Argument Selection 27
3.6 Smart Key Modifierso 27
3.7 Smart Key Debugging ... 28

4 Menus.........oii 29

ii

6 Koutliner 36

6.1 Menu CommandsS.ouuuuteeit i 37
6.2 Creating Outlines 38
6.3 Autonumbering....... ... 39
6.4 Idstamps.........ooiiii e 40
6.5 BEditing. 40
6.5.1 Adding and Killingo i 40
6.5.2 Relocating and Copyingcooiiiiiiiiiiiiinen, 40
6.5.3 Moving Around......... ..o 42
6.5.4 Filling......coooiii 42
6.5.5 TransSpoSINguuetiitieinmi e 42
6.5.6 Splitting and Appending............... 43
6.5.7 Inserting and Importing i 43
6.5.8 EXPOTtingoueiiiiiiiii 44
6.6 VIOWINg ..\ttt 44
6.6.1 Hiding and Showing, 44
6.6.2 VIEW SPECS . .ttt et e e 45
6.7 Links. ... o 45
6.8 Cell Attributesot 46
6.9 Koutliner History........ oo i 47
7 HyRolo........ ... 48
7.1 Rolo Concepts. . .vvviir i e 48
7.2 RoloMenu.o 49
7.3 Rolo Searchingo 50
T4 Rolo Keys. ..o 51
7.5 ROolo Settings.vvii i 52
8 Window Configurations........................ 54
9 Developing with Hyperbole 56
9.1 Hook Variables....... ... 56
9.2 Creating Types. . ..oouti 57
9.2.1 Action Type Creationcooiiiiiiiiiiiiina.. 58
9.2.2 Implicit Button Types.........cooiiiiiiiiiii.. 59
9.3 Explicit Button Technicalities............ ool 60
9.3.1 Button Label Normalization 60
9.3.2 Operational and Storage Formats......................... 60
9.3.3 Programmatic Button Creation........................... 60
9.4 Encapsulating Systems i 61
9.5 Embedding Hyperbole........ ... i i 61

Appendix A Glossary 62

Appendix B Setup................ ... 69
Bl Installation 69
B2 Invocation............ooiiiiii e 69
B.3 Customization 71

B.3.1 Web Search Engines........... i 72
B.3.2 Using URLs with Find-File............. 72
B.3.3 Internal Viewers.............coiiiiiiiiii, 72
B.3.4 External Viewers.........c.ooiiiiiiiiiiiiiiiiieannnnnn. 73
B.3.5 Invisible Text Searches............ ..o, 73
B.3.6 Link Variable Substitution 74
B.3.7 Configuring Button Colors 74

Appendix C Global Key Bindings 75

Appendix D Koutliner Keys..................... 77

Appendix E Smart Key Reference.............. 85
E.1 Smart Mouse Keys.o 85

E.1.1 Minibuffer Menu Activation, 85
E.1.2 Thing Selection ... 85
E.1.3 Side-by-Side Window Resizing................. 86
E.1.4 Modeline Clicks and Dragst 87
E.1.5 Smart Mouse - Drags between Windows 87
E.1.6 Smart Mouse - Drags within a Window................... 88
E.2 Smart Keyboard Keys......... ..o i 89
E.2.1 Smart Key - Emacs Pushbuttons................. 89
E.2.2 Smart Key - Argument Completion....................... 89
E.2.3 Smart Key - ID Edit Mode 89
E.2.4 Smart Key - Emacs Cross-references (Xrefs) 89
E.2.5 Smart Key - Smart Scrolling.............................. 90
E.2.6 Smart Key - Smart Menus..............ooooiiiiiiiia. 90
E.2.7 Smart Key - Dired Mode ... 91
E.2.8 Smart Key - Hyperbole Buttons.......................... 91
E.2.9 Smart Key - View Mode. ..., 91
E.2.10 Smart Key - Delimited Things........................... 92
E.2.11 Smart Key - The Koutliner.............. 92
E.2.12 Smart Key - RDB Mode ... 93
E.2.13 Smart Key - Help Buffers 93
E.2.14 Smart Key - Identifier Menu Mode 93
E.2.15 Smart Key - C Source Code...........cooiiiiiiiiii . 94
E.2.16 Smart Key - C+4 Source Code ...t 94
E.2.17 Smart Key - Assembly Source Code 95
E.2.18 Smart Key - Lisp Source Codeoooi.., 95
E.2.19 Smart Key - Java Source Codec.ooou... 96
E.2.20 Smart Key - JavaScript Source Code 96
E.2.21 Smart Key - Python Source Code 97

iv

E.2.22
E.2.23
E.2.24
E.2.25
E.2.26
E.2.27
E.2.28
E.2.29
E.2.30
E.2.31
E.2.32
E.2.33
E.2.34
E.2.35
E.2.36
E.2.37
E.2.38

Smart Key - Objective-C Source Code................... 97
Smart Key - Fortran Source Code 98
Smart Key - Occurrence Matches........................ 98
Smart Key - Calendar Mode............................. 99
Smart Key - Man Page Apropos.................oooo.... 99
Smart Key - Emacs Outline Mode...................... 100
Smart Key - Info Manuals...................... 101
Smart Key - Email Composers 102
Smart Key - GNUS Newsreader 102
Smart Key - Buffer Menus 103
Smart Key - Tar File Mode, 104
Smart Key - Man Pages....................oooiiiit, 104
Smart Key - WWW URLs ..., 104
Smart Key - Rolo Match Buffers....................... 105
Smart Key - Gomoku Game............................ 105
Smart Key - The OO-Browser.......................... 105
Smart Key - Default Context........................... 106

Appendix F Suggestion or Bug Reporting.... 107

Appendix G Questions and Answers........... 108
Appendix H Future Work 110
Appendix I References......................... 112
Key Index........ ... i, 114
Function, Variable and File Index............... 117

Concept Index i 121

GNU Hyperbole

GNU Hyperbole was designed and written by Bob Weiner. See Appendix B [Setup], page 69,
for information on how to obtain and to install Hyperbole.

This manual explains user operation and summarizes basic developer facilities of GNU
Hyperbole. Hyperbole provides convenient access to information, control over its display
and easy linking of items across documents and across the web. The Hyperbole Koutliner
offers flexible views and structure manipulation within bodies of information.

We hope you enjoy using Hyperbole and that it improves your productivity. If it does,
consider sending us a quote or short note discussing how it helps you. We may use your
submission to help promote further use of Hyperbole; all submissions will be considered
freely reusable and will fall under the same license as Hyperbole. E-mail your quote to
<hyperbole-users@gnu.org>. We volunteer our time on Hyperbole and love to hear user
stories in addition to any problem reports.

Before we delve into Hyperbole, a number of acknowledgments are in order. Peter
Wegner and Morris Moore encouraged the growth of this work. Douglas Engelbart showed
us the bigger picture and will forever be an inspiration. His life-long quest at augmenting
individual and team capabilities represents a model from which we continue to draw. Chris
Nuzum has used Hyperbole since its inception, often demonstrating its power in creative
ways. Many thanks to Mats Lidell, a long-time Hyperbole user, who has helped maintain
it throughout the years. The Koutliner is dedicated to my lovely wife, Kathy.

1 Introduction

This edition of the GNU Hyperbole Manual is for use with any version 6.0.2 or greater of
GNU Hyperbole. Hyperbole runs atop GNU Emacs 24.3 or higher. It will trigger an error
if your Emacs is older.

This chapter summarizes the structure of the rest of the manual, describes Hyperbole,
lists some of its potential applications, and explains how to subscribe to its mail lists.

Throughout this manual, sequences of keystrokes are delimited by curly braces { },
function and variable names use this typeface.

1.1 Manual Overview

Remember that the DEMO file included in the Hyperbole distribution demonstrates many of
Hyperbole’s standard facilities without the need to read through this reference manual. It
is a good way to rapidly understand some of what Hyperbole can do for you.

See Appendix A [Glossary], page 62, for definitions of Hyperbole terms. In some cases,
terms are not precisely defined within the body of this manual since they are defined within
the glossary. Be sure to reference the glossary if a term is unclear to you. Although you
need not have a keen understanding of all of these terms, a quick scan of the glossary should
help throughout Hyperbole use.

See Appendix B [Setup|, page 69, for explanations of how to obtain, install, configure
and load Hyperbole for use. This appendix includes information on user-level settings that
you may want to modify after you understand Hyperbole’s basic operation.

See Appendix F [Suggestion or Bug Reporting], page 107, for instructions on how to ask a
question, suggest a feature or report a bug in Hyperbole. A few commonly asked questions
are answered in this manual. See Appendix G [Questions and Answers|, page 108. See
Appendix I [References|, page 112, if you are interested in classic articles on hypertext.

See Chapter 2 [Buttons], page 7, for an overview of Hyperbole buttons and how to use
them.

See Chapter 3 [Smart Keys], page 22, for an explanation of the innovative, context-
sensitive mouse and keyboard Action and Assist Keys offered by Hyperbole. See Appendix E
[Smart Key Reference], page 85, for a complete reference on what the Action and Assist Keys
do in each particular context that they recognize. See Section 3.5 [Smart Key Argument
Selection], page 27, for special support that Hyperbole provides for entering arguments
when prompted for them.

Keep in mind as you read about using Hyperbole that in many cases, it provides a
number of overlapping interaction methods that support differing work styles and hardware
limitations. In such instances, you need learn only one technique that suits you.

See Chapter 4 [Menus], page 29, for summaries of Hyperbole menu commands and how
to use the minibuffer-based menus that work on dumb terminals, PCs or workstations.

See Chapter 5 [HyControl], page 33, for how to quickly and interactively control your
Emacs windows and frames and what they display.

See Chapter 6 [Koutliner], page 36, for concept and usage information on the autonum-
bered, hypertextual outliner. See Appendix D [Koutliner Keys], page 77, for a full summary
of the outliner commands that are bound to keys.

Chapter 1: Introduction 3

See Chapter 7 [HyRolo], page 48, for concept and usage information on the rapid lookup,
hierarchical, free text record management system included with Hyperbole.

See Chapter 8 [Window Configurations|, page 54, for instructions on how to save and
restore the set of buffers and windows that appear within a frame. This feature lets you
switch among working contexts easily, even on a dumb terminal. Such configurations last
only throughout a single session of editor usage.

See Chapter 9 [Developing with Hyperbole|, page 56, if you are a developer who is
comfortable with Lisp.

See Appendix H [Future Work], page 110, for future directions in Hyperbole’s evolution.

1.2 Motivation

Database vendors apply tremendous resources to help solve corporate information manage-
ment problems. But the information that people deal with in their everyday worklife is
seldom stored away in neatly defined database schemas. Instead it is scattered among local
and remote files, e-mail messages, faxes, voice mail and web pages.

The rise of the web has demonstrated how hypertext technologies can be used to build
massive organized repositories of scattered information. But assembling information for the
web still remains a great challenge to many and the data formats of the web are inherently
still too structured to deal with the great variety of information that people process. Modern
web development often requires the use of many languages: HTML, JavaScript, CSS and
Java. This in itself prevents its use as the prime means of organizing and interlinking the
constant flows of daily information.

GNU Hyperbole takes a distinctly different approach. It has its own hypertext technology
that can interface perfectly with web links but which are much easier to create (simply
drag from the source to the destination of a link to create a new hyperlink). Hyperbole
hyperbuttons can link not only to static information but can perform arbitrary actions
through the use of button types written in a single, highly interactive language, Emacs
Lisp. Hyperbole adds all of this power to your written documents, e-mail, news articles,
contact management, outlines, directory listings, and much more. Hyperbole works well
with the very latest versions of GNU Emacs.

Unlock the power of GNU Hyperbole to make your information work for you. One
system. One language. One manual. One solution. Learn GNU Hyperbole and start
moving further, faster.

1.3 Hyperbole Overview

GNU Hyperbole (pronounced Ga-new Hi-per-bo-lee), or just Hyperbole, is an efficient and
programmable hypertextual information management system. It is intended for everyday
work on any GNU Emacs platform. Hyperbole allows hypertext buttons to be embedded
within unstructured and structured files, mail messages and news articles. It offers intuitive
mouse-based control of information display within multiple windows. It also provides point-
and-click access to Info manuals, ftp archives, and the World-Wide Web (WWW).

Hyperbole consists of five parts:

Chapter 1: Introduction 4

Buttons and Smart Keys
a set of hyperbutton types that provides core hypertext and other behaviors,
see Chapter 2 [Buttons|, page 7. Buttons may be added to documents (explicit
buttons) with a simple drag between windows, no markup language needed.
Implicit buttons are patterns automatically recognized within text that per-
form actions, e.g. bug#24568 displays the bug status information for that bug
number.

Buttons are accessed by clicking on them or referenced by name (global but-
tons), so they can be activated regardless of what is on screen. Users can make
simple changes to button types. Emacs Lisp programmers can prototype and
deliver new types quickly.

Hyperbole includes two special Smart Keys, the Action Key and the Assist Key,
that perform an extensive array of context-sensitive operations across emacs
usage, including activating and showing help for Hyperbole buttons. In many
popular Emacs modes, they allow you to perform common, sometimes complex
operations without having to a different key for each operation. Just press a
Smart Key and the right thing happens. See Chapter 3 [Smart Keys|, page 22;

Contact and Text Finder
an interactive, textual information management interface, including fast, flexi-
ble file and text finding commands. A powerful, hierarchical contact manager,
see Chapter 7 [HyRolo], page 48, which anyone can use, is also included. It is
easy to learn since it introduces only a few new mechanisms and has a menu
interface, which may be operated from the keyboard or the mouse;

Screen Control
the fastest, easiest-to-use window and frame control available for GNU Emacs,
see Chapter 5 [HyControl], page 33. With just a few keystrokes, you can shift
from increasing a window’s height by 5 lines to moving a frame by 220 pixels or
immediately moving it to a screen corner. Text in each window or frame may
be enlarged or shrunk (zoomed) for easy viewing, plus many other features;

Hypertextual Outliner
an advanced outliner, see Chapter 6 [Koutliner|, page 36, with multi-level au-
tonumbering and permanent identifiers attached to each outline node for use
as hypertext link anchors, per node properties and flexible view specifications
that can be embedded within links or used interactively;

Programming Library
a set of programming libraries, see Chapter 9 [Developing with Hyperbole],
page 56, for system developers who want to integrate Hyperbole with another
user interface or as a back-end to a distinct system. (All of Hyperbole is written
in Emacs Lisp for ease of modification. It has been engineered for real-world
usage and is well structured).

Hyperbole may be used simply for browsing through documents pre-configured with
Hyperbole buttons, in which case, you can safely ignore most of the information in this
manual. Jump right into the Hyperbole demonstration by typing {C-h h d d}, assuming
Hyperbole has been installed at your site. If you need to install Hyperbole, see Appendix B

Chapter 1: Introduction 5

[Setup], page 69, for Hyperbole installation and configuration information. The demo offers
a much less technical introduction to Hyperbole by supplying good examples of how buttons
may be used and an introduction to the Koutliner.

Minibuf-1 = =] x

File Edit Options Buffers Tools Hyperbole Help

oo) bl
X (s B Q
+/# Explicit Button Samples
Hyperbole is pretty forgiving about the format of explicit buttons. For
example, all of the following represent the same button, as long as one
clicks on the *first* line of the button, within the button delimiters: I
<{factorial button)=>
={ factorial button)=

Pam= <=({factorial
Pam= button)=

;s =(factorial

i button})=>
f* < factorial *
i button)= */

If your <{Info-directory-list)> or <({Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about <(keyboard macros)=. Can't remember a Hyperbole
term? Check out the Hyperbole Manual <(glossary)=.

+
-:%%- DEMO 19% of 20k (189,08} {Help)
Hy5.12= Act Butfile/ Cust/ Doc/ Ebut/ Find/ Gbut/ Hist Ibut/ Keotl/ Msg/ Role/ Screen/ Hin!l

Image 1.1: Hyperbole Minibuffer Menu and Demonstration Screenshot

You likely will want to do more than browse with Hyperbole, e.g. create your own
buttons. The standard Hyperbole button editing user interface is Emacs-based, so a basic
familiarity with the Emacs editing model is useful. The material covered in the Emacs
tutorial, normally bound to {C-h t}, is more than sufficient as background. See Section
“Glossary” in the GNU Emacs Manual, if some emacs-related terms are unfamiliar to you.

A Hyperbole user works with chunks of information that need to be organized, inter-
linked, and processed. Such chunks can be hyperbuttons, address book contacts, items in an
outline, or even database query results. Hyperbole does not enforce any particular hyper-
text or information management model, but instead allows you to organize your information
in large or small chunks as you see fit. The Hyperbole outliner organizes information into
hierarchies which may also contain links to external information sources. See Chapter 6
[Koutliner|, page 36.

Some of Hyperbole’s most significant features are:

e Buttons may link to information or may execute procedures, such as starting or com-
municating with external programs;

e A simple mouse drag from a button source location to its link destination is often all

Chapter 1: Introduction 6

that is needed to create a new link. The keyboard can also be used to emulate such
drags;
e Buttons may be embedded within electronic mail messages;

e Qutlines allow rapid browsing, editing and movement of chunks of information orga-
nized into trees (hierarchies);

e Other hypertext and information retrieval systems may be encapsulated under a Hy-
perbole user interface (a number of samples are provided).

Typical Hyperbole applications include:

personal information management
Hyperlinks provide a variety of views into an information space. A search
facility locates hyperbuttons in context and permits quick selection.

documentation and code browsing
Cross-references may be embedded within documentation and code. Existing
documentation may be augmented with point-and-click interfaces to link code
with associated design documents, or to permit direct access to the definition
of identifiers by selecting their names within code or other documents.

brainstorming
The Hyperbole outliner (see Chapter 6 [Koutliner|, page 36) is an effective tool
for capturing ideas and then quickly reorganizing them in a meaningful way.
Links to related ideas are easy enough to create that copying and pasting ideas
together quickly becomes a dated technique.

help /training systems
Tutorials with buttons can show students how things work while explaining the
concepts, e.g. an introduction to the commands available on a computer system.
This technique can be much more effective than written documentation alone.

archive managers
Programs that manage archives from incoming information streams may be
supplemented by having them add topic-based buttons that link to the archive
holdings. Users can then search and create their own links to archive entries.

1.4 Mail Lists

If you use Hyperbole, you may join the mailing list <hyperbole-users@gnu.org> to discuss
Hyperbole with users and maintainers. There is a separate mail list to report problems
or bugs with Hyperbole, <bug-hyperbole@gnu.org>. For more details, see Appendix F
[Suggestion or Bug Reporting], page 107.

2 Buttons

This chapter explains use of Hyperbole buttons. There are several kinds of Hyperbole
buttons: buttons that are created one at a time and stored in files (explicit buttons);
buttons that can be activated by name anytime (global buttons); and buttons defined by
textual patterns where one definition can create an infinite number of buttons (implicit
buttons).

Hyperbole buttons are embedded within textual documents; they may be created, mod-
ified, moved or deleted. Each button performs a specific action, such as linking to a file or
executing a shell command.

There are three categories of Hyperbole buttons:

explicit buttons
created by Hyperbole, accessible from within a single document;

global buttons
created by Hyperbole, specific to each user, and accessible anywhere within a
user’s network of documents;

implicit buttons
created and managed by other programs or embedded within the structure of
a document, accessible from within a single document. Hyperbole recognizes
implicit buttons by contextual patterns given in their type specifications (ex-
plained later).

Explicit Hyperbole buttons may be embedded within any type of text file. Implicit
buttons may appear only within document contexts allowed by their types, which may limit
the kinds of documents or the locations within those documents at which such buttons may
be found. All global buttons for a user are stored in a single location and are activated by
entering their names, rather than by direct selection, the means used to activate explicit
and implicit buttons.

To summarize:

Button Category Active Within Activation Means Managed By
Explicit a single document direct selection Hyperbole
Global any document entering its name Hyperbole
Implicit a matching context direct selection other tools

A click on a Hyperbole button may activate it or describe its actions, depending on which
mouse key is used. Buttons may also be activated from a keyboard. (In fact, virtually
all Hyperbole operations, including menu usage, may be performed from any standard
character terminal interface, so you need not be anchored to a workstation all day). See
Chapter 3 [Smart Keys|, page 22. There is also a key that shows you how a button will
behave before you activated it, see Section 3.2 [Smart Key Operations|, page 22.

Chapter 2: Buttons 8

2.1 Explicit Buttons

Hyperbole creates and manages explicit buttons which perform specific actions when acti-
vated (typically through a button press). They look like this ‘<(fake button)>’. They are
quickly recognizable, yet relatively non-distracting as you scan the text in which they are
embedded. The text between the ‘<’ and ‘)>’ delimiters is called the button label or but-
ton name. Spacing between words within a button label is irrelevant to Hyperbole. Button
labels may wrap across several lines without causing a problem; just be sure to select the
first line of the button to activate it.

Explicit buttons may be added to any editable text file; for source code files, simply
place buttons within comments. Buttons that you use for quick navigation to websites or
other things you do often should be added to your personal button file. See Section 2.4
[Button Files], page 13.

Explicit buttons may be freely moved about within the buffer in which they are created.
(No present support exists for moving buttons between buffers; support the Hyperbole
project if you would like to help make this happen). A single button may also appear
multiple times within the same buffer; simply copy the button label with its delimiters to
a new location if you need another copy of it.

For details on how to create, activate, delete or modify explicit buttons, see Section 2.7
[Utilizing Explicit Buttons], page 17.

Each explicit button is assigned an action type that determines the actions it performs.
Link action types connect buttons to particular types of referents, the targets of their links.
Link action type names all begin with 1ink-. Link action button referents are displayed
when such buttons are by pressing or clicking upon them. See Section 2.5 [Action Types],
page 13, for a list of standard action types including link types.

Hyperbole does not manage referent data; this is left to the applications that generate the
data. This means that Hyperbole provides in-place linking and does not require reformatting
of data to integrate with Hyperbole.

Hyperbole stores the button data that gives an explicit button its behavior, separately
from the button label, in a file named .hypb (_hypb under MS Windows) within the same
directory as the file in which the button is created. Thus, all files in the same directory
share a common button data file. Button data is comprised of individual button attribute
values. A user never sees this data in its raw form but may see a formatted version by
asking for help on a button.

2.2 Global Buttons

Access to explicit buttons depends upon the information on your screen since they are
embedded within particular buffers. Sometimes it is useful to activate buttons without
regard to the information with which you are working. In such instances, you use global
buttons, which are buttons that may be activated or otherwise operated upon by entering
their labels/names when they are prompted for, rather than selecting the buttons within a
buffer.

If you want a permanent link to a file section that you can follow at any time, you can
use a global button. Or what about an Emacs keyboard macro that you use frequently?

Chapter 2: Buttons 9

Create an exec-kbd-macro button with an easy to type name and then you can activate it
whenever the need arises.

Global buttons are managed with the Hyperbole Gbut/ menu accessed with {C-h h g}.
The Create item, {C-h h g ¢}, prompts for a global button name, an action type, and the
action’s associated arguments, such as a file to link to. It then creates the button. To
activate the button, use the Act menu item, {C-h h g a}. Type the button’s name and its
action will be executed.

Global buttons are actually explicit buttons stored at the end of your personal button
file, see Section 2.4 [Button Files], page 13. You can always go into that file and activate,
edit or annotate these buttons with comments.

2.3 Implicit Buttons

Implicit buttons are virtual buttons recognized within the natural structure of a document.
For example, a web URL button that displays its link or an email address button that starts
a mail message to the associated address. Implicit buttons are identified by contextual
patterns found within documents. An Implicit button type identifies a pattern or state
that when matched triggers an action associated with the implicit button type. The action
is specified by either a Hyperbole action type (see Section 2.5 [Action Types|, page 13) or
an Emacs Lisp function. Implicit button types may use the same action types that explicit
buttons use. As an example, a pathname implicit button type would match to any existing
local filename or directory name and its action would be to display the associated file or
directory, typically in another window.

Unlike explicit buttons, implicit buttons have no individual button data other than their
textual labels. You use implicit button types which include boolean expressions (predicates)
that match to both the label and the context required of any button of the type. Each time
a Smart Key is pressed at a location, Hyperbole evaluates the predicates from the list
of implicit button types and the first one that evaluates true is selected and its associated
action is triggered. The Ibut/Act menu item, {C-h h i a}, also activates any implicit button
found at the current point.

All of this happens transparently and is easy to use once you try it. The Hyperbole
Smart Keys offer extensive additional context-sensitive point-and-click type behavior be-
yond implicit button types. See Section 3.2 [Smart Key Operations|, page 22.

Below, standard implicit button types are listed in the order in which Hyperbole tries to
match to the types when looking for an implicit button; {C-h h i t RET} provides similar
information. See the Hyperbole file, hibtypes.el, for complete examples of implicit button

types.

completion
Inserts the completion at point into the minibuffer or the other window.

hyp-source
Turns source location entries in Hyperbole reports into buttons that jump to
the associated location.

hyp-address
Turns a Hyperbole support/discussion e-mail address into an implicit button
which inserts Hyperbole environment information. This is useful when send-

Chapter 2: Buttons 10

ing mail to a Hyperbole discussion mail list. See also the documentation for
actypes: :hyp-config.

Info-node
Makes "(filename)nodename" buttons display the associated Info node. Also
makes "(filename)itemname" buttons display the associated Info index item.

www-url When not in an Emacs web browser buffer, follows any non-ftp URL (link)
at point. The variable, browse-url-browser-function, may be used to cus-
tomize which URL browser is called. Terse URLs which lack a protocol prefix,
like www.gnu.org, are also recognized.

gnus-push-button
Activates GNUS-specific article push-buttons, e.g. for hiding signatures. GNUS
is a news and mail reader."

texinfo-ref
Displays Texinfo, Info node or help associated with Texinfo node, menu item,
@xref, @pxref, @ref, @code or @var at point. If point is within the braces of a
cross-reference, the associated Info node is shown. If point is to the left of the
braces but after the @ symbol and the reference is to a node within the current
Texinfo file, then the Texinfo node is shown.

For @code and @var references, the associated documentation string is dis-
played.

mail-address
If on an e-mail address in a specific buffer type, mail to that address in another
window. Applies to the rolo match buffer, any buffer attached to a file in
hyrolo-file-1list, or any buffer with mail or rolo (case-insensitive) within
its name.

patch-msg
Jumps to the source code associated with output from the ‘patch’ program.
Patch applies diffs to source code.

elisp-compiler-msg
Jumps to the source code for a definition associated with a byte-compiler error
message. Works when activated anywhere within an error line.

debugger-source
Jumps to the source line associated with a debugger stack frame or breakpoint
line. This works with gdb, dbx, and xdb. Such lines are recognized in any
buffer.

grep-msg Jumps to a line associated with grep or compilation error messages. Messages
are recognized in any buffer.

klink Follows a link delimited by <> to a koutline cell. See the documentation for
actypes: :link-to-kotl for valid link specifiers.

man-apropos
Makes man apropos entries (from ‘man -k’) display associated man pages when
selected.

Chapter 2: Buttons 11

rfc

kbd-key

Retrieves and displays an Internet rfc referenced at point. Requires remote file
access, e.g. via the Tramp library, for remote ftp retrievals. The following for-
mats are rec